WorldWideScience

Sample records for direct spray deposition

  1. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    Science.gov (United States)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  2. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  3. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  4. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  5. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  6. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  7. Impact Response of Thermally Sprayed Metal Deposits

    Science.gov (United States)

    Wise, J. L.; Hall, A. C.; Moore, N. W.; Pautz, S. D.; Franke, B. C.; Scherzinger, W. M.; Brown, D. W.

    2017-06-01

    Gas-gun experiments have probed the impact response of tantalum specimens that were additively manufactured using a controlled thermal spray deposition process. Velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response under one-dimensional (i . e . , uniaxial strain) shock compression to peak stresses ranging between 1 and 4 GPa. The acquired wave-profile data have been analyzed to determine the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, and high-pressure yield strength of the thermally deposited samples for comparison to published baseline results for conventionally wrought tantalum. The effects of composition, porosity, and microstructure (e . g . , grain/splat size and morphology) are assessed to explain differences in the dynamic mechanical behavior of spray-deposited versus conventional material. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    Science.gov (United States)

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  9. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  10. The influence of spray properties on intranasal deposition.

    Science.gov (United States)

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.

  11. Impact of nanocrystal spray deposition on inorganic solar cells.

    Science.gov (United States)

    Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G

    2014-05-28

    Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.

  12. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  13. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  14. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  15. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  16. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  17. Deposição efetiva do produto pulverizado sobre cobertura vegetal de aveia-preta por diferentes pontas de pulverização Effective deposition of product sprayed directly on oat cover using different spray nozzles

    Directory of Open Access Journals (Sweden)

    R.L. Contiero

    2012-12-01

    essential for successful aplication. Thus, the objective of this work was to evaluate the efficiency of penetration of the spray applied, depending on the size of the droplets produced by several types of spray nozzles on oat straw. The study was conducted in Maringá-PR, using gerbox-type boxes as collection units, covered by different amounts of oat straw. The experimental design was completely randomized in a factorial scheme 8x7, with eight spray nozzles (fan and cone and 7 increasing amounts of oat straw. The product retained on the collection unit surface was collected and the absorbance was measured. Data were subjected to analysis of variance and averages compared by means of the Skott-Knott grouping, at 5% probability. It could be concluded that droplet size is extremely important in the implementation of oat straw. Very fine and very coarse droplets fail to efficiently transpose the barrier formed by the straw. Spray nozzles that produce average size droplets (CV-IA 02 and ST-02 present a greater transposition volume than the others, being recommended for applications of pre-emergence herbicides in direct-sowing, up to 4tha-1 mulch.

  18. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  20. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  1. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    Science.gov (United States)

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Numerical Study on Fan Spray for Gasoline Direct Injection Engines

    OpenAIRE

    Shirabe, Naotaka; Sato, Takaaki; Murase, Eiichi

    2003-01-01

    In gasoline direct injection engines, it is important to optimize fuel spray characteristics, which strongly affect stratified combustion process. Spray simulation is expected as a tool for optimizing the nozzle design. Conventional simulation method, how

  3. Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Jack W. Owen

    2011-01-01

    Full Text Available The performance of organic thin-film transistors (OTFTs is often strongly dependent on the fabrication procedure. In this study, we fabricate OTFTs of soluble small-molecule organic semiconductors by spray-deposition and explore the effect of processing parameters on film morphology and device mobility. In particular, we report on the effect of the nature of solvent, the pressure of the carrier gas used in deposition, and the spraying distance. We investigate the surface morphology using scanning force microscopy and show that the molecules pack along the π-stacking direction, which is the preferred charge transport direction. Our results demonstrate that we can tune the field-effect mobility of spray-deposited devices two orders of magnitude, from 10−3 cm2/Vs to 10−1 cm2/Vs, by controlling fabrication parameters.

  4. Regional deposition of mometasone furoate nasal spray suspension in humans.

    Science.gov (United States)

    Shah, Samir A; Berger, Robert L; McDermott, John; Gupta, Pranav; Monteith, David; Connor, Alyson; Lin, Wu

    2015-01-01

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS

  5. Aligned, plasma sprayed SmCo5 deposits

    International Nuclear Information System (INIS)

    Kumar, K.; Das, D.

    1986-01-01

    Highly aligned SmCo 5 deposits were produced using plasma spraying. c-axis alignment, normal to the plane of the deposit, was achieved by depositing the Sm-Co alloys on steel substrates maintained at high temperatures. The substrates were heated by the plasma flame to obtain the high temperatures. The attainment of a range of substrate temperatures was made possible through control over the geometry of the substrate

  6. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  7. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.

    Science.gov (United States)

    Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook

    2010-12-07

    We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.

  8. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  9. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  10. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...

  11. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  12. Influence of solution deposition rate on properties of V_2O_5 thin films deposited by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Abd–Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-01-01

    Vanadium oxide (V_2O_5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl_3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films’ crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V_2O_5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  13. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    Science.gov (United States)

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  15. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  16. Inorganic photovoltaic devices fabricated using nanocrystal spray deposition.

    Science.gov (United States)

    Foos, Edward E; Yoon, Woojun; Lumb, Matthew P; Tischler, Joseph G; Townsend, Troy K

    2013-09-25

    Soluble inorganic nanocrystals offer a potential route to the fabrication of all-inorganic devices using solution deposition techniques. Spray processing offers several advantages over the more common spin- and dip-coating procedures, including reduced material loss during fabrication, higher sample throughput, and deposition over a larger area. The primary difference observed, however, is an overall increase in the film roughness. In an attempt to quantify the impact of this morphology change on the devices, we compare the overall performance of spray-deposited versus spin-coated CdTe-based Schottky junction solar cells and model their dark current-voltage characteristics. Spray deposition of the active layer results in a power conversion efficiency of 2.3 ± 0.3% with a fill factor of 45.7 ± 3.4%, Voc of 0.39 ± 0.06 V, and Jsc of 13.3 ± 3.0 mA/cm(2) under one sun illumination.

  17. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Directory of Open Access Journals (Sweden)

    Mikli Valdek

    2011-01-01

    Full Text Available Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm were grown in air onto a preheated soda-lime glass (SGL or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  18. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  19. Colloidal spray method for low cost thin coating deposition

    Science.gov (United States)

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  20. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  1. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  2. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  3. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  4. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  5. A theoretical model for prediction of deposition efficiency in cold spraying

    International Nuclear Information System (INIS)

    Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.

    2005-01-01

    The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle

  6. Controllable deposition of gadolinium doped ceria electrolyte films by magnetic-field-assisted electrostatic spray deposition

    International Nuclear Information System (INIS)

    Ksapabutr, Bussarin; Chalermkiti, Tanapol; Wongkasemjit, Sujitra; Panapoy, Manop

    2013-01-01

    This paper describes a simple and low-temperature approach to fabrication of dense and crack-free gadolinium doped ceria (GDC) thin films with controllable deposition by a magnetic-field-assisted electrostatic spray deposition technique. The influences of external permanent magnets on the deposition of GDC films were investigated. The coating area deposited using two magnets with the same pole arrangement decreased in comparison with the case of no magnets, whereas the largest deposition area was obtained in the system of the opposite poles. Analysis of as-deposited films at 450 °C indicated the formation of uniform, smooth and dense thin films with a single-phase fluorite structure. The films produced in the system using same poles were thicker, smaller in crystallite size and smoother than those fabricated under other conditions. Additionally, the GDC film deposited using the same pole arrangement showed the maximum in electrical conductivity of about 2.5 × 10 −2 S/cm at a low operating temperature of 500 °C. - Highlights: • Magnetic-field-assisted electrostatic spray allows a controllable coating. • Dense, crack-free thin films were obtained at low process temperature of 450 °C. • Control of deposition, thickness and uniformity is easy to achieve simultaneously. • Films from the same pole were thicker, smaller in crystal size and smoother. • The maximum conductivity of doped ceria film was 2.5 × 10 −2 S/cm at 500 °C

  7. Stoichiometry and superconductive properties of YBaCuO films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Falcony, C.; Ortiz, A.

    1994-01-01

    The dependence of the stoichiometry and the superconducting characteristics of YBaCuO films deposited by spray pyrolysis on the spraying solution composition and the deposition conditions is reported. It has been found that a proper optimization of the starting materials concentration in the spraying solution results in superconducting films with zero resistance temperature of 91 K and a transition to superconducting state within a 3 K range. X-ray diffraction and resistance vs temperature measurements have been used to monitor the crystal composition and the conductive characteristics of the films as a function of the spraying solution composition and the deposition parameters

  8. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  9. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  10. Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition

    Science.gov (United States)

    Stepien, Milena; Saarinen, Jarkko J.; Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Kuusipalo, Jurkka; Mäkelä, Jyrki M.; Toivakka, Martti

    2011-01-01

    Liquid flame spray process (LFS) was used for depositing TiO x and SiO x nanoparticles on paperboard to control wetting properties of the surface. By the LFS process it is possible to create either superhydrophobic or superhydrophilic surfaces. Changes in the wettability are related to structural properties of the surface, which were characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The surface properties can be ascribed as a correlation between wetting properties of the paperboard and the surface texture created by nanoparticles. Surfaces can be produced inline in a one step roll-to-roll process without need for additional modifications. Furthermore, functional surfaces with adjustable hydrophilicity or hydrophobicity can be fabricated simply by choosing appropriate liquid precursors.

  11. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  12. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  13. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  15. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  16. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process

    International Nuclear Information System (INIS)

    Ning Xianjin; Li Chengxin; Li Changjiu; Yang Guanjun

    2006-01-01

    4.5 mol% yttria-stabilized zirconia (YSZ) coating was deposited by atmospheric plasma spraying (APS) as an electrolyte for solid oxide fuel cells (SOFCs) applications. The post treatment was employed using zirconium and yttrium nitrate solution infiltration to densify the coating microstructure for improvement of gas permeability. The deposition of YSZ through nitrate in voids of the coating was examined. Microstructure of the as-sprayed and densified coatings was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of infiltrating treatment on coating microstructure and electrical conductivity was examined. The electrical conductivity of APS-sprayed YSZ coating at the direction perpendicular to coating surface was much lower than that of bulk materials. Post-densification treatment improved the electrical conductivity of YSZ coating by about 25% compared with as-sprayed coating. It was found that the deposition of YSZ resulting from decomposition of nitrate in the lamellar interface gaps was different from that in vertical cracks in lamella owing to the orthogonal feature of those two types of gaps. The nanopores were formed in the deposited YSZ in nonbonded interface gaps while large pores were residued in vertical cracks in splats. The microstructural examination suggests that nanopores in the deposited YSZ in nonbonded interfaces in the coating were isolated from each other, which led to the significant reduction of gas permeability after densification. Moreover, the nanocontacts between lamellae resulted in high contact resistance and limit improvement of electrical conductivity of the coating after densification

  17. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  18. Influence of solution deposition rate on properties of V{sub 2}O{sub 5} thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Abd–Alghafour, N. M., E-mail: na2013bil@gmail.com [Iraqi Ministry of Education, Anbar (Iraq); Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, University Sains Malaysia,11800 Penang (Malaysia)

    2016-07-19

    Vanadium oxide (V{sub 2}O{sub 5}) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl{sub 3} in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films’ crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V{sub 2}O{sub 5} film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  19. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  20. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  1. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    Science.gov (United States)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  2. Spray deposition inside multiple-row nursery trees with a laser-guided sprayer

    Science.gov (United States)

    Multiple-row container-grown trees require specially designed sprayers to achieve efficient spray delivery quality. A five-port air-assisted sprayer with both automatic and manual control modes was developed to discharge adequate spray deposition inside multiple-row tree plants. The sprayer resulted...

  3. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  4. Direct spraying method for fabrication of paper-based microfluidic devices

    International Nuclear Information System (INIS)

    Liu, Ning; An, Hong-Jie; Lew, Wen Siang; Xu, Jing; Phan, Dinh-Tuan; Hashimoto, Michinao

    2017-01-01

    Direct spraying of hydrophobic materials is an affordable, easy-to-use and equipment-free method for fabrication of flexible microsensors, albeit not yet widely adopted. To explore its application potential, in this paper, we propose and demonstrate two novel hybrid methods to fabricate paper-based components. Firstly, through combing direct spraying with Parafilm embedding, a leak-free paper-based sample preconcentrator for fluorescence sensing was fabricated. The leak-free device worked on the principle of ion concentration polarization (ICP) effect, and achieved enhancement of fluorescent tracer by 220 folds on a paper substrate. Secondly, by using the sprayed hydrophobic patterns, paper-based microsized supercapacitors (mSCs) were fabricated. Vacuum filtration was used to deposit multi-wall carbon nanotubes (MWCNT)-dispersed solution on a porous substrate to form electrodes. A volumetric capacitance of 42.5 mF cm −3 at a current density of 2 mA cm −3 was obtained on the paper-based mSC. Our demonstrations have shown the versatility of direct spraying for the fabrication of integrative paper-based microfluidic devices. (paper)

  5. Assessment of spray deposition with water-sensitive paper cards

    Science.gov (United States)

    Spatial distributions of spray droplets discharged from an airblast sprayer, were sampled on pairs of absorbent paper (AP) and water-sensitive paper (WSP) targets at several distances from the sprayer. Spray solutions, containing a fluorescent tracer, were discharged from two size nozzles to achiev...

  6. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  7. Factors affecting the development of sprays produced by multihole injectors for direct-injection engine applications

    OpenAIRE

    Van Romunde, R. Z.

    2011-01-01

    The spray form development from a state of the art multi-hole injector for gasoline direct injection internal combustion engines is examined to attempt to determine the thermo-fluid dynamics affecting the spray development. The current state of knowledge regarding spray break-up and the interactivity of the factors on spray form are detailed. The spray under investigation was injected into purposely designed quiescent chambers to decouple the effects of the fluid mechanics on s...

  8. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Matejková, M.; Dlouhý, I.; Šiška, Filip; Kay, C.M.; Karthikeyan, J.; Kuroda, S.; Kovařík, O.; Siegl, J.; Loke, K.; Khor, K.A.

    2015-01-01

    Roč. 24, č. 5 (2015), s. 758-768 ISSN 1059-9630 Institutional support: RVO:68081723 Keywords : Cold spray * Fatigue * Grit-blast Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.568, year: 2015

  9. Direct write of copper-graphene composite using micro-cold spray

    Directory of Open Access Journals (Sweden)

    Sameh Dardona

    2016-08-01

    Full Text Available Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have good adhesion to the substrate with ∼65x the copper bulk resistivity.

  10. TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Guerrero, M.; Castillo, N.; Soto, A.B.; Fragoso, R.; Cabanas-Moreno, J.G.

    2005-01-01

    Titanium dioxide thin films were deposited on crystalline silicon (100) and fused quartz substrates by spray pyrolysis (SP) of an aerosol, generated ultrasonically, of titanium diisopropoxide. The evolution of the crystallization, studied by X-ray diffraction (XRD), atomic force (AFM) and scanning electron microscopy (SEM), reflection and transmission spectroscopies, shows that the deposition process is nearly close to the classical chemical vapor deposition (CVD) technique, producing films with smooth surface and good crystalline properties. At deposition temperatures below 400 deg. C, the films grow in amorphous phase with a flat surface (roughness∼0.5 nm); while for equal or higher values to this temperature, the films develop a crystalline phase corresponding to the TiO 2 anatase phase and the surface roughness is increased. After annealing at 750 deg. C, the samples deposited on Si show a transition to the rutile phase oriented in (111) direction, while for those films deposited on fused quartz no phase transition is observed

  11. Post-deposition treatments of plasma-sprayed YBaCuO coatings deposited on nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dube, D; Lambert, P; Arsenault, B; Champagne, B [National Research Council of Canada, Boucherville, PQ (Canada)

    1990-12-15

    As-sprayed YBaCuO coatings do not exhibit superconductivity because of the non-equilibrium solidification conditions of molten particles on the substrate and to the deposit's loss of oxygen. Therefore post-deposition treatments are required to restore the superconductivity. In this study, post-deposition treatments were carried out on thick YBaCuO coatings (200 {mu}m) deposited on cold nickel substrates to modify their microstructure, to restore the oxygen content and to improve their superconducting properties. These treatments consist in heating the coatings at various temperatures above 950deg C followed by controlled solidification cycles. The effect of these treatments on the microstructure of the coatings was assessed and the interaction between the coatings and the nickel substrate was also examined. Solidification cycles including a low cooling rate near the non-congruent melting temperature of YBa{sub 2}Cu{sub 3}O{sub x} and involving a temperature gradient were carried out to create a texture. (orig.).

  12. Metallic coating deposited by Cold Gas Spray onto Light alhoys

    OpenAIRE

    Villa Vidaller, Maria

    2013-01-01

    This thesis focuses on the use of Cold Gas Spray technology (CGS) to spray different nature powders onto light alloys with the aim of increasing their wear resistance. The growing industrial interest for costs reduction (fuel consumption, machinery lifetime, or personal security) has emphasized the necessity to investigate the potential applications that light alloys can offer. Weight reduction is a reason why light metals and its alloys have been associated with strong industries a...

  13. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  14. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats.

    NARCIS (Netherlands)

    Manders, P.J.D.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    BACKGROUND: A new technique to deposit calcium phosphate (CaP) coatings onto titanium substrates has been developed recently. This electrostatic spray deposition (ESD) technique seems to be very promising. It appears to have clinical advantages such as an inexpensive and simple set-up, high

  15. Superconducting and structural properties of plasma sprayed YBaCuO layers deposited on metallic substrates

    NARCIS (Netherlands)

    Hemmes, Herman K.; Jäger, D; Smithers, M.A.; Smithers, M.; van der Veer, J.; van der Veer, J.M.; Stover, D.; Rogalla, Horst

    1993-01-01

    The properties of plasma sprayed Y-Ba-Cu-O coatings deposited on metallic substrates are studied. Stainless steel, nickel steels and pure nickel are used as substrate. Y-Ba-Cu-O deposited on stainless steel and nickel steel reacts with the substrate. This interaction can be suppressed by using an

  16. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Schmidt, J.A.; Arce, R.D. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2016-04-30

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  17. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Schmidt, J.A.; Arce, R.D.

    2016-01-01

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  18. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  19. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  20. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  1. Thermal spray deposition and evaluation of low-Z coatings

    International Nuclear Information System (INIS)

    Seals, R.D.; Swindeman, C.J.; White, R.L.

    1996-01-01

    Thermally sprayed low-Z coatings of B 4 C on Al substrates were investigated as candidate materials for first-wall reactor protective surfaces. Comparisons were made to thermally sprayed coatings of B, MgAl 2 O 4 , Al 2 O 3 , and composites. Graded bond layers were applied to mitigate coefficient of thermal expansion mismatch. Microstructures, thermal diffusivity before and after thermal shock loading, steel ball impact resistance, CO 2 pellet cleaning and erosion tolerance, phase content, stoichiometry by Rutherford backscattering spectroscopy, and relative tensile strengths were measured

  2. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    Science.gov (United States)

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  3. Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting

    Science.gov (United States)

    Bagherifard, Sara; Roscioli, Gianluca; Zuccoli, Maria Vittoria; Hadi, Mehdi; D'Elia, Gaetano; Demir, Ali Gökhan; Previtali, Barbara; Kondás, Ján; Guagliano, Mario

    2017-10-01

    Cold spray offers the possibility of obtaining almost zero-porosity buildups with no theoretical limit to the thickness. Moreover, cold spray can eliminate particle melting, evaporation, crystallization, grain growth, unwanted oxidation, undesirable phases and thermally induced tensile residual stresses. Such characteristics can boost its potential to be used as an additive manufacturing technique. Indeed, deposition via cold spray is recently finding its path toward fabrication of freeform components since it can address the common challenges of powder-bed additive manufacturing techniques including major size constraints, deposition rate limitations and high process temperature. Herein, we prepared nickel-based superalloy Inconel 718 samples with cold spray technique and compared them with similar samples fabricated by selective laser melting method. The samples fabricated using both methods were characterized in terms of mechanical strength, microstructural and porosity characteristics, Vickers microhardness and residual stresses distribution. Different heat treatment cycles were applied to the cold-sprayed samples in order to enhance their mechanical characteristics. The obtained data confirm that cold spray technique can be used as a complementary additive manufacturing method for fabrication of high-quality freestanding components where higher deposition rate, larger final size and lower fabrication temperatures are desired.

  4. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    DEFF Research Database (Denmark)

    Koivisto, Antti J.; Jensen, Alexander C. Ø.; Kling, Kirsten I.

    2017-01-01

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm ...

  5. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  6. Electrical and optical properties of spray - deposited CdSe thin films

    International Nuclear Information System (INIS)

    Bedir, M.; Oeztas, M.; Bakkaloglu, O. F.

    2002-01-01

    The CdSe thin films were developed by using spray-deposition technique at different substrate temperatures of 380C, 400C and, 420C on the glass substrate. All spraying processes involved CdCI 2 (0.05 moles/liter) and SeO 2 (0.05 moles/liter ) and were carried out in atmospheric condition. The CdSe thin film samples were characterized using x-ray diffractometer and optical absorption measurements. The electrical properties of the thin film samples were investigated via Wander Pauw method. XRD patterns indicated that the CdSe thin film samples have a hexagonal structure. The direct band gap of the CdSe thin film samples were determined from optical absorption and spectral response measurements of 1.76 eV. The resistivity of the CdSe thin film samples were found to vary in the range from 5.8x10''5 to 7.32x10''5 Ωcm depending to the substrate temperature

  7. Spray swath patterns of small aircraft and vertical distribution of microbial spray deposits

    Science.gov (United States)

    W. G. Yendol

    1985-01-01

    Each year in Northeastern United States over 500,000 acres of oak forests are aerially sprayed to prevent massive defoliation by the gypsy moth. In Pennsylvania alone 400,000 acres were proposed for treatment in 1983 with commercial preparation of Bacillus thuringiensis (Bt).

  8. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  9. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  10. Automated setup for spray assisted layer-by-layer deposition.

    Science.gov (United States)

    Mundra, Paul; Otto, Tobias; Gaponik, Nikolai; Eychmüller, Alexander

    2013-07-01

    The design for a setup allowing the layer-by-layer (LbL) assembly of thin films consisting of various colloidal materials is presented. The proposed system utilizes the spray-assisted LbL approach and is capable of autonomously producing films. It provides advantages to existing LbL procedures in terms of process speed and applicability. The setup offers several features that are advantageous for routine operation like an actuated sample holder, stainless steel spraying nozzles, or an optical liquid detection system. The applicability is demonstrated by the preparation of films containing semiconductor nanoparticles, namely, CdSe∕CdS quantum dots and a polyelectolyte. The films of this type are of potential interest for applications in optoelectronic devices such as light-emitting diodes or solar cells.

  11. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  12. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  13. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  14. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  15. Seawater spray injury to Quercus acutissima leaves: crystal deposition, stomatal clogging, and chloroplast degeneration.

    Science.gov (United States)

    Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi

    2011-05-01

    Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.

  16. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    Science.gov (United States)

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  17. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  18. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  19. Effects of different needles and substrates on CuInS{sub 2} deposited by electrostatic spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Roncallo, S. [Centre for Materials Science and Engineering, Cranfield University, Shrivenham, Swindon, SN6 8LA (United Kingdom); Painter, J.D., E-mail: j.d.painter@cranfield.ac.u [Centre for Materials Science and Engineering, Cranfield University, Shrivenham, Swindon, SN6 8LA (United Kingdom); Healy, M.J.F. [Centre for Materials Science and Engineering, Cranfield University, Shrivenham, Swindon, SN6 8LA (United Kingdom); Ritchie, S.A.; Finnis, M.V. [Department of Engineering Systems and Management, Cranfield University, Shrivenham, Swindon SN6 8LA (United Kingdom); Rogers, K.D. [Cranfield Health, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Scragg, J.J. [University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Dale, P.J. [Laboratoire Photovoltaique, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux (Luxembourg); Zoppi, G. [Northumbria Photovoltaics Applications Centre, Northumbria, University, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2011-03-31

    Copper indium disulphide (CuInS{sub 2}) thin films were deposited using the electrostatic spray deposition method. The effects of applied voltage and solution flow rate on the aerosol cone shape, film composition, surface morphology and current conversion were investigated. The effect of aluminium substrates and transparent fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates on the properties of as-deposited CuInS{sub 2} films were analysed. An oxidation process occurs during the deposition onto the metallic substrates which forms an insulating layer between the photoactive film and substrate. The effects of two different spray needles on the properties of the as-deposited films were also studied. The results reveal that the use of a stainless steel needle results in contamination of the film due to the transfer of metal impurities through the spray whilst this is not seen for the glass needle. The films were characterised using a number of different analytical techniques such as X-ray diffraction, scanning electron microscopy, Rutherford back-scattering and secondary ion mass spectroscopy and opto-electronic measurements.

  20. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films

    International Nuclear Information System (INIS)

    Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S.

