WorldWideScience

Sample records for direct shear tests

  1. Naesliden Project: direct shear tests of filled and unfilled joints

    Energy Technology Data Exchange (ETDEWEB)

    Ludvig, B.

    1980-05-15

    Joints from the Naesliden mine have been tested in a small field shear box and in a large shear rig. The large shear rig is described in detail, and its ability to test joints with an area of 600 mc/sup 2/ at a maximum normal stress of up to 20 MPa is emphasized. The stiffness and shear strength of the discontinuities in the Naesliden mine is presented. The values estimated at direct shear tests are compared with results from in situ measurements and tests on drillcores. The results show that the in situ measurements give lower values for the shear resistance than the direct shear tests. Estimation of the normal stiffness for joints in drill cores gave much higher stiffness than the estimations in the shear rig.

  2. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  3. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  4. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  5. Structural behavior of human lumbar intervertebral disc under direct shear.

    Science.gov (United States)

    Schmidt, Hendrik; Häussler, Kim; Wilke, Hans-Joachim; Wolfram, Uwe

    2015-03-18

    The intervertebral disc (IVD) is a complex, flexible joint between adjacent vertebral bodies that provides load transmission while permitting movements of the spinal column. Finite element models can be used to help clarify why and how IVDs fail or degenerate. To do so, it is of importance to validate those models against controllable experiments. Due to missing experimental data, shear properties are not used thus far in validating finite element models. This study aimed to investigate the structural shear properties of human lumbar IVDs in posteroanterior (PA) and laterolateral (LL) loading directions. Fourteen lumbar IVDs (median age: 49 years) underwent direct shear in PA and LL loading directions. A custom-build shear device was used in combination with a materials testing machine to load the specimens until failure. Shear stiffness, ultimate shear force and displacement, and work to failure were determined. Each specimen was tested until complete or partial disruption. Median stiffness in PA direction was 490 N/mm and in LL direction 568 N/mm. Median ultimate shear force in the PA direction was 2,877 N and in the LL direction 3,199 N. Work to failure was 12 Nm in the PA and 9 Nm in the LL direction. This study was an experiment to subject IVDs to direct shear. The results could help us to understand the structure and function of IVDs with regard to mechanical spinal stability, and they can be used to validate finite element models of the IVD.

  6. Simulating direct shear tests with the Bullet physics library: A validation study.

    Science.gov (United States)

    Izadi, Ehsan; Bezuijen, Adam

    2018-01-01

    This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.

  7. Shear punch tests performed using a new low compliance test fixture

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Kurtz, R.J.; Hasegawa, A.; Abe, K.

    2002-01-01

    Based on a recent finite element analysis (FEA) study performed on the shear punch test technique, it was suggested that compliance in a test frame and fixturing which is quite acceptable for uniaxial tensile tests, is much too large for shear punch tests. The FEA study suggested that this relatively large compliance was masking both the true yield point and the shape of the load versus displacement trace obtained in shear punch tests. The knowledge gained from the FEA study was used to design a new shear punch test fixture which more directly measures punch tip displacement. The design of this fixture, the traces obtained from this fixture, and the correlation between uniaxial yield stress and shear yield stress obtained using this fixture are presented here. In general, traces obtained from the new fixture contain much less compliance resulting in a trace shape which is more similar in appearance to a corresponding uniaxial tensile trace. Due to the more direct measurement of displacement, it was possible to measure yield stress at an offset shear strain in a manner analogous to yield stress measurement in a uniaxial tensile test. The correlation between shear yield and uniaxial yield was altered by this new yield measurement technique, but the new correlation was not as greatly improved as was suggested would occur from the FEA study

  8. Evaluation of Interface Shear Strength Properties of Geogrid Reinforced Foamed Recycled Glass Using a Large-Scale Direct Shear Testing Apparatus

    Directory of Open Access Journals (Sweden)

    Arul Arulrajah

    2015-01-01

    Full Text Available The interface shear strength properties of geogrid reinforced recycled foamed glass (FG were determined using a large-scale direct shear test (DST apparatus. Triaxial geogrid was used as a geogrid reinforcement. The geogrid increases the confinement of FG particles during shear; consequently the geogrid reinforced FG exhibits smaller vertical displacement and dilatancy ratio than FG at the same normal stress. The failure envelope of geogrid reinforced FG, at peak and critical states, coincides and yields a unique linear line possibly attributed to the crushing of FG particles and the rearrangement of crushed FG after peak shear state. The interface shear strength coefficient α is approximately constant at 0.9. This value can be used as the interface parameter for designing a reinforced embankment and mechanically stabilized earth (MSE wall when FG is used as a lightweight backfill and triaxial geogrid is used as an extensible earth reinforcement. This research will enable FG, recently assessed as suitable for lightweight backfills, to be used together with geogrids in a sustainable manner as a lightweight MSE wall. The geogrid carries tensile forces, while FG reduces bearing stresses imposed on the in situ soil. The use of geogrid reinforced FG is thus significant from engineering, economical, and environmental perspectives.

  9. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  10. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data

    Science.gov (United States)

    Schmitt, François G.

    2007-10-01

    Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.

  11. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    Science.gov (United States)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  12. Direct Simple Shear Test Data Analysis using Jupyter Notebooks on DesignSafe-CI

    Science.gov (United States)

    Eslami, M.; Esteva, M.; Brandenberg, S. J.

    2017-12-01

    Due to the large number of files and their complex structure, managing data generated during natural hazards experiments requires scalable and specialized tools. DesignSafe-CI (https://www.designsafe-ci.org/) is a web-based research platform that provides computational tools to analyze, curate, and publish critical data for natural hazards research making it understandable and reusable. We present a use case from a series of Direct Simple Shear (DSS) experiments in which we used DS-CI to post-process, visualize, publish, and enable further analysis of the data. Current practice in geotechnical design against earthquakes relies on the soil's plasticity index (PI) to assess liquefaction susceptibility, and cyclic softening triggering procedures, although, quite divergent recommendations on recommended levels of plasticity can be found in the literature for these purposes. A series of cyclic and monotonic direct simple shear experiments was conducted on three low-plasticity fine-grained mixtures at the same plasticity index to examine the effectiveness of the PI in characterization of these types of materials. Results revealed that plasticity index is an insufficient indicator of the cyclic behavior of low-plasticity fine-grained soils, and corrections for pore fluid chemistry and clay minerology may be necessary for future liquefaction susceptibility and cyclic softening assessment procedures. Each monotonic, or cyclic experiment contains two stages; consolidation and shear, which include time series of load, displacement, and corresponding stresses and strains, as well as equivalent excess pore-water pressure. Using the DS-CI curation pipeline we categorized the data to display and describe the experiment's structure and files corresponding to each stage of the experiments. Two separate notebooks in Python 3 were created using the Jupyter application available in DS-CI. A data plotter aids visualizing the experimental data in relation to the sensor from which it was

  13. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  14. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  15. NON-COHESIVE SOIL DIRECT SHEAR STRENGTH AFFECTED WITH HYDROSTATIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Tadas Tamošiūnas

    2017-12-01

    Full Text Available This paper presents first results of non­cohesive soil direct shear tests with hydrostatic pressure. To reach this aim, it was chosen the Baltic Sea Klaipėda sand, due to granulometry composition and particles shape. According to this, investigated Baltic Sea sand can be called Lithuanian standard sand for scientific testing. Analysis of results revealed, that when it is increased hydrostatic pressure, the shearing strength is also increasing. Comparing air­ dry sand results with fully saturated sand and affected with 100 kPa of hydrostatic pressure, the angle of internal friction increased for 21,24%. Meanwhile, the cohesion was not changing so dramatically according to hydrostatic pressure change. Obtained results allows to proceed this research work more detailed with different loading types, testing procedures and hydrostatic pressures.

  16. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  17. Recent progress in shear punch testing

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.

    1994-09-01

    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys

  18. Development of in-situ rock shear test under low compressive to tensile normal stress

    International Nuclear Information System (INIS)

    Nozaki, Takashi; Shin, Koichi

    2003-01-01

    The purpose of this study is to develop an in-situ rock shear testing method to evaluate the shear strength under low normal stress condition including tensile stress, which is usually ignored in the assessment of safety factor of the foundations for nuclear power plants against sliding. The results are as follows. (1) A new in-situ rock shear testing method is devised, in which tensile normal stress can be applied on the shear plane of a specimen by directly pulling up a steel box bonded to the specimen. By applying the counter shear load to cancel the moment induced by the main shear load, it can obtain shear strength under low normal stress. (2) Some model tests on Oya tuff and diatomaceous mudstone have been performed using the developed test method. The shear strength changed smoothly from low values at tensile normal stresses to higher values at compressive normal stresses. The failure criterion has been found to be bi-linear on the shear stress vs normal stress plane. (author)

  19. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Directory of Open Access Journals (Sweden)

    Korjenic Sinan

    2015-11-01

    Full Text Available This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  20. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Science.gov (United States)

    Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna

    2015-11-01

    This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  1. To determine the slow shearing rate for consolidation drained shear box tests

    Science.gov (United States)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  2. Development of an omni-directional shear horizontal mode magnetostrictive patch transducer

    Science.gov (United States)

    Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin

    2018-04-01

    The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.

  3. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  4. Sensor for direct measurement of the boundary shear stress in fluid flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-04-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  5. Critical wall shear stress for the EHEDG test method

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    In order to simulate the results of practical cleaning tests on closed processing equipment, based on wall shear stress predicted by computational fluid dynamics, a critical wall shear stress is required for that particular cleaning method. This work presents investigations that provide a critical...... wall shear stress of 3 Pa for the standardised EHEDG cleaning test method. The cleaning tests were performed on a test disc placed in a radial flowcell assay. Turbulent flow conditions were generated and the corresponding wall shear stresses were predicted from CFD simulations. Combining wall shear...... stress predictions from a simulation using the low Re k-epsilon and one using the two-layer model of Norris and Reynolds were found to produce reliable predictions compared to empirical solutions for the ideal flow case. The comparison of wall shear stress curves predicted for the real RFC...

  6. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls

    Science.gov (United States)

    Lu, Xilin; Yang, Boya; Zhao, Bin

    2018-04-01

    The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.

  7. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  8. Double-Lap Shear Test For Honeycomb Core

    Science.gov (United States)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  9. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  10. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  11. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  12. Development of an in-situ banking shear test method; Moritsuchi no gen'ichi sendan shikenho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishikata, U. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1998-12-10

    Development was made on a simplified site-use single face shear testing device and a test method that can perform in-situ and direct measurement during construction on shear strength of coarse particle materials having large diameters. The test device consists of shear frames embedded in the in-situ ground bed, a weight for vertical loading, and a traction device to load horizontal force. In the test, prescribed rolling compaction is performed by a vibration roller which presses in the shear frames into unwound banking by using a four-piece vibration roller. Crushed stones are piled on cells of the shear frames to the same height. The specified weight is placed thereon via a loading plate, which is used as the vertical load. The shear force is loaded by horizontally pulling chains connected to the shear frames by using the traction device, and is measured by a load cell. The vertical displacement is measured by two vertical displacement meters, and the horizontal displacement by one horizontal displacement meter. A verification test is continuing using the test device. Four cases with different vertical stresses can be tested in about one day. (NEDO)

  13. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  14. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  15. Shear strength properties of naturally occurring bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-06-01

    Full Text Available because of the cohesive nature of bitumen contents. However, results from the direct shear tests were comparable to properties of oil sands reported earlier from various other laboratory tests. Based on the direct shear test results, Mohr-Coulomb failure...

  16. Model tests on dynamic performance of RC shear walls

    International Nuclear Information System (INIS)

    Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.

    1991-01-01

    For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)

  17. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    Science.gov (United States)

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  18. Micromechanics of soil responses in cyclic simple shear tests

    Directory of Open Access Journals (Sweden)

    Cui Liang

    2017-01-01

    Full Text Available Offshore wind turbine (OWT foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  19. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime

    Science.gov (United States)

    Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.

    2011-10-01

    Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

  20. Insulation interlaminar shear strength testing with compression and irradiation

    International Nuclear Information System (INIS)

    McManamy, T.J.; Brasier, J.E.; Snook, P.

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 10 9 and 2 x 10 10 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs

  1. Test and lower bound modeling of keyed shear connections in RC shear walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Herfelt, Morten Andersen; Hoang, Linh Cao

    2018-01-01

    This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear connections. The influence of the key depth on the failure mode and ductility of the connection has been studied by push-off tests. The tests showed that connections with larger key...

  2. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  3. Shear test on viscoelastic granular material using Contact Dynamics simulations

    Science.gov (United States)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  4. Open test assembly (OTA) shear demonstration testing work/test plan

    International Nuclear Information System (INIS)

    Hiller, S.W.

    1998-01-01

    This document describes the development testing phase associated with the OTA Shear activity and defines the controls to be in place throughout the testing. The purpose of the OTA Shear Program was to provide equipment that is needed for the processing of 40 foot long, sodium wetted, irradiated core components previously used in the FFTF reactor to monitor fuel and materials tests. There are currently 15 of these OTA test stalks located in the Test Assembly Conditioning Station (TACS) inerted vault. These need to be dispositioned for a shutdown mission to eliminate this highly activated, high dose inventory prior to turnover to the ERC since they must be handled by remote operations. These would also need to be dispositioned for a restart mission to free up the vault they currently reside in. The waste handling and cleaning equipment in the J33M Cell was designed and built for the handling of reactor components up to the standard 12 foot length. This program will provide the equipment to the IEM Cell to remotely section the OTAS into pieces less than 12 feet in length to allow for the necessary handling and cleaning operations required for proper disposition. Due to the complexity of all operations associated with remote handling, the availability of the IEM Cell training facility, and the major difficulty with reworking contaminated equipment, it was determined that preliminary testing of the equipment was desirable, This testing activity would provide the added assurance that the equipment will operate as designed prior to performance of the formal Acceptance Test Procedure (ATP) at the IEM Cell, This testing activity will also allow for some operator familiarity and procedure checkout prior to actual installation into the IEM Cell. This development testing will therefore be performed at the conclusion of equipment fabrication and prior to transfer of the equipment to the 400 Area

  5. Lap Shear Testing of Candidate Radiator Panel Adhesives

    Science.gov (United States)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  6. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  7. Push-out tests and evaluation of FRP perfobond rib shear connectors performance

    Science.gov (United States)

    Kolpasky, Ludvik; Ryjacek, Pavel

    2017-09-01

    The behavioural characteristics of FRP (fibre-reinforced polymer) perfobond rib shear connector was examined through push-out tests in order to verify the applicability for pedestrian bridge structure. The aim of this study is to determine interaction between high performance concrete slab and handmade FRP plate which represent web of the composite beam. Combination of these modern materials leads to structural system with both great load bearing capacity and also sufficient flexural stiffness of the composite element. Openings cut into the GFRP plate at a variable spacing allow GFRP reinforcement bars to be inserted to act as shear studs. Hand lay-up process can increase suitable properties of FRP for connection by perfobond rib shear connectors. In this study, three push-out tests on fiber-reinforced polymer were performed to investigate their shear behaviour. The results of the push-out tests on FRP perfobond rib shear connector indicates great promise for application in full scale structures.

  8. Problems in Standardization of Orthodontic Shear Bond Strength Tests; A Brief Review

    Directory of Open Access Journals (Sweden)

    M.S. A. Akhoundi

    2005-03-01

    Full Text Available Bonding brackets to the enamel surface has gained much popularity today. New adhesive systems have been introduced and marketed and a considerable increase in research regarding bond strength has been published. A considerable amount of these studies deal with shear bond strength of adhesives designed for orthodontic purpose.Previous studies have used variety of test designs. This diversity in test design is due to the fact that there is no standard method for evaluating shear bond strength in orthodontics. Therefore comparison of data obtained from different study is almost impossible.This article tries to briefly discuss the developments occurred in the process of shear bond strength measurement of orthodontic adhesives with an emphasis on the type of test set up and load application.Although the test designs for measuring shear bond strength in orthodontics are still far from ideal, attempts must be made to standardize these tests especially in order to makecomparison of different data easier. It is recommended that test designs be set up in such a manner that better matches with the purpose of the study.

  9. Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.

    2009-06-10

    Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (τ) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

  10. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry

    International Nuclear Information System (INIS)

    Olsen, Michael G

    2009-01-01

    An analytical model for the microscopic particle image velocimetry (microPIV) correlation signal peak in a purely shearing flow was derived for the case of in-plane shearing (out-of-plane shearing was not considered). This model was then used to derive equations for the measured velocity weighting functions for the two velocity components, and the weighting functions were in turn used to define the depths of correlation associated with the two measured velocity components. The depth of correlation for the velocity component perpendicular to the shear was found to be unaffected by the shear rate. However, the depth of correlation for the velocity component in the direction of the shear was found to be highly dependent on the shear rate, with the depth of correlation increasing as the shear rate increased. Thus, in a flow with shear, there is not a single value for the depth of correlation within an interrogation region. Instead, the depth of correlation exhibits directional dependence, with a different depth of correlation for each of the two measured velocity components. The increase in the depth of correlation due to the shear rate is greater for large numerical aperture objectives than for small numerical aperture objectives. This increase in the depth of correlation in a shearing flow can be quite large, with increases in the depth of correlation exceeding 100% being very possible for high numerical aperture objectives. The effects of out-of-plane shear are beyond the capabilities of this analysis, although the possible consequences of out-of-plane shear are discussed

  12. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  13. An overview of an experimental program for testing large reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.