    2007-01-01

    Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry

  1. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  2. Deposition of porous cathodes using plasma spray technique for reduced-temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Jankovic, J.; Hui, S.; Roller, J.; Kesler, O.; Xie, Y.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    Current techniques for Solid Oxide Fuel Cell (SOFC) materials deposition are often expensive and time-consuming. Plasma-spraying techniques provide higher deposition rates, short processing times and control over porosity and composition during deposition. Optimum plasma spraying for lanthanum based cathode materials were discussed. Plasma-spraying was used to deposit cathode materials onto ceramic and stainless steel substrates to obtain highly porous structures. Lanthanum cathode materials with composition of La{sub 0.6}Sr{sub 0.4}C{sub 0.2}Fe{sub 0.8}O{sub 3} were employed in the powder form. The powder was prepared from powder precursors with different power formers and binder levels, or from produced single-phase lanthanum powders. The (La{sub 0.8}Sr{sub 0.2}){sub 0.98}MnO{sub 3} cathode material was also processed for comparison purposes. The deposition process was developed to obtain coatings with good bond strength, porosity, film thickness and residual stresses. The phase and microstructure of deposited materials were characterized using X-Ray Diffraction and Scanning Electron Microscopy (SEM). It was concluded that good flow of the powder precursors is achieved by spraying 50-100 um particle size powders and using vibrating feeders. Further processing of the spraying powders was recommended. It was noted that oxide precursors showed greater reactivity among the precursors. The best precursor reactivity and coating morphology was obtained using 40 volume per cent of graphite pore former, incorporated into the precursor mixture during wet ball milling. It was concluded that higher power levels and larger distances between the plasma gun and the substrate result in coatings with the highest porosities and best phase compositions. 5 refs., 1 tab., 6 figs.

  3. An investigation of the effects of droplet impact angle in thermal spray deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Neiser, R.A.; Dykhuizen, R.C.

    1994-01-01

    It is widely held that spraying at off-normal angles can influence deposition efficiency and the properties of the deposited material. However, little quantitative information on such effects has been published. This paper reports on a series of experiments to investigate the angular dependence of deposition efficiency, surface roughness, and porosity for several thermal spray materials and processes at incidence angles ranging from 90 degree to 30 degree relative to the substrate surface. At incidence angles from 90 degree out to 60 degree, the observed changes were small and often statistically insignificant. Some significant changes began to appear at 45 degree, and at 30 degree significant changes were observed for nearly all materials and processes: deposition efficiency decreased while surface roughness and porosity increased. It is proposed that droplet splashing may cause some of the observed effects

  4. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  5. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  6. Effects of nozzle types and 2,4-D formulations on spray deposition.

    Science.gov (United States)

    Contiero, Robinson L; Biffe, Denis F; Constantin, Jamil; de Oliveira, Rubem S; Braz, Guilherme B P; Lucio, Felipe R; Schleier, Jerome J

    2016-12-01

    The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis). For both experiments, the first factor corresponded to spray nozzles with different settings (AD 110.015 - 61 and 105 L ha -1 ; AD 015-D - 75 and 146 L ha -1 ; XR 110.0202 - 200 L ha -1 ; and ADIA-D 110.02 - 208 L ha -1 ) and the second factor consisted of two formulations of 2,4-D (amine and choline). The formulation of 2,4-D choline has contained Colex-D™ Technology. Similar or higher spray deposition was observed on the leaves and artificial targets when using 2,4-D choline as compared to the 2,4-D amine formulation, and these differences in deposition were more evident for nozzles applying lower spray volumes. Deposition was more affected by nozzle type when amine formulation was used, compared to choline formulation.

  7. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  8. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  9. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  10. Nasal deposition of ciclesonide nasal aerosol and mometasone aqueous nasal spray in allergic rhinitis patients.

    Science.gov (United States)

    Emanuel, Ivor A; Blaiss, Michael S; Meltzer, Eli O; Evans, Philip; Connor, Alyson

    2014-01-01

    Sensory attributes of intranasal corticosteroids, such as rundown to the back of the throat, may influence patient treatment preferences. This study compares the nasal deposition and nasal retention of a radiolabeled solution of ciclesonide nasal aerosol (CIC-hydrofluoroalkane [HFA]) with a radiolabeled suspension of mometasone furoate monohydrate aqueous nasal spray (MFNS) in subjects with either perennial allergic rhinitis (AR) or seasonal AR. In this open-label, single-dose, randomized, crossover scintigraphy study, 14 subjects with symptomatic AR received a single dose of radiolabeled 74-μg CIC-HFA (37 μg/spray, 1 spray/each nostril) via a nasal metered-dose inhaler or a single dose of radiolabeled 200-μg MFNS (50 μg/spray, 2 sprays/each nostril), with a minimum 5-day washout period between treatments. Initial deposition (2 minutes postdose) of radiolabeled CIC-HFA and MFNS in the nasal cavity, nasopharynx, and on nasal wipes, and retention of radioactivity in the nasal cavity and nasal run-out on nasal wipes at 2, 4, 6, 8, and 10 minutes postdose were quantified with scintigraphy. At 2 and 10 minutes postdose, deposition of radiolabeled CIC-HFA was significantly higher in the nasal cavity versus radiolabeled MFNS (99.42% versus 86.50% at 2 minutes, p = 0.0046; and 81.10% versus 54.31% at 10 minutes, p Deposition of radioactivity on nasal wipes was significantly higher with MFNS versus CIC-HFA at all five time points, and posterior losses of radiolabeled formulation were significantly higher with MFNS at 6, 8, and 10 minutes postdose. In this scintigraphic study, significantly higher nasal deposition and retention of radiolabeled aerosol CIC-HFA were observed versus radiolabeled aqueous MFNS in subjects with AR.

  11. Process maps for plasma spray. Part II: Deposition and properties

    International Nuclear Information System (INIS)

    XIANGYANG, JIANG; MATEJICEK, JIRI; KULKARNI, ANAND; HERMAN, HERBERT; SAMPATH, SANJAY; GILMORE, DELWYN L.; NEISER A, RICHARD Jr.

    2000-01-01

    This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development

  12. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  13. 31 CFR 357.26 - Direct Deposit.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Direct Deposit. 357.26 Section 357.26 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... AND BILLS HELD IN LEGACY TREASURY DIRECT Legacy Treasury Direct Book-Entry Securities System (Legacy...

  14. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    Science.gov (United States)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  15. Spray deposited gallium doped tin oxide thinfilm for acetone sensor application

    Science.gov (United States)

    Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.

    2018-04-01

    Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.

  16. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  17. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  18. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  19. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  20. Comparison of microscopic method and computational program for pesticide deposition evaluation of spraying

    Directory of Open Access Journals (Sweden)

    Chaim Aldemir

    2002-01-01

    Full Text Available The main objective of this work was to compare two methods to estimate the deposition of pesticide applied by aerial spraying. Hundred and fifty pieces of water sensitive paper were distributed over an area of 50 m length by 75 m width for sampling droplets sprayed by an aircraft calibrated to apply a spray volume of 32 L/ha. The samples were analysed by visual microscopic method using NG 2 Porton graticule and by an image analyser computer program. The results reached by visual microscopic method were the following: volume median diameter, 398±62 mum; number median diameter, 159±22 mum; droplet density, 22.5±7.0 droplets/cm² and estimated deposited volume, 22.2±9.4 L/ha. The respective ones reached with the computer program were: 402±58 mum, 161±32 mum, 21.9±7.5 droplets/cm² and 21.9±9.2 L/ha. Graphs of the spatial distribution of droplet density and deposited spray volume on the area were produced by the computer program.

  1. Correlation of splat state with deposition characteristics of cold sprayed niobium coatings

    International Nuclear Information System (INIS)

    Kumar, S.; Ramakrishna, M.; Chavan, N.M.; Joshi, S.V.

    2017-01-01

    The cold spray technique has a great potential to deposit refractory metals for a variety of potential applications. Cold spraying of different metals have been addressed comprehensively to understand the deposition characteristics of the coatings. Since there is no available data on the deposition characteristics of cold sprayed Niobium, impact behavior of splats at different deposition conditions were simulated and numerically analyzed using Finite Element Modeling (FEM) and correlated with the experimental observations that highlight the role of the velocity and temperature of the particle upon impact on the bonding features. The increase in temperature of the splat drastically reduces the flow stress at the interface leading to best inter-splat bonding state. The synergistic effect of the temperature and the velocity leads to the formation of very dense, defect free niobium coating associated with deformation localization including interface melting. Formation of nanocrystalline grains at the inter-splat boundary was confirmed through TEM and compared with the FEM findings. Finally, understanding the deformation and deposition behavior of refractory metal such as niobium will be helpful to engineer the coatings for potential applications. - Graphical abstract: ▪

  2. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  3. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  4. Deposition and characterization of ZnO thin films by modified pulsed-spray pyrolysis

    International Nuclear Information System (INIS)

    Thilakan, Periyasamy; Radheep, D Mohan; Saravanakumar, K; Sasikala, G

    2009-01-01

    Zinc oxide (ZnO) thin films were deposited using modified pulsed-spray pyrolysis on glass substrates. Depositions were carried out using N 2 as the carrier gas and analysed with respect to the rate of deposition. X-ray analysis revealed the presence of mixed crystallization with a nanocrystalline structure of about 6.9 nm dispersed in the amorphous matrix. A negative trend between the bandgap and resistivity was observed with the decrease in the deposition rate. A lowest bandgap of 3.1 eV with a resistivity value of 1.6 × 10 −2 Ω cm was achieved at a lowest deposition rate of 1.3 nm min −1 . Hot-probe measurement revealed the p-type conductivity for the film deposited at a lowest deposition rate of 1.3 nm min −1 . Details about the influence of pulsed-spray deposition for the achievement of this negative trend between bandgap and resistivity will be discussed in this paper

  5. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  6. Comparative studies of spray pyrolysis deposited copper sulfide ...

    Indian Academy of Sciences (India)

    X-ray diffraction analysis showed that while the layer/glass sample has an individual CuS (covellite) ... that all these materials have a relatively high absorption coefficient (∼5 × .... and S2 that were deposited on glass substrates, had the co-.

  7. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.

    Science.gov (United States)

    Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang

    2017-04-10

    This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    Science.gov (United States)

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  9. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  10. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2010-01-01

    To develop a simple and inexpensive method to visualize and quantify droplet deposition patterns. Deposition pattern was determined by uniformly coating the nose model with Sar-Gel (a paste that changes from white to purple on contact with water) and subsequently discharging sprays into the nose model. The color change was captured using a digital camera and analyzed using Adobe Photoshop. Several tests were conducted to validate the method. Deposition patterns of different nasal sprays (Ayr, Afrin, and Zicam) and different nasal drug delivery devices (Afrin nasal spray and PARI Sinustar nasal nebulizer) were compared. We also used the method to evaluate the effect of inhaled flow rate on nasal spray deposition. There was a significant difference in the deposition area for Ayr, Afrin, and Zicam. The deposition areas of Afrin nasal spray and PARI Sinustar nasal nebulizer (2 min and 5 min) were significantly different. Inhaled flow rate did not have a significant effect on the deposition pattern. Lower viscosity formulations (Ayr, Afrin) provided greater coverage than the higher viscosity formulation (Zicam). The nebulizer covered a greater surface area than the spray pump we evaluated. Aerosol deposition in the nose model was not affected by air flow conditions.

  11. Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition

    International Nuclear Information System (INIS)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2005-01-01

    In order to deposit biomedical calcium phosphate (CaP) coatings with a defined surface morphology, the electrostatic spray deposition (ESD) technique was used since this technique offers the possibility to deposit ceramic coatings with a variety of surface morphologies. A scanning electron microscopical study was performed in order to investigate the influence of several deposition parameters on the final morphology of the deposited coatings. The chemical characteristics of the coatings were studied by means of X-ray diffraction and Fourier-transform infrared spectroscopy. Regarding the chemical coating properties, the results showed that the coatings can be described as crystalline carbonate apatite coatings, a crystal phase which is similar to the mineral phase of bone and teeth. The morphology of CaP coatings, deposited using the ESD technique, was strongly dependent on the deposition parameters. By changing the nozzle-to-substrate distance, the precursor liquid flow rate and the deposition temperature, coating morphologies were deposited, which varied from dense to highly porous, reticular morphologies. The formation of various morphologies was the result of an equilibrium between the relative rates of CaP solute precipitation/reaction, solvent evaporation and droplet spreading onto the substrate surface

  12. Numerical studies of spray breakup in a gasoline direct injection (GDI engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar Samad

    2011-01-01

    Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.

  13. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Science.gov (United States)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  14. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    Science.gov (United States)

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.

  15. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Sapkal, R.T.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I sc = 0.357 mA) and open circuit voltage (V oc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  16. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers

    DEFF Research Database (Denmark)

    Løfstrøm, Per; Bruus, Marianne; Andersen, Helle Vibeke

    2013-01-01

    In order to predict the exposure of hedgerows and other neighboring biotopes to pesticides from field-spray applications, an existing Gaussian atmospheric dispersion and deposition model was developed to model the changes in droplet size due to evaporation affecting the deposition velocity....... The Gaussian tilting plume principle was applied inside the stayed track. The model was developed on one set of field experiments using a flat-fan nozzle and validated against another set of field experiments using an air-induction nozzle. The vertical spray-drift profile was measured using hair curlers...... at increasing distances. The vertical concentration profile downwind has a maximum just above the ground in our observations and calculations. The model accounts for the meteorological conditions, droplet ejection velocity and size spectrum. Model validation led to an R2 value of 0.78, and 91% of the calculated...

  17. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  18. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  19. Spray deposited CeO2–TiO2 counter electrode for electrochromic ...

    Indian Academy of Sciences (India)

    Abstract. Optically passive thin films of CeO2–TiO2 mixed oxides with molar ratio of Ce/Ti of 0.05 were deposited by the spray pyrolysis technique (SPT) on a glass and fluorine-doped tin oxide (FTO)-coated glass substrates. Precur- sor solution containing cerium nitrate hexahydrate (Ce(NO3)2·6H2O) and titanium ...

  20. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  1. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  2. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  3. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  4. Spray Deposition and Drift Characteristics of a Low Drift Nozzle for Aerial Application at Different Application Altitudes

    Science.gov (United States)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  5. Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes

    Science.gov (United States)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  6. Growth and characterization of V{sub 2}O{sub 5} nanorods deposited by spray pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alghafour, N. M., E-mail: na2013bil@gmail.com; Ahmed, Naser M., E-mail: nas-tiji@yahoo.com; Hassan, Zai. [Iraqi Ministry of Education, Anbar-Iraq (Iraq); Mohammad, Sabah M. [Nano-Optoelectronics Research and Technology Laboratory School of Physics, university sains Malaysia, 11800 Penang (Malaysia); Bououdina, M. [Nanotechnology Centre, University of Bahrain, PO Box 32038, Kingdom of Bahrain Department of Physics, College of Science, University of Bahrain, PO Box 32038, Kingdom of Bahrain, Iraqi Ministry of Education (Bahrain)

    2016-07-06

    Vanadium pentoxide (V{sub 2}O{sub 5}) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V{sub 2}O{sub 5} has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at T{sub sub} = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.

  7. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.

    Science.gov (United States)

    Djupesland, Per Gisle; Skretting, Arne

    2012-10-01

    Delivery of powder formulations to the nose is an attractive alternative for many drugs and vaccines. This study compared the regional nasal deposition and clearance patterns of lactose powder delivered by the OptiNose powder device (Opt-Powder; OptiNose US Inc., Yardley, PA, USA) to that of liquid aerosol administered via a traditional hand-actuated liquid spray pump (Rexam SP270, Rexam Pharma, France). The study was an open-label, crossover design in seven healthy subjects (five females, two males). The regional nasal deposition and clearance patterns of the Opt-Powder device were compared to a traditional liquid spray pump by dynamic gamma camera imaging after administration of either (99m)Tc-labeled lactose powder or liquid (99m)Tc- diethelyne triamine pentaacetic acid-aerosol. The gamma camera images were scaled and aligned with sagittal magnetic resonance images to identify nasal regions. Possible deposition of radiolabeled material in the lungs following both methods of delivery was also evaluated. Both powder and spray were distributed to all of the nasal regions. The Opt-Powder device, however, achieved significantly larger initial deposition in the upper and middle posterior regions of the nose than spray (upper posterior region; Opt-Powder 18.3% ± 11.5 vs. Spray 2.4% ± 1.8, pSpray 15.7% ± 13.8, pdeposition to the lower anterior and posterior regions for spray was three times higher compared to Opt-Powder (Opt-Powder 17.4% ± 24.5 vs. Spray 59.4% ± 18.2, pdeposition was observed. The initial deposition following powder delivery was significantly larger in the ciliated mucosa of the upper and posterior nasal regions, whereas less was deposited in the lower regions. Overall nasal clearance of powder was slower initially, but due to retention in anterior nonciliated regions the overall nasal clearance after spray was slower.

  8. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  9. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    Science.gov (United States)

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  10. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating. Microstructural analyses reveal that TiC and Fe are the dominant phases in the coatings. The reaction between Ti and C happens step by step along with the reactive spray powder flight, and TiC-Fe materials were mainly synthesized where the spray distance is 125~170 mm. The TiC-Fe coatings are composed of alternate TiC-rich and TiC-poor lamellae with different microhardness of 11.9~13.7 and 3.0~6.0 Gpa, respectively. Submicron and round TiC particles are dispersed within a ductile metal matrix. The peculiar microstructure is thought to be responsible for its good wear resistance, which is better nearly five times than WC-reinforced cermet coatings obtained by traditional oxyacetylene flame spray.

  11. Microstructure and mechanical properties of spray deposited hypoeutectic Al-Si alloy

    International Nuclear Information System (INIS)

    Ferrarini, C.F.; Bolfarini, C.; Kiminami, C.S.; Botta F, W.J.

    2004-01-01

    The microstructure and the tensile properties of an Al-8.9 wt.% Si-3.2 wt.% Cu-0.9 wt.% Fe-0.8% Zn alloy processed by spray forming was investigated. The alloy was gas atomized with argon and deposited onto a copper substrate. The microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Small faceted dispersoids observed surrounding equiaxial α-Al matrix were identified by SEM-EDS as silicon particles. Sand cast samples with the same composition showed a columnar dendritic α-Al matrix, Al-Si eutectic, polyhedric α-AlFeSi and needle-like β-AlFeSi intermetallics. In the spray formed material the formation of the Al-Si eutetic was suppressed, and the formation of the α-AlFeSi and β-AlFeSi intermetallics was strongly reduced. The fine and homogeneous microstructure showed an aluminium matrix with grain size ranging from 30 to 40 μm, and particle size of the silicon dispersoids having a mean size of 12 μm. Room temperature tensile tests of the spray formed alloy showed relative increasing of strength and elongation when compared with the values observed for the conventionally cast counterparts. These results can be ascribed to the refined microstructure and the scarce presence of intermetallics of the spray formed material

  12. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides.

    Science.gov (United States)

    Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  13. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K.

    2008-01-01

    Flame spraying is a widely used technique for depositing a great variety of materials in order to enforce the mechanical or the anticorrosion characteristics of the substrate. Its high rate application is due to the rapidity of the process, its effectiveness and its low cost. In this work, flame-sprayed Al coatings are deposited on low carbon steels in order to enhance their anticorrosion performance. The main adhesion mechanism of the coating is mechanical anchorage, which can provide the necessary protection to steel used in several industrial and constructive applications. To evaluate the corrosion resistance of the coating, the as-coated samples are subjected in a salt spray chamber and in elevated temperature environments. The examination and characterization of the corroded samples is done by scanning electron microscopy and X-ray diffraction analysis. The as-formed coatings are extremely rough and have a lamellic homogeneous morphology. It is also found that Al coatings provide better protection in marine atmospheres, while at elevated temperatures a thick oxide layer is formed, which can delaminate after long oxidation periods due to its low adherence to the underlying coating, thus eliminating the substrate protection

  14. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  15. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  16. Spray-deposited CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cell absorbers: Influence of spray deposition parameters and crystallization promoters

    Energy Technology Data Exchange (ETDEWEB)

    Carrete, Alex; Placidi, Marcel; Shavel, Alexey [Catalonia Institute for Energy Research - IREC, Sant Adria del Besos, Barcelona (Spain); Perez-Rodriguez, Alejandro [Catalonia Institute for Energy Research - IREC, Sant Adria del Besos, Barcelona (Spain); IN2UB, Departament d' Electronica, Universitat de Barcelona (Spain); Cabot, Andreu [Catalonia Institute for Energy Research - IREC, Sant Adria del Besos, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats - ICREA, Barcelona (Spain)

    2015-01-01

    To produce smooth, crack-free, and highly crystalline absorber layers are the main challenges in the fabrication of thin film solar cells using nanoparticle-based solution-processing technologies. In this work, we report on the optimization of the spray deposition parameters to produce highly homogeneous CuIn{sub 1-x}Ga{sub x}S{sub 2} thin films with controlled thickness using nanoparticle-based inks. We further explore the use of inorganic ligand exchange strategies to introduce metal ions able to promote crystallization during the selenization of the layers, removing structural defects and grain boundaries that potentially act as recombination centers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  18. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    International Nuclear Information System (INIS)

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-01-01

    Highlights: ► Highly economic solution precursor route capable of producing films/coating even for mass scale production. ► Pure spinel phase ZnFe 2 O 4 porous, immobilized films deposited in single step. ► Parameter optimization yields access to nanostructuring in SPPS method. ► The ecofriendly immobilized ferrite films were active under solar radiation. ► Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 2 O 4 film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of ∼1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  19. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  20. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    Science.gov (United States)

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  1. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    Science.gov (United States)

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  2. DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive

  3. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    Science.gov (United States)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  4. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    Science.gov (United States)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  5. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  6. Properties of spray-deposited liquid-phase exfoliated graphene films

    Science.gov (United States)

    Sales, Maria Gabriela C.; Dela Vega, Ma. Shanlene D. C.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we demonstrate the feasibility of spray-depositing exfoliated graphene on flexible polyimide (PI) and rigid (soda lime glass) substrates for optoelectronic applications. The water contact angles of the substrates increased by 13% (for PI) and 49% (for glass) when the surfaces are pretreated with hexamethyldisiloxane, which significantly improved the adhesion of the films. Raman spectral analyses confirmed a minimum of 15 and a maximum of 23 layers of exfoliated graphene deposited on the substrates. After deposition, the films were exposed to 13.56 MHz radio-frequency plasma containing an admixture of argon and nitrogen gases. Plasma treatment modified the electrical properties with a response analogous to that of a rectifier. A 39% increase in transmittance in the visible region was also observed especially for glass substrates after plasma treatment without a significant change in film electrical conductivity.

  7. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  8. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  9. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  10. Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films

    Science.gov (United States)

    Jayakrishnan, R.

    2018-04-01

    Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.

  11. Nozzle-less Ultrasonic Spray Deposition for Flexible Ammonia and Ozone Gas Sensors

    Directory of Open Access Journals (Sweden)

    Mónica ACUAUTLA

    2016-06-01

    Full Text Available In the last years printing and flexible electronic is transforming the way we used electronic devices. Among these, special interest is given to the development of gas sensors for industrial and environmental applications. Nozzle-less ultrasonic spray deposition is a simple and precise technique, which offers good homogeneity and high quality of the sensitive thin film. In addition, it represents a potential fabrication process for flexible electronic with low cost production and low waste of material. In this paper, nanoparticles of zinc oxide were deposited by nozzle-less ultrasonic spray deposition on flexible substrate. The sensing properties towards reducing and oxidizing gases in function of the operational temperature are reported. The flexible platform consists in titanium/platinum interdigitated electrodes and a micro-heater device, both fabricated by lift-off and photolithography. The operating temperature of the sensor is also challenging in term of power consumption. It is allowing the reaction with the exposure gases. Most of the semiconducting metal oxide materials used for gas sensing applications require high temperatures above 250 °C. Flexible gas sensors fabricated in this work present good responses towards ammonia and ozone at 300 °C and 200 °C respectively, with fast response and recovery time in a wide range of gas concentration.

  12. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  13. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    Science.gov (United States)

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  14. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  15. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    Science.gov (United States)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  16. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Piao, Zhong-yu; Xu, Bin-shi; Wang, Hai-dou; Wen, Dong-hui

    2013-01-01

    Highlights: • Fe-based coating exhibited few oxides, high density and bond strength. • Amorphous/nanocrystalline phases were found in the coating. • Formation mechanism of excellent coating was investigated. -- Abstract: The objective of the present study is to characterize the Fe-based alloy coating deposited by the supersonic plasma spraying process. The condition of the melting particles was in situ monitored. The microstructure of the coating was examined by scanning electron microscope and high resolution transmission electron microscope. The phase composition was examined by X-ray diffraction. The microhardness and porosity were also measured, respectively. Results show the prepared coatings have excellent properties, such as few oxides, high microhardness and a low porosity amount. At the same time, a mass of amorphous/nanocrystalline phases was found in the coating. The mechanism of the formation of amorphous/nanocrystalline phases was investigated. The appropriate material composition of spraying material and flash set process of plasma spraying are the key factors. Moreover, the mechanism for oxidation resistance is also investigated, where the separation between melting metal and oxygen by the formation of SiO 2 films is the key factor

  17. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  18. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    Science.gov (United States)

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

    Science.gov (United States)

    Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J

    2007-01-01

    Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.

  20. Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties.

    Science.gov (United States)

    Tajber, L; Corrigan, O I; Healy, A M

    2009-02-09

    The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.

  1. Study on Advanced Spray-Guided Gasoline Direct Injection Systems

    OpenAIRE

    VAQUERIZO SÁNCHEZ, DANIEL

    2018-01-01

    Resumen Los sistemas de inyección directa han sido uno de los principales puntos focales de la investigación en motores, particularmente en sistemas Diésel, donde la geometría interna, movimiento de aguja y comportamiento del flujo afectan el spray externo y por tanto determinan completamente el proceso de combustión dentro del motor. Debido a regulaciones medioambientales y al potencial de los (más ineficientes) motores "Otto", grandes esfuerzos se están aportando en inv...

  2. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  3. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Maria de la; Hernandez, Tomas [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Colas, Rafael [Programa Doctoral en Ingenieria de Materiales, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez, Idalia, E-mail: mgomez@fcq.uanl.mx [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2010-10-25

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO{sub 2} as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {l_brace}1 1 1{r_brace} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  4. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Garza, Maria de la; Hernandez, Tomas; Colas, Rafael; Gomez, Idalia

    2010-01-01

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO 2 as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {1 1 1} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  5. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  6. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  7. Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Calixto, M.E.; Pena, Y.; Martinez-Escobar, Dalia; Tiburcio-Silver, A.; Sanchez-Juarez, A.

    2010-01-01

    Silver indium sulfide (AgInS 2 ) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T s ) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS 2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS 2 , Ag 2 S, In 2 O 3 , and In 2 S 3 can be grown only by changing the Ag:In:S ratio in the starting solution and T s . So that, by carefully selecting the deposition parameters, single phase AgInS 2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T s = 400 o C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 Ω -1 cm -1 in the dark.

  8. Deposition of Ni-CGO composite anodes by electrostatic assisted ultrasonic spray pyrolysis method

    International Nuclear Information System (INIS)

    Chen, J.-C.; Chang, C.-L.; Hsu, C.-S.; Hwang, B.-H.

    2007-01-01

    Deposition of composite films of Ni and Gd-doped ceria was carried out using the electrostatic assisted ultrasonic spray pyrolysis method for the first time. The composite films were highly homogeneous, as revealed by element mapping via energy-dispersive spectrometry. Scanning electron microscope examinations revealed that deposition temperature and electric field strength had profound influence on resultant microstructure, while composition of the precursor solution had little effect. A highly porous cauliflower structure ideal for solid oxide fuel cell anode performance was obtained with a deposition temperature of 450 deg. C under an electric field introduced by an applied voltage of 12 kV. Films obtained with a lower deposition temperature of 250 deg. C or a higher applied voltage of 15 kV resulted in denser films with low porosity, while lower applied voltages of 7 or 5 kV resulted in thinner or discontinuous films due to the insufficient electrostatic attraction on the aerosol droplets. As revealed by AC impedance measurement, the area specific resistances of the Ni-CGO anode with porous cauliflower structure were rather low and a value of 0.09 Ω cm 2 at 550 deg. C was obtained

  9. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  10. High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongchun, E-mail: hcyu@hnu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Wang, Mingpu; Jia, Yanlin [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao, Zhu, E-mail: xiaozhu8417@gmail.com [School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom); Chen, Chang; Lei, Qian; Li, Zhou; Chen, Wei [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Hao [Jiangsu Haoran Spray Forming Alloys Co., Ltd., Zhengjiang 212009, Jiangsu (China); Wang, Yanguo; Cai, Canying [School of Physics and Microelectronics, Hunan University, Changsha 410082, Hunan (China)

    2014-07-15

    Highlights: • Spray deposition process was used to produce Al alloys with excellent performance. • The deposited alloys exhibited a high strength of 690 MPa and elongation up to 17.2%. • The η′ phase was coherent with α-Al and their orientation relationship was studied. • The interface misfits and the transition matrixes of two phases were calculated. - Abstract: The mechanical properties and microstructure of large-scale Al–Zn–Mg–Cu alloys fabricated by spray deposition/rapid solidification technology were investigated in detail. The as-extruded alloys under peak-aging temper exhibited ultimate tensile strength (UTS), yield strength (YS) and elongation of 690 MPa, 638 MPa and 17.2%, respectively. The simultaneous coexisting of high strength and large tensile ductility of the alloys were achieved in our experiment. It was considered that the high-density nano-precipitates distributed uniformly in the peak-aged alloys may be responsible for the high strength and improved ductility. Orientation relationship between η′ precipitates and α-Al matrix were verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction patterns (SADPs) observations. The η′ phases in the alloy were fully coherent with the aluminum matrix, with the orientation relationship of (101{sup ¯}0){sub η{sup ′}}//{110}{sub Al} and [1{sup ¯}21{sup ¯}0]{sub η{sup ′}}//<1{sup ¯}12>{sub Al}. The relationship between the lattice parameters of η′ phase and the related plane-spacing of the aluminum were a{sub η{sup ′}}=3d{sub (112){sub A{sub l}}} and c{sub η{sup ′}}=6d{sub (111){sub A{sub l}}}. Based on obtained orientation relationship, the transition matrix of η′ phases were also calculated.

  11. Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry

    Science.gov (United States)

    Vega, Carolina; Spence, Corina; Zhang, Chengsen; Bills, Brandon J.; Manicke, Nicholas E.

    2016-04-01

    Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent.

  12. Phase Change Activation and Characterization of Spray-Deposited Poly(vinylidene) Fluoride Piezoelectric Thin Films

    Science.gov (United States)

    Riosbaas, Miranda Tiffany

    present the possibilities of spray-deposited PVDF thin films in both small-scale and large-scale sensing applications that can be applied to both simple and complex geometries.

  13. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  14. Influence of nature of the substrate in the deposition of yttria-stabilized zirconia by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, C.M.; Malfatti, C.F.; Bergmann, C.P.; Neagu, R.

    2012-01-01

    Spray pyrolysis technique consist in spraying a precursor solution on a heated substrate. In the last few decades this process has attracted much attention because of its versatility. Controlling the parameters is possible to produce dense or porous film. Spray pyrolysis has been applied to obtain several materials such as electrodes or electrolytes for SOFC, semiconductors, materials for solar cells and so on. However, some behaviors such as Leidenfrost effect have been poorly considered and it may affect the coating quality. This work aims to evaluate the influence of the substrate and how Leidenfrost effect affects the coating by spray pyrolysis. To achieve this goal yttria-stabilized zirconia solutions made with different solvents were deposited on different substrates at different temperatures. These coatings were characterized by X-ray diffraction and scanning electron microscopy. The results show that there is a limit temperature which is related to properties of the solvent and the surface of the substrates where films are continuous. (author)

  15. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  16. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  17. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  18. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  19. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  20. Photocatalytically active Au/TiO2 films deposited by two-step spray pyrolysis

    International Nuclear Information System (INIS)

    Balashev, Konstantin; Georgiev, Petar; Simeonova, Sylvia; Stambolova, Irina; Blaskov, Vladimir; Vassilev, Sasho; Eliyas, Alexander

    2016-01-01

    Nanocrystalline TiO 2 and surface gold-modified films (Au/TiO 2 ) are obtained by two step spray pyrolysis process. Titanium tetrachloride (TiCl 4 ) was used as inorganic titanium precursor. The Au nanoparticles were deposited on the surface of sprayed TiO 2 films, obtained by the classical Turkevich method. The AFM analyses have revealed that the roughness of Au/TiO 2 is twice lower than that of the reference titania film. Some globular species are visible on the surface, which could be either individual Au nanoparticles or Au nanoparticles’ agglomerates embedded into the TiO 2 film. The photocatalytic activity in the oxidative degradation of Reactive Black 5 dye under visible light of the Au/TiO 2 films was estimated in a semi-batch reactor. Surface gold modified TiO 2 films revealed higher photocatalytic efficiency than the reference sample. Key words: Au nanoparticles, photocatalysis, azo dye, titania, nanosized

  1. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.

    Science.gov (United States)

    Keeler, Jarrod A; Patki, Aniruddha; Woodard, Charles R; Frank-Ito, Dennis O

    2016-04-01

    Very little is known about the role of nasal morphology due to ethnic variation on particle deposition pattern in the sinonasal cavity. This preliminary study utilizes computational fluid dynamics (CFD) modeling to investigate sinonasal airway morphology and deposition patterns of intranasal sprayed particles in the nose and sinuses of individuals from four different ethnic groups: African American (Black); Asian; Caucasian; and Latin American. Sixteen subjects (four from each ethnic group) with "normal" sinus protocol computed tomography (CT) were selected for CFD analysis. Three-dimensional reconstruction of each subject's sinonasal cavity was created from their personal CT images. CFD simulations were carried out in ANSYS Fluent(™) in two phases: airflow phase was done by numerically solving the Navier-Stokes equations for steady state laminar inhalation; and particle dispersed phase was solved by tracking injected (sprayed) particles through the calculated airflow field. A total of 10,000 particle streams were released from each nostril, 1000 particles per diameter ranging from 5 μm to 50 μm, with size increments of 5 μm. As reported in the literature, Caucasians (5.31 ± 0.42 cm(-1)) and Latin Americans (5.16 ± 0.40cm(-1)) had the highest surface area to volume ratio, while African Americans had highest nasal index (95.91 ± 2.22). Nasal resistance (NR) was highest among Caucasians (0.046 ± 0.008 Pa.s/mL) and Asians (0.042 ± 0.016Pa.s/mL). Asians and African Americans had the most regions with particle deposition for small (5 μm-15 μm) and large (20 μm-50 μm) particle sizes, respectively. Asians and Latin Americans individuals had the most consistent regional particle deposition pattern in the main nasal cavities within their respective ethnic groups. Preliminary results from these ethnic groups investigated showed that Caucasians and Latin Americans had the least patent nasal cavity. Furthermore, Caucasians

  2. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Zhao Xin; Chu, Bryan T T; Johnston, Colin; Sykes, John M; Grant, Patrick S; Ballesteros, Belen; Wang Weiliang

    2009-01-01

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H 2 SO 4 and the specific capacitance reached 155 and 77 F g -1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  3. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films

    International Nuclear Information System (INIS)

    Garnier, Jerome; Bouteville, Anne; Hamilton, Jeff; Pemble, Martyn E.; Povey, Ian M.

    2009-01-01

    Two different methods of spray chemical vapour deposition have been used to grow ZnO thin films on glass substrates from zinc acetate solution over the temperature range 400 o C to 550 o C. The first of these is named InfraRed Assisted Spray Chemical Vapour Deposition (IRAS-CVD). This method uses intense IR radiation to heat not only the substrate but also the gaseous species entering the reactor. The second method is a more conventional approach known simply as ultrasonic spray CVD, which utilises IR lamps to heat the substrate only. By way of comparing these two approaches we present data obtained from contact angle measurements, crystallinity and mean crystallite size, photoluminescence, electrical and optical properties. Additionally we have examined the role of annealing within the IRAS-CVD reactor environment.

  4. Humidification-Dehumidification (HDH) Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Karameldin, A.; Shouman, L.; Fadel, D.

    2016-01-01

    Humidification-De humidification (HDH) is a low grade energy desalination technology. Hot humid air and cooling spray water in counter current flow with direct contact is theoretically analyzed in the present work. Direct contact spray condenser is studied to obtain the effect of various parameters on its performance. A computer program describing the theoretical model is designed to solve one-dimensional differential equations by using Rung-Kutta method. The results show that the column length has a great effect on the performance of the spray condenser. At a column height of 2, 5,10, and 20 m the humidity of the outlet air decreases by 72, 89, 97, and 99% respectively. The humid air temperature has a great influence on the productivity; me an while the temperature difference between the humid air and sprayed water has less effect. A case study of a contiguous co-generation electricity and water in Nuclear Power Plants (NPP) shows that the optimal productivity by HDH is feasible and can reach more than 15 m"3 /day.m"2, enabling a total productivity that varied from 120,000 to 300,000 m"3 /day. The design curves describing the process are obtained together in addition to a formula for the optimal productivity in terms of humid air and sprayed water fluxes at different humid air temperatures is derived

  5. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  6. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  7. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  8. Nanostructured CdS thin films deposited by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Kerimova, A.; Bagiyev, E.; Aliyeva, E.; Bayramov, A. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    Influence of solution pH on the structural and optical properties of CdS films deposited by conventional spray pyrolysis technique was studied. X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Photoluminescence spectroscopy (PLS), and Spectroscopic Ellipsometry (SE) methods were used for the characterization of the deposited films. PL spectrum of the film deposited from the solution with pH = 10.2 shows broad-band PL emission located at 460 nm (2.7 eV), which can be attributed to the quantum size effect at grain sizes of <10 nm. No shifts of ε{sub 1} and ε{sub 2} due to the quantum size effect are observed in dielectric function spectra, what can be caused by low concentration of nano-sized (<10 nm) CdS grains. The change in the film properties with the pH of the solution was analyzed in terms of variation of grain sizes of the polycrystalline films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Spray-deposited PEDOT:PSS for inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Sun, Haiyan; Palumbiny, Claudia; Hesse, Holger Christian; Schmidt-Mende, Lukas [Ludwig-Maximilians-University Munich, Department of Physics and Center for NanoScience (CeNS), Amalienstr. 54, 80799 Munich (Germany)

    2010-12-15

    The method of spray-depositing PEDOT:PSS allows the fabrication of thin films with controlled thickness on polymer layers. PEDOT:PSS is used in inverted ITO/TiO{sub 2}/P3HT:PCBM/PEDOT:PSS/Ag solar cells to optimize the work function of the hole-collecting electrode. The interlayer is also found to protect the organic layer during metal top deposition and improve the contact between P3HT-PCBM and the Ag electrode, which is confirmed using two different metal-deposition techniques; thermal evaporation and sputtering. Cells with PEDOT:PSS show full V{sub OC} and efficiency immediately after fabrication, whereas devices without PEDOT:PSS exhibit low performance in the beginning and improve significantly during the first 10 days after production. Devices are long-term stable if stored in the dark and in ambient air and show no significant performance decrease after 80 days. No inert nitrogen atmosphere is needed for any fabrication step, thus reducing the potential production costs since no glove box has to be used. (author)

  10. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    Science.gov (United States)

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  11. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Reguig, B.A.; Khelil, A. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Benchouk, K. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)], E-mail: Jean-Christian.Bernede@univ-nantes.fr

    2008-07-15

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O), nickel nitrate hexahydrate (Ni(NO{sub 3}){sub 2}.6H{sub 2}O), nickel hydroxide hexahydrate (Ni(OH){sub 2}.6H{sub 2}O), nickel sulfate tetrahydrate (NiSO{sub 4}.4H{sub 2}O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 deg. C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl{sub 2} and Ni(NO{sub 3}){sub 2} precursors. These films have been post-annealed at 425 deg. C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10{sup -2} Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  12. The influence of the crystallinity of electrostatic spray deposition-derived coatings on osteoblast-like cell behavior, in vitro.

    NARCIS (Netherlands)

    Siebers, M.C.; Walboomers, X.F.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    This article describes the influence of the crystallinity of carbonate apatite (CA) coatings on osteoblast-like cell behavior. Porous CA coatings were produced with electrostatic spray deposition (ESD), and subsequently, received heat treatments of 400, 500, or 700 degrees C to induce various

  13. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  14. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  15. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  16. Study on the preparation of the SiCp/Al-20Si-3Cu functionally graded material using spray deposition

    International Nuclear Information System (INIS)

    Su, B.; Yan, H.G.; Chen, G.; Shi, J.L.; Chen, J.H.; Zeng, P.L.

    2010-01-01

    Research highlights: → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → In the experimental setup, the novel devices play an important role in adjusting the output of SiCp to prepare the FGM. → The experiment results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. → The fraction of SiC particles has no obvious influence on the phase constitutions of the SiCp/Al-20Si-3Cu FGM. - Abstract: The SiCp/Al-20Si-3Cu functionally gradient material (FGMs) was successfully prepared via the spray deposition technique accompanied with an automatic control system. The results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. The part with the higher SiCp weight fraction exhibits a relatively smaller density than that with the lower SiCp weight fraction. However, the microhardness and the porosity increase with the increasing SiCp weight fraction in the as-deposited preform. The X-ray diffraction results exhibit that the secondary phases in the regions with the different amount of SiC particles are the same such as Al 2 Cu and AlCuMg. The spray deposition technology is promising to produce a wide range of other FGMs.

  17. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    Science.gov (United States)

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  18. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops.

    Science.gov (United States)

    Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando

    2011-08-01

    In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.

  19. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  20. Electrical and structural characteristics of spray deposited (Zn O)x-(Cd O)1-x

    International Nuclear Information System (INIS)

    Alarcon F, G.; Pelaez R, A.; Villa G, M.; Carmona T, S.; Luna G, J. A.; Aguilar F, M.; Vasquez P, B.; Falcony, C.

    2013-01-01

    (Zn O) x (Cd O) 1-x thin films were deposited on glass substrates at 300 and 400 C by ultrasonic spray pyrolysis with compositions ranging from Cd O to Zn O. The electrical properties were obtained by impedance spectroscopy and Hall Effect measurements. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, were used to study the structural characteristics of the films. Ellipsometry, in addition, was used to confirm the structural characteristics. The films as deposited resulted mainly polycrystalline and dense, depending on the substrate temperature and on their relative composition. All the films showed n-type conductivity and the films with intermediate compositions resulted in a mixture of both phases; Cd O and Zn O. Hall Effect measurements showed that the highest conductivity of Cd O was close to 1 x 10 3 (Ω-cm) -1 , the highest value obtained for Cd O, without doping. Impedance spectroscopy confirmed the Hall Effect results, showing that the highly conducting character of Cd O influenced dramatically the conductivity of the (Zn O) x (Cd O) 1-x films. In addition, depending on the substrate temperature and on the relative composition of the films, both, the bulk or grains, as well as the grain boundaries properties limit the conductivity in them. (Author)

  1. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  2. Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B. J.; Egaas, B.; Velumani, S.

    2018-03-21

    Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGS absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.

  3. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  4. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  5. Cathodoluminescence emission study of nanocrystalline indium oxide films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Korotcenkov, G. [Technical University of Moldova, Chisinau (Moldova, Republic of)], E-mail: ghkoro@yahoo.com; Nazarov, M. [Technical University of Moldova, Chisinau (Moldova, Republic of); Gwangju Institute of Science and Technology (Korea, Republic of); Zamoryanskaya, M.V. [A.F.Ioffe Physical Technical Institute, RAS, St. Petersburg (Russian Federation); Ivanov, M. [Technical University of Moldova, Chisinau (Moldova, Republic of)

    2007-07-31

    The results of analysis of In{sub 2}O{sub 3} film cathodoluminescence (CL) spectra are presented in this paper. In{sub 2}O{sub 3} films, aimed for gas sensor application, were deposited by spray pyrolysis from 0.2 M InCl{sub 3}-water solutions. The influence of grain size (10-60 nm), film thickness (20-400 nm), pyrolysis temperature (T{sub pyr} = 400-520 deg. C), and annealing in the air or nitrogen atmospheres (T{sub an} = 600-1100 deg. C) on CL emission of In{sub 2}O{sub 3} is discussed. CL spectra of as-deposited In{sub 2}O{sub 3} films were characterized by a broad band centered at {lambda} {approx} 570-600 nm. The annealing of studied films leads to a considerable increase of CL intensity. High annealing temperature of In{sub 2}O{sub 3} films (T{sub an} > 850 deg. C) is being accompanied by the appearance of additional bands centered at {lambda} {approx} 400, 550, and 650 nm, which are peculiar to single-crystalline In{sub 2}O{sub 3} nanobelts, or nanowires with perfect crystal structure. It was concluded that the improvement of crystal structure and the decrease of the concentration of oxygen vacancies are the main factors determining the change of CL spectra of In{sub 2}O{sub 3} films and the appearance of edge luminescence.

  6. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  7. Low-voltage polymer/small-molecule blend organic thin-film transistors and circuits fabricated via spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, By Simon; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington SW7 2AZ (United Kingdom); Ward, Jeremy W.; Jurchescu, Oana D. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Payne, Marcia M.; Anthony, John E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-06-01

    Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm{sup 2}/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated.

  8. Effect of Solution Molarity, Substrate Temperature and Spray Time on The Structural and Optical Properties Of ZnO Thin Films Deposited By Spray Pyrolysis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Hashem, H. M.; El-Sayed, S. M.; Ashour, A.H.; Abdel-Haleem, S.M.

    2013-01-01

    Zinc oxide thin films were deposited on a glass substrate by spray pyrolysis technique using solution of zinc acetate and air as the carrier gas. Effects of solution molarity, substrate temperature and spray time on films properties were investigated. All films deposited were characterized using X-ray diffraction for structural characterization and UV-VIS transmission spectrophotometry for optical properties. According to the analytical method, the type of crystal lattice was found to be hexagonal and X-ray diffraction (XRD) patterns showed that the films deposited were polycrystalline with (002) plane as preferential orientation. The values of lattice constant, grain size, micro strain and dislocation density of all samples were calculated. In addition, Optical behaviors of film samples were analyzed by obtaining transmission spectra, in the wavelength range of 350-800 nm. The UV-VIS spectroscopy shows the high transparency of ZnO films in the UV region. An optimization of the films has been carried out to determine the best preparation conditions.

  9. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  10. FURTHER STUDIES ON THE VARIATION OF SPRAY DEPOSITS IN VINEYARDS WITH AIRFLOW RATE AND VOLUME RATE

    Directory of Open Access Journals (Sweden)

    Emanuele Cerruto

    2007-03-01

    Full Text Available The present research, continuing that reported in [2], deals with the spray application subject, so to investigate as volume rate and airflow rate, forward speed being equal, affect the foliar deposition in an espalier vineyard. Experimental trials were carried out by means of an air assisted towed sprayer, equipped with “Albuz ATR” nozzles. To take into account the influence of the development of the trees, the field trials were replicated in two phenological stages with an interval of about one month: “Inflorescences fully developed” (stage 1 and “Beginning of berry touch” (stage 2. A full factorial experiment was carried out for each growth stage, with two airflow rates (3.9 and 7.5 m3/s, three volume rates (103, 216, and 276 L/ha in the first growth stage and 154, 330 and 432 L/ha in the second growth stage, and four replicates, arranged according to a randomised complete block design. Working pressure (1.2 MPa and forward speed (1.4 m/s were kept unchanged for all the trials. The foliar deposition was measured by means of a spectrophotometric technique. The leaves were sampled on two depth layers and two or three heights, according to the trees’ development. The results showed that volume rate did not significantly influence the mean foliar deposition in both the two growth stages, while the highest deposits were obtained with the lowest airflow rate. The airflow rate × volume rate interaction, though not statistically significant, showed that low volume rates together with high airflow rates, result in a noticeable reduction in foliar deposition (29% with respect the grand mean, due to an increase of the spry drift, especially at the first growth stage, when the foliar development is little. These second tests, unlike those described in [2], did not show any positive influence of the airflow rate on the foliar deposition in the inner part of the canopy, so further investigations could be necessary to better understand the

  11. Direct uptake by vegetation of deposited materials

    International Nuclear Information System (INIS)

    Eriksson, Aa.

    1977-01-01

    Interception and retention in pasture grass of nuclides in ionic form and of labelled particles (40-63, 63-100, 100-200 μ in size) were studied experimentally during 1968-70. The results obtained are compared with data from grazing experiments during 1970-72. The data showed that the relative amount of material intercepted by the vegetation decreased markedly in the following order: wet-deposited nuclides > wet-deposited particles > particles dry-deposited on grass wet rain > particles dry-deposited on grass superficially wet > particles dry-deposited on dry grass, and small particles > larger particles. At high relative humidity of the air much more of a deposition could be intercepted than at low relative humidity. The retention of intercepted material was influenced by type of material and by precipitation. Intense rains shortened the half residence time considerably. Dry-deposited materials intercepted in grass suffered marked losses by falloff during the first few days after deposition, which was followed by a phase with a longer half residence time. (author)

  12. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses

    Science.gov (United States)

    Hong, Se-Woon; Zhao, Lingying; Zhu, Heping

    2018-02-01

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.

  13. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  14. Zirconium doped TiO{sub 2} thin films deposited by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Juma, A. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Department of Physics and Astronomy, Botswana International University of Science and Technology, Private bag 16, Palapye (Botswana); Oja Acik, I., E-mail: ilona.oja@ttu.ee [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Oluwabi, A.T.; Mere, A. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Mikli, V.; Danilson, M. [Chair of Semiconductor Materials Technology, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krunks, M. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2016-11-30

    Highlights: • Mean crystallite size of TiO{sub 2}:Zr film decreases with increasing [Zr] in the solution. • Zr doping supresses the anatase to rutile transformation process in TiO{sub 2} films. • Band gap of TiO{sub 2}:Zr film is 3.4 eV irrespective of the annealing temperature. - Abstract: Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO{sub 2} thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO{sub 2} thin films were uniform and homogeneous showing much smaller grains than the undoped TiO{sub 2} films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO{sub 2} film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO{sub 4} phase started forming after annealing at 800 °C. The optical band gap for TiO{sub 2} decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO{sub 2}:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  15. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  16. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    Science.gov (United States)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  17. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs.