    1989-01-01

    The Seismic Category I Structures Program is being carried out at the Los Alamos National Laboratory under sponsorship of the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. In the class of structure being investigated, the primary lateral load-resisting structural element is the reinforced concrete shear wall. Previous results from microconcrete models indicated that these structures responded to seismic excitations with initial frequencies that were reduced by factors of 2 or more over those calculated based on an uncracked cross-section strength-of-materials approach. Furthermore, though the structures themselves were shown to have sufficient reserve margins, the equipment and piping are designed to response spectra that are based on uncracked cross-sectional member properties, and these spectra may not be inappropriate for actual building responses. The current phase of the program is aimed at verification of these conclusions using conventional concrete structures to demonstrate that previous microconcrete results can be scaled to prototype structures. A new configuration of a shear wall structure was designed and tested to investigate the analytical-experimental differences observed during the previous model testing. Shear wall height-to-length aspect ratios were to vary from 1 to 0.25. Percentage steel ratios were to vary from 0.25% to 0.6% by area, in both horizontal and vertical directions. The test structures are shown in Fig. 1. TRG-1 and -2 were constructed with microconcrete. TRG-3, -4, -5, and -6 were constructed with conventional (19-mm aggregate) concrete. 11 refs., 4 figs

  14. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  15. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  16. Shear-limited test particle diffusion in 2-dimensional plasmas

    International Nuclear Information System (INIS)

    Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.

    2002-01-01

    Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit

  17. Shear punch and microhardness tests for strength and ductility measurements

    International Nuclear Information System (INIS)

    Lucas, G.E.; Odette, G.R.; Sheckherd, J.W.

    1983-01-01

    In response to the requirements of the fusion reactor materials development program for small-scale mechanical property tests, two techniques have been developed, namely ball microhardness and shear punch tests. The ball microhardness test is based on the repeated measurement at increasing loads of the chordal diameter of an impression made by a spherical penetrator. A correlation has been developed to predict the constitutive relation of the test material from these data. In addition, the indentation pile-up geometry can be analyzed to provide information on the homogeneity of plastic flow in the test material. The shear punch test complements the microhardness test. It is based on blanking a circular disk from a fixed sheet metal specimen. The test is instrumented to provide punch load-displacement data, and these data can be used to determine flow properties of the test material such as yield stress, ultimate tensile strength, work-hardening exponent, and reduction of area

  18. Shear Ram Verification Test Protocol (VTP) Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Roy A. [Argonne National Lab. (ANL), Argonne, IL (United States); Braun, Joseph C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A blowout preventer (BOP) is a critical component used on subsea oil and gas wells during drilling, completion, and workover operations on the U. S. outer continental shelf (OCS). The purpose of the BOP is to seal oil and gas wells, and in the case of an emergency well-control event, to prevent the uncontrolled release of hydrocarbons. One of the most important components of the BOP is the hydraulically operated blind shear ram (BSR) that shears drilling-related components, such as drill pipes, casings, tubings, and wire-related tools that may have been placed in the well. In addition to shearing these components, the BSR must form a seal to keep hydrocarbons within the well bore, even when under the highest well-fluid pressures expected. The purpose of this document is for Argonne National Laboratory (ANL) to provide an independent view, based on current regulations, and best practices for testing and confirming the operability and suitability of BSRs under realistic (or actual) well conditions.

  19. Synchrotron radiography of direct-shear in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C M; Nagira, T; Nakatsuka, N; Yasuda, H; Dahle, A K; Uesugi, K

    2012-01-01

    Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

  20. Shear strength behavior of geotextile/geomembrane interfaces

    Directory of Open Access Journals (Sweden)

    Belén M. Bacas

    2015-12-01

    Full Text Available This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces, the geotextile/geomembrane, typically used for lined containment facilities such as landfills. A large direct shear machine is used to carry out 90 geosynthetic interface tests. The test results show a strain softening behavior with a very small dilatancy (<0.5 mm and nonlinear failure envelopes at a normal stress range of 25–450 kPa. The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail. This study has generated several practical recommendations to help professionals to choose what materials are more adequate. From the three geotextiles tested, the thermally bonded monofilament exhibits the best interface shear strength under high normal stress. For low normal stress, however, needle-punched monofilaments are recommended. For the regular textured geomembranes tested, the space between the asperities is an important factor. The closer these asperities are, the better the result achieves. For the irregular textured geomembranes tested, the nonwoven geotextiles made of monofilaments produce the largest interface shear strength.

  1. The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand

    Science.gov (United States)

    Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul

    2018-03-01

    The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.

  2. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  3. Experimental testing of anchoring devices for bottom rails in partially anchored timber frame shear walls

    OpenAIRE

    Caprolu, Giuseppe

    2011-01-01

    Källsner and Girhammar have presented a new plastic design method of wood-framed shear walls at ultimate limit state. This method allows the designer to calculate the load-carrying capacity of shear walls partially anchored, where the leading stud is not anchored against the uplift.The anchorage system of shear walls is provided from anchor bolts and hold downs. Anchor bolts provide horizontal shear continuity between the bottom rail and the foundation. Hold downs are directly connected from ...

  4. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    International Nuclear Information System (INIS)

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  5. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Energy Technology Data Exchange (ETDEWEB)

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  6. Shear capacity of ASR damaged structures – in-depth analysis of some in-situ shear tests on bridge slabs

    DEFF Research Database (Denmark)

    Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio; Hoang, Linh Cao

    2016-01-01

    This paper deals with the influence of alkali-silica reaction (ASR) on the shear capacity for concrete slabs without shear reinforcement. An experimental full-scale in-situ program consisting of four slabs from a bridge (Vosnæsvej) has been carried out and the results have been published in ref. [1......] with the principal author of this paper as co-author. After the experiments, a detailed measurement of the test specimens was conducted. Based on these measurements a thorough analysis of the experimental results was carried out and evaluated by a plastic model for shear capacity, Crack Sliding Model (CSM...

  7. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    Science.gov (United States)

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  8. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  9. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    Science.gov (United States)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  10. Design and testing of a rotational brake with shear thickening fluids

    Science.gov (United States)

    Tian, Tongfei; Nakano, Masami

    2017-03-01

    A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.

  11. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Directory of Open Access Journals (Sweden)

    Michael Smith

    2017-07-01

    Full Text Available Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM, we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  12. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Science.gov (United States)

    Smith, Michael; Calahorra, Yonatan; Jing, Qingshen; Kar-Narayan, Sohini

    2017-07-01

    Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA) nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM), we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  13. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  14. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  15. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  16. Orthodontic brackets removal under shear and tensile bond strength resistance tests - a comparative test between light sources

    Science.gov (United States)

    Silva, P. C. G.; Porto-Neto, S. T.; Lizarelli, R. F. Z.; Bagnato, V. S.

    2008-03-01

    We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.

  17. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  18. Shear punch testing as a tool for evaluating welded pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, G.R.; Elwazri, A.; Varano, R.; Yue, S.; Jonas, J.J. [McGill Univ., Montreal, PQ (Canada). Dept. of Metals and Materials Engineering; Pokutylowicz, N. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2005-07-01

    This study examined the mechanical properties across a welded joint in a 35 mm steel pipe. Results were compared with microhardness measurements. The chemical composition of the 4130 steel and welding wire included carbon, manganese, silicon, nickel, chromium and molybdenum. The thermal cycles experienced during welding can result in differences in the grain size, phase, composition and morphology of precipitates. These thermal cycles can upset the balance of high strength and good toughness in steels, producing poor toughness in the heat-affected zone (HAZ). In the shear punch test, a flat-ended cylindrical punch was used to produce a 3 mm diameter disk from a sheet specimen with a recommended thickness of 300 to 350 {mu}m. The shear punch test provided tensile property data with only a very small amount of material, which is ideal for testing welds. It also provides full tensile data (yield strength, ultimate tensile strength and elongation) which are not specifically provided by hardness testing. Shear punch techniques can also improve the across-weld resolution of tensile testing. The results showed that the changes in strength properties across the weld were consistent with the microhardness measurements. The change in elongation across the weld joint was successfully measured using the punch test method. The HAZ in the welded joint in this study had a good combination of high strength and ductility, while the weld bead had moderate strength and relatively low ductility. 7 refs., 1 tab., 9 figs.

  19. Comparison of theoretical and test results on shear wall seismic response

    International Nuclear Information System (INIS)

    Gantenbein, F.; Wang, F.; Dalbera, J.

    1991-01-01

    As reinforced concrete shear walls are important resisting components of buildings in nuclear power facilities, it is important to study their ultimate behavior under dynamic loading. An experimental and analytical work has been undertaken on shear walls with and without openings, in order to develop and validate their model. This paper is related to the walls without openings. While pretest calculations have already been reported (Wang and al. 1989) and the test results are given in Gantenbein and al. 1991, this paper is mainly related to the comparison of test and calculation results on the wall initial stiffness and the time history of the wall motion

  20. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  1. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  2. Direct measurement of wall shear stress in a reattaching flow with a photonic sensor

    International Nuclear Information System (INIS)

    Ayaz, U K; Ioppolo, T; Ötügen, M V

    2013-01-01

    Wall shear stress measurements are carried out in a planar backward-facing step flow using a micro-optical sensor. The sensor is essentially a floating element system and measures the shear stress directly. The transduction method to measure the floating element deflection is based on the whispering gallery optical mode (WGM) shifts of a dielectric microsphere. This method is capable of measuring floating element displacements of the order of a nanometer. The floating element surface is circular with a diameter of ∼960 µm, which is part of a beam that is in contact with the dielectric microsphere. The sensor is calibrated for shear stress as well as pressure sensitivity yielding 7.3 pm Pa −1 and 0.0236 pm Pa −1 for shear stress and pressure sensitivity, respectively. Hence, the contribution by the wall pressure is less than two orders of magnitude smaller than that of shear stress. Measurements are made for a Reynolds number range of 2000–5000 extending to 18 step heights from the step face. The results are in good agreement with those of earlier reports. An analysis is also carried out to evaluate the performance of the WGM sensor including measurement sensitivity and bandwidth. (paper)

  3. Soil behavior under earthquake loading conditions. In situ impulse test for determination of shear modulus for seismic response analyses. Progress report

    International Nuclear Information System (INIS)

    1974-06-01

    Progress is reported in the determination of the best methods of evaluation and prediction of soil behavior of potential nuclear power plant sites under seismic loading conditions. Results are reported of combined experimental and analytical studies undertaken to continue development of an in situ impulse test for determination of the soil shear modulus. Emphasis of the field work was directed toward making the field measurements at frequent depth intervals and at shear strains in the strong motion earthquake range. Emphasis of the analytical work was aimed toward supporting the field effort through processing and evaluation of the experimental test results combined with additional calculations required to gain insight into data interpretation and the in situ test setup itself. Continuing studies to evaluate free field soil behavior under earthquake loading conditions are discussed. (U.S.)

  4. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    of delicate micro-electromechanical devices impede the use of most direct shear sensors. Similarly, the cavity required for sensing element displacement is sensitive to particulate obstruction. This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test facilities applicable to an array of test configurations. The non-displacement shear sensors described here have minimal packaging requirements resulting in minimal or no disturbance of boundary layer flow. Compared to previous concepts, device installation could be simple with reduced cost and down-time. The novelty lies in the creation of low profile (nanoscale to 100 µm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, which are related to the surface shear stress, cause post deflection and optical property changes. Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how aircraft design impacts near surface properties.

  5. Orthodontic brackets removal under shear and tensile bond strength resistance tests – a comparative test between light sources

    International Nuclear Information System (INIS)

    Silva, P C G; Porto-Neto, S T; Lizarelli, R F Z; Bagnato, V S

    2008-01-01

    We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased

  6. Resistência inter e intra-agregados em ensaios de cisalhamento direto de um nitossolo vermelho distrófico Inter and intra-aggregate strength in direct shear tests of a typic hapludox

    Directory of Open Access Journals (Sweden)

    João Alfredo Braida

    2007-04-01

    Full Text Available Para solos agregados, a envoltória da resistência ao cisalhamento pode ser dividida em dois segmentos, com declividades e interceptos diferentes. Um primeiro segmento mais inclinado e com intercepto menor representaria a envoltória de ruptura definida pelo atrito e coesão interagregados, enquanto o segundo segmento, menos inclinado e com intercepto maior, seria a envoltória definida pelo atrito e coesão intra-agregados. O presente estudo foi realizado com o objetivo de avaliar se a envoltória de resistência ao cisalhamento de agregados do horizonte superficial de um Nitossolo Vermelho pode ser subdividida em segmentos distintos, com coeficientes angulares diferentes, e se isso está relacionado à existência de agregados nele. Inicialmente, amostras coletadas na superfície de um Nitossolo Vermelho distrófico latossólico de textura argilosa foram submetidas ao ensaio de cisalhamento direto com pressões normais de 24,4; 48,9; 98,2; 196,4; 294,6; 392,8 e 491,8 kPa. Posteriormente, o ensaio foi realizado com amostras de agregados de cinco classes de diâmetro: For aggregated soils the Mohr failure line can be separated into two straight lines, with different slopes and intercepts. In the range of low normal load, when the slope is very steep and the intercept is small, the failure line is defined by the friction and cohesion inter-aggregates, while for the higher load range the slope becomes smaller and intercept is larger, which defines the intra-aggregate friction and cohesion. Therefore, for aggregated soils the normal load range used in the direct shear test affects the final result. The present study was carried out with the objective of evaluating if the Mohr failure line of a Red Latosolic Nitisol can be subdivided in different segments, with different steepness and intercepts, and if this is related to the existence of soil aggregates. Initially, soil surface samples of a Typic Hapludox (Nitossolo Vermelho Distrófico latoss

  7. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  8. Improved self-reliance shearing interferometric technique for collimation testing

    Science.gov (United States)

    Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi

    1995-06-01

    Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.

  9. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  10. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  11. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  12. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  13. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  14. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  15. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  16. Testing the structure of magnetic paints with and without superimposed shear

    NARCIS (Netherlands)

    Potanin, A.; Potanin, Andrei A.; Shrauti, Suresh M.; Arnold, David W.; Lane, Alan M.; Mellema, J.

    1997-01-01

    The structure development in dispersions of magnetic barium ferrite particles in cyclohexanone with polyvinylchloride wetting resin was tested by oscillatory rheological measurements and orthogonal superposition of steady and oscillatory shear. The optimum dispersion is achieved at the resin

  17. Shear Punch Testing of BOR-60 Irradiated TEM Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.

  18. Test procedure for use of the shear vane in tanks 103-SY, 103-AN, and 103-AW

    International Nuclear Information System (INIS)

    LeClair, M.D.; Waters, E.

    1995-01-01

    This is a record copy of a test procedure for application of the full-scale shear vane to underground waste tanks at Hanford. The introduction of the report provides background information on the development and proof-testing of the shear vane, as well as information about its current location. The document was originally prepared in 1988, and the work as shelved temporarily for lack of funds. Activities to utilize the shear vane will be expedited by use of this information

  19. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  20. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  1. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  2. Engineering scale tests of mechanical disassembly and short stroke shearing systems for FBR fuel assembly

    International Nuclear Information System (INIS)

    Higuchi, Hidetoshi; Kitagaki, Toru; Koizumi, Kenji; Hirano, Hiroyasu; Takeuchi, Masayuki; Washiya, Tadahiro; Kawabe, Yukinari; Kobayashi, Tsuguyuki

    2011-01-01

    Japan Atomic Energy Agency (JAEA) and The Japan Atomic Power Company (JAPC) have been developing an advanced head-end process based on mechanical disassembly and short stroke shearing systems as a part of Fast Reactor Cycle Technology Development (FaCT). Fuel pins for a fast reactor are installed within a hexagonal shaped wrapper tube made of stainless steel. In order to reprocess the fast reactor fuel pins, they must be removed from the wrapper tube and transported to the shearing system without failure. In addition, the advanced aqueous reprocessing process, called 'NEXT' (New Extraction System for TRU Recovery) process requires a solution of the spent fuel with relatively high concentration (500g/L). JAEA and JAPC have developed the mechanical disassembly and the short stroke shearing technology which is expected to make fragmented fuel to satisfy these requirements. This paper reports the results of engineering scale tests on the mechanical disassembly and short stroke shearing systems. These tests were carried out with simulated FBR fuel assembly and removed pins. The mechanical cutting method has been developed to avoid fuel pin failure during disassembly operation. The cutting process is divided into two modes, so called 'slit-cut' for cutting the wrapper tube and 'crop-cut' for the end plug region of the fuel pin bundle. In the slit-cut mode, the depth of cutting was automatically controlled based on the calculated wastage of the cutting tool and deformation of the wrapper tube which had been measured before the cutting. This procedure was confirmed to minimize the fuel pin failure which was hard to prevent in the case of laser cutting. The cutting speed was also controlled automatically by the electric current of the cutting motor to lower the load of the cutting tool. The removed fuel pins were transported to the shearing machine, whose fuel shearing magazine width was set to be narrow to realize the suitable configuration for the short stroke shearing

  3. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  4. EFFECT OF ION ∇ B DRIFT DIRECTION ON TURBULENCE FLOW AND FLOW SHEAR

    International Nuclear Information System (INIS)

    FENZI, C; McKEE, G.R; BURRELL, K.H; CARLSTROM, T.N; FONCK, R.J; GROEBNER, R.J

    2003-01-01

    The divertor magnetic geometry has a significant effect on the poloidal flow and resulting flow shear of turbulence in the outer region of L-mode tokamak plasmas, as determined via two-dimensional measurements of density fluctuations with Beam Emission Spectroscopy on DIII-D. Plasmas with similar parameters, except that in one case the ion (del)B drift points towards the divertor X-point (lower single-null, LSN), and in the other case, the ion (del)B drift points away from the divertor X-point (upper single-null, USN), are compared. Inside of r/a=0.9, the turbulence characteristics (amplitude, flow direction, correlation lengths) are similar in both cases, while near r/a=0.92, a dramatic reversal of the poloidal flow of turbulence relative to the core flow direction is observed in plasmas with the ion (del)B drift pointing towards the divertor X-point. No such flow reversal is observed in plasmas with the ion (del)B drift pointing away from the divertor X-point. This poloidal flow reversal results in a significantly larger local shear in the poloidal turbulence flow velocity in plasmas with the ion (del)B drift pointing towards the divertor X-point. Additionally, these plasmas locally exhibit significant dispersion, with two distinct and counter-propagating turbulence modes. Likewise, the radial correlation length of the turbulence is reduced in these plasmas, consistent with biorthogonal decomposition measurements of dominant turbulence structures. The naturally occurring turbulence flow shear in these LSN plasmas may facilitate the LH transition that occurs at an input power of roughly one-half to one-third that of corresponding plasmas with the ion (del)B drift pointing away from the X-point

  5. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Ha; Cho, Seung Hyun; Ahn, Bong Young; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

  6. X-Ray Microtomography (μCT as a Useful Tool for Visualization and Interpretation of Shear Strength Test Results

    Directory of Open Access Journals (Sweden)

    Stefaniuk Damian

    2015-02-01

    Full Text Available The paper demonstrates the applicability of X-ray microtomography (ìCT to analysis of the results of shear strength examinations of clayey soils. The method of X-ray three-dimensional imaging offers new possibilities in soil testing. The work focuses on a non-destructive method of evaluation of specimen quality used in shear tests and mechanical behavior of soil. The paper presents the results of examination of 4 selected clayey soils. Specimens prepared for the triaxial test have been scanned using ìCT before and after the triaxial compression tests. The shear strength parameters of the soils have been estimated. Changes in soil structure caused by compression and shear failure have been presented as visualizations of the samples tested. This allowed for improved interpretation and evaluation of soil strength parameters and recognition of pre-existing fissures and the exact mode of failure. Basic geometrical parameters have been determined for selected cross-sections of specimens after failure. The test results indicate the utility of the method applied in soil testing.