    Science.gov (United States)

    Pereira, Igor; Rodrigues, Marcella Ferreira; Chaves, Andréa Rodrigues; Vaz, Boniek Gontijo

    2018-02-01

    Paper spray ionization (PSI) has some limitations such as low sensitivity and ionization suppression when complex samples are analyzed. The use of sample preparation devices directly coupled to MS can avoid these restrictions. Molecularly imprinted polymers (MIPs) are materials widely used as adsorbent in sample preparation methods such as solid-phase extraction and solid-phase microextraction, and they can provide specifics cavities with affinity to a target molecule. Here, we introduce a new MIP membrane spray ionization method combining MIP and PSI. MIP was synthesized directly on a cellulose membrane. Monuron and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used as template molecules in MIP synthesis for diuron and 2,4-D (2,4-dichlorophenoxyacetic acid) analyte sequesters, respectively. Apple, banana and grape methanolic extracts were used as matrices. The MIP membrane spray showed signal intensities of diuron and 2,4-D that were much higher compared to those obtained by non-imprinted polymers(NIP). Calibration curves exhibited R 2 > 0.99 for diuron and 2,4-D in all fruit extracts analyzed. LODs were found less than 0.60µgL -1 and LLOQs were found less than 2.00µgL -1 . The coefficients of variation and relative errors were less than 15% for almost all analyses. The apparent recovery test results ranged between 92,5% and 116.9%. Finally, the MIP membrane spray method was employed for the quantification of diuron and 2,4-D in real samples. Diuron contents were only found in three bananas (4.0, 6.5, and 9.9µgL -1 ). The proposed MIP membrane spray ionization method was straightforward, fast to carry out and provided satisfactory results for analyses of diuron and 2,4-D in apple, banana and grape samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  19. Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Turgut, Güven; Koçyiğit, Adem; Sönmez, Erdal

    2015-01-01

    The Pr and Ta separately doped FTO (10 at.% F incorporated SnO 2 ) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO (FTO) films are investigated as functions of Pr and Ta dopant concentrations. The x-ray diffraction (XRD) measurements reveal that all deposited films show polycrystalline tin oxide crystal property. FTO film has (200) preferential orientation, but this orientation changes to (211) direction with Pr and Ta doping ratio increasing. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses show that all films have uniform and homogenous nanoparticle distributions. Furthermore, morphologies of the films depend on the ratio between Pr and Ta dopants. From ultraviolet-visible (UV-Vis) spectrophotometer measurements, it is shown that the transmittance value of FTO film decreases with Pr and Ta doping elements increasing. The band gap value of FTO film increases only at 1 at.% Ta doping level, it drops off with Pr and Ta doping ratio increasing at other doped FTO films. The electrical measurements indicate that the sheet resistance value of FTO film initially decreases with Pr and Ta doping ratio decreasing and then it increases with Pr and Ta doping ratio increasing. The highest value of figure of merit is obtained for 1 at.% Ta- and Pr-doped FTO film. These results suggest that Pr- and Ta-doped FTO films may be appealing candidates for TCO applications. (paper)

  20. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao, Qi; Xie, Ming; Liu, Yichun; Yi, Jianhong

    2017-01-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  1. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  2. Layer-by-layer deposition of superconducting Sr-Ca-Cu-O films by the spray pyrolysis technique

    International Nuclear Information System (INIS)

    Pawar, S.H.; Pawaskar, P.N.; Ubale, M.J.; Kulkarni, S.B.

    1995-01-01

    Layer-by-layer deposition of Sr-Ca-Cu-O films has been carried out using the spray pyrolysis technique. Reagent-grade nitrates of strontium, calcium and copper were used to prepare starting solutions for spray pyrolysis. A two-step procedure was used for every layer of the constituents in the sequence Sr-Cu-Ca-Cu-Sr: first, deposition onto silver substrate at 350 C, then firing at T≥450 C, both at atmospheric pressure. The films were 2-3 μm thick and showed adequate adhesion to the substrate. The films were then characterised by studying their electron micrographs, X-ray diffraction patterns and electrical resistivity. The films showed superconductivity below 104 K. ((orig.))

  3. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    Science.gov (United States)

    2010-06-01

    air- pumped spray-paint cans 17,18 to fully automated systems using high pressure gas .7’ 19 This work uses the automated spray system previously...spray solutions were delivered by ultra high purity nitrogen gas (AirGas) regulated to 25psi, except when examining air pressure effects . The PAH solution...polyelectrolyte solution feed tube, the resulting Venturi effect causes the liquid solution to be drawn up into the airbrush nozzle, where it is

  4. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    Directory of Open Access Journals (Sweden)

    Xiaofei Sheng

    2017-09-01

    Full Text Available Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C, while the precipitation nucleation was scarce in the low-temperature zone (<250 °C and in the high-temperature zone (>400 °C. Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C, and corresponding time-temperature-property (TTP curves of the studied alloy have been established.

  5. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  6. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films.

    Science.gov (United States)

    Hahn, Nathan T; Hoang, Son; Self, Jeffrey L; Mullins, C Buddie

    2012-09-25

    Bismuth oxy-iodide is a potentially interesting visible-light-active photocatalyst; yet there is little research regarding its photoelectrochemical properties. Herein we report the synthesis of BiOI nanoplatelet photoelectrodes by spray pyrolysis on fluorine-doped tin oxide substrates at various temperatures. The films exhibited n-type conductivity, most likely due to the presence of anion vacancies, and optimized films possessed incident photon conversion efficiencies of over 20% in the visible range for the oxidation of I(-) to I(3)(-) at 0.4 V vs Ag/AgCl in acetonitrile. Visible-light photons (λ > 420 nm) contributed approximately 75% of the overall photocurrent under AM1.5G illumination, illustrating their usefulness under solar light illumination. A deposition temperature of 260 °C was found to result in the best performance due to the balance of morphology, crystallinity, impurity levels, and optical absorption, leading to photocurrents of roughly 0.9 mA/cm(2) at 0.4 V vs Ag/AgCl. Although the films performed stably in acetonitrile, their performance decreased significantly upon extended exposure to water, which was apparently caused by a loss of surface iodine and subsequent formation of an insulating bismuth hydroxide layer.

  7. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    Science.gov (United States)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  8. Optical characterization of directly deposited graphene on a dielectric substrate

    DEFF Research Database (Denmark)

    Kaplas, Tommi; Karvonen, Lasse; Ahmadi, Sepehr

    2016-01-01

    By using scanning multiphoton microscopy we compare the nonlinear optical properties of the directly deposited and transferred to the dielectric substrate graphene. The direct deposition of graphene on oxidized silicon wafer was done by utilizing sacrificial copper catalyst film. We demonstrate...

  9. MgO thin films deposited by electrostatic spray pyrolysis for protecting layers in AC-plasma display panel

    CERN Document Server

    Kim, S G

    1999-01-01

    MgO thin films were deposited on SiO sub 2 (100) substrates by using electrostatic spray pyrolysis and Mg(tmhd) sub 2 as the precursor. The growth rates of the films varyed from 34 to 87 A/min and were measured for various substrate and guide temperatures. X-ray diffraction analysis provide evidence that the MgO films deposited at temperatures as low as 400 approx 500 .deg. C had preferred orientation to (100) plane perpendicular to the substrate surface. X-ray photoelectron spectroscopy and Auger electron spectroscopy data indicated that there were few organics incorporated in the films.

  10. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.

    Science.gov (United States)

    Fettig, Christopher J; Munson, A Steven; McKelvey, Stephen R; Bush, Parshall B; Borys, Robert R

    2008-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) are recognized as the most important tree mortality agent in western coniferous forests. A common method of protecting trees from bark beetle attack is to saturate the tree bole with carbaryl (1-naphthyl methylcarbamate) using a hydraulic sprayer. In this study, we evaluate the amount of carbaryl drift (ground deposition) occurring at four distances from the tree bole (7.6, 15.2, 22.9, and 38.1 m) during conventional spray applications for protecting individual lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and Engelmann spruce (Picea engelmannii Parry ex Engelm.) from spruce beetle (D. rufipennis [Kirby]) attack. Mean deposition (carbaryl + alpha-naphthol) did not differ significantly among treatments (nozzle orifices) at any distance from the tree bole. Values ranged from 0.04 +/- 0.02 mg carbaryl m(-2) at 38.1 m to 13.30 +/- 2.54 mg carbaryl m(-2) at 7.6 m. Overall, distance from the tree bole significantly affected the amount of deposition. Deposition was greatest 7.6 m from the tree bole and quickly declined as distance from the tree bole increased. Approximately 97% of total spray deposition occurred within 15.2 m of the tree bole. Application efficiency (i.e., percentage of insecticide applied that is retained on trees) ranged from 80.9 to 87.2%. Based on review of the literature, this amount of drift poses little threat to adjacent aquatic environments. No-spray buffers of 7.6 m should be sufficient to protect freshwater fish, amphibians, crustaceans, bivalves, and most aquatic insects. Buffers >22.9 m appear sufficient to protect the most sensitive aquatic insects (Plecoptera).

  11. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  12. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    Science.gov (United States)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  13. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  14. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  15. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  16. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof of Concept Study using Computational Fluid Dynamics

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P. Worth

    2016-01-01

    The objective of this study is to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics (CFD), to in vivo human pharmacokinetic (PK) plasma concentration profiles. This is accomplished through the use of CFD simulations coupled with compartmental PK modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all of the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long time periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics and clinical studies. PMID:27238495

  17. Synthesis and characterization of spray deposited CZTS thin films for photo-electrochemical application

    Science.gov (United States)

    Chavda, Arvind; Patel, Biren; Mukhopadhyay, Priyanka Marathey Indrajit; Ray, Abhijit

    2018-05-01

    Cu2ZnSnS4 (CZTS) is one of the most promising light absorber materials for photovoltaic and photo-electrochemical applications. We synthesized CZTS thin films on a F:SnO2 and soda lime glass substrates by very simple, cost effective and highly scalable spray pyrolysis technique. The films were post treated by rapid thermal processing route of sulfurization to enhance the stoichiometry and crystallinity of the film. The structural, morphological, optical and electrical properties of RTP sulfurized films were studied. The X-ray diffraction (XRD) pattern revealed the formation of tetragonal CZTS phase, which confirmed by Raman analysis with a major peak at 336 cm-1 without the presence of the principle vibration mode of any other secondary phases, such as Cu2SnS3, CuxS(x=1.8,2) etc. The sulfurized film exhibited increased crystallinity and better stoichiometry. The optical and electrical data reveal the direct optical band gap, bulk carrier concentration and resistivity of 1.5 eV, 2.28×1018 cm-3 and 1.21 Ω/cm2, respectively. Finally the photoactivity of CZTS thin films was tested by forming photoelectrochemical cell in 0.1M Na2S2O3 electrolyte (pH=7.72), showing a cathodic photocurrent of nearly 20 µA/cm2 at 0V RHE.

  18. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    Science.gov (United States)

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  19. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  20. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    Science.gov (United States)

    2016-06-01

    Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless

  1. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  2. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  3. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    Science.gov (United States)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  4. Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions

    International Nuclear Information System (INIS)

    Huang, Yuhan; Huang, Sheng; Huang, Ronghua; Hong, Guang

    2016-01-01

    Highlights: • Sprays can be considered as non-evaporating when vapour pressure is lower than 30 kPa. • Ethanol direct injection should only be applied in high temperature engine environment. • Gasoline spray collapses at lower fuel temperature (350 K) than ethanol spray does (360 K). • Flash-boiling does not occur when fuel temperature reaches boiling point until ΔT is 14 K. • Not only spray evaporation mode but also breakup mechanism change with fuel temperature. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) represents a more efficient and flexible way to utilize ethanol fuel in spark ignition engines. To exploit the potentials of EDI, the mixture formation characteristics need to be investigated. In this study, the spray and evaporation characteristics of ethanol and gasoline fuels injected from a multi-hole injector were investigated by high speed Shadowgraphy imaging technique in a constant volume chamber. The experiments covered a wide range of fuel temperature from 275 K (non-evaporating) to 400 K (flash-boiling) which corresponded to cold start and running conditions in an engine. The spray transition process from normal-evaporating to flash-boiling was investigated in greater details than the existed studies. Results showed that ethanol and gasoline sprays demonstrated the same patterns in non-evaporating conditions. The sprays could be considered as non-evaporating when vapour pressure was lower than 30 kPa. Ethanol evaporated more slowly than gasoline did in low temperature environment, but they reached the similar evaporation rates when temperature was higher than 375 K. This suggested that EDI should only be applied in high temperature engine environment. For both ethanol and gasoline sprays, when the excess temperature was smaller than 4 K, the sprays behaved the same as the subcooled sprays did. The sprays collapsed when the excess temperature was 9 K. Flash-boiling did not occur until the excess temperature

  5. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  6. Study of sensing properties of SnO2 prepared by spray-pyrolysis deposition towards ethanol gas

    Science.gov (United States)

    Saadaldin, Nasser M.; Hussain, Nabiha; AlZouabi, Abla

    2018-05-01

    Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, in this study, thin films of (SnO2) were deposited by using the thermal spray method (SPD) on quartz at 450°C substrate temperature using tin chloride SnCl2.2H2O, (1.0M). A gas sensor was constructed with the prepared SnO2, used to detect ethanol gas and some other gases. The films were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The grain size was calculated the results showed nanostructure polycrystalline and crystallize in a tetragonal, S.G:P42/m nm, reaching grain Size approximately 27nm. The sensing properties of the films were studied towards ethanol at different concentrations ranging within (1-200 ppm,) the results showed that the sensitivity of the film increases with the concentration of ethanol, the best operating temperature reached about 300 °C, We studied the sensing properties of the films towards Ethanol alcohol gas, The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, high selectivity and sensitivity of the film towards ethanol gas was found compared to other tested toxic gases such as methanol gas, acetone and methylbenzene. Yet an upto-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking.

  7. Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Moholkar, A.V.; Agawane, G.L.; Sim, Kyu-Ung; Kwon, Ye-bin; Choi, Doo Sun; Rajpure, K.Y.; Kim, J.H.

    2010-01-01

    Research highlights: → The CdO:Ga thin films seems an alternative to traditional TCO materials used in photovoltaic applications. This work deals the effect of deposition temperature on sprayed CdO:Ga films with respect to the structural, luminescent and XPS studies. → The crystalline quality of the GCO films improves with deposition temperature. → The oxygen vacancies are responsible for n-type conductivity and green emission. → The minimum resistivity, highest carrier concentration and mobility are 1.9 x 10 -4 Ω cm, 11.7 x 10 21 cm -3 and 27.64 cm 2 V -1 s -1 , respectively. - Abstract: The structural, compositional, photoluminescent and XPS properties of CdO:Ga thin films deposited at temperatures ranging from 275 to 350 o C, using spray pyrolysis are reported. X-ray diffraction characterization of as-deposited GCO thin films reveals that films are of cubic structure with a (2 0 0) preferred orientation. The crystalline quality of the GCO films improves and the grain size increases with deposition temperature. The EDS analyses confirm oxygen deficiency present in the film and are responsible for n-type conductivity. The photoluminescence spectra demonstrated that the green emission peaks of CdO thin films are centered at 482 nm. The relative intensity of these peaks is strongly dependent on the deposition temperature. Oxygen vacancies are dominant luminescent centers for green emission in CdO thin films. The XPS measurement shows the presence of Cd, Ga, O and C elements and confirms that CdO:Ga films are cadmium-rich.

  8. Copper indium diselenide films deposited by spray-pyrolysis; Filmes de disseleneto de cobre e indio depositados por spray-pirolise

    Energy Technology Data Exchange (ETDEWEB)

    Manhanini, C. S.; Paes Junior, H.R., E-mail: carlamanhanini@gmail.com, E-mail: hervalpaes@gmail.com [Universidade Estadual do Norte Fluminense, (CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados

    2017-04-15

    Cu{sub 1-x}In{sub x} Se{sub 2} (0.45≤ x ≤0.80) films were deposited on glass substrate by spray pyrolysis technique, for use as absorbing layer of photovoltaic cells. The structural, morphological, optical and electrical properties of the films were analyzed according to the variation of the stoichiometry used. The analysis by X-ray diffraction showed that the most intense peaks were of orientation (204/220) and the films have the phases CuSe, CuSe{sub 2} and CuInSe{sub 2}. The films showed uniform surface without cracks independently of the stoichiometry used. In the electrical characterization, the deposited films showed activation energy of the electrical conduction process with average value of 0.74 eV and typical behavior for semiconductors. The optical characterization was performed at the wavelength gap of 350 to 1100 nm, and the films showed absorption coefficient on the order of 10{sup 3} cm{sup -1} in the wavelength of 550 nm and optical band gap of 1.4 eV. The results indicated that the most suitable condition for deposition of films for their application as absorbing layer had as substrate temperature 400 °C, a solution flow rate of 1 mL/min, deposition time of 10 min and stoichiometry of Cu{sub 0.2}In{sub 0.8}Se{sub 2}, thus obtaining films without cracks, with large absorption coefficient of 6.8x10{sup 3} cm{sup -1} for the wavelength of 550 nm, thickness of approximately 2.5 μm and electrical resistivity of 0.13 kΩ.m at room temperature. (author)

  9. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Science.gov (United States)

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Humidification Dehumidification Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Shouman, L.; Karameldin, A.; Fadel, D.

    2015-01-01

    Humidification-dehumidification (HDH) is a low grade energy desalination technology. The waste heat from power plant (such NPP) can be used as heat source to preheat water (in evaporator) and air (in condenser) . Hot humid air and cooled spray water in counter current flow with direct contact is theoretically analyzing in the present work. Direct contact spray condenser is studied to provide the effect of various parameters on its performance. A computer programme describing the theoretical model is designed to solve a one-dimensional differential equations by using Rung–Kutta method. The programme predicts the droplet radius, velocity and temperature, besides, the humidity and temperature of air. The results show that, the length of column has great effect on the performance of spray condenser. At column height of 0.762, 2, 5, 10, and 20 m the humidity of the output air decreases by 50%, 72%, 89%, 97%, and 99% respectively. The condensate increases about 35% when the length increase from 5 to 10 m at ΔT = 25°C while increase only 18% at ΔT = 30°C. Also, it is found that, at ΔT = 25°C the condensate decrease from H = 10 to 5 m about 31% and increases from 10 to 20 m about 32%. While these results for ΔT = 25°C are 32% from H = 10 to 5 m and 36% from 10 to 20 m.The increase of both water and air mass fluxes increases the condensate mass flow rate. (author)

  11. Spray drift and deposit pattern from a forest herbicide application. SRC publication No. E-2310-4-E-90

    Energy Technology Data Exchange (ETDEWEB)

    Shewchuk, S.R.; Wallace, K.; Maybank, J.

    1991-01-01

    In October 1989, a series of trials were carried out at Ruby Creek, British Columbia to compare the air sampling capability of a number of drift measuring devices in a forest pesticide spraying with a helicopter. Since this study was not designed for a mass balance, no attempt was made to fully bracket or define the drifting cloud, neither vertically nor horizontally. Because of the need for total accountability of the emitted material, the study was extended into a preliminary mass balance evaluation. This report presents the results of the mass balance evaluation, calculated using Kromekote card and Petri dish deposit samplers and two air samplers.

  12. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    Science.gov (United States)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  13. Influence of Roughness on Quality Molybdenum Deposit Layer by Thermal Spraying

    Directory of Open Access Journals (Sweden)

    Marián Bujna

    2016-01-01

    Full Text Available In this paper we deal with the impact of roughness on the quality of molybdenum layer. Insufficient cleaning may result in a poor quality of the sprayed layer. Our aim is to analyze the influence of surface roughness on the quality of molybdenum layer thickness applied by thermal spraying. Thermal spraying influence several physical and chemical properties of the coating surface. The most important ones include: hardness, density, porosity, corrosion resistance and adhesion. This technology of surface treatment of material is often used for its high degree of hardness. Hardness and erosion resistance are the parameters that need to be achieved particularly in working conditions where there is excessive depreciation of a component.

  14. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  15. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    Science.gov (United States)

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  16. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  17. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    Science.gov (United States)

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. CuS p-type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application

    Energy Technology Data Exchange (ETDEWEB)

    Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad (Iraq); Ahmed, Naser M., E-mail: naser@usm.my; Hassan, Z., E-mail: zai@usm.my; Azzez, Shrook A. [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Rasheed, Hiba S., E-mail: hibasaad1980@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, College of Education, Al-Mustansiriya University, Baghdad (Iraq); Al-Hazim, Nabeel Z., E-mail: nabeelnano333@gmail.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ministry of Education, the General Directorate for Educational Anbar (Iraq)

    2016-07-06

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  19. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi

    2014-11-01

    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  20. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    Science.gov (United States)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  1. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    Science.gov (United States)

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  2. Quantitative characterization of near-field fuel sprays by multi-orifice direct injection using ultrafast x-tomography technique

    International Nuclear Information System (INIS)

    Liu, X.; Im, K.S.; Wang, Y.; Wang, J.; Hung, D.L.S.; Winkelman, J.R.; Tate, M.W.; Ercan, A.; Koerner, L.J.; Caswell, T.; Chamberlain, D.; Schuette, D.R.; Philipp, H.; Smilgies, D.M.; Gruner, S.M.

    2006-01-01

    A low-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which a high-turbulence nozzle technology was employed to achieve fine fuel droplet size at a low injection pressure around 2 MPa. It is particularly important to study spray characteristics in the near-nozzle region due to the immediate liquid breakup at the nozzle exit. By using an ultrafast x-ray area detector and intense synchrotron x-ray beams, the interior structure and dynamics of the direct injection gasoline sprays from a multi-orifice turbulence-assisted nozzle were elucidated for the first time in a highly quantitative manner with μs-temporal resolution. Revealed by a newly developed, ultrafast computed x-microtomography technique, many detailed features associated with the transient liquid flows are readily observable in the reconstructed spray. Furthermore, an accurate 3-dimensional fuel density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. The time-dependent fuel density distribution revealed that the fuel jet is well broken up immediately at the nozzle exits. These results not only reveal the near-field characteristics of the partial atomized fuel sprays with unprecedented detail, but also facilitate the development of an advanced multi-orifice direct injector. This ultrafast tomography capability also will facilitate the realistic computational fluid dynamic simulations in highly transient and multiphase fuel spray systems.

  3. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  4. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Science.gov (United States)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  6. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mani Menaka, S., E-mail: manimenaka.phy@gmail.com [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Umadevi, G. [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Manickam, M. [SRMV College of Arts and Science, Coimbatore, 641020, Tamilnadu (India)

    2017-04-15

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T{sub s} = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  7. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Mani Menaka, S.; Umadevi, G.; Manickam, M.

    2017-01-01

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T_s = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  8. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  9. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  10. Influence of the particle morphology on the Cold Gas Spray deposition behaviour of titanium on aluminum light alloys

    International Nuclear Information System (INIS)

    Cinca, N.; Rebled, J.M.; Estradé, S.; Peiró, F.; Fernández, J.; Guilemany, J.M.

    2013-01-01

    Highlights: ► Study of the particle–substrate and particle–particle interfaces in the cold spray process. ► Use of irregular feedstock particles whereas normally FIB studies have been undergone for spherical particles. ► Deep Transmission Electron Microscopy characterization of the interfaces and within the particle. -- Abstract: The present work evaluates the deposition behaviour of irregular titanium powder particles impinged by Cold Gas Spraying onto an aluminium 7075-T6 alloy substrate. The influence of their irregular shape on the bonding phenomena, in particle–substrate and particle–particle interfaces are discussed in view of Transmission Electron Microscopy examinations of a Focused Ion Beam lift-out prepared sample. Key aspects will be the jetting-out, the occurrence of oxide layers and grain size refinement. Different structural morphologies could be featured; at the particle–substrate interface, both the aluminium alloy and the titanium side exhibit recrystallization. Titanium particles in intimate contact in small agglomerates during deposition, on the other hand, show grain refinement at their interfaces whereas the original structure is maintained outside those boundaries

  11. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukano, Tatsuo; Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories Inc., Nagakute, Aichi 480-1192 (Japan)

    2004-05-30

    Following the procedure by Sawada et al. (Thin Solid Films 409 (2002) 46), high-quality SnO{sub 2}:F films were grown on glass substrates at relatively low temperatures of 325-340C by intermittent spray pyrolysis deposition using a perfume atomizer for cosmetics use. Even though the substrate temperature is low, as-deposited films show a high optical transmittance of 92% in the visible range, a low electric resistivity of 5.8x10{sup -4}{omega}cm and a high Hall mobility of 28cm{sup 2}/Vs. The F/Sn atomic ratio (0.0074) in the films is low in comparison with the value (0.5) in the sprayed solution. The carrier density in the film is approximately equal to the F-ion density, suggesting that most of the F-ions effectively function as active dopants. Films' transmittance and resistivity show little change after a 450C 60min heat treatment in the atmosphere, evidencing a high heat resistance. The SnO{sub 2}:F films obtained in this work remove the difficulty to improve the figure of merit at low synthesis temperatures.