  7. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  8. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    International Nuclear Information System (INIS)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-01-01

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments

  9. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo [Sogang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  10. Earthquake induced rock shear through a deposition hole - modelling of three scale tests for validation of models

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2012-01-01

    Document available in extended abstract form only. Three model shear tests of very high quality simulating a horizontal rock shear through a KBS-3V deposition hole in the centre of a canister were performed 1986. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5000, and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale cases in the Swedish safety assessment SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is also described in another article to this conference. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain

  11. SHEARING STRENGTH TEST OF ORTOPEDIC TITANIUM ALLOY SCREW PRODUCED IN THE PROCESS OF 3D TECHNOLOGY PRINTING

    Directory of Open Access Journals (Sweden)

    Patrycja Ruszniak

    2016-03-01

    Full Text Available The aim of the present dissertation is the assessment of technical shear resistance (technological shear of orthopedic screw made of titanium alloy Ti6Al4V, produced using incremental technology in the process of 3D printing process. The first part of the work presents incremental techniques in production engineering. The second part of the present work contains specification of the 3D printing process of samples as well as the description of the used material. The fundamental part of the article is composed out of endurance tests for orthopaedic screws as well as the analysis of the obtained results and conclusions. The method of incremental production SLM using SLM 280HL metal printer was used during the technological process. The resistance tests were performed using ZWICK/ROELL Z150 machines. Identical endurance trials were performed for monolithic bars made of titanium alloys (of bar core size made on a wire electric discharge machine Sodick SL600Q for comparative purposes. The obtained test results enabled comparative assessment of the value of shear resistance Rt in the conditions of technological shear. According to the performed tests, the shear resistance Rt of orthopaedic screws is nearly 33% lower than of monolithic bars of the same core size.

  12. Pipe elbow stiffness coefficients including shear and bend flexibility factors for use in direct stiffness codes

    International Nuclear Information System (INIS)

    Perry, R.F.

    1977-01-01

    Historically, developments of computer codes used for piping analysis were based upon the flexibility method of structural analysis. Because of the specialized techniques employed in this method, the codes handled systems composed of only piping elements. Over the past ten years, the direct stiffness method has gained great popularity because of its systematic solution procedure regardless of the type of structural elements composing the system. A great advantage is realized with a direct stiffness code that combines piping elements along with other structural elements such as beams, plates, and shells, in a single model. One common problem, however, has been the lack of an accurate pipe elbow element that would adequately represent the effects of transverse shear and bend flexibility factors. The purpose of the present paper is to present a systematic derivation of the required 12x12 stiffness matrix and load vectors for a three dimensional pipe elbow element which includes the effects of transverse shear and pipe bend flexibility according to the ASME Boiler and Pressure Vessel Code, Section III. The results are presented analytically and as FORTRAN subroutines to be directly incorporated into existing direct stiffness codes. (Auth.)

  13. Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement

    Directory of Open Access Journals (Sweden)

    M. Said

    2013-12-01

    Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.

  14. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  15. Seismic behavior of semi-supported steel shear walls

    DEFF Research Database (Denmark)

    Jahanpour, A.; Jönsson, J.; Moharrami, H.

    2012-01-01

    During the recent past decade semi-supported steel shear walls (SSSW) have been introduced as an alternative to the traditional type of steel plate shear walls. In this system the shear wall does not connect directly to the main columns of the building frame; instead it is connected to a pair...... of secondary columns that do not carry vertical gravity loads. In this paper, the interaction between the wall plate and the surrounding frame is investigated experimentally for typical SSSW systems in which the wall-frame has a bending-dominant behavior. Based on the possible storey failure mechanisms...... a simple method is proposed for design of the floor beams. A quasi static cyclic experimental study has been performed in order to investigate the collapse behavior of the wall-plate and surrounding frame. Furthermore the test setup has been developed in order to facilitate standardized cyclic tests...

  16. Effect of rock joint roughness on its cyclic shear behavior

    Directory of Open Access Journals (Sweden)

    S.M. Mahdi Niktabar

    2017-12-01

    Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.

  17. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  18. Current status of the quantification of roughness and the peak shear strength criteria for rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Kang, Chul Hyung

    1999-04-01

    In order to understand the effects of spent nuclear fuel on the hydraulic behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulic properties of the fractures. The roughness of a fracture surface govern the dilation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics. Joint roughness is an important factor in the shear resistance of a joint. The joint shear strength shows anisotropic properties due to roughness variation with the shearing direction in direct shear tests. Various shear strength criteria are described in this report. (author)

  19. Material model for shear of the buffer - evaluation of laboratory test results

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Dueck, Ann; Johannesson, Lars-Erik

    2010-12-01

    The report describes the material model of bentonite used for analysing a rock shear through a deposition hole. The old model used in SR-Can has been considerably changed. The new reference model that has been developed for SR-Site is described and motivated. The relevant properties of the buffer that affect the response to a rock shear are (in addition to the bentonite type) the density (which yields a swelling pressure), the shear strength, the stiffness before the maximum shear stress is reached and the shear rate, which also affects the shear strength. Since the shear caused by an earthquake is very fast and the hydraulic conductivity of the bentonite is very low there is no possibility for the pore water in the water saturated bentonite to be redistributed. Since the compressibility of water and particles are negligible, the bentonite can be modelled as a solid material that cannot change volume but only exhibit shear deformations. A proper and simple model that behaves accordingly is a model with von Mises' stress modelled as a function of the strain (stress-strain model). The model is elastic-plastic with an E-modulus that determines the behaviour until the material starts yielding whereupon the plastic strain is modelled as a function of von Mises' stress and added to the elastic strain. Included in the model is also a strain rate dependency of the stress-strain relation, which ranges between the strain rates 10 -6 1/s 3 1/s. The reference material model is derived from a large number of laboratory tests made on different bentonites at different strain rates, densities and with different techniques. Since it cannot be excluded that the exchangeable cat-ions in the Na-bentonite MX-80 is exchanged to calcium-ions the Ca-bentonite Deponit CaN is proposed to be used as reference material. The overall conclusion is that a relevant and probably also slightly conservative material model of Ca-converted MX-80 is derived, presented and well motivated

  20. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic : microtensile versus shear test

    NARCIS (Netherlands)

    Valandro, Luiz F.; Ozcan, Mutlu; Amaral, Regina; Vanderlei, Aleska; Bottino, Marco A.

    2008-01-01

    This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC)

  1. Communication: Direct tests of single-parameter aging

    DEFF Research Database (Denmark)

    Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C.

    2015-01-01

    This paper presents accurate data for the physical aging of organic glasses just below the glass transition probed by monitoring the following quantities after temperature up and down jumps: the shear-mechanical resonance frequency (∼360 kHz), the dielectric loss at 1 Hz, the real part of the die......This paper presents accurate data for the physical aging of organic glasses just below the glass transition probed by monitoring the following quantities after temperature up and down jumps: the shear-mechanical resonance frequency (∼360 kHz), the dielectric loss at 1 Hz, the real part...... Tool-Narayanaswamy aging formalism, which makes it possible to calculate one relaxation curve directly from another without any fitting to analytical functions....

  2. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  3. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  4. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  5. Research Concerning the Shearing Strength of Black Locust Wood

    Directory of Open Access Journals (Sweden)

    Mihaela POROJAN

    2011-06-01

    Full Text Available The paper presents the experimental resultsobtained for the shearing strength of black locustwood (Robinia pseudacacia L. harvested from twogeographical areas (North and South of Romania.Wood is subjected to shearing stress when usedwithin different fields, and especially inconstructions. Tangential stresses are produced inthe shearing sections and they are influenced by thestructure of wood through the position of theshearing plane and of the force direction towards thegrain. Accordingly, several shearing types arepossible. The shearing strengths for the three mainshearing types, both on radial and tangentialdirection were determined within the present study.The evaluation of data was achieved by using theANOVA analysis, in order to test the level ofsignificance depending on the shearing planeorientation and the harvesting area. The obtainedresults were compared to the values mentionedwithin reference literature for this wood species andtwo other hardwood species with similar density. It isworth to be mentioned that the shearing strengths ofblack locust wood from Romania (both from Northand South are generally higher than those indicatedby reference literature for oak and beech. Thisrecommends black locust wood as constructionwood and for other applications where wood issubjected to shearing stress.

  6. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  7. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  8. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  9. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  10. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    2001-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  11. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Von Goeler, S.; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  12. Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt

    International Nuclear Information System (INIS)

    Brodsky, N.S.

    1994-03-01

    Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25 degrees C

  13. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  14. Substructure hybrid testing of reinforced concrete shear wall structure using a domain overlapping technique

    Science.gov (United States)

    Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen

    2017-10-01

    An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.

  15. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  16. Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography.

    Science.gov (United States)

    Long, Zaiyang; Tradup, Donald J; Song, Pengfei; Stekel, Scott F; Chen, Shigao; Glazebrook, Katrina N; Hangiandreou, Nicholas J

    2018-03-15

    Because of the rapidly growing use of ultrasound shear wave elastography (SWE) in clinical practices, there is a significant need for development of clinical physics performance assessment methods for this technology. This study aims to report two clinical medical physicists' tasks: (a) acceptance testing (AT) of SWE function on ten commercial ultrasound systems for clinical liver application and (b) comparison of SWE measurements of targets across vendors for clinical musculoskeletal application. For AT, ten GE LOGIQ E9 XDclear 2.0 scanners with ten C1-6-D and ten 9L-D transducers were studied using two commercial homogenous phantoms. Five measurements were acquired at two depths for each scanner/transducer pair by two operators. Additional tests were performed to access effects of different coupling media, phantom locations and operators. System deviations were less than 5% of group mean or three times standard deviation; therefore, all systems passed AT. A test protocol was provided based on results that no statistically significant difference was observed between using ultrasound gel and salt water for coupling, among different phantom locations, and that interoperator and intraoperator coefficient of variation was less than 3%. For SWE target measurements, two systems were compared - a Supersonic Aixplorer scanner with a SL10-2 and a SL15-4 transducer, and an abovementioned GE scanner with 9L-D transducer. Two stepped cylinders with diameters of 4.05-10.40 mm were measured both longitudinally and transaxially. Target shear wave speed quantification was performed using an in-house MATLAB program. Using the target shear wave speed deduced from phantom specs as a reference, SL15-4 performed the best at the measured depth. However, it was challenging to reliably measure a 4.05 mm target for either system. The reported test methods and results could provide important information when dealing with SWE-related tasks in the clinical environment. © 2018 The Authors

  17. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  18. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  19. Drift Wave Test Particle Transport in Reversed Shear Profile

    International Nuclear Information System (INIS)

    Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.

    1998-01-01

    Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated

  20. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    Science.gov (United States)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  1. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  2. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Directory of Open Access Journals (Sweden)

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  3. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  4. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  5. Dilatancy of Shear Transformations in a Colloidal Glass

    Science.gov (United States)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  6. Realization of face-shear piezoelectric coefficient d36 in PZT ceramics via ferroelastic domain engineering

    Science.gov (United States)

    Miao, Hongchen; Li, Faxin

    2015-09-01

    The piezoelectric face-shear ( d36 ) mode may be the most useful shear mode in piezoelectrics, while currently this mode can only exist in single crystals of specific point groups and cut directions. Theoretically, the d36 coefficient vanishes in piezoelectric ceramics because of its transversally isotropic symmetry. In this work, we modified the symmetry of poled PZT ceramics from transversally isotropic to orthogonal through ferroelastic domain switching by applying a high lateral stress along the "2" direction and holding the stress for several hours. After removing the compression, the piezoelectric coefficient d31 is found much larger than d32 . Then, by cutting the compressed sample along the Z x t ±45 ° direction, we realized d36 coefficients up to 206 pC/N , which is measured by using a modified d33 meter. The obtained large d36 coefficients in PZT ceramics could be very promising for face-shear mode resonators and shear horizontal wave generation in nondestructive testing.

  7. Shear test results for cohesion and friction coefficients for different granular materials : Scaling implications for their usage in analogue modelling

    NARCIS (Netherlands)

    Schellart, W. P.

    2000-01-01

    Laboratory tests have been carried out on dry granular materials such as quartz sand, glass microspheres and sugar with different grain size, rounding and sphericity. The measurements have been made with a simple shear test machine for different values of normal stress (~ 50-900 Pa). Shear stress

  8. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  9. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  10. Cosmic Shear With ACS Pure Parallels

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  11. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  12. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  13. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  14. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  15. Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM)

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Li, N.; Mara, N. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM (United States); Chawla, N., E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)

    2015-01-05

    Nanolaminate composites show promise as high strength and toughness materials. However, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50 nm and 100 nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred close to the Al–SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.

  16. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    Science.gov (United States)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  17. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    International Nuclear Information System (INIS)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

    2004-01-01

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

  18. Fracture permeability under effect of normal and shear stress: A preliminary experimental investigation

    International Nuclear Information System (INIS)

    Mohanty, S.; Manteufel, R.D.; Chowdhury, A.H.

    1995-01-01

    The change in fracture permeability under mechanical loads have been investigated. An apparatus has been developed to measure change in fracture permeability, when a single fracture is subjected to normal and shear stress. Both radial and linear flow experiments have been conducted by modifying a direct shear test apparatus. Preliminary results suggest a 35-percent change in fracture permeability under normal stress to 8 MPa and nearly 350 percent under shear displacement of 9.9254 m (1 in.) at 5 MPa normal stress. Effort is underway to separate the permeability change due to gouge material production from that of due to dilation

  19. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  20. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  1. Experimental testing of hold down devices for timber frame shear walls

    OpenAIRE

    Caprolu, Giuseppe

    2012-01-01

    Källsner and Girhammar [1] have presented a new plastic design method for wood-framed shear walls at ultimate limit state. This method allows the designer to calculate the load-carrying capacity of partially anchored shear walls, where the leading stud is not anchored against uplift. The anchorage system of shear walls is provided by anchor bolts in the bottom rail and hold downs at the leading stud. Anchor bolts provide horizontal shear continuity between the bottom rail and the foundation. ...

  2. Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint

    Science.gov (United States)

    Nouailletas, O.; Perlot, C.; Rivard, P.; Ballivy, G.; La Borderie, C.

    2017-06-01

    The mechanical behaviour of structural discontinuities in rock mass is a key element of the stability analysis in civil engineering, petroleum engineering and mining engineering. In this paper, the mechanical analysis is coupled with the acidic attack of a rock joint associated with leakage of CO2 through a geological fault in the context of carbon sequestration. Experiments were conducted at the laboratory scale to assess the shear behaviour of degraded joint: direct shear tests were performed on rock joints that have been previously immersed into water or into an acidic solution (pH 0.2). The shear behaviour of joints is governed by the roughness of its walls: the parameters Z2, Z3, Z4 and RL characterize the rough surfaces. They are calculated from the scans of joint surfaces after and before immersion. Their comparison pointed out a slight impact of the acidic attack. However, the results of the direct shear tests show significant modifications in the shear behaviour for the degraded joints: the tangential stress peak disappears, the tangential stiffness decreases in the stress/displacement curve, and the contraction increases, the dilation angle decreases in the dilation curve. Acid attack has a greater impact on the mechanical properties of the asperities than their geometric characteristics. The results of this study will be used to improve chemo-mechanical modelling to better simulate with higher accuracy the fault stability in different cases of civil engineering, petroleum engineering and mining engineering.

  3. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  4. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell

    Science.gov (United States)

    Ji, S.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.

  5. Shear behavior of thermoformed woven-textile thermoplastic prepregs: An analysis combining bias-extension test and X-ray microtomography

    Science.gov (United States)

    Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.

    2017-10-01

    Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.

  6. Strength and stiffness of uniaxially tensioned reinforced concrete panels subjected to membrane shear. Technical report

    International Nuclear Information System (INIS)

    Hilmy, S.I.; White, R.N.; Gergely, P.

    1982-06-01

    This report presents experimental and analytical results on internal pressurization effects and seismic shear effects in a concrete containment vessel that is cracked by tension in one direction only. The experimental program, which was restricted to 6 in. thick flat specimens with two-way reinforcement, included establishment of (a) extensional stiffness for uniaxially tensioned specimens stressed to 0.6fy, and (b) shear strength and stiffness of these cracked specimens with tension levels ranging from 0 to 0.9fy; values were about 10 to 15 percent higher than in similar biaxially tensioned specimens. Eleven (11) specimens were tested (6 in monotonic shear and 5 in reversing cyclic shear)

  7. Shear compression testing of glass-fibre steel specimens after 4K reactor irradiation: Present status and facility upgrade

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Kraehling, E.; Katheder, H.

    1997-01-01

    The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10 7 Gy in form of fast neutrons and γ-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination of the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate

  8. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  9. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  10. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  11. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  12. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  13. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    Science.gov (United States)

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  14. Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams

    Directory of Open Access Journals (Sweden)

    Alhamad Siyam

    2017-01-01

    Full Text Available This study investigates the shear behavior of deep concrete beams reinforced with basalt fiber reinforced polymer (BFRP bars for flexure without web reinforcements. The experimental testing performed herein consisted of a total of 4 short beams, three of which were reinforced with BFRP and one beam was reinforced with steel bars. The primary test variable was the shear-span-to-effective-depth ratio (a/d and its influence on the beams’ mid-span deflections, shear capacity, load-deformation relationships and the failure modes.

  15. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  16. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  17. Alternative Shear Panel Configurations for Light Wood Construction. Development, Seismic Performance, and Design Guidance

    Science.gov (United States)

    Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo

    2002-04-01

    Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.

  18. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  19. Enhanced shear strength of sodium bentonite using frictional additives

    International Nuclear Information System (INIS)

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-01-01

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45 degrees for the expanded 36 degrees for the recycled glass, and 7 degrees for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44 degrees for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10 -9 cm/sec, while increasing the shear strength parameters of the bentonitic mixture to φ' = 17 degrees and c' = 0

  20. Testing temperature on interfacial shear strength measurements of epoxy resins at different mixing ratios

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Thomason, James L.; Minty, Ross

    2015-01-01

    The interfacial properties as Interfacial Shear Stress (IFSS) in fibre reinforced polymers are essential for further understanding of the mechanical properties of the composite. In this work a single fibre testing method is used in combination with an epoxy matrix made from Araldite 506 epoxy res...

  1. Shear-wave dynamic behavior using two different orientations

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Hashemi, S. J.

    2007-01-01

    For laterally complex media, it may be more suitable to take a different orientation of the displacement vector of Shear-waves. This may change the sign of several imaginary reflections and conversion coefficients to be used in reservoir characterization and Amplitude Versus Offset analysis or modeling. In this new convention the positive direction of the displacement vector of reflected Shear-waves is chosen to the left of ray tangent (in the direction of wave propagation). Therefore, the definition of the displacement vector of shear-waves can be used properly even for very complicated media. Finally the shear-wave dynamic behavior of a reservoir zone can be illustrated for laterally varying structures in terms of the amplitude variation and phase behavior using this new orientation

  2. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  3. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  4. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  5. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  6. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case...... of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...

  7. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment

    DEFF Research Database (Denmark)

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten

    2014-01-01

    Powder flow in small-scale equipment is challenging to predict. To meet this need, the impact of consolidation during powder flow characterization, the level of consolidation existing during discharge of powders from a tablet press hopper and the uncertainty of shear and wall friction measurements...... normal stress were approximately 200Pa and 114Pa, respectively, in the critical transition from the converging to the lower vertical section of the hopper. The lower limit of consolidation for the shear and wall friction test was approximately 500Pa and 200Pa, respectively. At this consolidation level......, the wall and shear stress resolution influences the precision of the measured powder flow properties. This study highlights the need for an improved experimental setup which would be capable of measuring the flow properties of powders under very small consolidation stresses with a high shear stress...

  8. Shear and Thermal Testing of Adhesives for VELO Upgrade

    CERN Document Server

    De Capua, Stefano; Klaver, Suzanne; Parkes, Chris; Rodriguez Perez, Pablo; Shtipliyski, Antoni; Stelmasiak, Guy James

    2016-01-01

    As part of the R&D process of the LHCb VELO Upgrade, a study has been performed on the thermal and mechanical performance of the adhesives Stycast 2850FT, 3M 9461P, and Araldite 2011. One or more of these adhesives could be used to attach the ASICs and hybrids to the microchannel cooling substrate. Samples were irradiated at up to the maximum dose expected at the upgrade. Shear tests of the samples were made and a suitable performance obtained from all glues. Some failures were encountered with Stycast 2850FT glued samples and this is attributed to the sample preparation. The relative thermal conductivities of the adhesives were also determined by measuring the relative temperature difference across a glued joint while one side is heated.

  9. Undrained shear strength determination and correlations on Søvind Marl

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Nielsen, Benjaminn Nordahl

    2016-01-01

    on both the preconsolidation and the undrained shear strength. Two apparent values of the preconsolidation stresses can be determined due to the fissured structure (Grønbech et al. 2015) which also considerably decreases the undrained shear strength. Determination of shear strength of fissured clay...... is done through field testing or triaxial testing. Christensen and Hansen (1959) tested fissured Danish Oligocene clay and found the undrained shear strength, Su, be approximately 1/3 of the measured field vane shear strength, cfv. This correlation has since been used in Danish geotechnical practice...

  10. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  11. Cosmic shear measurements with Dark Energy Survey Science Verification data

    International Nuclear Information System (INIS)

    Becker, M. R.

    2016-01-01

    Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper

  12. Cosmic Shear With ACS Pure Parallels. Targeted Portion.

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan i {F775W} we will measure for the first time: the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  13. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass

    International Nuclear Information System (INIS)

    Cao, Q.P.; Liu, J.W.; Yang, K.J.; Xu, F.; Yao, Z.Q.; Minkow, A.; Fecht, H.J.; Ivanisenko, J.; Chen, L.Y.; Wang, X.D.; Qu, S.X.; Jiang, J.Z.

    2010-01-01

    Bulk Zr 64.13 Cu 15.75 Ni 10.12 Al 10 metallic glass has been rolled at room temperature in two different directions, and the dependences of microstructure and tensile mechanical property on the degree of deformation and rolling directions have been investigated. No deformation-induced crystallization occurs except for shear bands. Shear band formation in conjugated directions is achieved in the specimen rolled in two directions, while rolling in one direction induces shear band formation only in a single direction. Pre-existing properly spaced soft inhomogeneities can stabilize shear bands and lead to tensile plastic strain, and the efficient intersection of shear bands in conjugated directions results in work-hardening behavior, which is further confirmed by in situ tensile scanning electron microscopic observation. Based on the experimental results obtained in two different specimen geometries and finite element analysis, it is deduced that a normal-stress-modified maximum shear stress criterion rather than a shear plane criterion can describe the conditions for the formation of shear bands in uniaxial tension.

  14. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  15. Directionality and Orientation Effects on the Resistance to Propagating Shear Failure

    Science.gov (United States)

    Leis, B. N.; Barbaro, F. J.; Gray, J. M.

    Hydrocarbon pipelines transporting compressible products like methane or high-vapor-pressure (HVP) liquids under supercritical conditions can be susceptible to long-propagating failures. As the unplanned release of such hydrocarbons can lead to significant pollution and/or the horrific potential of explosion and/or a very large fire, design criteria to preclude such failures were essential to environmental and public safety. Thus, technology was developed to establish the minimum arrest requirements to avoid such failures shortly after this design concern was evident. Soon after this technology emerged in the early 1970sit became evident that its predictions were increasinglynon-conservative as the toughness of line-pipe steel increased. A second potentially critical factor for what was a one-dimensional technology was that changes in steel processing led to directional dependence in both the flow and fracture properties. While recognized, this dependence was tacitly ignored in quantifying arrest, as were early observations that indicated propagating shear failure was controlled by plastic collapse rather than by fracture processes.

  16. Experiments and FE-simulations of stretch flanging of DP-steels with different shear cut edge quality

    Science.gov (United States)

    Sigvant, M.; Falk, J.; Pilthammar, J.

    2017-09-01

    Dual-Phase (DP) steels are today used in the automotive industry due to its large strength to weight ratio. However, the high strength of DP-steel does have a negative impact on the general formability in sheet metal forming. Unfavourable process conditions in the press shop will, on top of this, reduce the formability of DP-steels even more. This paper addresses the problem of edge fracture in stretch flanges in sheet metal parts made of DP-steel. The experimental part involves tests of ten different DP590 and DP780 steel grades with three different shear cut qualities. The influence on the fracture strain of the sample orientation of the shear cut are also studied by facing the burr away or towards the punch and testing samples with the cut edge parallel with the rolling direction and the transverse direction. The strains are measured with an ARAMIS system in each test, together with punch displacement and punch force. All tests are then simulated with AutoFormplus R7 and the results from these simulations are compared with the experimental results in order to find the appropriate failure strain for each combination of supplier, coating, thickness and shear cut quality.

  17. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  18. Shear bond strength of metallic brackets: influence of saliva contamination

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III on orthodontic metallic brackets bonded to human enamel. MATERIAL AND METHODS: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37ºC for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000 running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. RESULTS: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91 was significantly higher than that of AS (8.58±1.73 and XS (10.39±4.06 groups (p<0.05. Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI used to evaluate the amount of adhesive left on the enamel. CONCLUSIONS: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets.

  19. Laboratory studies on the effects of shear on fish: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cada, G. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-09-01

    The overall objective of these studies was to specify an index describing the hydraulic force that fish experience when subjected to a shear environment. Fluid shear is a phenomenon that is important to fish. However, elevated levels of shear may result in strain rates that injure or kill fish. At hydroelectric generating facilities, concerns have been expressed that strain rates associated with passage through turbines, spillways, and fish bypass systems may adversely affect migrating fish. Development of fish-friendly hydroelectric turbines requires knowledge of the physical forces (injury mechanisms) that impact entrained fish and the fish’s tolerance to these forces. It requires up-front, pre-design specifications for the environmental conditions that occur within the turbine system; in other words, determining or assuming conditions known to injure fish will assist engineers in the design of a fish-friendly turbine system. To address the development of biological specifications, this experiment designed and built a test facility where juvenile fish could be subjected to a range of shear environments and quantified their biological response. The test data reported here provide quantified strain rates and the relationship of these forces to direct and indirect biological effects on fish. The study concludes that juvenile salmonids and American shad should survive shear environments where strain rates do not exceed 500 cm/s/cm at a Dy of 1.8 cm. Additional studies are planned with a sensor fish to better link hydraulic conditions found within the laboratory and field environments.

  20. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  1. Shearing single crystal magnesium in the close-packed basal plane at different temperatures

    Science.gov (United States)

    Han, Ming; Li, Lili; Zhao, Guangming

    2018-05-01

    Shear behaviors of single crystal magnesium (Mg) in close-packed (0001) basal plane along the [ 1 bar 2 1 bar 0 ], [ 1 2 bar 10 ], [ 10 1 bar 0 ] and [ 1 bar 010 ] directions were studied using molecular dynamics simulations via EAM potential. The results show that both shear stress-strain curves along the four directions and the motion path of free atoms during shearing behave periodic characteristics. It reveals that the periodic shear displacement is inherently related to the crystallographic orientation in single crystal Mg. Moreover, different temperatures in a range from 10 to 750 K were considered, demonstrating that shear modulus decreases with increasing temperatures. The results agree well with the MTS model. It is manifested that the modulus is independent with the shear direction and the size of the atomic model. This work also demonstrates that the classical description of shear modulus is still effective at the nanoscale.

  2. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    Science.gov (United States)

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  3. Comparative study of the dental substrate used in shear bond strength tests

    Directory of Open Access Journals (Sweden)

    Lopes Murilo Baena

    2003-01-01

    Full Text Available The purpose of this study was to compare shear bond strength values obtained in human enamel and dentin with the values obtained in bovine teeth using two adhesive systems with different actions. Forty human tooth half-crowns and forty bovine tooth crowns were flattened to a minimum plain area of 5 mm in diameter. The samples were divided in four groups of 20 specimens each: 1 human enamel; 2 bovine enamel; 3 human dentin; 4 bovine dentin. The samples of each group were divided in 2 subgroups of 10 samples each, according to the adhesive system used: 1 Scotchbond Multi-Purpose (SBMP; and 2 Clearfil Liner Bond 2V (CLB2V applied according to the manufacturer's recommendations. Afterwards, restorations of Z100 composite with cylindrical shape (4 mm diameter x 5 mm height were made using a metallic mold to submit the samples to shear bond testing on an Instron universal testing machine, at a crosshead speed of 0.5 mm/min. The data were submitted to ANOVA and Tukey's test (5%. In enamel, there was no statistical difference between bovine and human teeth for SBMP (7.36 MPa, human; 8.24 MPa, bovine, nor for CLB2V (10.01 MPa, human; 7.95, bovine. In dentin, SBMP showed a statistically lower mean on human dentin (7.01 MPa than on bovine dentin (11.74 MPa. For CLB2V, there was no statistical difference between human (7.43 MPa and bovine (9.27 MPa substrates.

  4. Shear localization in a mature mylonitic rock analog during fast slip

    Science.gov (United States)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.

    2017-02-01

    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  5. Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Xiong, Y. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2016-04-15

    The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.

  6. Evolution of allowable stresses in shear for lumber

    Science.gov (United States)

    Robert L. Ethington; William L. Galligan; Henry M. Montrey; Alan D. Freas

    1979-01-01

    This paper surveys research leading to allowable shear stress parallel to grain for lumber. In early flexure tests of lumber, some pieces failed in shear. The estimated shear stress at time of failure was generally lower than shear strength measured on small, clear, straight-grained specimens. This and other engineering observations gave rise to adjustments that...

  7. Earthquake induced rock shear through a deposition hole. Modelling of three model tests scaled 1:10. Verification of the bentonite material model and the calculation technique

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T Engineering AB, Vaesteraas (Sweden))

    2010-11-15

    Three model shear tests of very high quality simulating a horizontal rock shear through a deposition hole in the centre of a canister were performed 1986. The tests and the results are described by /Boergesson 1986/. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5,000 and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale scenarios in SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain rate for each element. A similar model, based on tensile tests on the copper used in

  8. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  9. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  10. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  11. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  12. Evaluation of the effect of three innovative recyling methods on the shear bond strength of stainless steel brackets-an in vitro study.

    Science.gov (United States)

    Gupta, Neeraj; Kumar, Dilip; Palla, Aparna

    2017-04-01

    Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming

  13. Computerized lateral-shear interferometer

    Science.gov (United States)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  14. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  15. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  16. GAM - Gas Migration Experiments in a Heterogeneous Shear Zone of the Grimsel Test of the Grimsel Test Site

    International Nuclear Information System (INIS)

    Marschall, P.; Lunati, I.

    2006-12-01

    This report documents the scientific investigations carried out as part of the GAM project between June 1997 and April 2001 at the Grimsel Test Site within the framework of Investigation Phase V (1997 - 2001). Four radioactive waste management organisations participated in the GAM experiment, namely ANDRA, ENRESA, NAGRA and Sandia National Laboratories for the US Department of Energy. The experiment team consisted of the delegates of the participating organisations, research groups from the Swiss Federal Institute of Technology, Zurich and from the Technical University of Catalonia, Barcelona and, last but not least, several contractor teams. Essential aims of the GAM investigation programme were the development and testing of laboratory and field equipment for tracer experiments. Innovative laboratory technologies were applied, such as Laser Scanning Confocal Microscopy and X-ray tomography, flow visualisation in artificial fractures, nuclear magnetic resonance measurements and neutron radiography. Furthermore, a new technique was tested for the recovery of well preserved core samples from the GAM shear zone. Novelties in field testing comprised the use of an on-line counter for the particle tracer tests and a georadar survey of gas and brine injection tests with a high frequency borehole antenna. The development of upscaling methodologies and the derivation of effective parameters for single- and two-phase flow models was another issue of interest. The investigations comprised theoretical studies on solute transport in non-uniform flow fields and assessment of the impact of the microstructure on solute and gas transport. Closely related to these theoretical studies was the numerical interpretation of the combined solute and gas tracer tests, which revealed the great potential of such data sets with regard to model discrimination. As a final step in the synthesis task of the GAM project, a model abstraction process was established, aimed at integrating the

  17. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  18. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    Science.gov (United States)

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  19. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  20. Application of Ring Shear Testing to Optimize Pharmaceutical Formulation and Process Development of Solid Dosage Forms

    DEFF Research Database (Denmark)

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten

    This study investigates how shear and wall friction tests performed at small stresses can be applied to predict critical flow properties of powders, such as flow patterns and arching tendencies, in pharmaceutical manufacturing operations. The study showed that this approach is a promising method...

  1. Fracture transmissivity as a function of normal and shear stress: first results in Opalinus Clay

    International Nuclear Information System (INIS)

    Cuss, R.J.; Milodowski, A.; Noy, D.J.; Harrington, J.F.