  12. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  13. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    Science.gov (United States)

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite

    International Nuclear Information System (INIS)

    Wang Feng; Liu Huimin; Yang Bin

    2005-01-01

    TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At a higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites

  15. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-01-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10 4 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m 2 /g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications

  16. Cell-patterned glass spray for direct drug assay using mass spectrometry

    International Nuclear Information System (INIS)

    Wu, Jing; Wang, Shiqi; Chen, Qiushui; Jiang, Hao; Liang, Shuping; Lin, Jin-Ming

    2015-01-01

    In this work, the establishment of a glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was described. Cell co-culture, drug-induced cell apoptosis, proliferation analysis and intracellular drug absorption measurement were performed simultaneously on this specifically designed platform. Two groups of co-cultured cells (NIH-3T3/HepG2 and HepG2/MCF-7) were cultivated and they showed high viability within 3 days. The biocompatibility of the platform facilitated the subsequent bioassays, in which, cyclophosphamide (CPA) and genistein were used as the model drugs. The distinctions of cell apoptosis and proliferation between the mono-cultured and co-cultured cells were clearly observed and well explained by in situ GS-MS measurements. A satisfactory linearity of the calibration curve between the relative MS intensity and CPA concentrations was obtained using stable isotope labeling method (y = 0.16545 + 0.0985x, R"2 = 0.9937). The variations in the quantity of absorbed drug were detected and the results were consistent with the concentration-dependence of cell apoptosis. All the results demonstrated that direct cell-based drug assay could be performed on the stable isotope labeling assisted GS-MS platform in a facile and quantitative manner. - Highlights: • A versatile glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was developed in this paper. • It has characteristics of the atmospheric pressure ionization method. • It is multifunctional for cell co-culture, bioassays, qualitative and quantitative intracellular drug absorption measurement. • GS-MS has the potential to increase the use of mass spectrometry in biological analysis.

  17. Investigation of nozzle shape effect on Sm0.1Ce0.9O1.95 thin film prepared by electrostatic spray deposition

    International Nuclear Information System (INIS)

    Ksapabutr, Bussarin; Panapoy, Manop; Choncharoen, Kittikhun; Wongkasemjit, Sujitra; Traversa, Enrico

    2008-01-01

    Dense samarium doped ceria (SDC) thin films are deposited using electrostatic spray deposition (ESD) technique. The influences of nozzle shape on the distribution of liquid jet at the nozzle tip and the morphology of the deposited SDC films are elucidated. Geometries of three nozzles employed are flat, sawtooth and wedge tips. From the observation of jet formation, the nozzle in flat shape gives the highest distribution of emitted droplets. The deposited films are characterized using a combination of XRD, SEM and AFM techniques. XRD results reveal that the single-phase fluorite structure forms at a relatively low deposition temperature of 400 o C. The flat spray tip provides the most uniform and smooth thin films, and also presents the lowest agglomeration of particles on thin-film surface

  18. Local deposition of Copper on Aluminum based MWT Back Contact Foil using Cold Spray Technology

    Energy Technology Data Exchange (ETDEWEB)

    Goris, M.J.A.A.; Bennett, I.J.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2013-11-15

    MWT cell and module technology has been shown to result in modules with up to 5% higher power output than H-pattern modules and to be suitable for use with thin and fragile cells. In this study, the use of a low cost conductive back-sheet with aluminium as the current carrier in combination with locally applied copper (5 to 30 {mu}m) using the cold spray method is benchmarked against a standard PVF-PET-copper foil in 2 x 2 cell modules. Cell to module losses and reliability during climate chamber tests according to IEC61215 ed. 2, are comparable to module made with the standard foil. Optimizing the cold spray process can result in a cost reduction of more than a factor 10 of the current carrying component, when compared to a full copper conductive back-sheet foil.

  19. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianjun, E-mail: huangjj@szu.edu.cn [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang Fan; Liu Ying; Jiang Shishou; Wang Xisheng; Qi Bing; Gao Liang [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 {mu}m. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  20. Direct characterization of commercial lecithins by easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Fernandes, Gabriel D; Alberici, Rosana M; Pereira, Gustavo G; Cabral, Elaine C; Eberlin, Marcos N; Barrera-Arellano, Daniel

    2012-12-01

    Commercial lecithins are composed mainly of phospholipids and triacylglycerols. The analysis of the commercial lecithins, including their fraction of phospholipids, normally involves laborious and expensive protocols. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to be an efficient technique for the analysis of lipids. Samples of commercial lecithins including standards, refined, deoiled and modified soy lecithin were tested. Characteristic profiles of phosphatidylcholines and triacylglycerols are detected by EASI(+)-MS, whereas EASI(-)-MS provided phosphatidylethanolamines, glycophospholipids and free fatty acids profiles. Acetylated lecithins also displayed characteristic acetylated derivatives. EASI-MS data was also compared to MALDI-MS, and found to display richer compositional information. The industrial process applied to lecithin fabrication was also characterised via typical EASI-MS profiles. EASI-MS both in its positive and negative ion modes offers a direct, fast and efficient technique able to characterise commercial lecithin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Optical and electrical characterization of AgInS{sub 2} thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M., E-mail: manuela@fis.unam.mx [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Martinez, H. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Calixto, M.E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Pena, Y. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Martinez-Escobar, Dalia [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Tiburcio-Silver, A. [Instituto Tecnologico de Toluca-SEP, Apartado Postal 20, 52176, Metepec 3, Estado de Mexico (Mexico); Sanchez-Juarez, A. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico)

    2010-10-25

    Silver indium sulfide (AgInS{sub 2}) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T{sub s}) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS{sub 2} thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS{sub 2}, Ag{sub 2}S, In{sub 2}O{sub 3}, and In{sub 2}S{sub 3} can be grown only by changing the Ag:In:S ratio in the starting solution and T{sub s}. So that, by carefully selecting the deposition parameters, single phase AgInS{sub 2} thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T{sub s} = 400 {sup o}C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 {Omega}{sup -1} cm{sup -1} in the dark.

  2. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  3. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  4. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I., E-mail: gcubillos@unal.edu.co [Department of Chemistry, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Bethencourt, M., E-mail: manuel.bethencourt@uca.es [Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea - CEI-MAR, University of Cadiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz (Spain); Olaya, J.J., E-mail: jjolayaf@unal.edu.co [Faculty of Engineering, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia)

    2015-02-01

    Highlights: • New ZrO{sub x}N{sub y} films were deposited on stainless steel 316L using PSY-N and UBMS. • ZrO{sub x}N{sub y} rhombohedral polycrystalline film grew with PSY-N. • Zr{sub 2}ON{sub 2} crystalline structures, mostly oriented along the (2 2 2) plane, grew with UBMS. • Layers improved corrosion behavior in NaCl media, especially those deposited by UBMS. - Abstract: ZrO{sub x}N{sub y}/ZrO{sub 2} thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO{sub 2} was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrO{sub x}N{sub y} rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr{sub 2}ON{sub 2} crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride

  5. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    Science.gov (United States)

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Low-cost fabrication of WO{sub 3} films using a room temperature and low-vacuum air-spray based deposition system for inorganic electrochromic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Ik [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Sooyeun, E-mail: sooyeunk@u.washington.edu [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Choi, Jung-Oh; Song, Ji-Hyeon [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Taya, Minoru [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Ahn, Sung-Hoon, E-mail: ahnsh@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Institute of Advanced Machines and Design, Seoul (Korea, Republic of)

    2015-08-31

    We report the deposition of tungsten oxide (WO{sub 3}) thin films on fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO) glass substrates by using a room-temperature deposition system based on low-vacuum air-spray for the fabrication of inorganic electrochromic windows. The structure of the WO{sub 3} films was characterized using X-ray diffraction, and the surface morphology and film thickness were investigated using scanning electron microscopy and atomic force microscopy. The color of the prepared WO{sub 3} films changed from slight yellow to dark blue under applied voltages, demonstrating electrochromism. The WO{sub 3} film coated FTO glass exhibited a large electrochromic contrast of up to 50% at a wavelength of 800 nm. The electrochemical properties of the films were examined using cyclic voltammetry and chronocoulometry. - Highlights: • WO{sub 3} thin films were fabricated using an air-spray based deposition system at room temperature under low-vacuum conditions. • Dry WO{sub 3} particles were directly deposited on FTO and ITO glasses by using a low-cost deposition system. • The FTO glass based WO{sub 3} film showed the optical contrast of 50% at a wavelength of 800 nm.

  7. Characterization of an evaporating direct-injected gasoline spray using laser-induced exciplex fluorescence and particle image velocimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dong-Seok Choi; Choongsik Bae [Korea Advanced Institute of Science and Technology, Taejon (Korea). Dept. of Mechanical Engineering; Duck-Jool Kim [Pusan National University (Korea). School of Mechanical Engineering

    2004-07-01

    The purpose of this study is to characterize an evaporating direct-injected (DI) gasoline spray from a high-pressure swirl injector using the laser-induced exciplex fluorescence (LIEF) technique and particle image velocimetry (PIV). A fluorobenzene/diethylmethylamine (DEMA) system was used as the exciplex-forming dopants. The behaviour of the liquid and vapour phases was analysed by image processing. For the analysis of vorticity inside the spray, droplet velocity data obtained by PIV were used. The experiments were performed at two ambient temperatures (293 and 473 K) and three different ambient pressures (0.1, 0.5 and 1.0 MPa). It was found that ambient temperature had a significant effect on the axial and radial growth of the liquid phase of the evaporating spray at atmospheric pressure while it had little effect under elevated pressures. Radial growth of the vapour phase of the evaporating spray was more dominant than axial growth under high temperature and pressure conditions. As the ambient pressure was elevated, the liquid phase of the spray transformed from a hollow cone to a solid cone of bell shape, while the vapour phase varied from a widespread distribution to a compact shape with a locally richer mixture. The evaporating spray could be divided into two spray regions from the analysis of vorticity and the distributions of liquid and vapour phases. The cone region (penetrations of 0.3-0.5) was mainly liquid phase and disappeared rapidly at the end of injection. The mixing region contained the active interaction between entrained air and fuel vapour. (author)

  8. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Science.gov (United States)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  9. Structural, morphological and optical properties of spray deposited Mn-doped CeO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G., E-mail: jp@ece.sastra.edu

    2014-07-25

    Highlights: • Spray deposited undoped and Mn-doped CeO{sub 2} thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO{sub 2} thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO{sub 2} films were studied. It was found that both the undoped and doped CeO{sub 2} films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO{sub 2} film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported.

  10. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  11. Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films

    International Nuclear Information System (INIS)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G.

    2014-01-01

    Highlights: • Spray deposited undoped and Mn-doped CeO 2 thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO 2 thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO 2 films were studied. It was found that both the undoped and doped CeO 2 films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO 2 film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported

  12. Effect of directed-spray glyphosate applications on survival and growth of planted oaks after three growing seasons

    Science.gov (United States)

    Andrew B. Self; Andrew W. Ezell; Josh L. Moree; Rory O. Thornton

    2013-01-01

    Thousands of acres of oak (Quercus spp.) plantations are established across the South annually. Survival and growth of these plantings have been less than desirable. Several techniques have been utilized in attempts to achieve improved success in these areas. One such technique that has been recommended is the application of directed-spray herbicide...

  13. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    Science.gov (United States)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  14. Characterization and Gas Sensing Properties of Copper-doped Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Zhaoxia ZHAI

    2016-05-01

    Full Text Available Tin oxide-based thin films are deposited by ultrasonic spray pyrolysis technology, in which Cu addition is introduced to enhance the gas sensing performance by H2S detection. The thin films are porous and comprise nano-sized crystallites. One of the Cu-containing thin film sensors demonstrates a fast and significant response to H2S gas. The values of power law exponent n are calculated to discuss the sensitivity of the sensors, which is significantly promoted by Cu additive. The sensitivity of Cu-doped SnO2 gas sensors is determined by two mechanisms. One is the normal gas sensing mechanism of SnO2 grains, and the other is the promoted mechanism caused by the transformation between CuO and CuS in the H2S detection. DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12917

  15. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  16. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    Science.gov (United States)

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  17. Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity

    Science.gov (United States)

    Devasia, Sebin; Athma, P. V.; Shaji, Manu; Kumar, M. C. Santhosh; Anila, E. I.

    2018-03-01

    Here, we report the enhanced conductivity of Aluminium doped (2at.%) zinc oxide thin films prepared by simple spray pyrolysis technique. The structural, optical, electrical, morphological and compositional investigations confirm the better quality of films that can be a potential candidate for application in transparent electronics. Most importantly, the film demonstrates an average transmittance of 90 percent with a low resistivity value which was dropped from 1.39 × 10-2 to 5.10 × 10-3 Ω .cm, after annealing, and a very high carrier concentration in the order of 10 × 20cm-3. Further, we have used the Swanepoel envelop method to calculate thickness, refractive index and extinction coefficient from the interference patterns observed in the transmission spectra. The calculated figure of merit of the as-deposited sample was 1.4 × 10-3Ω-1 which was improved to 2.5 × 10-3Ω-1 after annealing.

  18. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  19. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  20. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  1. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  2. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  3. Deposition mechanism and microstructure of laser-assisted cold-sprayed (LACS) Al-12 wt.%Si coatings: effects of laser power

    CSIR Research Space (South Africa)

    Olakanmi, EO

    2013-06-01

    Full Text Available at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS...

  4. Characterization of in-swath spray deposition for CP-11TT flat-fan nozzles used in low volume aerial application of crop production and protection materials

    Science.gov (United States)

    For aerial application of crop production and protection materials, a complex interaction of controllable and uncontrollable factors is involved. It is difficult to completely characterize spray drift and deposition, but estimates can be made with appropriate sampling protocol and analysis. With c...

  5. Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multi-fluid method

    International Nuclear Information System (INIS)

    Fox, R.O.; Laurent, F.; Massot, M.

    2008-01-01

    The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays undergoing droplet coalescence and evaporation. The fundamental mathematical description is the Williams spray equation governing the joint number density function f(v,u;x,t) of droplet volume and velocity. Eulerian multi-fluid models have already been rigorously derived from this equation in Laurent et al. [F. Laurent, M. Massot, P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays, J. Comput. Phys. 194 (2004) 505-543]. The first key feature of the paper is the application of direct quadrature method of moments (DQMOM) introduced by Marchisio and Fox [D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci. 36 (2005) 43-73] to the Williams spray equation. Both the multi-fluid method and DQMOM yield systems of Eulerian conservation equations with complicated interaction terms representing coalescence. In order to focus on the difficulties associated with treating size-dependent coalescence and to avoid numerical uncertainty issues associated with two-way coupling, only one-way coupling between the droplets and a given gas velocity field is considered. In order to validate and compare these approaches, the chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle with sprays having various size distributions, ranging from smooth ones up to Dirac delta functions. The second key feature of the paper is a thorough comparison of the two approaches for various test-cases to a reference solution obtained through a classical stochastic Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and yield a very interesting alternative to the Lagrangian solver. The third key point of the study is a detailed description of the limitations associated with each method, thus giving criteria for

  6. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  7. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan; Zohdi, Tarek I.

    2015-01-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface

  8. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  9. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  10. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  11. Tribological Behavior of Thermal Spray Coatings, Deposited by HVOF and APS Techniques, and Composite Electrodeposits Ni/SiC at Both Room Temperature and 300 °C

    Directory of Open Access Journals (Sweden)

    A. Lanzutti

    2013-06-01

    Full Text Available The Both the thermal spray and the electroplating coatings are widely used because of their high wear resistance combined with good corrosion resistance. In particular the addition of both micro particles or nano‐particles to the electro deposited coatings could lead to an increase of the mechanical properties, caused by the change of the coating microstructure. The thermal spray coatings were deposited following industrial standards procedures, while the Ni/SiC composite coatings were produced at laboratory scale using both micro‐and nano‐sized ceramic particles. All the produced coatings were characterized regarding their microstructure,mechanical properties and the wear resistance. The tribological properties were analyzed using a tribometer under ball on disk configuration at both room temperature and 300oC. The results showed that the cermet thermal spray coatings have a high wear resistance, while the Ni nano‐composite showed good anti wear properties compared to the harder ceramic/cermet coatings deposited by thermal spray technique.

  12. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  13. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  14. Structural and optical properties of ZnO–SnO{sub 2} mixed thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Sabri, M.F.M., E-mail: faizul@um.edu.my

    2014-05-02

    Nanocrystalline ZnO–SnO{sub 2} mixed thin films were deposited by the spray pyrolysis technique at various substrate temperatures during deposition. The mixed films were prepared in the range of 20.9 at.% to 73.4 at.% by altering the Zn/(Sn + Zn) atomic ratio in the starting solution. Morphology, crystal structures, and optical properties of the films were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet–visible and photoluminescence (PL) spectroscopy. XRD analysis reveals that the crystallinity of the Sn-rich mixed thin films increases with increasing substrate temperatures. FESEM images show that the grain size of mixed thin films is smaller compared to that of pure ZnO and SnO{sub 2} thin films. A drop in the thickness and optical bandgap of the film was observed for films fabricated at high temperatures, which coincided with the increased crystallinity of the films. The average optical transmission of mixed thin films increased from 70% to 95% within the visible range (400–800 nm) as the substrate temperature increases. Optical bandgap of the films was determined to be in the range of 3.21–3.96 eV. The blue shift in the PL spectra from the films was supported by the fact that grain size of the mixed thin films is much smaller than that of the pure ZnO and SnO{sub 2} thin films. Due to the improved transmission and reduced grain size, the ZnO–SnO{sub 2} mixed thin films can have potential use in photovoltaic and gas sensing applications. - Highlights: • ZnO–SnO{sub 2} mixed thin films were deposited on glass substrate by spray pyrolysis. • Crystallinity of the thin films increases with substrate temperature. • Grain size of the mixed thin films is smaller than that of the pure thin films. • Reduction of grain size depends on mixed atomic ratios of precursor solution. • Optical band gap of films could be engineered by changing substrate temperature.

  15. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electrical and structural characteristics of spray deposited (Zn O){sub x}-(Cd O){sub 1-x}

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon F, G.; Pelaez R, A.; Villa G, M.; Carmona T, S.; Luna G, J. A.; Aguilar F, M. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Vasquez P, B. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico)

    2013-10-01

    (Zn O){sub x}(Cd O){sub 1-x} thin films were deposited on glass substrates at 300 and 400 C by ultrasonic spray pyrolysis with compositions ranging from Cd O to Zn O. The electrical properties were obtained by impedance spectroscopy and Hall Effect measurements. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, were used to study the structural characteristics of the films. Ellipsometry, in addition, was used to confirm the structural characteristics. The films as deposited resulted mainly polycrystalline and dense, depending on the substrate temperature and on their relative composition. All the films showed n-type conductivity and the films with intermediate compositions resulted in a mixture of both phases; Cd O and Zn O. Hall Effect measurements showed that the highest conductivity of Cd O was close to 1 x 10{sup 3} ({Omega}-cm){sup -1}, the highest value obtained for Cd O, without doping. Impedance spectroscopy confirmed the Hall Effect results, showing that the highly conducting character of Cd O influenced dramatically the conductivity of the (Zn O){sub x}(Cd O){sub 1-x} films. In addition, depending on the substrate temperature and on the relative composition of the films, both, the bulk or grains, as well as the grain boundaries properties limit the conductivity in them. (Author)

  17. Effect of Annealing on the Structural and Optical Properties of Nano Fiber ZnO Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2011-11-01

    Full Text Available Nano fiber ZnO films have been deposited on to glass substrate at 200 °C by a simple spray pyrolysis technique under atmospheric pressure. The effect of annealing temperature on the structural and optical properties of the as grown films has been studied by Scanning Electron Microscopy (SEM attached with an EDX, powder X-ray diffraction and UV visible spectroscopy. The atomic weight % of Zinc and Oxygen were found to be 49.22 % and 49.62 % respectively. The SEM micrographs show nano fiber structure and uniform deposition on the substrate. Average grain size of ZnO thin film was found in the range of 21 to 27 nm. The lattice constant a and c of ZnO thin film are determined at different annealing temperatures and values are found slightly larger than those of JCPDS data and lower for the sample annealed at 600 °C. The lattice parameters a and c decrease with increasing temperature. It reveals that the samples are poly-crystalline and having with low densities. Band gap energy of ZnO was found in the range of 3.33 to 3.17 eV and decreases with the increase of the annealing temperature.

  18. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  19. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  20. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  1. Diagnostic significance of colloid body deposition in direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Chularojanamontri Leena

    2010-01-01

    Full Text Available Background: Colloid bodies (CB in direct immunofluorescence (DIF studies are usually found in interface dermatitis. Furthermore, CB can be found in various skin diseases and even in normal skin. Aim: To evaluate the diagnostic value of CB deposits in DIF studies. Methods: From 1996-2007, data from 502 patients where DIF studies showed immunoreactants at CB were enrolled. The definite diagnoses of these patients were based on clinical, histopathological and immunofluorescent findings. The results of DIF studies were analyzed. Results: Immunoreactants at CB were detected in 44.4%, 43.8%, 4.2%, 3.8%, and 2.2% of interface dermatitis, vasculitis, autoimmune vesiculobullous disease, panniculitis, and scleroderma/morphea, respectively. The most common immunoreactant deposit of all diseases was Immunoglobulin M (IgM. Brighter intensity and higher quantity of CB was detected frequently in the group with interface dermatitis. Conclusions: Immunoreactant deposits at CB alone can be found in various diseases but a strong intensity and high quantity favor the diagnosis of interface dermatitis. CB plus dermoepidermal junction (DEJ deposits are more common in interface dermatitis than any other disease. Between lichen planus (LP and discoid lupus erythematosus (DLE, CB alone is more common in LP; whereas, CB plus DEJ and superficial blood vessel (SBV is more common in DLE. The most common pattern in both diseases is CB plus DEJ. The quantity and intensity of CB in LP is higher than in DLE.

  2. Spray characterization of a piezo pintle-type injector for gasoline direct injection engines

    Science.gov (United States)

    Nouri, J. M.; Hamid, M. A.; Yan, Y.; Arcoumanis, C.

    2007-10-01

    The sprays from a pintle-type nozzle injected into a constant volume chamber have been visualised by a high resolution CCD camera and quantified in terms of droplet velocity and diameter with a 2-D phase Doppler anemometry (PDA) system at an injection pressure of 200 bar and back-pressures varying from atmospheric to 12 bar. Spray visualization illustrated that the spray was string-structured, that the location of the strings remained constant from one injection to the next and that the spray structure was unaffected by back pressure. The overall spray cone angle was also stable and independent of back pressure whose effect was to reduce the spray tip penetration so that the averaged vertical spray tip velocity was reduced by 37% when the back-pressure increased from 1 to 12 bar. Detailed PDA measurements were carried out under atmospheric conditions at 2.5 and 10 mm from the injector exit with the results providing both the temporal and the spatial velocity and size distributions of the spray droplets. The maximum axial mean droplet velocity was 155 m/s at 2.5 mm from the injector which was reduced to 140 m/s at z = 10 mm. The string spacing determined from PDA measurements was around 0.375 mm and 0.6 mm at z=2.5 and 10 mm, respectively. The maximum mean droplet diameter was found to be in the core of the strings with values up to 40 μm at z=2.5 mm reducing to 20 μm at z=10 mm.

  3. Spray characterization of a piezo pintle-type injector for gasoline direct injection engines

    International Nuclear Information System (INIS)

    Nouri, J M; Hamid, M A; Yan, Y; Arcoumanis, C

    2007-01-01

    The sprays from a pintle-type nozzle injected into a constant volume chamber have been visualised by a high resolution CCD camera and quantified in terms of droplet velocity and diameter with a 2-D phase Doppler anemometry (PDA) system at an injection pressure of 200 bar and back-pressures varying from atmospheric to 12 bar. Spray visualization illustrated that the spray was string-structured, that the location of the strings remained constant from one injection to the next and that the spray structure was unaffected by back pressure. The overall spray cone angle was also stable and independent of back pressure whose effect was to reduce the spray tip penetration so that the averaged vertical spray tip velocity was reduced by 37% when the back-pressure increased from 1 to 12 bar. Detailed PDA measurements were carried out under atmospheric conditions at 2.5 and 10 mm from the injector exit with the results providing both the temporal and the spatial velocity and size distributions of the spray droplets. The maximum axial mean droplet velocity was 155 m/s at 2.5 mm from the injector which was reduced to 140 m/s at z = 10 mm. The string spacing determined from PDA measurements was around 0.375 mm and 0.6 mm at z=2.5 and 10 mm, respectively. The maximum mean droplet diameter was found to be in the core of the strings with values up to 40 μm at z=2.5 mm reducing to 20 μm at z=10 mm

  4. Optoelectronic properties of SnO2 thin films sprayed at different deposition times

    Science.gov (United States)

    Allag, Abdelkrim; Saâd, Rahmane; Ouahab, Abdelouahab; Attouche, Hafida; Kouidri, Nabila

    2016-04-01

    This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-Vis) transmission, and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. X-ray diffraction (XRD) patterns show that SnO2 film is of polycrystal with cassiterite tetragonal crystal structure and a preferential orientation along the (110) plane. The calculated grain sizes are in a range from 32.93 nm to 56.88 nm. Optical transmittance spectra of the films show that their high transparency average transmittances are greater than 65% in the visible region. The optical gaps of SnO2 thin films are found to be in a range of 3.64 eV-3.94 eV. Figures of merit for SnO2 thin films reveal that their maximum value is about 1.15 × 10-4 Ω-1 at λ = 550 nm. Moreover, the measured electrical resistivity at room temperature is on the order of 10-2 Ω·cm.