    2010-01-01

    Document available in extended abstract form only. Rock-mass failure around openings is usually observed in the form of a highly complex fracture network (EDZ), which is heterogeneous in distribution around a circular tunnel opening because of the heterogeneous stress distribution. The orientation of stress with respect to the fracture network is known to be important. The complex heterogeneous stress trajectory and heterogeneous fracture network results in a broad range of stresses and stress directions acting on the open fracture network. During the open stage of a repository, stress will slowly alter as shear movements occur along the fractures, as well as other time-dependent phenomena. As the repository is back filled, the stress field is further altered as the backfill settles and changes volume because of re-saturation. Therefore, a complex and wide ranging stress regime and stress history will result. In a purely mechanical sense, fracture transmissivity is a function of normal stress, shear stress, and fracture aperture. The Selfrac test from Mont Terri showed the change in transmissivity with effective normal stress. This work showed that fracture transmissivity decreased with increasing normal load and that an effective normal stress of 2.5 MPa is sufficient to yield a transmissivity similar to that seen in intact Opalinus clay (OPA). Therefore fracture closure because of normal stresses has been proven to be a quite efficient mechanism in OPA. A new shear rig was designed to investigate the detail of fracture transmissivity in OPA. The experimental configuration uses two prepared blocks that are 60 x 60 mm in size and approximately 20 mm thick. The first test sample had machine ground surfaces in contact with each other, with pore fluid being delivered through the centre of the top block directly to the fracture surface. The experimental programme included two distinct stages. In the first normal load was altered to investigate fracture transmissivity

  2. Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    -bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...

  3. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  4. Healing of shear strength and its time dependency in a single rock fracture

    International Nuclear Information System (INIS)

    Kawaguchi, Yuta; Nakashima, Shinichiro; Yasuhara, Hideaki; Kishida, Kiyoshi

    2011-01-01

    Evolution of the long-term mechanical, hydraulic, and transport characteristics of rock fractures should be, in advance, predicted in considering an issue on entombment of energy byproducts of high level radioactive wastes. Under stressed and temperature conditions, those behaviors of the rock fractures of interest may be evolved in time and space likely due to the change in topographical aperture distributions. This irreversible process may be induced by pure mechanical and/or chemo-mechanical creeps such as water-rock reactions like stress corrosion and pressure solution, and chemical effects including mineral dissolution and reprecipitation in the free-walls of fractures. Specifically, the chemo-mechanical processes active at the contacting asperities within rock fractures may exert a significant influence on the mechanical, hydraulic, and transport behaviors throughout a long period, and thus, should be vigorously examined theoretically and experimentally. This paper presents the slide-hold-slide shear test results for fully saturated, single-jointed mortar specimens so as to investigate the effects of load holding on mechanical properties of rock joints. From the test results, it was confirmed that shear strength increased for mortar specimens in both short and long time holding cases. However, the evolution of shear strength recovery in two cases is different. This is because a dominant factor of shear strength recovery during the short time holding may be attributed to a pure mechanical process like creep deformation at contacting asperities, while the one during long time holding is affected by both mechanical and chemical processes like pressure solution. Moreover, to reproduce the shear strength recovery during short time holding we develop a direct shear model by including temporal variation of dilation during holding. The model predictions are in relatively good agreement with the test measurements. (author)

  5. Comparative shear tests of some low temperature lead-free solder pastes

    Science.gov (United States)

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.

    2016-12-01

    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  6. Theory of ion Bernstein wave induced shear suppression of turbulence

    Science.gov (United States)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  7. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  8. Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities

    Science.gov (United States)

    1993-01-01

    plasticity and ASB’s is the Double-notch Shear specimen, it has been decided to use this concept in shear testing at medium and high strain rates...is the Double-notch Shear specimen. it has been decided to use this concept in shear testing at medium and high strain rates. Originally, Campbell...7] C. Fressengeas, Analyse dynamique 61asto-viscoplastique de l’h6tdrogdndit6 de la ddforma- tion plastique de cisalllement, Proc. Int. Conf. on

  9. Residual shear strength of a severely ASR-damaged flat slab bridge

    DEFF Research Database (Denmark)

    Barbosa, Ricardo Antonio; Gustenhoff Hansen, Søren; Hoang, Linh Cao

    2018-01-01

    moment carried by the beams. For the beams tested in asymmetric four-point bending, an increase in the shear span-to-effective depth ratio resulted in a decrease in the measured shear strength. The measured shear strengths were compared with calculated shear strengths using the Eurocode 2. Calculations...... based on the compressive strength of drilled cores were rather conservative at low shear span-to-effective depth ratios. However, the conservatism of the Eurocode 2 decreased with increasing shear span-to-effective depth ratios. With the inclusion of ASR-induced pre-stress effect, the calculated shear...... strengths correlated better with the measured shear strengths. The test results indicated that the ASR-induced pre-stress effect can, to some extent, compensate for the significant loss in material properties....

  10. Time-dependent behavior of rough discontinuities under shearing conditions

    Science.gov (United States)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  11. Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1992-01-01

    The linearized gyrokinetic equation governing electrostatic microinstabilities in the presence of sheared equilibrium flow in both the z and y directions has been systematically derived for a sheared slab geometry, where in the large aspect ratio limit z and y directions correspond to the toroidal and poloidal directions respectively. In the familiar long perpendicular wavelength regime (κ perpendicular ρi > 1), the analysis leads to a comprehensive kinetic differential eigenmode equation which is solved numerically. The numerical results have been successfully cross-checked against analytic estimates in the fluid limit. For typical conditions, the Ion Temperature Gradient (ηi) modes are found to be stabilized for y-direction flows with a velocity shear scale comparable to that of the ion temperature gradient and velocities of a few percent of the sound speed. Sheared flows in the z-direction taken along are usually destabilizing, with the effect being independent of the sign of the flow. However, when both types are simultaneously considered, it is found that in the presence of shared z-direction flow, sheared y-direction flow can be either stabilizing or destabilizing depending on the relative sign of these flows. However, for sufficiently large values of υ' y the mode is completely stabilized regardless of the sign of υ' z υ' y . The importance of a proper kinetic treatment of this problem is supported by comparisons with fluid estimates. In particular, when such effects are favorable, significantly smaller values of sheared y-direction flow are required for stability than fluid estimates would indicate

  12. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    Science.gov (United States)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  13. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  14. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  15. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks

    Science.gov (United States)

    Dinç, Özge; Scholtès, Luc

    2018-05-01

    A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.

  16. Self-diffusion in dense granular shear flows.

    Science.gov (United States)

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  17. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  18. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    Science.gov (United States)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  19. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    crew seat. Characterization tests were carried out on the LMEAS using a 40 vol% MRF used in the previous magnetorheometer tests. These were analyzed using both flow curves and apparent viscosity vs. Mason number diagrams. The nondimensionalized Mason number analysis resulted in data for all conditions of temperature, fluid composition, and shear rate, to collapse onto a single characteristic or master curve. Significantly, the temperature corrected Mason number results from both the bench top magnetorheometer and full scale rotary vane MREA collapse to the same master curve. This enhances the ability of designers of MRFs and MREAs to safely and effectively apply characterization data collected in low shear rate, controlled temperature environments to operational environments that may be completely different. Finally, the Searle cell magnetorheometer was modified with an enforced eccentricity to work in both squeeze and shear modes simultaneously to achieve so called squeeze strengthening of the working MRF, thereby increasing the apparent yield stress and the specific energy absorption. By squeezing the active MR fluid, particles undergo compression-assisted aggregation into stronger, more robust columns which resist shear better than single chains. A hybrid model describing the squeeze strengthening behavior is developed, and recommendations are made for using squeeze strengthening to improve practical MREA devices.

  20. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  1. Mean E×B shear effect on geodesic acoustic modes in Tokamaks

    International Nuclear Information System (INIS)

    Singh, Rameswar; Gurcan, Ozgur D.

    2015-01-01

    E × B shearing effect on geodesic acoustic mode (GAM) is investigated for the first time both as an initial value problem in the shearing frame and as an eigenvalue value problem in the lab frame. The nontrivial effects are that E × B shearing couples the standard GAM perturbations to their complimentary poloidal parities. The resulting GAM acquires an effective inertia increasing in time leading to GAM damping. Eigenmode analysis shows that GAMs are radially localized by E × B shearing with the mode width being inversely proportional and radial wave number directly proportional to the shearing rate for weak shear. (author)

  2. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  3. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.; Xu, X.; Rice, S. A.; Dinner, A. R.; Cohen, I.

    2011-01-01

    under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow

  4. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  5. Tensile properties of modified 9Cr-1Mo steel by shear punch testing and correlation with microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-10-15

    Modified 9Cr-1Mo ferritic steel (P91) is subjected to a series of heat treatments consisting of soaking for 5 min at the selected temperatures in the range 973 K-1623 K (below Ac{sub 1} to above Ac{sub 4}) followed by oil quenching and tempering at 1033 K for 1 h to obtain different microstructural conditions. The tensile properties of the different microstructural conditions are evaluated from small volumes of material by shear punch test technique. A new methodology for evaluating yield strength, ultimate tensile strength and strain hardening exponent from shear punch test by using correlation equations without employing empirical constants is presented and validated. The changes in the tensile properties are related to the microstructural changes of the steel investigated by electron microscopic studies. The steel exhibits minimum strength and hardness when soaked between Ac{sub 1} and Ac{sub 3} (intercritical range) temperatures due to the replacement of original lath martensitic structure with subgrains. The finer martensitic microstructure produced in the steel after soaking at temperatures above Ac{sub 3} leads to a monotonic increase in hardness and strength with decreasing strain hardening exponent. For soaking temperatures above Ac{sub 4}, the hardness and strength of the steel increases marginally due to the formation of soft {delta} ferrite. - Highlights: > A methodology presented for computing tensile properties from shear punch test. > UTS and strain hardening estimated using extended analysis of blanking models. > The analysis methodology validated for different heat treated 9Cr-1Mo steel. > Changes in tensile properties of steel correlated with microstructures.

  6. Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets

    International Nuclear Information System (INIS)

    Duchene, L.; Diouf, B.; Lelotte, T.; Flores, P.; Habraken, A. M.; Bouvier, S.

    2007-01-01

    In order to model accurately the anisotropic material behavior during finite element simulations, a precise description of the material yield locus is required. Beside the shape (linked to the material model used), the size (related to the isotropic hardening) and the position (kinematic hardening) of the yield locus, its orientation is of particular interest when large rotations of the material are encountered during the simulations. This paper proposes three distinct methods for the determination of the material yield locus rotation: a method based on the Constant Symmetric Local Velocity Gradient (CSLVG), a corotational method and a method based on the Mandel spin. These methods are compared during simple shear tests of an aluminum sheet

  7. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  8. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  9. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  10. Shear viscosity of liquid argon and liquid rubidium

    International Nuclear Information System (INIS)

    Chiakwelu, O.

    1978-01-01

    A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon

  11. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  12. The theoretical shear strength of fcc crystals under superimposed triaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, M., E-mail: cerny.m@fme.vutbr.cz [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Pokluda, J. [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic)

    2010-05-15

    The influence of a triaxial stress applied normally to shear planes and shear direction during affine shear deformation of face-centered cubic crystals on the theoretical shear strength is studied for the <112-bar >{l_brace}111{r_brace} shear system using first-principles methods. The applied relaxation procedure guarantees that the modeled system is subjected to a superposition of shear, normal and in-plane stresses with individually adjustable in-plane and normal stress values. The theoretical shear strengths of individual elements prove to be qualitatively different functions of the superimposed stresses. In the special case of hydrostatic loading, however, these functions are qualitatively uniform. This behavior is discussed in terms of the electronic structure.

  13. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  14. Shear transfer capacity of reinforced concrete exposed to fire

    Science.gov (United States)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  15. Practical Weak-lensing Shear Measurement with Metacalibration

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Erin S. [Brookhaven National Laboratory, Bldg. 510, Upton, NY 11973 (United States); Huff, Eric M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-05-20

    Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observe that for images with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.

  16. Physical test of a particle simulation model in a sheared granular system

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris; Orpe, Ashish; Kudrolli, Arshad

    2009-01-15

    We report a detailed comparison of a slow gravity driven sheared granular flow with a computational model performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To our knowledge, this is the first thorough test of the LAMMPS model with a laboratory granular flow. In the experiments, grains flow inside a silo with a rectangular cross-section, and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The boundary imposes a packing order, and the grains are observed to flow in layers which get progressively more disordered with distance from the walls. The computations use a Cundall--Strack contact model between the grains, using contact parameters that have been used in many other previous studies, and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. After appropriate scaling, we find that the mean velocity of the grains and the number density as a function of flow cross-section observed in the experiments and the simulations are in excellent agreement. The mean flow profile is observed to be unchanged over a broad range of coefficient of friction, except near the smooth wall. We show that the flow profile is not sensitive to atleast 10\\percent polydispersity in particle size. Because the grain elasticity used is smaller in the computations as compared with glass grains, wave-like features can be noted over short time scales in the mean velocity and the velocity auto-correlations measured in the simulations. These wave features occur over an intermediate timescale larger than the particle interaction but smaller than the

  17. Experimental Study on Shear Performance of Bolt in Roadway Supporting

    Directory of Open Access Journals (Sweden)

    D.J. Li

    2014-09-01

    Full Text Available The corner bolt is proved to be effective in the control of floor deformation of roadway, and the relevant studies on bolting mechanisms are of great significance in improving roadway stability. In this paper, two types of shear tests on six forms of bolts are performed by using self-designed shear test device, the electro-hydraulic servo triaxial testing system. The shear characteristics of different types of bolts are obtained. The results show that different bolt rods or different internal filling conditions result in large differences in shear resistance and different deformation adaptability. We find that the filling materials added can improve the shear performance of bolt significantly, and the bolt with steel not only can improve the strength of bolt body, but also has the bimodal characteristic that makes the bolt have the secondary bearing capacity and withstand larger deformation range during the process of shear, and shows a better support performance. Hoping to provide the experiment basis for support design and field application in the future.

  18. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  19. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  20. Shear Stress-Relative Slip Relationship at Concrete Interfaces

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2016-01-01

    Full Text Available This study develops a simple and rational shear stress-relative slip model of concrete interfaces with monolithic castings or smooth construction joints. In developing the model, the initial shear cracking stress and relative slip amount at peak stress were formulated from a nonlinear regression analysis using test data for push-off specimens. The shear friction strength was determined from the generalized equations on the basis of the upper-bound theorem of concrete plasticity. Then, a parametric fitting analysis was performed to derive equations for the key parameters determining the shapes of the ascending and descending branches of the shear stress-relative slip curve. The comparisons of predictions and measurements obtained from push-off tests confirmed that the proposed model provides superior accuracy in predicting the shear stress-relative slip relationship of interfacial shear planes. This was evidenced by the lower normalized root mean square error than those in Xu et al.’s model and the CEB-FIB model, which have many limitations in terms of the roughness of the substrate surface along an interface and the magnitude of equivalent normal stress.

  1. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    Science.gov (United States)

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH 0 ) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH 0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH 0 transducers have been proposed so far. In this work, an omnidirectional SH 0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d 24 ) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH 0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH 0 wave transmitter or a SH 0 wave receiver. This work may greatly promote the applications of SH 0 waves in NDT and SHM. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Three-dimensional vs. two-dimensional shear-wave elastography of the testes - preliminary study on a healthy collective.

    Science.gov (United States)

    Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A

    2016-01-01

    Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for

  3. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  4. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  5. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  6. Estudo in vitro da resistência ao cisalhamento da colagem direta de tubos ortodônticos em molares In vitro study of shear bond strength in direct bonding of orthodontic molar tubes

    Directory of Open Access Journals (Sweden)

    Célia Regina Maio Pinzan Vercelino

    2011-06-01

    conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. METHODS: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/ tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. RESULTS: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. CONCLUSIONS: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.

  7. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Eric Brian [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  8. Shear wave elastography with a new reliability indicator

    Directory of Open Access Journals (Sweden)

    Christoph F. Dietrich

    2016-09-01

    Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  9. Shear wave elastography with a new reliability indicator.

    Science.gov (United States)

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  10. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  11. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Comparison between predicted and observed shear behavior using a graphical method

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B.

    1993-09-01

    Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff from Yucca Mountain to test the graphical load-displacement analysis method proposed by Saeb (1989) and Amadei and Saeb (1990). Based on the results of shear tests conducted on several joint replicas under different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN), the shear behavior of joint replicas under constant normal stiffness ranging between 14.8 and 187.5 kips/in. (25.9 and 328.1 kN/cm) was predicted by using the graphical method. The predictions were compared to the results of actual shear tests conducted for the same range of constant normal stiffness. In general, a good agreement was found between the predicted and the observed shear behavior

  12. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong

    2016-01-01

    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  13. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  14. Topographic shear and the relation of ocular dominance columns to orientation columns in primate and cat visual cortex.

    Science.gov (United States)

    Wood, Richard J.; Schwartz, Eric L.

    1999-03-01

    Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.

  15. Empirical Evaluation of Directional-Dependence Tests

    Science.gov (United States)

    Thoemmes, Felix

    2015-01-01

    Testing of directional dependence is a method to infer causal direction that recently has attracted some attention. Previous examples by e.g. von Eye and DeShon (2012a) and extensive simulation studies by Pornprasertmanit and Little (2012) have demonstrated that under specific assumptions, directional-dependence tests can recover the true causal…

  16. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  17. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  18. Local particle flux reversal under strongly sheared flow

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.; Ware, A.S.

    2003-01-01

    The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed

  19. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  20. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  1. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... consumer genetic testing? What kinds of direct-to-consumer genetic tests are available? What is genetic ancestry testing? What are the benefits and risks of direct-to-consumer genetic testing? ...

  2. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  3. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  4. Study on the shear transfer of reinforced concrete at elevated temperature

    International Nuclear Information System (INIS)

    Ishida, Hiroaki; Kanazu, Tsutomu

    1989-01-01

    Reinforced concrete structures in nuclear power stations, such as a containment vessel and structural members supporting a reactor vessel, are designed assuming that they may be subjected to elevated temperature. In the design code, it is specified that the temperature of concrete must not exceed the limitation, and thermal effect shall be taken into account. In this study, the shearing test using Mattock type specimens was performed to investigate into the shear behavior of the reinforced concrete subjected to elevated temperature. The test parameters studied in this program were the reinforcement ratio in a shear plane, the compressive stress normal to a shear plane and temperature. The maximum shearing load of the specimens heated to 200 degC was about 10-20 % lower than that at normal temperature, but nearly equal to that of the specimens heated to 100 degC. The equation for evaluating the shearing strength ratio was proposed. The cracking width and slip at maximum shearing load increased as temperature rose. Up to 200 degC, the same relation existed between interface shear transfer rigidity and cracking width. (K.I.)

  5. The effect of shear force on ink transfer in gravure offset printing

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Lee, Seung-Hyun; Noh, Jae-Ho; Kim, Dong-Soo; Chun, Sangki

    2010-01-01

    This paper asserts that shear force plays an important role in the printing mechanism of gravure offset line printing. To that end, a theoretical printing model showing shear force dependence on the printing angle is proposed. The decrement of the internal angle between the printing direction and the pattern-line direction increases shear force, thereby enhancing the amount of transferred ink in the off stage. A printing experiment using pattern-line widths of 80 µm and 20 µm shows the angle dependence of the line width, thickness and amount of transferred ink, reflecting the effect of shear force. The effect of the internal angle on cross-sectional differences in lines with a width of 20 µm and with angle variation is greater than that in lines with a width of 80 µm, which corresponds with the theoretical prediction that shear force has greater influence on a narrower line. The strong correlation between the experimental data and the theoretical model supports the validation of the theoretical model

  6. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  7. Influence of surface treatment on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  8. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  9. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  10. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency ω A = V A /qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode

  11. Atomic simulation of bcc niobium Σ5〈001〉{310} grain boundary under shear deformation

    International Nuclear Information System (INIS)

    Huang, Bo-Wen; Shang, Jia-Xiang; Liu, Zeng-Hui; Chen, Yue

    2014-01-01

    The shear behaviors of grain boundaries are investigated using molecular dynamics simulations. The Σ5〈001〉{310} symmetric tilt grain boundary (GB) of body-centered cubic (bcc) Nb is investigated and the simulations are conducted under a series of shear directions at a wide range of temperatures. The results show that the GB shearing along [13 ¯ 0], which is perpendicular to the tilt axis, has a coupled motion behavior. The coupling factor is predicted using Cahn’s model. The critical stress of the coupling motion is found to decrease exponentially with increasing temperature. The GB under shear deformation along the [001 ¯ ] direction, which is parallel to the tilt axis, has a pure sliding behavior at most of the temperatures investigated. The critical stress of sliding is found to be much larger than that of the coupled motion at the same temperature. At very low temperatures, pure sliding is not observed, and dislocation nucleating and extending is found on GBs. We observed mixed behaviors when the shear direction is between [13 ¯ 0] and [001 ¯ ]. The transition region between GB coupled motion and pure sliding is determined. If the shear angles between the shear direction and the tilt axis are larger than a certain value, the GB has a coupled motion behavior similar to the [13 ¯ 0] direction. A GB with a shear angle smaller than the critical angle exhibits mixed mechanisms at low temperatures, such as dislocation, atomic shuffle and GB distortion, whereas for the [001 ¯ ]-like GB pure sliding is the dominating mechanism at high temperatures. The stresses to activate the coupling and gliding motions are analyzed for shear deformations along different directions at various temperatures

  12. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  13. Experimental study of a shear wall with numerous small openings

    International Nuclear Information System (INIS)

    Sotomura, K.; Murazumi, Y.; Yoshizaki, S.; Ezaki, T.

    1981-01-01

    Many small openings for piping and ducts are usually required in the shear walls for PWR nuclear power plant. It is generally believed that such openings oadversely affect the strength and stiffness of shear walls. However, little information is available concerning the behavior of walls with numerous small openings. Therefore, tests using wall specimens and an analysis using an FEM program were carried out to investigate this behavior. Main findings are as follows: 1) The ultimate strength of a shear wall with numerous small openings may be obtained by using the effective area at the critical cross section of the shear wall. 2) Shear walls with openings can be restored to the same shear strength and stiffness as shear walls without openings by diagonal reinforcement. (orig./HP)

  14. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  15. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  16. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  17. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Li, D.H.; Zheng, H.G.; Li, X.M.; Jiang, F.

    2009-01-01

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  18. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.

    2013-01-01

    Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1

  19. Out-of-plane ultimate shear strength of RC mat-slab foundations

    International Nuclear Information System (INIS)

    Kumagai, Hitoshi; Nukui, Yasushi; Imamura, Akira; Terayama, Takeshi; Hagiwara, Tetsuya; Kojima, Isao

    2011-01-01

    There have been few studies on the out-of-plane shear in RC mat-slab foundations, and the reasonable method has been demanded to estimate ultimate shear strength of RC mat-slab foundations in the nuclear facilities. In the previous study, the out-of-plane loading tests on the 20 square slab specimens had been performed to collect the fundamental data. In this study, the test results were successfully predicted by 3D non-linear Finite Element Analysis. It has been confirmed that the ultimate shear stress in the slab specimen can be estimated by the Arakawa's formula, which is commonly used to estimate the shear strength of RC beams. (author)

  20. Sense of shear and displacement estimates in the Abeibara-Rarhous late Pan-African shear zone, Adrar des Iforas, Mali

    Science.gov (United States)

    Boullier, Anne-Marie

    The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.

  1. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  2. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  3. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography

    Science.gov (United States)

    Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick

    2018-04-01

    Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.

  4. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-11-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  5. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-01-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  6. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  7. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  8. Effects of Notch Misalignment and Tip Radius on Displacement Field in V-Notch Rail Shear Test as Determined by Photogrammetry

    Science.gov (United States)

    Hill, Charles S.; Oliveras, Ovidio M.

    2011-01-01

    Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.

  9. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  10. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  11. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process

    Science.gov (United States)

    Rong, Guan; Yang, Jie; Cheng, Long; Zhou, Chuangbing

    2016-10-01

    To understand the influence of shear behavior on the transporting properties of fluid through a single fracture, splitting fractures were made in the laboratory and shear flow tests were carried out under constant normal load conditions. The applied normal stress is in the range of 0.5-3.0 MPa. Before the physical test, the fracture's morphology is measured for identification of the roughness. At each shear step, we performed 5-8 high precise hydraulic tests with different hydraulic gradient. The relationship between pressure gradient and volume flow rate demonstrates to be nonlinear and fits very well with Forchheimer's and Izbash's laws. The linear and nonlinear coefficients in Forchheimer's law are quite sensitive to shear deformation (closure or dilation), experienced 1-2 and 1-3 orders of magnitude reduction during shear, respectively. An empirical equation is proposed to quantify the relationship between linear coefficient and nonlinear coefficient based on the experimental observations. The two coefficients in Izbash's law are quantified. The m value is in the range between 1.06 and 1.41 and the λ value experiences a reduction of 1-2 orders of magnitude during shear. In addition, the studied critical Reynolds number exhibits a decreasing and increasing variation corresponding to shear contraction and shear dilation of rock fracture. For all the cases in this study, the critical Reynolds number ranges between 1.5 and 13.0.

  12. Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-based metallic glasses: TEM investigation

    International Nuclear Information System (INIS)

    Hajlaoui, K.; Alrasheedi, Nashmi H.; Yavari, A.R.

    2016-01-01

    In-situ tensile straining tests were performed in a transmission electron microscope (TEM) to analyse the deformation processes in CuZr-based metallic glasses and to directly observe the phase transformation occurrence. We report evidence of shear induced coalescence of nanocrystals in the vicinity of deformed regions. Nanocrystals grow in shear bands, come into contact, being attached and progressively coalesce under applied shear stress. - Highlights: • In-situ tensile straining test in TEM was investigated on CuZr-Based metallic glass. • Strain induces nanocrystallization and subsequent attachment and coalescence of nanocrystals. • The coalescence of nanocrystals compensates strain softening in metallic glasses.

  13. Precessing rotating flows with additional shear: stability analysis.

    Science.gov (United States)

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

  14. Laser reflection method for determination of shear stress in low density transitional flows

    Science.gov (United States)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  15. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  16. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  17. Contact stresses by rounded punch subject to axial and transverse shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-05-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue.

  18. Contact stresses by rounded punch subject to axial and transverse shear

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu

    1999-01-01

    Contact shear stresses by rounded punch were evaluated numerically. Numerical program was successfully implemented by using an influence function method. To simulate the physical fretting problem, a closed load path of shear was considered. The influence functions on surface displacements fo both axial and transverse direction were calculated using a triangular shear traction element. Behaviour of the contact surface, such as stick and slip region during the load path was investigated together with compliance change. Irreversibility of the shear stress was shown. The importance and the utilization of the present research were discussed for analyzing the material failure induced by contact such as fretting wear and fatigue

  19. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  20. Research status and needs for shear tests on large-scale reinforced concrete containment elements

    International Nuclear Information System (INIS)

    Oesterle, R.G.; Russell, H.G.

    1982-01-01

    Reinforced concrete containments at nuclear power plants are designed to resist forces caused by internal pressure, gravity, and severe earthquakes. The size, shape, and possible stress states in containments produce unique problems for design and construction. A lack of experimental data on the capacity of reinforced concrete to transfer shear stresses while subjected to biaxial tension has led to cumbersome if not impractical design criteria. Research programs recently conducted at the Construction Technology Laboratories and at Cornell University indicate that design criteria for tangential, peripheral, and radial shear are conservative. This paper discusses results from recent research and presents tentative changes for shear design provisions of the current United States code for containment structures. Areas where information is still lacking to fully verify new design provisions are discussed. Needs for further experimental research on large-scale specimens to develop economical, practical, and reliable design criteria for resisting shear forces in containment are identified. (orig.)

  1. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  2. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  3. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  4. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    Science.gov (United States)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  5. Comparison of the semisolid shear behaviour of Al-7Si-0.35Mg alloys produced by two casting methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; StJohn, D.H. [Queensland Univ., St. Lucia, QLD (Australia). Cooperative Res. Centre for Alloy and Solidification Technol.; Davidson, C.J. [Cooperative Research Centre for Alloy and Solidification Technology, CSIRO Mfg. Science and Technology, Kenmore, QLD (Australia); Couper, M.J. [Cooperative Research Centre for Alloy and Solidification Technology, Comalco Aluminium Ltd., Thomastown, Vic. (Australia)

    2000-07-01

    Al-7%Si-0.35%Mg alloys, with and without grain refiner addition, were produced by casting into cylindrical moulds. Their microstructure and shear behaviour in the semisolid state were compared with a standard thixotropic 356 alloy that was produced by electromagnetic stirring (EMS). The as-cast microstructures of the cast materials consisted of equiaxed grains with rosette-dendritic morphology, while the EMS material was made up of very fine and rosette-like grains but with a significant number of large grains or agglomerates. After partial remelting and isothermal holding, the cast materials lost their dendritic nature and became globular. The EMS material continued to contain large globular particles after isothermal holding. The shear behaviour of the semisolid materials was measured by a direct shear test. The shear resistance was high if the material had a dendritic microstructure, and was reduced after a globular microstructure developed during isothermal holding. The shear strength for the three alloy conditions studied varied with isothermal holding time and this was related to microstructural differences between the alloys. (orig.)

  6. Design of piezoelectric probe for measurement of longitudinal and shear components of elastic wave

    Science.gov (United States)

    Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi

    2017-07-01

    We focus on ultrasonic probes for nondestructive tests and evaluation. Transient characteristics of probes are important for nondestructive tests such as the pulse echo method. We previously reported the principle of measurement using a piezoelectric probe with triaxial sensitivities. In the results, it was calculated that the probe could transmit and receive particle displacement which contains normal and tangential components. It was confirmed that the probe had sensitivities in triaxial directions. However, its performance in terms of frequency and transient characteristics has not been evaluated. The purpose of this study is to design a probe by changing its shape to obtain better performance. The transient characteristics of probes in longitudinal and shear driving were evaluated by the inverse Fourier transformation of frequency responses of longitudinal and shear components, using the two-dimensional finite element method. As a result, the sensitivities at the dips of frequency characteristics increased when using our probe compared with those measured using conventional probes in longitudinal and shear driving. Hence, the performance in terms of the frequency response was improved by more than 3 dB under the conditions in this simulation. Also, the pulse width of impulse response was decreased by half compared with that of probes with conventional shapes.

  7. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    Science.gov (United States)

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave

  8. Panel and planar experimental shear behavior of wood panels ...

    African Journals Online (AJOL)

    Panel shear strength along the thickness and planar shear along the length of wood panels laminated softwood oriented OSB 10 mm thick, conditioned at different moisture contents (anhydrous medium, ambient temperature and humid medium) was measured on standardized test specimens, cut in half lengthwise panel ...

  9. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    DEFF Research Database (Denmark)

    Hajlane, A.; Miettinen, A.; Madsen, Bo

    2016-01-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro......-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight...

  10. Lightweight concrete modification factor for shear friction.

    Science.gov (United States)

    2013-10-01

    This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...

  11. Results of shear studies with 241-AY-101 sludge

    International Nuclear Information System (INIS)

    WARRANT, R.W.

    2001-01-01

    of the mixing pump may well produce similar shearing effects as the tissue homogenizer. (Mechanical shear represents the shear caused by direct contact between a particle and a metal surface; hydraulic shear is caused by the particle moving between fluids traveling at different speeds.)

  12. Material Models to Study the Bauschinger Effect on an Aluminum Shear Test Specimen

    International Nuclear Information System (INIS)

    Cardoso, Rui P. R.; Gracio, Jose J.; Yoon, Jeong-Whan

    2007-01-01

    Sheet metal forming processes generally involve complex loadings and nonlinear material models. Combinations of drawing, re-drawing and/or reverse drawing operations commonly induce cyclic loads with non-proportional strain paths, leading to Bauschinger effects that can not be predicted by conventional isotropic hardening laws. In order to properly represent this effect, it is also required to accommodate an appropriate kinematic hardening model along with an anisotropic yield function. In this work, two different approaches will be used to predict the Bauschinger effect for an Aluminum shear test specimen: the rate dependent crystal plasticity model and a new combined isotropic/kinematic hardening model based on the two yield surfaces approach (loading and boundary yield surfaces), as recently proposed

  13. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  14. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  15. Effects of wind shear on the consequence model of the reactor safety study

    International Nuclear Information System (INIS)

    Sprung, J.L.; Church, H.W.

    1977-01-01

    The effects of explicit incorporation of wind shear into the consequence model of the Reactor Safety study have been investigated. The integral of exposure (X/Q) over area is unchanged by directional shear and decreased by speed shear. Consequence model predictions of early fatalities are always decreased by wind shear. Where early fatalities are decreased, survivors are subject to latent effects and, therefore, latent effects increase. However, aggregate early fatalities and latent effects always are decreased. Because the magnitude of these changes is within the present uncertainties of the consequence model, explicit incorporation of wind shear in the consequence model is not now warranted

  16. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  17. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  18. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  19. Shear strength, consolidation and drainage of colliery tailings lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J M

    1980-01-01

    The shear strength and consolidation characteristics of colliery tailings were related to the structure of the lagoon deposits. First, a theoretical investigation of vane shear tests in layered media is outlined, and then cone penetration tests are considered as an alternative tool for measuring strengths in situ. The geochemistry and sedimentology of colliery lagoons were investigated. The in-situ permeability of lagoons was also investigated and the results used to investigate the drainage characteristics. Finally, overtipping was investigated.

  20. Behaviour of steel-concrete composite beams using bolts as shear connectors

    Science.gov (United States)

    Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh

    2018-04-01

    The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.

  1. Detection of layup errors in prepreg laminates using shear ultrasonic waves

    Science.gov (United States)

    Hsu, David K.; Fischer, Brent A.

    1996-11-01

    The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.

  2. Shear bond strength of one-step self-etch adhesives: pH influence

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P adhesive systems showed lower shear bond strength values with significant differences between them (P 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  3. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a ...

  4. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  5. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    International Nuclear Information System (INIS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  6. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Energy Technology Data Exchange (ETDEWEB)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  7. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  8. An experimental investigation for external RC shear wall applications

    Science.gov (United States)

    Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.

    2010-09-01

    The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  9. An experimental investigation for external RC shear wall applications

    Directory of Open Access Journals (Sweden)

    M. Y. Kaltakci

    2010-09-01

    Full Text Available The strength and rigidity of most reinforced concrete (RC buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools. This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam. Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  10. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  12. Assessment of strength characteristics of Al2024 ECAP metal using small punch testing

    International Nuclear Information System (INIS)

    Ma, Young Wha; Choi, Jeong Woo; Yoon, Kee Bong; Kim, Seon Hwa

    2006-01-01

    When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes extremely refined. To measure the strength of that, Small Punch(SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to ψ12 mm in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al2024 ECAP metal was proposed and was proven to be effective

  13. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  14. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  15. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    Science.gov (United States)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  16. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  17. Studies and research concerning BNFP: shearing tests conducted at Allied-General Nuclear Services for the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Weil, B.; Townes, G.