  5. Optoelectronic properties of SnO2 thin films sprayed at different deposition times

    International Nuclear Information System (INIS)

    Abdelkrim, Allag; Rahmane, Saâd; Abdelouahab, Ouahab; Hafida, Attouche; Nabila, Kouidri

    2016-01-01

    This article presents the elaboration of tin oxide (SnO 2 ) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV–Vis) transmission, and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. X-ray diffraction (XRD) patterns show that SnO 2 film is of polycrystal with cassiterite tetragonal crystal structure and a preferential orientation along the (110) plane. The calculated grain sizes are in a range from 32.93 nm to 56.88 nm. Optical transmittance spectra of the films show that their high transparency average transmittances are greater than 65% in the visible region. The optical gaps of SnO 2 thin films are found to be in a range of 3.64 eV–3.94 eV. Figures of merit for SnO 2 thin films reveal that their maximum value is about 1.15 × 10 −4 Ω −1 at λ = 550 nm. Moreover, the measured electrical resistivity at room temperature is on the order of 10 −2 Ω·cm. (paper)

  6. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

    Science.gov (United States)

    Yadav, Abhijit A.; Chavan, U. J.

    2018-04-01

    Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g-1 at scan rate of 5 mV s-1 and 553 F g-1 at current density of 1 A g-1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg-1 at specific power of 2.16 kW kg-1, and retained 93.01% specific capacitance at current density of 1 A g-1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

  7. High-Performance Spray-Deposited Indium Doped ZnO Thin Film: Structural, Morphological, Electrical, Optical, and Photoluminescence Study

    Science.gov (United States)

    Asl, Hassan Zare; Rozati, Seyed Mohammad

    2018-03-01

    In this study, high-quality indium doped zinc oxide thin films were deposited using the spray pyrolysis technique, and the substrate temperature varied from 450°C to 550°C with steps of 25°C with the aim of investigating the effect of substrate temperature. It was found that as the temperature increased, the resistivity of the films decreased to the extent that it was as low as 5.34 × 10-3 Ω cm for the one deposited at 500°C; however, it slightly increased for the resulting film at 550°C. Although the carrier concentration mostly increased with temperature, it appeared that the carrier mobility was the parameter mainly governing the conductivity variation. In addition, the average transparency of the deposited films at 500°C, 525°C and 550°C was around 87% (400-800 nm), which makes them outstanding transparent conductive oxide films. Moreover, the crystallite size and strain of the resulting films were estimated via the Williamson-Hall method. The results revealed a considerable reduction in the crystallite size and strain up to 500°C followed by a rise at higher substrate temperature. Based on both the surface and cross-section field emission scanning electron microscope images, the film resulting at 500°C was highly compacted and crack free, which can explain the enlargement of the carrier mobility (10.9 cm2 V-1 s-1) in this film. Finally, a detailed photoluminescence study revealed several peaks in the spectrum and the variation of the two major peaks appeared to have correlation with the carrier concentration.

  8. Characterization of luminescent praseodymium-doped ZrO{sub 2} coatings deposited by ultrasonic spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F [Laboratorio de Materiales Optoelectronicos, DiDe, Centro de Ciencias de Sinaloa, Av. De las Americas No. 2771 Nte. Col. Villa Universidad, C.P. 80010 Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360 Coyoacan 04510 DF (Mexico); Alejo-Armenta, C [Laboratorio de Materiales Optoelectronicos, DiDe, Centro de Ciencias de Sinaloa, Av. De las Americas No. 2771 Nte. Col. Villa Universidad, C.P. 80010 Culiacan, Sinaloa (Mexico); Alvarez-Fragoso, O [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360 Coyoacan 04510 DF (Mexico); Falcony, C [Departamento de Fisica, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 DF (Mexico)

    2007-11-07

    ZrO{sub 2} : Pr films were synthesized by the ultrasonic spray pyrolysis process. X-ray diffraction studies, as a function of the deposition temperature, indicate a tetragonal crystal structure of zirconia as the substrate temperature was increased. Luminescence (photo- and cathodoluminescence) properties of the films were studied as a function of growth parameters such as the substrate temperature and the praseodymium concentration. For an excitation wavelength of 290 nm, all the photoluminescent emission spectra show peaks located at 490, 510, 566, 615, 642, 695, 718, 740 and 833 nm, associated with the electronic transitions {sup 3} P{sub 0} {yields} {sup 3}H{sub 4}, {sup 3}P{sub 0} {yields} {sup 3} H{sub 4}, {sup 3}P{sub 1} + {sup 1}I{sub 6} {yields} {sup 3}H{sub 5}, {sup 1}D{sub 2} {yields} {sup 3}H{sub 4}, {sup 3} P{sub 0} {yields} {sup 3}H{sub 6}, {sup 1}D{sub 2} {yields} {sup 3} H{sub 5}, {sup 1}D{sub 2} {yields} {sup 3}H{sub 5}, {sup 3} P{sub 0} {yields} {sup 3}F{sub 3,4} and {sup 1}D{sub 2} {yields} {sup 3} F{sub 2} of the Pr{sup 3+} ion. As the deposition temperature is increased, an increasing intensity of the luminescence emission is observed. Also, quenching of the luminescence, with increasing doping concentration, is observed. The chemical composition of the films as determined by energy dispersive spectroscopy is reported as well. In addition, the surface morphology characteristics of the films, as a function of the deposition temperature, are presented.

  9. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  10. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  11. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    International Nuclear Information System (INIS)

    Coddet, Pierre; Verdy, Christophe; Coddet, Christian; Debray, François

    2016-01-01

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  12. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Coddet, Pierre, E-mail: pierre-laurent.coddet@univ-orleans.fr [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France); Verdy, Christophe; Coddet, Christian [UTBM, Site de Sévenans, 90010 Belfort Cedex (France); Debray, François [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France)

    2016-04-26

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  13. Spray pyrolysis deposition of Cu-ZnO and Zn-SnO{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Khelfane, A.; Tarzalt, H.; Sebboua, B.; Zerrouki, H.; Kesri, N., E-mail: kesri5n@gmail.com [Faculty of Physics, University of Science and Technology of Houari Boumediene, Algiers (Algeria)

    2015-12-31

    Large-gap metal oxides, such as titanium, tin, and zinc oxides, have attracted great interest because of their remarkable potential in dye-sensitized solar cells (DSSC) and their low cost and simple preparation procedure. In this work, we investigated several Zn-SnO{sub 2} and Cu-ZnO thin films that were sprayed under different experimental conditions. We varied [Zn/[Sn] and [Cu/[Zn] ratios, calculated on atomic percent in the starting solution. We report some structural results of the films using X-ray diffraction. Optical reflection and transmission spectra investigated by an UV/VIS/NIR spectrophotometer permit the determination of optical constants. The direct band gap was deduced from the photon energy dependence of the absorption coefficient.

  14. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  15. Solidification in direct metal deposition by LENS processing

    Science.gov (United States)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  16. Microstructure and mechanical properties of spray-deposited Mg-12.55Al-3.33Zn-0.58Ca-1Nd alloy

    International Nuclear Information System (INIS)

    Bai Pucun; Dong Taishang; Hou Xiaohu; Zhao Chunwang; Xing Yongming

    2010-01-01

    A Mg-Al-Zn-Ca-Nd magnesium alloy was prepared by spray forming technology, and the spray-deposited alloy was subsequently hot-extruded with a reduction rate of 16:1 at 623 K. The mechanical properties of the extruded alloy were investigated, and the result shows that the spray-formed Mg alloy offers superior tensile strength with poor ductility. The morphologies, fracture characteristic and chemical compositions of the extruded alloy were then explored by scanning electron microscopy with energy dispersive spectrometer. Furthermore, microstructure of the extruded alloy was examined by X-ray diffractometry and transmission electron microscopy. The results indicate that the microstructure of the spray-deposited magnesium alloy consists of α-Mg and Al 2 Ca phases, and the Al 2 Ca compound is distributed along the grain boundaries of the primary α-Mg. Moreover, twin substructure is found to exist in microstructure of the Al 2 Ca phase, rare earth Nd in the Al 2 Ca phase in the form of solid solution.

  17. An Investigation of Structural and Electrical Properties of Nano Crystalline SnO2:Cu Thin Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    J. Podder

    2011-11-01

    Full Text Available Pure tin oxide (SnO2 and Cu doped SnO2 thin films have been deposited onto glass substrates by a simple spray pyrolysis technique under atmospheric pressure at temperature 350 °C. The doping concentration of Cu was varied from 1 to 8 wt. % while all other deposition parameters such as spray rate, carrier air gas pressure, deposition time, and distance between spray nozzle to substrate were kept constant. Surface morphology of the as-deposited thin films has been studied by Scanning Electron Microscopy (SEM. The SEM micrograph of the films shows uniform deposition. The structural properties of the as-deposited and annealed thin films have been studied by XRD and the electrical characterization was performed by Van-der Pauw method. The as-deposited films are found polycrystalline in nature with tetragonal crystal structure. Average grain sizes of pure and Cu doped SnO2 thin film have been obtained in the range of 7.2445 Å to 6.0699 Å, which indicates the nanometric size of SnO2 grains developed in the film. The resistivity of SnO2 films was found to decrease initially from 4.5095×10−4 Ωm to 1.1395× 10−4 Ωm for concentration of Cu up to 4 % but it was increased further with increasing of Cu concentrations. The experimental results depict the suitability of this material for using as transparent and conducting window materials in solar cells and gas sensors.

  18. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  19. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    Science.gov (United States)

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  20. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  1. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  2. Effect of chlorine doping on the structural, morphological, optical and electrical properties of spray deposited CdS thin films

    Directory of Open Access Journals (Sweden)

    T. Sivaraman

    2015-10-01

    Full Text Available CdS and chlorine doped CdS (CdS:Cl thin films with different Cl-doping levels (0, 2, 4, 6 and 8 at% have been deposited on glass substrates by a spray pyrolysis technique using a perfume atomizer. The effect of Cl doping on the structural, morphological, optical and electrical properties of the films was investigated. XRD patterns revealed that all the films exhibit hexagonal crystal structure with a preferential orientation along the (0 0 2 plane irrespective of the Cl doping level. The particle size value decreases from 22.03 nm to 18.12 nm with increase in Cl concentration. Optical band gap is blue-shifted from 2.48 eV to 2.73 eV with increase in Cl doping concentration. All the films have resistivity in the order of 104 Ω cm. The obtained results confirm that chlorine as an anionic dopant material can enhance the physical properties of CdS thin films to a large extent.

  3. Numerical simulation of the internal stresses of thick tungsten coating deposited by vacuum plasma spraying on copper substrate

    International Nuclear Information System (INIS)

    Salito, A.; Tului, M.; Casadei, F.

    1998-01-01

    Several Divertor components in the new generation of nuclear fusion reactors need to be protected against ion sputtering. Particularly copper based (Cu) material is very sensitive to this sputtering process. A solution to overcome such component wear and plasma contamination is to protect the copper substrate with a thick tungsten (W) functional coating. The main difficulty to produce such components is the significant difference in the coating thermomechanical properties between W and Cu. The Vacuum Plasma Spraying coating process (VPS) is a very flexible new economical way to find a solution to the above problem. To optimise the adhesion and stress release properties between the Cu-alloy substrate and the W coating, it is possible to deposit an interlayer as a bond coat between both materials. The aim of this study is to determine the maximum of the residual stresses located between the Cu substrate and the W coating using finite element analysis. The results have been used to select different types of bond coat for the experimental development of thick W coating (>3 mm) on to mock-ups for the Divertor Channel of the ITER project. (author)

  4. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells

    International Nuclear Information System (INIS)

    Morales, J.; Sanchez, L.; Martin, F.; Ramos-Barrado, J.R.; Sanchez, M.

    2005-01-01

    Nanostructured CuO thin films were prepared by spray pyrolysis of aqueous copper acetate solutions at temperatures over 200-300 deg C range. The textural and structural properties of the films were determined by scanning electron microscopy, atomic force microscopy, X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy (XPS). Although the sole crystalline phase detected in the film was CuO, XPS spectra revealed a more complex surface structure due to the presence of undecomposed copper acetate that can be easily removed by Ar + ion sputtering. The heating temperature was found to have little limited effect on the particle size and thickness of the films, which, however, increased significantly increasing deposition time. The film with the smallest grain size exhibited an excellent electrochemical response in Li battery electrodes and was capable of supplying sustained specific capacity as high as 625 A h kg -1 (50% greater than that delivered by bulk CuO and close to the theoretical capacity for the CuO Cu reaction) upon extensive cycling

  5. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    Science.gov (United States)

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  6. Growth and Properties of Cl- Incorporated ZnO Nanofilms Grown by Ultrasonic Spray-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu

    2016-04-01

    Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.

  7. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.

    Science.gov (United States)

    Xiong, Li; Kendrick, Laken L; Heusser, Hannele; Webb, Jamie C; Sparks, Bradley J; Goetz, James T; Guo, Wei; Stafford, Christopher M; Blanton, Michael D; Nazarenko, Sergei; Patton, Derek L

    2014-07-09

    Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity. The wettability and chemical composition of the surfaces were characterized by contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The hierarchical roughness features of the thiol-ene surfaces were investigated with field-emission scanning electron microscopy. Droplet impact and sandpaper abrasion tests indicate the coatings respectively possess a robust antiwetting behavior and good mechanical durability.

  8. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray%风幕式静电喷杆喷雾喷头雾化与雾滴沉积性能试验

    Institute of Scientific and Technical Information of China (English)

    贾卫东; 胡化超; 陈龙; 陈志刚; 魏新华

    2015-01-01

    To solve the problem of less liquid deposition on the middle and lower plant canopy and uneven distribution of particle diameter by traditional pesticide application methods, this paper conducted the exploratory research about the application of the technology of pneumatic auxiliary spray combined with electrostatic spray. The charge-to-mass ratios of the droplets under different spray pressures and voltages were measured by measurement system. The results indicated that the charge-to-mass ratio increased as the voltage increased and then tended to be stable, yet decreased with the increase of spray pressure. The particle diameter spatial distribution of the droplets under charging or not was measured by Winner318B laser particle size analyzer;the horizontal and longitudinal stent in the system could move precisely so as to adjust the position of the nozzle relative to the measuring line of the laser particle size analyzer. The results showed that the volume median diameters (VMD) of the droplets decreased and then tended to increase when the nozzle moved from 0 to 3 in the horizontal stent; in the condition of no charging, the VMD of the droplets was 108.48μm and the coefficient of variation of droplet sizes was 11.96%, while in the condition of charging, the VMD of the droplets was 83.67μm and the coefficient of variation of droplet sizes was 7.48%;and the VMD of the droplets increased when the nozzle moved from 6 to 4 in the longitudinal stent. For analyzing the influence of wind-curtain, spray pressure and voltage on droplets deposition performance, the wind-curtain electrostatic boom spray system was set up and the experiment on droplet deposition performance was conducted. The system used cochineal solution as spraying liquid, and used radermachera hainanensis merr. as simulation target. Layout the film on the upper, middle, lower position plant canopy for collecting the droplets deposited. In order to ensure the accuracy of the experimental data, the

  9. Texture of high temperature superconductor thick films TI-1223 and TI-2223/LaAlO3 deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Nguyen Xuan, H.; Beauquis, S.; Galez, Ph.; Jorda, J.L.; Phok, S.; De-Barros, D.

    2004-01-01

    Superconducting TI-1223 and TI-2223 films have been prepared in a two steps process: deposition of Ba:Ca:Cu = 2:2:3 precursor by spray pyrolysis and ex-situ thallination. Pure textured TI-1223 films with good superconducting properties (T c =113 K and J c =0.7 MA/cm 2 at 77 K, 0T) have been obtained. Almost pure TI-2223 films have been obtained when precursor films have been thallinated with fluorinated sources. (orig.)

  10. UNA REVISIÓN DEL SPRAY TÉRMICO COMO TÉCNICA DE DEPOSICIÓN PARA CAPAS DE BARRERAS TÉRMICAS // THE THERMAL SPRAY AS A DEPOSITION TECHNIQUE FOR THERMAL BARRIER COATING: A REVIEW

    Directory of Open Access Journals (Sweden)

    Eduardo Rondón Briceño

    2015-06-01

    Full Text Available It is important to know the thermal barrier deposition techniques since materials with low thermal conductivity in the barrier can be obtained from them. The dependence of the thermal conductivity with the temperature can be divided into four regions. In this work, we were interested in the study of used techniques for the manufacture of materials with a desirable low thermal conductivity that will be exposed to high temperatures that is to say, materials found in the III and IV region. In these regions the thermal conductivity can be reduced increasing the porosity of the material. Through the study of the thermal barrier deposition techniques we found that the thermal spray produces a coat with high porosity, being the low velocity flame spray technique the best to produce coat of La2Zr2O7 with a minimal thermal conductivity. The thermal spray technique is low cost and almost any material can be thermally sprayed, so this can be considered a very attractive technique for industrial applications. // RESUMEN Es importante conocer las técnicas de deposición de barreras térmicas ya que de ellas depende la obtención de materiales con baja conductividad térmica en la barrera. La dependencia de la conductividad térmica con la temperatura puede dividirse en cuatro regiones. En este trabajo estuvimos interesados en el estudio de las técnicas que se utilizan para la fabricación de materiales sometidos a muy altas temperaturas y donde se desea que su conductividad térmica sea baja, es decir, materiales que se encuentran en la región III y IV. En estas regiones se puede disminuir la conductividad térmica aumentando la porosidad del material. A través del estudio de las técnicas de deposición de barreras térmica, hemos encontrado que la técnica del spray térmico produce una alta porosidad en el recubrimiento, siendo el método de rociado con baja velocidad el mejor método para producir capas de La2Zr2O7 con mínima conductividad t

  11. Evaluation of tribological wear and corrosion in coatings of diamalloy 4060NS deposited by thermal spray

    Science.gov (United States)

    Acuña R, S. M.; Moreno T, C. M.; Espinosa C, E. J.

    2017-12-01

    Surface engineering seeks the development of new techniques to improve the performance and life of components of machines or industrial facilities, always looking for low costs and the least possible environmental damage. Thermal projection is one of the techniques that is based on the projection of particles of compounds and alloys on properly prepared and heated substrates, these particles are driven by a stream of air passing through an oxyacetylene flame which gives the energy to the process; These coatings give the possibility to improve the properties of the materials or the maintenance of components to maximize the availability of service. In order to reduce the damage caused by wear and corrosion of a low carbon AISI 1020 steel, they were coated with a metal based alloy, studying the effect of the cobalt-chromium-silicon-tungsten carbide alloy coating (DIAMALLLOY 4060 NS). The coating was deposited with two different pressures in the gases supplied to the torch, obtaining two flames and working three thicknesses of coating that oscillate between 100-500μm, according to the number of deposited layers, making use of a projection gun Castolin Eutectic. Powder and substrate characterization was performed using X-Ray Diffraction (XRD) techniques, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), spark emission spectroscopy and metallographic analysis. The results confirm the chemical nature and structure of the powder of the alloy and the substrate to be used, in addition, the thermal stability of the system was verified. The evaluation of the adhesion of the deposited layers was carried out by the implementation of pull-off tests according to ASTM D4541, in order to determine the type of failure that is presented. Mechanical wear was determined using a MT/60/NI microtest tribometer while electrochemical tests were performed using a suitable experimental unit for this purpose, confirming that the substrate exhibits lower wear levels when coated with

  12. The effects of the forward speed and air volume of an air-assisted sprayer on spray deposition in tendone trained vineyards

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2013-12-01

    Full Text Available This paper reports the results of spray application trials in a tendone trained vineyard in order to evaluate the influence of forward speed and air volume on the foliar deposition of plant protection products (PPPs, maintaining roughly constant the volume applied. The trials used an air-assisted sprayer with a centrifugal fan and 4+4 adjustable fan-shaped diffusers, each with a nozzle-holder group. A full factorial experimental design was implemented, with three forward speeds and two airflow rates, organised with a randomised complete block design including three replicates. In order to consider the influence of canopy development, the tests (one spray application for each replicate of a mixture containing a water-soluble food dye as a tracer were replicated during two phenological stages: i the end of flowering; and ii berry touch. Leaves were picked at random from the canopy after each spray treatment, and foliar PPP deposition was evaluated using a spectrophotometer. This analysis of foliar deposition showed that the airflow rates produced by the fan were unsuitable for the dense canopy typical of this type of vineyard. However, the special shape of the diffusers may make this sprayer effective if the main objective of pesticide applications in tendone trained table grape vineyards is to control bunch diseases.

  13. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  14. Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells.

    Science.gov (United States)

    Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav

    2018-01-01

    For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar

  15. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Nevrlá, Barbara; Kocmanová, Lenka; Veverka, Jakub; Halasová, Martina; Hadraba, Hynek

    2017-01-01

    Roč. 318, May (2017), s. 217-223 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68081723 Keywords : Tungsten * Steel * Atmospheric plasma spraying * Shrouding * Substrate temperature * Fusion reactor materials * Plasma facing components Subject RIV: JK - Corrosion ; Surface Treatment of Materials; JK - Corrosion ; Surface Treatment of Materials (UFM-A) OBOR OECD: Coating and films; Coating and films (UFM-A) Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0257897216310520

  17. Paper Spray and Extraction Spray Mass Spectrometry for the Direct and Simultaneous Quantification of Eight Drugs of Abuse in Whole Blood

    NARCIS (Netherlands)

    Espy, R.D.; Teunissen, S.F.; Manicke, N.E.; Ren, Y.; Ouyang, Z.; van Asten, A.; Cooks, R.G.

    2014-01-01

    Determination of eight drugs of abuse in blood has been performed using paper spray or extraction spray mass spectrometry in under 2 min with minimal sample preparation. A method has been optimized for quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA),

  18. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Science.gov (United States)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  19. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    Science.gov (United States)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  20. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  1. Electrostatic Spray Deposition-Based Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands.

    Science.gov (United States)

    Agrawal, Richa; Adelowo, Ebenezer; Baboukani, Amin Rabiei; Villegas, Michael Franc; Henriques, Alexandra; Wang, Chunlei

    2017-07-26

    In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g -1 to 225 F∙g -1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn₃O₄ to the conducting layered birnessite MnO₂. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm -2 and stack capacitances as high as 7.4 F·cm -3 , with maximal stack energy and power densities of 0.51 mWh·cm -3 and 28.3 mW·cm -3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  2. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

    Directory of Open Access Journals (Sweden)

    Richa Agrawal

    2017-07-01

    Full Text Available In this study, porous manganese oxide (MnOx thin films were synthesized via electrostatic spray deposition (ESD and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g−1, with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn3O4 to the conducting layered birnessite MnO2. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnOx/C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm−2 and stack capacitances as high as 7.4 F·cm−3, with maximal stack energy and power densities of 0.51 mWh·cm−3 and 28.3 mW·cm−3, respectively. The excellent areal capacitance of the MnOx-MEs is attributed to the pseudocapacitive MnOx as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  3. Characterisations Of Al2O3-13% Wt TiO2 Deposition On Mild Steel Via Plasma Spray Method

    International Nuclear Information System (INIS)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.; Muchtar, A.; Forghani, S.; Daud, A. R.

    2011-01-01

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only ∼5 x 10 -4 cm 3 /Nm with 4% of porosity.

  4. Deposition and characterization of graded Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B.J. [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); Institute of Molecules and Materials, UMR-CNRS 6283, Université du Maine, Avenue O. Messiaen, F-72085 Le Mans (France); Velumani, S., E-mail: velu@cinvestav.mx [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kassiba, A. [Institute of Molecules and Materials, UMR-CNRS 6283, Université du Maine, Avenue O. Messiaen, F-72085 Le Mans (France); Asomoza, R. [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); Chavez-Carvayar, J.A. [Instituto Investigaciones en Materiales-UNAM, Ciudad Universitario, D.F.Mexico (Mexico); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS) thin films and their graded (x = 1 to 0) layer were grown on soda lime glass substrates using chemical spray pyrolysis (CSP) at different substrate temperatures (T{sub s}). After optimization of T{sub s}, depositions were carried out at different gallium composition (x) at optimized temperature of 350 °C. All the films deposited at T{sub s} ≥ 350 °C were polycrystalline chalcopyrite structure, with a preferential orientation of (112), including the graded layer. With increase in x, lattice parameters a and c were observed to decrease. Line scan of the CIGS layer showed intersection of gallium and indium concentrations, revealing the graded nature of the film. Composition dependence of Raman peak for CuInSe{sub 2} (CIS) deposited by CSP was analyzed. Optical transmittance at a wavelength of 800 nm of the film with x = 0 (CIS) (30%) was found lower than that of the film grown with x = 0.82 (CIGS) (50%). Cusp-shape of the resistivity was observed with an increase of x leading to steep rise in resistivity of the films (1.61–71.68 Ω-cm) till x = 0.42 and then decreased to 4.78 Ω-cm at x = 0.82. Carrier concentrations of the films were evaluated in the order of 10{sup 16}–10{sup 19} cm{sup −3} with p-type conductivity. These results indicate that graded CIGS thin films with modulated gallium composition can be prepared by CSP. - Graphical abstract: Display Omitted - Highlights: • Optimization of the spray deposition system for device grade chalcopyrite CIGS films. • Optimized substrate temperature to obtain single-phase CIGS by spray deposition. • Detailed report on compositional dependence of CuInSe{sub 2} (CIS) thin films. • Systematic analysis of the influence of Ga in CIS by spray deposition. • Bowing parameter is extracted from the experiment values.