    1979-09-01

    An experiment conducted to shear two dummy PWR subassemblies is described. Results pertain to the removal of end hardware by shearing, spacer grid fragmentation, the character of sheared product, product leachability, shearing force requirements, and the effects of compaction

  18. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Science.gov (United States)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  19. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Energy Technology Data Exchange (ETDEWEB)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto [Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm (Sweden)

    2016-02-07

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  20. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Science.gov (United States)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  1. Wave anisotropy of shear viscosity and elasticity

    Science.gov (United States)

    Rudenko, O. V.; Sarvazyan, A. P.

    2014-11-01

    The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

  2. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  3. Phenomenological Analysis of the Kinematic Hardening of HSLA and IF Steels Using Reverse Simple Shear Tests

    International Nuclear Information System (INIS)

    Aouafi, A.; Bouvier, S.; Gasperini, M.; Lemoine, X.; Bouaziz, O.

    2007-01-01

    Reverse simple shear tests are used to analyse the Bauschinger effect and the evolution of the kinematic hardening for a wide range of equivalent von Mises strain [0.025 - 0.3]. This work is carried out on two high strength low-alloyed steels. In order to investigate the effect of the precipitates on the macroscopic behaviour, a ferritic mild steel is used as a reference. Different phenomenological descriptions of the back-stress tensor are examined in order to analyse their ability to describe the experimental behaviour

  4. Full-scale shear wall tests for force transfer around openings

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker

    2010-01-01

    Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...

  5. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  6. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    Science.gov (United States)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  7. Grain refinement of DC cast magnesium alloys with intensive melt shearing

    International Nuclear Information System (INIS)

    Zuo, Y B; Jiang, B; Zhang, Y; Fan, Z

    2012-01-01

    A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation.

  8. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  9. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  10. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  11. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  12. Shear layer characteristics of supersonic free and impinging jets

    Science.gov (United States)

    Davis, T. B.; Kumar, R.

    2015-09-01

    The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

  13. Direction-Dependence Analysis: A Confirmatory Approach for Testing Directional Theories

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…

  14. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  15. Sketches of a hammer-impact, spiked-base, shear-wave source

    Science.gov (United States)

    Hasbrouck, W.P.

    1983-01-01

    Generation of shear waves in shallow seismic investigations (those to depths usually less than 100 m) can be accomplished by horizontally striking with a hammer either the end of a wood plank or metal structure embedded at the ground surface. The dimensioned sketches of this report are of a steel, hammer-impact, spiked-base, shear-wave source. It has been used on outcrops and in a desert environment and for conducting experiments on the effect of rotating source direction.

  16. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  17. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  18. Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash

    International Nuclear Information System (INIS)

    Xi, P. W.; Xu, X. Q.; Wang, X. G.; Xia, T. Y.

    2012-01-01

    The E × B shear flow plays a dual role on peeling-ballooning modes and their subsequently triggered edge localized mode (ELM) crashes. On one hand, the flow shear can stabilize high-n modes and twist the mode in the poloidal direction, constraining the mode's radial extent and reducing the size of the corresponding ELM. On the other hand, the shear flow also introduces the Kelvin-Helmholtz drive, which can destabilize peeling-ballooning modes. The overall effect of equilibrium shear flow on peeling-ballooning modes and ELM crashes depends on the competition between these two effects. When the flow shear is either small or very large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing effect from the Kelvin-Helmholtz term is dominant and leads to larger ELM crashes.

  19. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  20. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    Science.gov (United States)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  1. Behavior of Reinforced Concrete Membrane Elements Subjected to Bidirectional Shear Loads

    OpenAIRE

    Labib, M.; Moslehy, Y.; Ayoub, A.

    2013-01-01

    The shear design and behavior of a typical membrane reinforced concrete (RC) element has been extensively studied in the past several decades. Such design requires knowledge of the constitutive behavior of RC elements subjected to a shear stress acting along its plane (in-plane shear). These constitutive models were accurately derived from experimental test data on representative RC panel elements. The true behavior of many large, complex structures, however, involves interaction between the ...

  2. Effect of shear stress on the migration of hepatic stellate cells.

    Science.gov (United States)

    Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu

    2018-01-01

    When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.

  3. A preliminary study of shear wave elastography for the evaluation of unilateral palpable undescended testes

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Ayse Kalyoncu, E-mail: Aysekucar@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Alis, Deniz, E-mail: denizalis@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Samanci, Cesur, E-mail: cesursamanci@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Aslan, Mine, E-mail: mineus_77@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Habibi, Hatice Arioz, E-mail: arioz.hatice@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Dikici, Atilla Suleyman, E-mail: drsuleymandikici@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Namdar, Yesim, E-mail: namdaryesim@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Gultekin, Mehmet Hamza, E-mail: mhamzagultekin@hotmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Onal, Bulent, E-mail: bulonal@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey)

    2017-01-15

    Highlights: • Testicular biopsy is no longer recommended in the management of undescended testes. • SWE yields valuable quantitative information about the histological properties tissues by assessing stiffness. • Mean stiffness values of undescended testes were significantly higher than those of the contralateral descended testes. • SWE seems to be a useful sonographic technique to assess damage to the undescended testis. • SWE might replace testicular biopsy in the management of undescended testes. - Abstract: Objectives: We sought to compare unilateral palpable undescended testes and contralateral descended testes using shear wave elastography (SWE) to show potential quantitative differences in elasticity patterns, which might reflect the histologic features. Methods: Approval for this prospective study was obtained from the local ethics committee. A total of 29 patients (mean age, 7.52 years; range, 1–18 years) with unilateral palpable undescended testes and contralateral descended testes were examined by greyscale ultrasonography and SWE between February 2015 and April 2016. The volume and the elasticity of each testicle were the main factors evaluated. Results: There was no difference between undescended testes and contralateral descended testes in terms of volume. However, a significant difference was evident in SWE-derived quantitative data. Conclusions: SWE seems to be a useful sonographic technique to predict histologic features of the undescended testicle, which might replace testicular biopsy in modern management of the undescended testis.

  4. Finite element analyses for Seismic Shear Wall International Standard Problem

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions, however, are still based on empirical design rules established over decades from accumulated laboratory test data. This paper presents an overview of the state-of-the-art on the application of nonlinear FEM analysis to reinforced concrete (RC) shear wall structures under severe earthquake loadings based on the findings obtained during the Seismic Shear Wall International Standard Problem (SSWISP) Workshop in 1996. Also, BNL's analysis results of the International Standard Problem (ISP) shear walls under monotonic static, cyclic static and dynamic loading conditions are described

  5. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  6. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  7. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  8. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  9. Test on the splitting failure capacity of the bottom rail due to uplift in partially anchored shear walls

    OpenAIRE

    Caprolu, Giuseppe; Girhammar, Ulf Arne; Källsner, Bo; Johnsson, Helena

    2012-01-01

    Källsner and Girhammar have developed a new plastic design method for wood-frame shear walls at ultimate limit state. The method is capable of calculating the load-carrying capacity of partially anchored shear walls, where the leading stud is not necessarily anchored against uplift. In fully anchored shear walls, the leading stud needs to be anchored using some kind of hold-downs to resist uplift and the bottom rail needs to be fixed by anchor bolts to resist horizontal shear forces. In parti...

  10. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  12. Shear jamming: where does it come from and how is it affected by particle properties?

    Science.gov (United States)

    Wang, Dong

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the questions we address here is: how does shear bring a system from a unjammed state to a jammed state and how do particle properties, such as inter-particle friction and particle shape, affect shear jamming? Since Z can be used to distinguish jammed states from unjammed ones (Z = 3 is the isotropic jamming point for 2 D frictional disks), it is vital to understand how shear increases Z. In the first part of this talk, we propose a set of three particles in contact, denoted as a trimer, as the basic unit to microscopically characterize the deformation of the system. Trimers, stabilized by inter-grain friction, are then expected to bend in response to shear to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In the second part of this talk, we look into the effect of particle properties on shear jamming. Photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction are used to study the effect of friction. In addition, disks are replaced with ellipses to introduce anisotropy into the particle shape. Shear jamming is observed for all the cases. For the disk system, the lowest packing fraction that can reach a shear jammed state increases with friction. For the ellipse system, shear brings the system to a more ordered state and particles tend to align to a certain angle relative to the principal directions of shear, regardless of packing fraction. Support by NSF DMR1206351, NASA NNX15AD38G, the W. M. Keck Foundation and a Triangle MRSEC

  13. Linear and nonlinear studies of velocity shear driven three dimensional electron-magnetohydrodynamics instability

    International Nuclear Information System (INIS)

    Gaur, Gurudatt; Das, Amita

    2012-01-01

    The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.

  14. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    Science.gov (United States)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  15. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  16. In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Scherfig, Søren

    1996-01-01

    The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results....... The paper documents the shear force capacity for the joint strength between the most common joint types between precast LAC roof and floor elements used in Scandinavia....

  17. Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams

    Directory of Open Access Journals (Sweden)

    Maha M.S. Ridha

    2018-06-01

    Full Text Available Eighteen reactive powder concrete (RPC beams subjected to monotonic loading were tested to quantify the effect of a novel cementitious matrix materials on the shear behavior of longitudinally reinforced RPC beams without web reinforcement. The main test variables were the ratio of the shear span-to- effective depth (a/d, the ratio of the longitudinal reinforcement (ρw, the percentage of steel fibers volume fractions (Vf and the percentage of silica fume powder (SF. A massive experimental program was implemented with monitoring the concrete strain, the deflection and the cracking width and pattern for each RPC beam during the test at all the stages of the loading until failure. The findings of this paper showed that the addition of micro steel fibers (Lf/Df = 13/0.2 into the RPC mixture did not dramatically influence the initial diagonal cracking load whereas it improved the ultimate load capacity, ductility and absorbed energy. The shear design equations proposed by Ashour et al. and Bunni for high strength fiber reinforced concrete (HSFRC beams have been modified in this paper to predict the shear strength of slender RPC beams without web reinforcement and with a/d ≥ 2.5. The predictions of the modified equations are compared with Equations of Shine et al., Kwak et al. and Khuntia et al. Both of the modified equations in this paper gave satisfied predictions for the shear strength of the tested RPC beams with COV of 7.9% and 10%. Keywords: Beams, Ductility, Crack width, Absorbed energy, Reactive powder concrete, Steel fibers

  18. Experimental Study on the Shear Transfer Across Cracks in Reinforced Concrete

    DEFF Research Database (Denmark)

    Weiqing, Liu; Nielsen, Mogens Peter; Ding, Dajun

    1999-01-01

    In this paper the influence of the concrete compressive strength and the reinforcement ratio on the shear transfer across cracks are studied experimentally and theoretically. Tests on 84 specimens of the push-off type are reported. Most of the specimens were precracked along the shear plane. Among...

  19. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Issue of Changes in Adhesion of Bitumen Sheet to Primary Layer over the Course of Time in Multilayer Waterproofing during Shear Testing

    Science.gov (United States)

    Plachý, Jan; Vysoká, Jana; Vejmelka, Radek; Horský, Jan; Vacek, Vítězslav

    2017-10-01

    This paper is based on research dealing with defects that appear on concrete bridge decks with an insulating layer from asphalt strips on the interface between the asphalt strip and its basis. The durability and lifespan of the bearing structure of concrete bridge is determined by insulating layer that constitutes, together with the primary layer and a protective layer, the insulation system of the concrete bridge deck. Paints based on low viscosity epoxy resigns are one of the possibilities of primary layer implementation. These paints may be performed as anchoring-impregnation paints that usually represent single layer paint on the bridge deck surface. Sealing layer is another variant. Sealing layer is a multilayer consisting of anchoring- impregnation paint and sealing paint. The primary layers mainly provide vapour closing of the concrete surface, and partly, through roughening the surface, contribute to adhesion of bitumen (asphalt) insulation (waterproofing) layer. Application of the primary layer has been spreading in the Czech Republic since the 1990s. Now, after approximately 30 years of use defects in these epoxy based sealing layers at the interface between primary layer and waterproofing layer of reinforced bitumen sheets (RBS) are being solved in the Czech Republic. After performance of the first test focusing on breaking-strength, it was found that the strength between the asphalt and the primary belt layer in some types of low-viscosity resin-epoxy decreases and after a certain period of time again increases, depending on the time. Tensile strength test is carried out on a sample of asphalt strip, which is fused onto the substrate with a primer coat. It was therefore proceeded to test the shear adhesion. Testing of the shear adhesion is conducted on the entire concrete deck waterproofing system. It was supposed that the decrease of adhesion at this test become evident in higher extent. Adhesion tests in shear were performed on the primary layer

  1. The shear viscosity of the non-commutative plasma

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Mas, Javier

    2007-01-01

    We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory

  2. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  3. Shape and shear guide sperm cells spiraling upstream

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  4. Anisotropic frequency response of critical density fluctuation of NIPA gel under oscillation shear

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Masaaki [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)]. E-mail: sugiyama@rri.kyoto-u.ac.jp; Vigild, Martin E. [Danish Polymer Centre, Technical University of Denmark, 2800 Lyngby (Denmark); Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Itoh, Keiji [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Sato, Takashi [Department of Engineering Physics and Mechanics, Kyoto University, Kyoto 606-8501 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    A relation between rheology and structure of high density NIPA gel around a critical point on volume phase transition was studied by a simultaneous rheology and small-angle neutron scattering measurement. Just below the critical temperature, the NIPA gel showed softening: G{sup '} and G{sup '}' get closer (G{sup '}>G{sup '}'). At this temperature, the density fluctuation enhanced along the shear direction corresponding to the shear frequency but not to the shear strength. It means that this anisotropy is different from that observed in a statically stretched gel.

  5. Studies on Impingement Effects of Low Density Jets on Surfaces — Determination of Shear Stress and Normal Pressure

    Science.gov (United States)

    Sathian, Sarith. P.; Kurian, Job

    2005-05-01

    This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.

  6. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  7. Characterization of Shear Properties for APO/MBI Syntactic Foam

    Energy Technology Data Exchange (ETDEWEB)

    Reser, Patrick M. [Univ. of New Mexico, Albuquerque, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, Jarod [Univ. of New Mexico, Albuquerque, NM (United States); Ahuja, Nishant [Univ. of New Mexico, Albuquerque, NM (United States); Lenke, Lary R. [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-12-14

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shear behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and

  8. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  9. Control of cracking in R.C. Structures: Numerical simulation of a squat shear wall

    NARCIS (Netherlands)

    Damoni, C.; Belletti, B.; Lilliu, G.

    2013-01-01

    In this paper the behavior of a squat shear wall subjected to monotonic shear loading is investigated. The study fits into the experimental program driven by CEOS.fr on modeling of the behavior of the tested mocks-ups (monotonic and cycling loading-under prevented or free shrinkage). The shear wall

  10. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  11. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  12. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    Science.gov (United States)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  13. A New Accurate yet Simple Shear Flexible Triangular Plate Element with Linear Bending Strains

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2010-01-01

    The paper describes a new shear flexible triangular element. The formulation is based on displacement interpolation of the transverse displacement of the midsurface and the rotations of the cross-sections, and the element is fully compatible. The basic principle is to use a so-called balanced...... interpolation so that the part of the shear strains that relates to the transverse displacement has the same polynomial variation as the part of the shear strains that relates to the rotations of the cross-section. This balanced interpolation in combination with complete polynomial interpolations prevents shear...... are virtually the same. The slightly incompatible formulation can be implemented directly into commercial codes....

  14. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    Science.gov (United States)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  15. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  16. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    Science.gov (United States)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  17. Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations

    International Nuclear Information System (INIS)

    Sanchez, R; Newman, D E; Leboeuf, J-N; Decyk, V K

    2011-01-01

    The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data.

  18. Study on reinforced lightweight coconut shell concrete beam behavior under shear

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: • Coconut shell used as aggregate in concrete production. • Coconut shell concrete beam behavior studied under shear. • Coconut shell concrete beam behavior are compared with control concrete beams. - Abstract: Lightweight concrete has been produced using crushed coconut shell as coarse aggregate. The shear behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Eight beams, four with coconut shell concrete and four with normal control concrete were fabricated and tested. Study includes the structural shear behavior, shear capacity, cracking behavior, deflection behavior, ductility, strains in concrete and in reinforcement. It was observed that the shear behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under shear loadings. However, the failure zones of coconut shell concrete were larger than for control concrete beams

  19. A study on shear behavior of reinforced concrete beams subjected to long-term heating

    International Nuclear Information System (INIS)

    Maruta, M.; Yamazaki, M.; Miyashita, T.

    1995-01-01

    A study has been undertaken to determine the shear behavior of reinforced concrete members in nuclear power plant facilities following sustained heating to high temperatures. A total of nine specimens was tested. The parameters of the tests were (1) heating temperature (65, 90 and 175 C) and (2) heating period (1, 3, 6 or 12 months). Different combinations of these parameters were employed, and the shear strength deterioration rate was evaluated. The test results were confirmed by a non-linear finite element analysis. The relationship between the concrete compressive strengths, which varied from heating face to upper portion, and the shear strength in specimens was evaluated. (orig.)

  20. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  1. Flexural Strengthening of RC Slabs Using a Hybrid FRP-UHPC System Including Shear Connector

    Directory of Open Access Journals (Sweden)

    Jiho Moon

    2017-01-01

    Full Text Available A polymeric hybrid composite system made of UHPC and CFRP was proposed as a retrofit system to enhance flexural strength and ductility of RC slabs. While the effectiveness of the proposed system was confirmed previously through testing three full-scale one-way slabs having two continuous spans, the slabs retrofitted with the hybrid system failed in shear. This sudden shear failure would stem from the excessive enhancement of the flexural strength over the shear strength. In this study, shear connectors were installed between the hybrid system and a RC slab. Using simple beam, only positive moment section was examined. Two full-scale RC slabs were cast and tested to failure: the first as a control and the second using this new strengthening technique. The proposed strengthening system increased the ultimate load carrying capacity of the slab by 70%, the stiffness by 60%, and toughness by 128%. The efficiency of shear connectors on ductile behavior of the retrofitted slab was also confirmed. After the UHPC top is separated from the slab, the shear connector transfer shear load and the slab system were in force equilibrium by compression in UHPC and tension in CFRP.