  5. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-06-01

    The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry.

    Science.gov (United States)

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Cuelbas, Claudio José; Zacca, Jorge Jardim; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-09-01

    Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Effect of precursor concentration on physical properties of nebulized spray deposited In2S3 thin films

    Directory of Open Access Journals (Sweden)

    J. Raj Mohamed

    2016-09-01

    Full Text Available The present work investigates the effect of precursor concentration (mc on the structural, optical, morphological and electrical conductivity properties of In2S3 thin films grown on amorphous glass substrates by nebulized spray pyrolysis (NSP technique. The mixed phase of cubic and tetragonal structure of In2S3 thin films at higher concentration has been observed by X-ray diffraction pattern. The reduced strain by increasing the precursor concentration increased the average crystallite from 17.8 to 28.9 nm. The energy dispersive analysis by X-ray (EDAX studies confirmed the presence of In and S. The transmittance, optical direct band gap energy, Urbach energy and skin depth of In2S3 films have been analyzed by optical absorption spectra. The better conductivity and mobility noticed at mc = 0.15 M are explained by carrier concentration and crystallite. Better optical and electrical conductivity behaviour of In2S3 thin film sample proposes for effective solar cell fabrication.

  8. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    Directory of Open Access Journals (Sweden)

    A.-I. Partanen

    2014-11-01

    Full Text Available Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol–climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr−1 (uncertainty range 378–1233 Tg yr−1 was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias −13% for particles with vacuum aerodynamic diameter Dva Da Da Da −2, in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulfate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative effect was −0.2 W m−2. The simulated radiative effects of the primary marine organic emissions were small, with a direct effect of 0.03 W m−2 and an indirect effect of −0.07 W m−2.

  9. Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Joshi, Bhavana N.; Lee, Jong-Hyuk; Kim, Tae-Gun; Kim, Do-Yeon; Al-Deyab, Salem S.; Seong, Il Won; Swihart, Mark T.; Yoon, Woo Young; Yoon, Sam S.

    2017-01-01

    Hematite (Fe 2 O 3 ) nanoparticles and reduced graphene oxide (rGO) were supersonically sprayed onto copper current collectors to create high-performance, binder-free lithium ion battery (LIB) electrodes. Supersonic spray deposition is rapid, low-cost, and suitable for large-scale production. Supersonic impact of rGO sheets and Fe 2 O 3 nanoparticles on the substrate produces compacted nanocomposite films with short diffusion lengths for Li + ions. This structure produces high reversible capacity and markedly improved capacity retention over many cycles. Decomposition of lithium oxide generated during cycling activates the solid electrolyte interface layer, contributing to high capacity retention. The optimal composition ratio of rGO to Fe 2 O 3 was 9.1 wt.%, which produced a reversible capacity of 1242 mAh g −1 after N = 305 cycles at a current density of 1000 mA g −1 (1C).

  10. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  11. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  12. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  13. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    Science.gov (United States)

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  14. Directed-spray application of paraquat and diuron in physic nut plants

    OpenAIRE

    Costa,N.V.; Neunfeld,T.H.; Ohland,T.; Piano,J.T.; Klein,J.

    2013-01-01

    There is little information about the selectivity of herbicides in physic nut (Jatropha curcas) in Brazil. Therefore, this study aimed to evaluate the selectivity of different doses and mixtures of paraquat and diuron in direted-spray applications in physic nut plants in greenhouse conditions. The study used a randomized block design, with five replicates. The treatments were: paraquat (200 and 600 g ha-1), diuron (1,000 and 2,000 g ha-1), paraquat + diuron (200 + 1,000 g ha-1), paraquat + di...

  15. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  16. Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells.

    Science.gov (United States)

    Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk

    2015-12-28

    The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.

  17. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  18. Influences of alcoholic solvents on spray pyrolysis deposition of TiO{sub 2} blocking layer films for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Changyun, E-mail: jiangc@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Koh, Wei Lin; Leung, Man Yin [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Hong, Wei [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Li, Yuning, E-mail: yuning.li@uwaterloo.ca [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Zhang, Jie [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)

    2013-02-15

    Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO{sub 2} films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO{sub 2} films as the blocking layers were investigated. Smooth TiO{sub 2} films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 Degree-Sign C. On the other hand, when ethanol was used as solvent, the TiO{sub 2} films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO{sub 2} blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO{sub 2} precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: Black-Right-Pointing-Pointer Solvent influences morphology of spray pyrolysis deposited TiO{sub 2} blocking layer. Black-Right-Pointing-Pointer Ethanol reacts with TPA, resulting poor quality of blocking layer. Black-Right-Pointing-Pointer Isopropanol is better than ethanol for obtaining smooth blocking layer. Black-Right-Pointing-Pointer SDSC with blocking layer made with isopropanol showed better performance.

  19. Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ thin films grown by a simple spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Koren, G.; Giess, E.A.; Moore, N.R.; O' Sullivan, E.J.M.; Cooper, E.I.

    1988-01-11

    The preparation of high T/sub c/ superconducting thin films of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ on (100) single crystals of MgO, ZrO/sub 2/ with 9% Y/sub 2/O/sub 3/ (yttria stabilized zirconia, or YSZ), and SrTiO/sub 3/ using a simple spray deposition technique is described. Typical film growth procedure involves (a) the spraying of a stoichiometric solution of the nitrate precursors on the heated substrate (180 /sup 0/C), (b) prebaking in air of the sprayed film (20 min at 500 /sup 0/C), and (c) oven annealing of the film under flowing O/sub 2/ (900--950 /sup 0/C followed by slow cooling to 200 /sup 0/C in about 3 h). X-ray diffraction analysis of the films after each of the growing steps mentioned above shows primarily the presence of crystalline phases of the nitrates, the oxides, and the orthorhombic superconducting phase, respectively. Resistivity versus temperature measurements show that the onset and completion of the superconductive transition occur at 92 and 87 K, respectively, in films on YSZ substrate; at 95 and 80 K, respectively, in films on SrTiO/sub 3/ substrate; and at 82 and 77 K, respectively, in films on MgO substrate.

  20. High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application

    Science.gov (United States)

    Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang

    2018-06-01

    Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.

  1. Deposição e perdas da calda em feijoeiro em aplicação com assistência de ar na barra pulverizadora Spray deposition and spray loss using air-assistance boom on bean plants

    Directory of Open Access Journals (Sweden)

    Carlos Gilberto Raetano

    2004-01-01

    Full Text Available Com o objetivo de avaliar a influência da assistência de ar na deposição da calda de pulverização, em plantas de feijoeiro (Phaseolus vulgaris aos 26 dias após a emergência (DAE, com pontas de pulverização de jato cônico vazio (JA-0,5 e JA-1 e jato plano (AXI-110015, e volumes de calda, foi realizado um experimento em delineamento inteiramente casualizado, utilizando como traçador o íon cobre. Alvos coletores (papel de filtro com 3 x 3 cm foram afixados nas superfícies adaxial e abaxial de folíolos posicionados nas partes superior e inferior das plantas. Para aplicar a solução traçadora, utilizou-se pulverizador com barras de 14 metros, com e sem assistência de ar, volumes de 60 e 100 L.ha-1, e velocidade do ar correspondente a 50% da rotação máxima do ventilador. Após a aplicação, os coletores foram lavados individualmente em solução extratora de ácido nítrico a 1,0 mol.L-1, e a quantificação dos depósitos através de espectrofotometria. A assistência de ar não influenciou na deposição da calda tanto a 60 quanto a 100 L.ha-1. O maior volume proporcionou maiores depósitos, sendo constatadas elevadas perdas para o solo (mais de 60%.Aiming to evaluate the effect of air-assistance in spray deposition on bean plants (Phaseolus vulgaris with hollow nozzles (JA-0,5 and JA-1 and flat fan nozzle type (AXI-110015, and volume rates by air-assisted and non-assisted sprayers, a completely randomized experiment was carried out using copper ion as a tracer to the evaluation of the deposits. At 26 days after emergence, artificial targets were positioned on the upper and under-side of the leaflets, on the top and bottom parts of the same plants under spray boom. For the application of tracer solution it was used a fourteen meter boom sprayer with and without air-assistance at 60 and 100 L.ha-1 of volume rates. The air flow was 50% of the maximum fan rotation. After application, targets were individually washed with an

  2. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry.

    Science.gov (United States)

    Liu, Jiangjiang; Wang, He; Cooks, R Graham; Ouyang, Zheng

    2011-10-15

    The chemical constituents of intact plant material, including living plants, are examined by a simple spray method that provides real-time information on sugars, amino acids, fatty acids, lipids, and alkaloids. The experiment is applicable to various plant parts and is demonstrated for a wide variety of species. An electrical potential is applied to the plant and its natural sap, or an applied solvent generates an electrospray that carries endogenous chemicals into an adjacent benchtop or miniature mass spectrometer. The sharp tip needed to create a high electric field can be either natural (e.g., bean sprout) or a small nick can be cut in a leaf, fruit, bark, etc. Stress-induced changes in glucosinolates can be followed on the minute time scale in several plants, including potted vegetables. Differences in spatial distributions and the possibility of studying plant metabolism are demonstrated. © 2011 American Chemical Society

  3. Direct Deposit Applications filed via the Internet - FY 2016 (53rd week)

    Data.gov (United States)

    Social Security Administration — This dataset provides monthly volumes at the national level from federal fiscal year 2016 for Internet Direct Deposit applications. This dataset includes data from...

  4. Effects of the addition of H2O and NH4OH in the electrical properties of thin films of Y2O3 deposited by pyrolytic spray

    International Nuclear Information System (INIS)

    Herrera S, H.J.; Alarcon F, G.; Aguilar F, M.; Falcony, C.; Garcia H, M.; Guzman M, J.; Araiza I, J.J.

    2005-01-01

    In this work we studied the electrical properties of yttrium oxide thin films obtained by spray pyrolysis from Y(acac) 3 and N,N-DMF. The films were deposited on Si(100) substrates at temperatures of 400, 450, 500 and 550 C. The electrical characteristic of the films was improved when a mist of H 2 O and/or NH 4 0H was simultaneously added to the deposition system. Current and capacitance versus voltage measurements were obtained when the Y 2 O 3 films were integrated in MOS (Metal-Oxide-Semiconductor) structures. Y 2 O 3 films with a dielectric constant up to 15 were obtained. The films can stand electric fields up to 2 MV/cm. An interface state density in the range of 10 10 -10 11 cm -2 eV -1 was measured at midgap from the high and low frequency capacitance measurements. (Author)

  5. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  6. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    Science.gov (United States)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  7. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  8. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.

    Science.gov (United States)

    Li, Bowei; Zhang, Wei; Chen, Lingxin; Lin, Bingcheng

    2013-08-01

    In this study, a fast, low-cost, and facile spray method was proposed. This method deposits highly sensitive surface-enhanced Raman scattering (SERS) silver nanoparticles (AgNPs) on the paper-microfluidic scheme. The procedures for substrate preparation were studied including different strategies to synthesize AgNPs and the optimization of spray cycles. In addition, the morphologies of the different kinds of paper substrates were characterized by SEM and investigated by their SERS signals. The established method was found to be favorable for obtaining good sensitivity and reproducible results. The RSDs of Raman intensity of randomly analyzing 20 spots on the same paper or different filter papers depositing AgNPs are both below 15%. The SERS enhancement factor is approximately 2 × 10(7) . The whole fabrication is very rapid, robust, and does not require specific instruments. Furthermore, the total cost for 1000 pieces of chip is less than $20. These advantages demonstrated the potential for growing SERS applications in the area of environmental monitoring, food safety, and bioanalysis in the future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. OPTICAL PROPERTIES OF Al:ZnO THIN FILM DEPOSITED BY DIFFERENT SOL-GEL TECHNIQUES: ULTRASONIC SPRAY PYROLYSIS AND DIP-COATING

    Directory of Open Access Journals (Sweden)

    Ebru Gungor

    2016-08-01

    Full Text Available Undoped and Al-doped ZnO polycrystalline thin films have been fabricated on glass substrates by using a computer-controlled dip coating (DC and ultrasonic spray pyrolysis (USP systems. The film deposition parameters of DC process were optimized for the samples. In this technique, the substrate was exposed to temperature gradient using a tube furnace. In the study, the other solvent-based technique was conventional USP. The zinc salt and Al salt concentrations in the solution were kept constant as 0.1 M and 2% of Zn salt’s molarity, respectively. The optical properties were compared for the films deposited two different techniques. The optical transmission of Al:ZnO/Glass/Al:ZnO sample dip coated and  the optical transmission of Al:ZnO/Glass sample ultrasonically sprayed were determined higher than 80% in the visible and near infrared region. Experimental optical transmittance spectra of the films in the forms of FilmA/Glass/FilmA and FilmA/glass were used to determine the optical constants. It was observed that the optical band gaps of Al doped ZnO films onto glass substrate were increases with increase of Al content and the absorption edge shifted to the shorter wavelength (blue shift compared with the undoped ZnO thin film.

  10. Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Genduso, G. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Inguanta, R.; Sunseri, C.; Piazza, S. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Kelch, C.; Sáez-Araoz, R. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Zykov, A. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); present address: Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,12489 Berlin (Germany); Fischer, Ch.-H., E-mail: fischer@helmholtz-berlin.de [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); second affiliation: Free University Berlin, Chemistry Institute, Takustr. 3, D-14195 Berlin (Germany)

    2013-12-02

    Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature was also investigated. However, for high numbers of process steps, i.e. thickness, the films became uneven and crusty, especially at higher temperature, mainly owing to the simultaneous side reaction of the metallic Ni forming nickel sulfide at the surface of the rods. However, such a problem occurs only in the case of reactive nano-rod materials, such as less noble metals. It could be strongly reduced by doubling the spray step duration and thereby sealing the metallic surface before the process step of the sulfurization. Thus, quite smooth, about 100 nm thick coatings could be obtained. - Highlights: • Ni nano-rod substrates were grown within polycarbonate membranes. • We can coat nano-rods uniformly by the Ion Layer Gas Reaction method. • As a model we deposited up to about 100 nm In{sub 2}S{sub 3} on Ni nanorods (250 nm × 10 μm). • Element mapping at insulated rods showed homogenous coating over the full length. • Parameter optimization reduced effectively the Ni sulfide formation.

  11. Effect of sunlight radiation, rainfall and droplet spectra of sprays on persistence of Bacillus thuringiensis deposits after application of DiPel 76AF formulation onto conifers

    International Nuclear Information System (INIS)

    Sundaram, A.; Sundaram, K.M.S.

    1996-01-01

    The Effect of sunlight radiation, rainfall and droplet spectra of sprays on per ‐sistence of a Bacillus thuringiensis subspp. kurstaki (Btk) formulation, DiPel? 76AF, was examined after application onto spruce [Picea glauca (Moench) Voss] foliage. The investigation consisted of three studies: (i) Study I: a laboratory microcosm study to examine the photostability of DiPel 76AF deposits on foliage after different periods of exposure to two radiation intensities, (ii) Study II: a laboratory microcosm study to examine the rainfastness of foliar deposits after exposure to different amounts of rainfall consisting of two separate droplet spectra, and (iii) Study III: a field microcosm study to investigate the influence of two different droplet spectra of DiPel 76AF sprays on foliar persistence of Btk under natural weathering conditions. In all studies, persistence of Btk was investigated both by bioassay [using spruce budworm (Choristoneura fumiferana Clemens)] and total protein assay.The findings of Study I indicated that bioactivity of foliar deposits decreased with increasing duration of exposure to radiation, and with increasing radiation intensity. The half‐life (DT 50 , the exposure period required for 50% of the initial bioactivity to disappear) was 5.1 d for the low intensity, and 3.9 d for the higher intensity. In contrast with the bioassay results, the total protein levels [determined by the bicinchoninic acid (BCA) method] showed no decrease with increasing duration of exposure, or with increasing radiation intensity.The findings of Study II indicated that bioactivity of foliar deposits decreased with increasing cumulative rainfall. A new term, RF 50 [the amount of rain (in mm) required to washoff 50% of the initial deposit], was introduced to understand the relationship between rainfall intensity and reduction in bioactivity. When the same amount of rain was applied in different droplet sizes, the RF 50 value was high (5.2 mm) for the small rain droplets

  12. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  13. Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique

    Science.gov (United States)

    Irani, Rowshanak; Rozati, Seyed Mohammad; Beke, Szabolcs

    2018-04-01

    V2O5 thin films were deposited with different precursor concentrations of 0.01, 0.05, and 0.1 M on glass substrates by spray pyrolysis technique, then the optimized films were annealed in different ambients (air, oxygen, and vacuum). The results showed that by increasing the concentration, the films grew along the (001) direction with an orthorhombic structure. Field emission scanning electron microscopy showed that nanorods were formed when depositing 0.05 molar of VCl3. We conclude that with the precursor concentration, the surface nanostructure can be well-controlled. Annealing improved the crystallinity under all ambients, but the best crystallinity was achieved in vacuum. It was revealed that the as-deposited films had the highest transmission, whereas the films annealed in air had the lowest. When annealed in air, the optical band gap decreased from 2.45 to 2.32 eV. The sheet resistance, resistivity, mobility, conductivity, and carrier concentration were measured for all the prepared V2O5 films.

  14. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  15. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas

  16. Some physical parameters of CuInGaS{sub 2} thin films deposited by spray pyrolysis for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kotbi, Ahmed [Hassan II Casablanca University, MAC and PM Laboratory, ANEPMAER Group, FSTM, Mohammedia (Morocco); Hassan II Casablanca University, LIMAT Laboratory, Department of Physics, FSB, Casablanca (Morocco); Hartiti, Bouchaib; Fadili, Salah [Hassan II Casablanca University, MAC and PM Laboratory, ANEPMAER Group, FSTM, Mohammedia (Morocco); Ridah, Abderraouf [Hassan II Casablanca University, LIMAT Laboratory, Department of Physics, FSB, Casablanca (Morocco); Thevenin, Philippe [University of Lorraine, LMOPS Laboratory, Department of Physics, Metz (France)

    2017-05-15

    Copper-indium-gallium-disulphide (CuInGaS{sub 2}) is a promising absorber material for thin film photovoltaic. In this paper, CuInGaS{sub 2} (CIGS) thin films have been prepared by chemical spray pyrolysis method onto glass substrates at ambient atmosphere. Structural, morphological, optical and electrical properties of CuInGaS{sub 2} films were analysed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-Vis spectrophotometer and Hall Effect measurement, respectively. The films exhibited single phase chalcopyrite structure. The strain and dislocation density decreased with increase of spray time. The grain size of the films increased from 4.45 to 9.01 nm with increase of spray time. The Raman spectrum indicated the presence of the principal chalcopyrite peak at 295 cm{sup -1}. The optical properties of the synthesized films have been carried out through the measurement of the absorbance spectrum. The optical band gap was estimated by the absorption spectrum fitting (ASF) method. For each sample, the width of the band tail (E{sub Tail}) of CuInGaS{sub 2} thin films was determined. The resistivity (ρ), conductivity (σ), mobility (μ), carrier concentration and conduction type of the films were determined using Hall Effect measurements. The interesting optical properties of CuInGaS{sub 2} make them an attractive material for photovoltaic devices. (orig.)

  17. Some physical parameters of CuInGaS_2 thin films deposited by spray pyrolysis for solar cells

    International Nuclear Information System (INIS)

    Kotbi, Ahmed; Hartiti, Bouchaib; Fadili, Salah; Ridah, Abderraouf; Thevenin, Philippe

    2017-01-01

    Copper-indium-gallium-disulphide (CuInGaS_2) is a promising absorber material for thin film photovoltaic. In this paper, CuInGaS_2 (CIGS) thin films have been prepared by chemical spray pyrolysis method onto glass substrates at ambient atmosphere. Structural, morphological, optical and electrical properties of CuInGaS_2 films were analysed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-Vis spectrophotometer and Hall Effect measurement, respectively. The films exhibited single phase chalcopyrite structure. The strain and dislocation density decreased with increase of spray time. The grain size of the films increased from 4.45 to 9.01 nm with increase of spray time. The Raman spectrum indicated the presence of the principal chalcopyrite peak at 295 cm"-"1. The optical properties of the synthesized films have been carried out through the measurement of the absorbance spectrum. The optical band gap was estimated by the absorption spectrum fitting (ASF) method. For each sample, the width of the band tail (E_T_a_i_l) of CuInGaS_2 thin films was determined. The resistivity (ρ), conductivity (σ), mobility (μ), carrier concentration and conduction type of the films were determined using Hall Effect measurements. The interesting optical properties of CuInGaS_2 make them an attractive material for photovoltaic devices. (orig.)

  18. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA.

    Science.gov (United States)

    Wlodarski, K; Tajber, L; Sawicki, W

    2016-12-01

    The aim of this research was to develop immediate release tablets comprising solid dispersion (IRSDTs) of tadalafil (Td) in a vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA), characterized by improved dissolution profiles. The solid dispersion of Td in PVP-VA (Td/PVP-VA) in a weight ratio of 1:1 (w/w) was prepared using two different processes i.e. spray drying and ball milling. While the former process has been well established in the formulation of IRSDTs the latter has not been exploited in these systems yet. Regardless of the preparation method, both Td/PVP-VA solid dispersions were amorphous as confirmed by PXRD, DSC and FTIR. However, different morphology of particles (SEM) resulted in differences in water apparent solubility and disk intrinsic dissolution rate (DIDR). Both solid dispersions and crystalline Td were successfully made into directly compressible tablets at three doses of Td, i.e. 2.5mg, 10mgand20mg, yielding nine different formulations (D 1 -D 9 ). Each of the lots met the requirements set by Ph.Eur. and was evaluated with respect to appearance, diameter, thickness, mass, hardness, friability, disintegration time and content of Td. IRSDTs performed as supersaturable formulations and had significantly improved water dissolution profiles in comparison with equivalent tablets containing crystalline Td and the marketed formulations. Tablets with both spray dried and ball milled Td/PVP-VA revealed the greatest improvement in dissolution depending on the investigated doses, i.e. 2.5mgand20mg, respectively. Also, dissolution of Td from Td/PVP-VA delivered in different forms occurred in the following order: powders>tablets>capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses

    Science.gov (United States)

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...

  20. Spray deposition of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester blend under electric field for improved interface and organic solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Neha, E-mail: nchaturvedi9@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2016-01-01

    Spray process is used for the deposition of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) blend film under different voltages (0 V, 300 V, 500 V and 700 V) applied to the nozzle. The presence of the electric field during the spray process makes the P3HT:PCBM film smoother, uniform and more crystalline with well aligned domains. X-ray photoelectron spectroscopy study shows that PCBM rich surface is formed by application of the DC voltage (700 V) which improves the electron transport at the active layer and cathode interface. The application of electric field reduces the recombination at interfaces. The increased charge carrier separation between donor and acceptor at the interface and the crystallinity enhancement result in improved short circuit current density–voltage characteristics of Indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) /P3HT:PCBM/Aluminum solar cell. The organic bulk-heterojunction solar cell using the electric field assisted spray deposited PEDOT:PSS and P3HT:PCBM layers exhibited 84% and 154% increment in the short circuit current density and power conversion efficiency, respectively in comparison to the solar cell having spray deposited PEDOT:PSS and P3HT:PCBM layers in the absence of the electric field. - Highlights: • Spray deposition of P3HT:PCBM is carried out. • Spray deposition under electric field is done. • Electric field application enhanced the crystallinity of the layers. • P3HT:PCBM film arranged in more ordered form with electric field • Efficiency of organic solar cell is enhanced with application of electric field.

  1. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  2. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  3. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    Directory of Open Access Journals (Sweden)

    Kong S. C.

    2006-12-01

    Full Text Available In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model provides initial conditions for the liquid jet breakup model that considers wave instabilities due to Kelvin-Helmholtz (KH and Rayleigh-Taylor (RT mechanisms. A linearized instability analysis has also been extended to consider the breakup of liquid sheets for modeling pressure-swirl gasoline injectors. Diesel engine predictions have been compared with extensive data from in-cylinder laser diagnostics carried out in optically accessible heavy-duty, DI Diesel engines over a wide range of operating conditions. The results show that the nozzle flow model used in combination with the KH and RT models gives realistic spray predictions. In particular, the limited liquid fuel penetration length observed experimentally and the flame shape details are captured accurately. The liquid sheet breakup model has also been compared favorably with experimental spray penetration and drop size data for gasoline hollow-cone sprays. This model is currently being applied to study stratified charge combustion in GDI engines. Dans les moteurs à injection directe, les caractéristiques du spray de carburant influent directement sur le rendement et les émissions. Les performances des modèles de spray existants et leur influence sur la combustion pour les moteurs Diesel et essence à injection directe sont analysées. Un modèle phénoménologique d'écoulement dans les injecteurs indiquant les effets de la géométrie sur les processus d'injection est présenté. Ce modèle donne les

  4. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  5. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  6. Structural properties of In2Se3 precursor layers deposited by spray pyrolysis and physical vapor deposition for CuInSe2 thin-film solar cell applications

    International Nuclear Information System (INIS)

    Reyes-Figueroa, P.; Painchaud, T.; Lepetit, T.; Harel, S.; Arzel, L.; Yi, Junsin; Barreau, N.; Velumani, S.

    2015-01-01

    The structural properties of In 2 Se 3 precursor thin films grown by chemical spray pyrolysis (CSP) and physical vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process of CuInSe 2 (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In 2 Se 3 crystalline phase for both films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the same crystalline phase but with different orientations are normally used in the preparation of high quality CISe films by 3-stage process. Scanning electron microscope cross-section images showed an important difference in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers (600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamination. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the obtained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber films. - Highlights: • To find the intricacies involved in spray pyrolysis (CSP) and physical vapor (PVD) deposition. • Comparison of CSP and PVD film formations — especially in structural properties. • Feasibility to substitute CSP (cheaper) films for PVD in the manufacturing process. • Decreasing the global production cost of Cu(In,Ga)Se 2 devices in the 3-stage process

  7. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.

    Science.gov (United States)

    Li, JinZhi; Zhao, LiJie; Lin, Xiao; Shen, Lan; Feng, Yi

    2017-11-01

    Many commonly used tablet fillers are not suitable for direct compaction process due to insufficient properties, mainly of flowability and compactability. This work therefore aimed to use co-spray drying with HPMC as a platform to improve direct compaction properties of various tablet fillers. Starch, calcium hydrogen phosphate dihydrate (DCPD), and mannitol were chosen as a representative of three types of commonly used fillers (i.e. organic macromolecules, water-insoluble inorganic salts, and water-soluble small molecular carbohydrates), respectively. The five-level central composite design-response surface methodology was used (i) to investigate the effects of HPMC level and solid content of the feed on various powder, tableting, and tablet properties of composite excipients, and (ii) to optimize the composition. The results showed that the impacts of the two factors on various properties of composite excipients showed great similarity, despite of significantly different primary properties of the parent fillers, and the HPMC level was the main contributor to the majority of the impacts. An increase in HPMC level significantly improved tablet tensile strength and various tableting parameters. For all the three fillers, their optimized composite excipients provided by the established models showed excellent performances as predicted. The platform suggested is confirmed to be effective and promising.

  8. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbel, Halima Feki, E-mail: ghorbel.halima@yahoo.fr [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Guidara, Awatef [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Danlos, Yoan [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Bouaziz, Jamel [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Coddet, Christian [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France)

    2017-02-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al{sub 2}O{sub 3}/Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al{sub 2}O{sub 3} and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates.

  9. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    International Nuclear Information System (INIS)

    Ghorbel, Halima Feki; Guidara, Awatef; Danlos, Yoan; Bouaziz, Jamel; Coddet, Christian

    2017-01-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al 2 O 3 /Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al 2 O 3 and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates

  10. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  11. Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell

    Science.gov (United States)

    Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo

    2018-06-01

    Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.

  12. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  13. Synthesis, characterization and decomposition studies of tris(N,N-dibenzyldithiocarbamato)indium(III): chemical spray deposition of polycrystalline CuInS2 on copper films

    International Nuclear Information System (INIS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S 2 CNBz 2 ) 3 , was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1-bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS 2 and benzyl moieties in to the gas phase, resulting in bulk In 2 S 3 . Preliminary spray CVD experiments indicate that In(S 2 CNBz 2 ) 3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS 2 films

  14. Synthesis, Characterization and Decomposition Studies of Tris(N,N-dibenzyldithiocarbamato) Indium(III): Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    Science.gov (United States)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  15. New process of the preparation of catalyzed gas diffusion electrode for PEM fuel cells based on ultrasonic direct solution spray reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, K.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    This paper reported on a newly developed process for in-situ catalyst deposition on gas diffusion electrodes (GDE) for polymer electrolyte fuel cells. This process has the potential to reduce the number of steps for catalyzed GDE fabrication. In addition, the process offers economic advantages for the fuel cell commercialization. In this study, a home-made catalyst maker with ultrasonic spray method was used to prepare a solution of the carbon supported platinum catalyst on the GDL. The sprayed catalyst powder consisted of carbon support. The catalyst particles did not prevent gas flow channels on the GDL. The catalyst layer was shown to be located only on the top surface of the GDL and was not packed into its flow channel. Results of Cross-section SEM image, crystallization, micro structure and electro-catalytic activity for the oxygen reduction reaction were also discussed. 1 ref., 1 fig.

  16. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  17. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    Science.gov (United States)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  18. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  19. Application of plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Moon, J. S.; Park, H. S.; Song, K. C.; Lee, C. Y.; Kang, K. H.; Ryu, H. J.; Kim, H. S.; Yang, M. S.

    2001-01-01

    Yttria-stabilized-zirconia (m.p. 2670.deg. C), was deposited by induction plasma spraying system with a view to develop a new nuclear fuel fabrication technology. To fabricate the dense pellets, the spraying condition was optimized through the process parameters such as, chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position particle size and its morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed 97.11% theoretical density, when the sheath gas flow rate was Ar/H 2 120/20 L/min, probe position 8cm, particle size-75 μm and spraying distance 22cm. The microstructure of YSZ deposit by ICP was lamellae and columnar perpendicular to the spraying direction. In the bottom part near the substrate, small equiaxed grains bounded in a layer. In the middle part, relatively regular size of columnar grains with excellent bonding each other were distinctive

  20. Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell

    Science.gov (United States)

    Tamboli, Parvin S.; Jagtap, Chaitali V.; Kadam, Vishal S.; Ingle, Ravi V.; Vhatkar, Rajiv S.; Mahajan, Smita S.; Pathan, Habib M.

    2018-04-01

    Thermal decomposition of ammonium para molybdate tetrahydrate precursor has been studied to determine degradation temperatures in air atmosphere. Current work explores the synthesis of α-MoO3 films by an economical spray pyrolysis technique using ammonium para molybdate tetrahydrate precursor in the presence of compressed air. A variety of characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared, and Raman spectroscopy were carried out, and the studies have confirmed that orthorhombic phase formation of MoO3 takes place with spongy mesh-type structure. The study of electro-catalytic activity of α-MoO3 in titania-based dye-sensitized solar cell is also carried out by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curves to evaluate its performance as a counter electrode.

  1. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  2. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  3. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  4. Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in

    2015-09-30

    Transparent conducting antimony doped SnO{sub 2} thin films with varying thickness were deposited by chemical spray pyrolysis technique from non-aqueous solvent Propan-2-ol. The effect of film thickness on the properties of antimony doped SnO{sub 2} thin films have been studied. X-ray diffraction measurements showed tetragonal crystal structure of as-deposited antimony doped SnO{sub 2} films irrespective of film thickness. The surface morphology of antimony doped SnO{sub 2} thin film is spherical with the continuous distribution of grains. Electrical and optical properties were investigated by Hall Effect and optical measurements. The average optical transmittance of films decreased from 89% to 73% within the visible range (350–850 nm) with increase in film thickness. The minimum value of sheet resistance observed is 4.81 Ω/cm{sup 2}. The lowest resistivity found is 3.76 × 10{sup −4} Ω cm at 660 nm film thickness. - Highlights: • Effect of film thickness on the properties of antimony doped SnO{sub 2} thin films • Crystalline size in the range of 34–37 nm • Average transmittance decreased from 89% to 73% in the visible region. • Minimum sheet resistance of 4.81 Ω/cm{sup 2} • Lowest resistivity is found to be 3.76 × 10{sup −4} Ω cm at 660 nm film thickness.

  5. Influence of indium concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO:In thin films deposited from zinc pentanedionate and indium sulfate

    International Nuclear Information System (INIS)

    Castaneda, L; Morales-Saavedra, O G; Cheang-Wong, J C; Acosta, D R; Banuelos, J G; Maldonado, A; Olvera, M de la L

    2006-01-01

    Chemically sprayed indium-doped zinc oxide thin films (ZnO:In) were deposited on glass substrates starting from zinc pentanedionate and indium sulfate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the transport, morphology, composition, linear and nonlinear optical (NLO) properties of the ZnO:In thin films were studied. The structure of all the ZnO:In thin films was polycrystalline, and variation in the preferential growth with the indium content in the solution was observed: from an initial (002) growth in films with low In content, switching to a predominance of (101) planes for intermediate dopant regime, and finally turning to a (100) growth for heavily doped films. The crystallite size was found to decrease with doping concentration and range from 36 to 23 nm. The film composition and the dopant concentration were determined by Rutherford backscattering spectrometry; these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:In thin films were also found. In this way a resistivity of 4 x 10 -3 Ω cm and an average transmittance in the visible spectra of 85%, with a (101) preferential growth, were obtained in optimized ZnO:In thin films

  6. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    International Nuclear Information System (INIS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-01-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h

  7. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    Science.gov (United States)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  8. Structural and photoluminescence characterization of SnO{sub 2}: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, P.S. [Thin Film Physics Laboratory, Department of Electronics, Shivaji University, Kolhapur 416004 (India); Ung Sim, Kyu; Kim, Ye-bin; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416004 (India); Uplane, M.D., E-mail: mdu_eln@unishivaji.ac.in [Thin Film Physics Laboratory, Department of Electronics, Shivaji University, Kolhapur 416004 (India)

    2013-07-15

    Fluorine doped tin oxide (FTO) thin films were deposited on glass substrates, at different substrate temperatures using advanced spray pyrolysis technique. X-ray diffraction studies showed that the crystallinity of the thin films increased with increasing substrate temperature. FESEM and AFM studies support the conclusions drawn from X-ray diffraction studies. X-ray photoelectron studies confirm oxygen deficiency in formation of the FTO nanocrystallites. The photoluminescence of the FTO films were investigated. It was found that, room temperature photoluminescence spectra are dominated by oxygen vacancies and exhibit a rich violet photoluminescence band about ∼404 nm with an extensively feeble red emission about 700 nm. The Photoluminescence intensity varies with the substrate temperature. The photoemission position is observed to be independent of substrate temperature. -- Highlights: ► Photoluminescent FTO thin films were deposited at low substrate temperatures. ► Influence of substrate temperature on the PL characteristics was studied. ► The samples are polycrystalline with a cassiterite tetragonal crystal structure. ► The room temperature UV/violet PL emission was dominated by the oxygen vacancies. ► PL efficiency is optimum at 613 K substrate temperature.

  9. The growth of nanoscale ZnO films by pulsed-spray evaporation chemical vapor deposition and their structural, electric and optical properties

    International Nuclear Information System (INIS)

    Jiang Yinzhu; Bahlawane, Naoufal

    2010-01-01

    Great interest in nanoscale thin films (sub-100 nm) has been stimulated by the developing demands of functional devices. In this paper, nanoscale zinc oxide (ZnO) thin films were deposited on glass substrates at 300 o C by pulsed-spray evaporation chemical vapor deposition. Scanning electron micrographs indicate uniform surface morphologies composed of nanometer-sized spherical particles. The growth kinetics and growth mode are studied and the relationship between the film thickness and the electric properties with respect to the growth mode is interpreted. X-ray diffraction shows that all ZnO films grown by this process were crystallized in a hexagonal structure and highly oriented with their c-axes perpendicular to the plane of the substrate. Optical measurements show transparencies above 85% in the visible spectral range for all films. The absorbance in the UV spectral range respects well the Beer-Lambert law, enabling an accurate optical thickness measurement, and the absorption coefficient was measured for a selected wavelength. The measured band gap energies exhibit an almost constant value of 3.41 eV for all films with different thicknesses, which attributed to the thickness-independent crystallite size.

  10. Motion Planning for a Direct Metal Deposition Rapid Prototyping System

    Energy Technology Data Exchange (ETDEWEB)

    AMES,ARLO L.; HENSINGER,DAVID M.; KUHLMANN,JOEL L.

    1999-10-18

    A motion planning strategy was developed and implemented to generate motion control instructions from solid model data for controlling a robotically driven solid free-form fabrication process. The planning strategy was tested using a PUMA type robot arm integrated into a LENS{trademark} (Laser Engineered Net Shape) system. Previous systems relied on a series of x, y, and z stages, to provide a minimal coordinated motion control capability. This limited the complexity of geometries that could be constructed. With the coordinated motion provided by a robotic arm, the system can produce three dimensional parts by ''writing'' material onto any face of existing material. The motion planning strategy relied on solid model geometry evaluation and exploited robotic positioning flexibility to allow the construction of geometrically complex parts. The integration of the robotic manipulator into the LENS{trademark} system was tested by producing metal parts directly from CAD models.

  11. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  12. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  13. Tuning of the Morphology and Optoelectronic Properties of ZnO/P3HT/P3HT- b-PEO Hybrid Films via Spray Deposition Method.

    Science.gov (United States)

    Wang, Kun; Bießmann, Lorenz; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-06-20

    The self-assembly of amphiphilic diblock copolymers yields the possibility of using them as a template for tailoring the film morphologies of sol-gel chemistry-derived inorganic electron transport materials, such as mesoporous ZnO and TiO 2 . However, additional steps including etching and backfilling are required for the common bulk heterojunction fabrication process when using insulating diblock copolymers. Here, we use the conducting diblock copolymer poly(3-hexylthiophene)- block-poly(ethylene oxide) (P3HT- b-PEO) in which P3HT acts as charge carrier transport material and light absorber, whereas PEO serves as a template for ZnO synthesis. The initial solution is subsequently spray-coated to obtain the hybrid film. Scanning electron microscopy and grazing-incidence small-angle X-ray scattering measurements reveal a significant change in the morphology of the hybrid films during deposition. Optoelectronic properties illustrate the improved charge separation and charge transfer process. Both the amount of the diblock copolymer and the annealing temperature play an important role in tuning the morphology and the optoelectronic properties. Hybrid films being sprayed from a solution with the ratio of ω ZnO , ω P3HT , and ω P3HT- b-PEO of 2:1:1 and subsequent annealing at 80 °C show the most promising morphology combined with an optimal photoluminescence quenching. Thus, the presented simple, reagent- and energy-saving fabrication method provides a promising approach for a large-scale preparation of bulk heterojunction P3HT/ZnO films on flexible substrates.

  14. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Shu-Hao; Lu, Ming-De; Tung, Yung-Liang; Tuan, Hsing-Yu

    2013-10-22

    We report the development of Co9S8 nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co9S8 nanocrystal is carried out via a noninjection reaction by mixing anhydrous CoCl2 with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co9S8 nanocrystals possess excellent catalytic ability with respect to I(-)/I3(-) redox reactions. The Co9S8 nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co9S8 thin films on different substrates by using a spray deposition technique. These Co9S8 films are used as counter electrodes assembled with dye-adsorbed TiO2 photoanodes to fabricate DSSC devices having a working area of 2 cm(2) and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm(2)-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries.

  15. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  16. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition

    International Nuclear Information System (INIS)

    Mahesh, R.A.; Jayaganthan, R.; Prakash, S.

    2008-01-01

    Ni-5Al coating was obtained on three superalloy substrates viz. Superni 76, Superni 750 and Superfer 800 using high velocity oxy-fuel (HVOF) spray process. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 deg. C for 100 cycles. The weight change was measured at the end of each cycle and observed that the weight gain was high in Superni 750 alloy when compared to Superni 76 and Superfer 800. A nearly parabolic oxidation behavior was observed for Ni-5Al coated Superni 750 and Superfer 800 alloys but a Ni-5Al coated Superni 76 substrate showed a slight deviation. The scale was analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and electron probe microanalysis (EPMA). The coating increased the oxidation resistance for all the alloy substrates at 900 deg. C. Among the three-coated superalloys, Superfer 800 substrate has shown the best resistance to oxidation. The protective nature of the Ni-5Al coated superalloys was due to the formation of protective oxide scales such as NiO, Al 2 O 3 and Cr 2 O 3

  17. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    Science.gov (United States)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  18. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    Directory of Open Access Journals (Sweden)

    Rajesh Biswal

    2014-07-01

    Full Text Available The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002 to (101 planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  19. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  20. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  1. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  2. Calcium titanate (CaTiO3) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kotlan, Jiří; Pala, Zdeněk; Sedláček, J.; Hájková, Zuzana; Matys Grygar, Tomáš

    2015-01-01

    Roč. 72, December (2015), s. 123-132 ISSN 0025-5408 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : Ceramics * Plasma deposition * Impedance spectroscopy * Raman spectroscopy * Dielectrics Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (UACH-T) Impact factor: 2.435, year: 2015 http://www.sciencedirect.com/science/article/pii/S0025540815300623

  3. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  4. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  5. Evaluation of high pressure water blast with rotating spray bar for removing paint and rubber deposits from airport runways, and review of runway slipperiness problems created by rubber contamination

    Science.gov (United States)

    Horne, W. B.; Griswold, G. D.

    1975-01-01

    A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.

  6. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  7. An investigation of the Nb doping effect on structural, morphological, electrical and optical properties of spray deposited F doped SnO2 films

    Science.gov (United States)

    Turgut, G.; Keskenler, E. F.; Aydın, S.; Yılmaz, M.; Doǧan, S.; Düzgün, B.

    2013-03-01

    F and Nb + F co-doped SnO2 thin films were deposited on glass substrates by the spray pyrolysis method. The microstructural, morphological, electrical and optical properties of the 10 wt% F doped SnO2 (FTO) thin films were investigated specifically for niobium (Nb) doping in the range of 0-4 at.% with 1 at.% steps. As shown by the x-ray diffraction patterns, the films exhibited a tetragonal cassiterite structure with (200) preferential orientation. It was observed that grain sizes of the films for (200) and (301) peaks depended on the Nb doping concentration and varied in the range of 25.11-32.19 and 100.6-183.7 nm, respectively. The scanning electron microscope (SEM) micrographs showed that the FTO films were made of small pyramidal grains, while doubly doped films were made of small pyramidal grains and big polyhedron grains. From electrical studies, although 1 at.% Nb doped FTO films have the lowest sheet resistance and resistivity values, the highest figure-of-merit and optical band gap values obtained for FTO films were 16.2 × 10-2 Ω-1 and 4.21 eV, respectively. Also, infrared reflectivity values of the films were in the range of 97.39-98.98%. These results strongly suggest that these films are an attractive candidate for various optoelectronic applications and for photothermal conversion of solar energy.

  8. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Keiichiro Homma

    2014-04-01

    Full Text Available Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD at a material throughput of 480 g h−1. The powders are fundamentally an aggregate of primary ~20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g−1 after 100 cycles at the same time.

  9. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Terajima, Takeshi; Takeuchi, Fumiya; Nakata, Kazuhiro; Adachi, Shinichiro; Nakashima, Koji; Igarashi, Takanori

    2010-01-01

    A composite coating containing WC/12Co cermet and Fe 43 Cr 16 Mo 16 C 15 B 10 metallic glass was successfully deposited onto type 304 stainless steel by high-velocity oxygen fuel (HVOF) spraying, and the microstructure and tribological properties were investigated. The microstructure of the coating was characterized by scanning electron microscopy/electron probe micro-analysis (SEM/EPMA) and X-ray diffractometry (XRD). The hardness, adhesion strength and tribological properties of the coating were tested with a Vickers hardness tester, tensile tester and reciprocating wear tester, respectively. The composite coating, in which flattened WC/12Co was embedded in amorphous Fe 43 Cr 16 Mo 16 C 15 B 10 layers, exhibited high hardness, good wear resistance and a low friction coefficient compared to the monolithic coating. The addition of 8% WC/12Co to the Fe 43 Cr 16 Mo 16 C 15 B 10 matrix increased the cross-sectional hardness from 660 to 870 HV and reduced the friction coefficient from 0.65 to 0.5. WC/12Co reinforcement plays an important role in improving the tribological properties of the Fe 43 Cr 16 Mo 16 C 15 B 10 coating.

  10. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  11. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111 Si Substrate: The Effect of Film Thickness

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2014-01-01

    Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.

  12. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition.

    Science.gov (United States)

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x  = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.

  13. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

    Science.gov (United States)

    Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K

    2014-08-27

    Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.

  14. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries.

    Science.gov (United States)

    Homma, Keiichiro; Kambara, Makoto; Yoshida, Toyonobu

    2014-04-01

    Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD) at a material throughput of 480 g h -1 . The powders are fundamentally an aggregate of primary ∼20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH 4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g -1 after 100 cycles at the same time.

  15. Multiscale Engineered Si/SiO x Nanocomposite Electrodes for Lithium-Ion Batteries Using Layer-by-Layer Spray Deposition.

    Science.gov (United States)

    Huang, Chun; Kim, Ayoung; Chung, Dong Jae; Park, Eunjun; Young, Neil P; Jurkschat, Kerstin; Kim, Hansu; Grant, Patrick S

    2018-05-09

    Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.

  16. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  17. Investigations of AlGaN/GaN MOS-HEMT with Al2O3 deposition by ultrasonic spray pyrolysis method

    International Nuclear Information System (INIS)

    Chou, Bo-Yi; Hsu, Wei-Chou; Liu, Han-Yin; Wu, Yu-Sheng; Lee, Ching-Sung; Sun, Wen-Ching; Wei, Sung-Yen; Yu, Sheng-Min; Chiang, Meng-Hsueh

    2015-01-01

    This work investigates Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) grown on SiC substrate by using the non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. The Al 2 O 3 was deposited as gate dielectric and surface passivation simultaneously to effectively suppress gate leakage current, enhance output current density, reduce RF drain current collapse, and improve temperature-dependent stabilities performance. The present MOS-HEMT design has shown improved device performances with respect to a Schottky-gate HEMT, including drain-source saturation current density at zero gate bias (I DSS : 337.6 mA mm −1  → 462.9 mA mm −1 ), gate-voltage swing (GVS: 1.55 V → 2.92 V), two-terminal gate-drain breakdown voltage (BV GD : −103.8 V → −183.5 V), unity-gain cut-off frequency (f T : 11.3 GHz → 17.7 GHz), maximum oscillation frequency (f max : 14.2 GHz → 19.1 GHz), and power added effective (P.A.E.: 25.1% → 43.6%). The bias conditions for measuring f T and f max of the studied MOS-HEMT (Schottky-gate HEMT) are V GS  = −2.5 (−2) V and V DS  = 7 V. The corresponding V GS and V DS biases are −2.5 (−2) V and 15 V for measuring the P.A.E. characteristic. Moreover, small capacitance-voltage (C–V) hysteresis is obtained in the Al 2 O 3 -MOS structure by using USPD. Temperature-dependent characteristics of the present designs at 300–480 K are also studied. (paper)

  18. Performance of spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices

    International Nuclear Information System (INIS)

    Saitoh, Leona; Babu, R. Ramesh; Kannappan, Santhakumar; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    2012-01-01

    Bulk heterojunction organic solar cell devices were fabricated using the spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer. The spray coating parameters such as spraying time, substrate-nozzle distance for the deposition of active layers were analyzed. Optical absorption of the active layers was analyzed using UV–visible spectral studies in the wavelength range from 300 to 800 nm. The surface morphology of the active layers deposited with different parameters was examined using atomic force microscopy. Surface morphology of the active layers deposited with the substrate-nozzle distance of 20 cm and for 20 s shows smooth morphology with peak-valley value of 4 nm. The devices fabricated using the selected active layer show overall power conversion efficiency of 1.08%. - Graphical abstract: Current–voltage (J–V) characteristics of spray deposited PCDTBT:PC 61 BM active layer based solar cell device under illumination of AM 1.5 G, 100 mW/cm 2 . Highlights: ► Organic solar cells were fabricated using a spray deposited PCDTBT:PC61BM active layer. ► The active layers deposited with spray conditions show flat morphology. ► Using the selected active layers power conversion efficiency of 1.08% is obtained.

  19. Choice of tracers for the evaluation of spray deposits Escolha de traçadores para avaliação de depósitos de pulverização

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Palladini

    2005-10-01

    Full Text Available Tracer substances, used to evaluate spraying effectiveness, ordinarily modify the surface tension of aqueous solutions. This study aimed to establish a method of using tracers to evaluate distribution and amount of spray deposits, adjusted to the surface tension of the spraying solution. The following products were tested: 0.15% Brilliant Blue, 0.15% Saturn Yellow in 0.015% Vixilperse lignosulfonate, and 0.005% sodium fluorescein, and mixtures of Brilliant Blue plus Saturn Yellow and Brilliant Blue plus sodium fluorescein at the same concentrations. Solutions were deposited on citrus leaves and stability was determined by measuring fluorescence and optical density of solutions without drying, dried in the dark and exposed to sunlight for 2, 4 and 8 h. These values were compared to those obtained directly in water. The static surface tension of the tracer solution was determined by weighing droplets formed during a period of 20 to 40 seconds. The Brilliant Blue and Saturn Yellow mixture at 0.15% was stable under all conditions tested. It was not absorbed by the leaves and maintained the same surface tension as that of water, thus permitting concentration adjustment to the same levels used for agrochemical products, and allowing the development of a qualitative method based on visual evaluation of the distribution of the pigment under ultraviolet light and of a quantitative method based on the determination of the amount of the dye deposited in the same solution. Spray deposition could be evaluated at different surface tensions of the spraying solution, simulating the effect of agrochemical formulations.As substâncias traçadoras são usadas para avaliar a eficácia de pulverizações mas, normalmente, elas modificam a tensão superficial de soluções aquosas. O trabalho objetivou definir um método para avaliar a distribuição e a quantidade de produto depositada em pulverizações, utilizando-se substâncias traçadoras, com a possibilidade

  20. Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.

    Science.gov (United States)

    Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J

    2006-04-01

    Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.

  1. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  2. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  3. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole

    2013-10-14

    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano\\'s thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attrib