  2. Theory of the mechanical response of focal adhesions to shear flow

    International Nuclear Information System (INIS)

    Biton, Y Y; Safran, S A

    2010-01-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  3. INVESTIGATION OF INNER SHEAR RESISTANCE OF GEOGRIDS BUILT UNDER GRANULAR PROTECTION LAYERS AND RAILWAY BALLAST

    Directory of Open Access Journals (Sweden)

    Sz. Fischer

    2015-10-01

    Full Text Available Purpose. Using adequate granular materials and layer structures in the railway super- and substructure is able to stabilise railway track geometry. For this purpose special behaviour of above materials has to be determined, e.g. inner shear resistance. Inner shear resistance of granular media with and without geogrid reinforcement in different depths is not known yet. Methodology. The author developed a special laboratory method to measure and define inner shear resistance of granular materials, it is called «multi-level shear box test». This method is adequate to determine inner shear resistance (pushing force vs. depth (distance from the «zero» surface. Two different granular materials: andesite railway ballast (31.5/63 mm and andesite railway protection layer material (0/56 mm, and seven different types of geogrids (GG1…GG7 were used during the tests. Findings. Values of inner shear resistance functions of andesite railway ballast without geogrid reinforcement and reinforced with different types of geogrids and andesite granular protection layer in function of the vertical distance from the geogrid plane were determined with multi-layer shear box tests when the material aggregation is uncompacted and compacted. Only the compacted sample was tested in case of the 0/56 mm protection layer. Cubic polynomial regression functions fitted on the mean values of the measurements are described graphically. Determination coefficients with values of R2>0.97 were resulted in all the cases of regression functions. Based on the polynomial regression functions fitted on the mean values of the test results, three increasing factors were determined in function of the distance measured from the geogrid. Increasing factor «A», «B» and «D». Originality. Multi-level shear box test, developed by the author, is certified unequivocally adequate for determining inner shear resistance of reinforced and unreinforced granular materials, e.g. railway ballast

  4. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  5. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    Science.gov (United States)

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  6. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain

    2008-01-01

    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  7. Wall shear stress hot film sensor for use in gases

    International Nuclear Information System (INIS)

    Osorio, O D; Silin, N

    2011-01-01

    The purpose of this work is to present the construction and characterization of a wall shear stress hot film sensor for use in gases made with MEMS technology. For this purpose, several associated devices were used, including a constant temperature feedback bridge and a shear stress calibration device that allows the sensor performance evaluation. The sensor design adopted here is simple, economical and is manufactured on a flexible substrate allowing its application to curved surfaces. Stationary and transient wall shear stress tests were carried on by means of the calibration device, determining its performance for different conditions.

  8. Turbulence suppression by E x B shear in JET optimized shear pulses

    International Nuclear Information System (INIS)

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-01

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier

  9. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  10. Calculating tissue shear modulus and pressure by 2D log-elastographic methods

    International Nuclear Information System (INIS)

    McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando

    2010-01-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ . u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms

  11. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO 2 rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO 2 -rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium-rich solids. The calciner and some of its ancillary equipment were previously tested with non-radioactive chemicals to demonstrate operability

  12. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO 2 rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO 2 -rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability

  13. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    2000-02-03

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO{sub 2} rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO{sub 2}-rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium-rich solids. The calciner and some of its ancillary equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  14. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    2000-02-03

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO{sub 2} rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO{sub 2}-rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  15. 21 CFR 862.1110 - Bilirubin (total or direct) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bilirubin (total or direct) test system. 862.1110... Systems § 862.1110 Bilirubin (total or direct) test system. (a) Identification. A bilirubin (total or direct) test system is a device intended to measure the levels of bilirubin (total or direct) in plasma...

  16. Effect of stable-density stratification on counter gradient flux of a homogeneous shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lida, Oaki; Nagano, Yasutaka [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan). Department of Mechanical Engineering

    2007-01-15

    We performed direct numerical simulations of homogeneous shear flow under stable-density stratification to study the buoyancy effects on the heat and momentum transfer. These numerical data were compared with those of a turbulent channel flow to investigate the similarity between the near-wall turbulence and the homogeneous shear flow. We also investigated the generation mechanism of the persistent CGFs (counter gradient fluxes) appearing at the higher wavenumbers of the cospectrum, and lasting over a long time without oscillation. Spatially, the persistent CGFs are associated with the longitudinal vortical structure, which is elongated in the streamwise direction and typically observed in both homogeneous shear flow and near-wall turbulence. The CGFs appear at both the top and bottom of this longitudinal vortical structure, and expand horizontally with an increase in the Richardson number. It was found that the production and turbulent-diffusion terms are responsible for the distribution of the Reynolds shear stress including the persistent CGFs. The buoyancy term, combined with the swirling motion of the vortex, contributes to expand the persistent CGF regions and decrease the down gradient fluxes. (author)

  17. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  18. Adaptation of endothelial cells to physiologically-modeled, variable shear stress.

    Directory of Open Access Journals (Sweden)

    Joseph S Uzarski

    Full Text Available Endothelial cell (EC function is mediated by variable hemodynamic shear stress patterns at the vascular wall, where complex shear stress profiles directly correlate with blood flow conditions that vary temporally based on metabolic demand. The interactions of these more complex and variable shear fields with EC have not been represented in hemodynamic flow models. We hypothesized that EC exposed to pulsatile shear stress that changes in magnitude and duration, modeled directly from real-time physiological variations in heart rate, would elicit phenotypic changes as relevant to their critical roles in thrombosis, hemostasis, and inflammation. Here we designed a physiological flow (PF model based on short-term temporal changes in blood flow observed in vivo and compared it to static culture and steady flow (SF at a fixed pulse frequency of 1.3 Hz. Results show significant changes in gene regulation as a function of temporally variable flow, indicating a reduced wound phenotype more representative of quiescence. EC cultured under PF exhibited significantly higher endothelial nitric oxide synthase (eNOS activity (PF: 176.0±11.9 nmol/10(5 EC; SF: 115.0±12.5 nmol/10(5 EC, p = 0.002 and lower TNF-a-induced HL-60 leukocyte adhesion (PF: 37±6 HL-60 cells/mm(2; SF: 111±18 HL-60/mm(2, p = 0.003 than cells cultured under SF which is consistent with a more quiescent anti-inflammatory and anti-thrombotic phenotype. In vitro models have become increasingly adept at mimicking natural physiology and in doing so have clarified the importance of both chemical and physical cues that drive cell function. These data illustrate that the variability in metabolic demand and subsequent changes in perfusion resulting in constantly variable shear stress plays a key role in EC function that has not previously been described.

  19. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.

    2011-01-01

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.

  20. Shear Strengthening of Corbels with Carbon Fibre Reinforced Polymers (CFRP

    Directory of Open Access Journals (Sweden)

    Nawaz, A.

    2010-09-01

    Full Text Available Corbels constitute what are known as “disturbed” regions in concrete structures, where typical shear failure may be anticipated on the grounds of small shear span-to-depth ratios. The concentration of stress induced by the weight of girders on the very small loadbearing areas in corbels often causes cracking in bridges and other structures. Little experimental research can be found in the literature on the shear strengthening of corbels. In the present study, nine such members were tested. Two had no carbon fibre reinforced polymers attached, while CFRP laminates were externally bonded to the other seven, in a number of different spatial arrangements. Ultimate shear strength was found and compared for all specimens. The results showed that CFRP configuration and geometry directly affected corbel shear strength, which was higher in all the CFRPstrengthened corbels than in the controls. The highest strength values were recorded for specimens whose shear-critical area was wrapped in CFRP.

    Las ménsulas constituyen lo que conocemos como regiones de “distorsión” en las estructuras de hormigón, zonas en que pueden preverse roturas por cortante debido a las bajas relaciones luz de cortante-canto presentes en ellas. La concentración de solicitaciones producida por el peso de las vigas sobre superficies de carga muy reducidas en las ménsulas a menudo provoca el agrietamiento de puentes y otras estructuras de obra civil. En la literatura especializada sobre el refuerzo a cortante de las ménsulas existen escasos ejemplos de estudios experimentales. Para la presente investigación se han realizado ensayos con nueve elementos de este tipo. Dos de ellos no incluían polímeros reforzados con fibra de carbono (CFRP, mientras que los siete restantes llevaban láminas externas de CFRP, dispuestas siguiendo distintas configuraciones espaciales. Los resultados indican que la configuración y la disposición geométrica de los CFRP repercuten

  1. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  2. Connection between fragility, mean-squared displacement and shear modulus in two van der Waals bonded glass-forming liquids

    DEFF Research Database (Denmark)

    Hansen, Henriette Wase; Frick, Bernhard; Hecksher, Tina

    2017-01-01

    The temperature dependence of the high-frequency shear modulus measured in the kHz range is compared with the mean-squared displacement measured in the nanosecond range for the two van der Waals bonded glass-forming liquids cumene and 5-polyphenyl ether. This provides an experimental test for the...... for the assumption connecting two versions of the shoving model for the non-Arrhenius temperature dependence of the relaxation time in glass formers. The two versions of the model are also tested directly and both are shown to work well for these liquids....

  3. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  4. Post retention and post/core shear bond strength of four post systems.

    Science.gov (United States)

    Stockton, L W; Williams, P T; Clarke, C T

    2000-01-01

    As clinicians we continue to search for a post system which will give us maximum retention while maximizing resistance to root fracture. The introduction of several new post systems, with claims of high retentive and resistance to root fracture values, require that independent studies be performed to evaluate these claims. This study tested the tensile and shear dislodgment forces of four post designs that were luted into roots 10 mm apical of the CEJ. The Para Post Plus (P1) is a parallel-sided, passive design; the Para Post XT (P2) is a combination active/passive design; the Flexi-Post (F1) and the Flexi-Flange (F2) are active post designs. All systems tested were stainless steel. This study compared the test results of the four post designs for tensile and shear dislodgment. All mounted samples were loaded in tension until failure occurred. The tensile load was applied parallel to the long axis of the root, while the shear load was applied at 450 to the long axis of the root. The Flexi-Post (F1) was significantly different from the other three in the tensile test, however, the Para Post XT (P2) was significantly different to the other three in the shear test and had a better probability for survival in the Kaplan-Meier survival function test. Based on the results of this study, our recommendation is for the Para Post XT (P2).

  5. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  6. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  7. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  8. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  9. Hydrodynamic of a deformed bubble in linear shear flow; Hydrodynamique d'une bulle deformee dans un ecoulement cisaille

    Energy Technology Data Exchange (ETDEWEB)

    Adoua, S.R

    2007-07-15

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  10. The Effect of Binder and Waste Granular Materials (WGM on the Shear Strength and Shear Resistance of Dredged Marine Soils (DMS

    Directory of Open Access Journals (Sweden)

    Rosman Mohammad Zawawi

    2017-01-01

    Full Text Available Dredged marine soil (DMS is considered as weak and soft problematic soil. It is possible to give this type of soil a second life if only its geotechnical properties are improved. Infusing soil with solidification agent is the common practice of soil improvement. This study uses binder and waste granular material (WGM such as cement, bottom ash (BA and palm oil clinker (POC. The aforementioned materials are capable to fortify the poor features of the soil. Series numbers of soil bed samples were tested for its shear strength and shear resistance. Test results show that the mentioned soil parameters were corresponded with each other. In short, geo-waste and biomass materials are possible to be reused instead of being discarded.

  11. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  12. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  13. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study

    Science.gov (United States)

    Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng

    2017-12-01

    This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.

  14. Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Adamson, David; Oostrom, Martinus; Zhong, Lirong; Mackley, Rob D.; Fritz, Brad G.; Horner, Jacob A.; Johnson, Timothy C.; Thomle, Jonathan N.; Newcomer, Darrell R.; Johnson, Christian D.; Rysz, Michal; Wietsma, Thomas W.; Newell, Charles J.

    2015-03-01

    Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.

  15. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Qiyun Qiao

    2017-12-01

    Full Text Available In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  16. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  17. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  18. Direct to consumer genetic testing and the libertarian right to test.

    Science.gov (United States)

    Loi, Michele

    2016-09-01

    I sketch a libertarian argument for the right to test in the context of 'direct to consumer' (DTC) genetic testing. A libertarian right to genetic tests, as defined here, relies on the idea of a moral right to self-ownership. I show how a libertarian right to test can be inferred from this general libertarian premise, at least as a prima facie right, shifting the burden of justification on regulators. I distinguish this distinctively libertarian position from some arguments based on considerations of utility or autonomy, which are sometimes labelled 'libertarian' because they oppose a tight regulation of the direct to consumer genetic testing sector. If one takes the libertarian right to test as a starting point, the whole discussion concerning autonomy and personal utility may be sidestepped. Finally, I briefly consider some considerations that justify the regulation of the DTC genetic testing market, compatible with the recognition of a prima facie right to test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.

    2011-12-23

    Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows.

  20. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... consumer genetic testing. Additional information about direct-to-consumer marketing of genetic tests and related research questions are ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  1. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  2. Casing pull tests for directionally drilled environmental wells

    International Nuclear Information System (INIS)

    Staller, G.E.; Wemple, R.P.; Layne, R.R.

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it's industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported

  3. Casing pull tests for directionally drilled environmental wells

    Energy Technology Data Exchange (ETDEWEB)

    Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  4. The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.

    Science.gov (United States)

    Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph

    2013-05-01

    To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  6. Shear bond strength of a new one-bottle dentin adhesive.

    Science.gov (United States)

    Swift, E J; Bayne, S C

    1997-08-01

    To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.

  7. LES-ODT Simulations of Turbulent Reacting Shear Layers

    Science.gov (United States)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  8. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  9. Test method research on weakening interface strength of steel - concrete under cyclic loading

    Science.gov (United States)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  10. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  11. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    International Nuclear Information System (INIS)

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-01-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within ±53 MPa. The accuracy of the correlation improves with increasing material strength, to within ± MPa for predicting tensile yield strengths in the range of 400-800 MPa

  12. Enhancement of human mesenchymal stem cell infiltration into the electrospun poly(lactic-co-glycolic acid) scaffold by fluid shear stress.

    Science.gov (United States)

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Behavior of Shear Link of WF Section with Diagonal Web Stiffener of Eccentrically Braced Frame (EBF of Steel Structure

    Directory of Open Access Journals (Sweden)

    Yurisman

    2010-11-01

    Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test

  14. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  15. Length and activation dependent variations in muscle shear wave speed

    International Nuclear Information System (INIS)

    Chernak, L A; DeWall, R J; Lee, K S; Thelen, D G

    2013-01-01

    Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s –1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s –1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties. (paper)

  16. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    International Nuclear Information System (INIS)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-01-01

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  17. Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-11-01

    Full Text Available This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder and 4%, 6%, 8% and 10% THFS (by weight of SK-90, were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature.

  18. An experimental study on the flexural and shear behavior of steel plate concrete—reinforced concrete connected structures

    International Nuclear Information System (INIS)

    Hwang, K.M.; Lee, K.J.; Yang, H.J.; Kim, W.K.

    2013-01-01

    Highlights: ► This paper confirmed the structural behavior of the connection plane between a RC and a SC member. ► Out-of-plane flexural load tests verified the appropriateness of the ductile non-contact splice length. ► The test results for the in-plane shear load showed the needlessness of horizontal bars in the SC member. ► In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. ► Numerical analysis was carried out to verify test results and its results was compared with them. -- Abstract: This paper describes an experimental study on the structural behavior of the joint plane between a RC (reinforced concrete) wall and a SC (steel plate concrete) wall under out-of-plane flexural loads and in-plane shear loads. L- and I-shaped test specimens were produced to efficiently assess the flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. The out-of-plane flexural test conducted on the short development length L-shaped specimen with a non-contact splice length exhibited a ductile failure mode that surpassed the nominal strength, verifying the validity of the splice length used in its design. The in-plane shear test was conducted on two I-shaped specimens varying the compositional presence of horizontal bars in the SC member. The test results showed that the capacity of the specimens was more than their nominal strength regardless of the compositional presence of horizontal bars. The shear friction tests of the RC–SC member connection conducted on the other L-shaped specimen caused the failure of the SC member and verified a shear resistance of at least 85.5% compared to the theoretical value

  19. Calibration of DEM parameters on shear test experiments using Kriging method

    Science.gov (United States)

    Xavier, Bednarek; Sylvain, Martin; Abibatou, Ndiaye; Véronique, Peres; Olivier, Bonnefoy

    2017-06-01

    Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.

  20. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  1. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  2. Shear deformation-induced anisotropic thermal conductivity of graphene.

    Science.gov (United States)

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  3. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites

    International Nuclear Information System (INIS)

    Hassan, Tarig A.; Rangari, Vijay K.; Jeelani, Shaik

    2010-01-01

    Shear thickening is a non-Newtonian fluid behavior defined as the increase of viscosity with the increase in the applied shear rate. The shear thickening fluid (STF) is a combination of hard metal oxide particles suspended in a liquid polymer. This mixture of flowable and hard components at a particular composition, results in a material with remarkable properties. In this manuscript the shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles dispersed in liquid polyethylene glycol polymer. The as-prepared STFs have been tested for their rheological and thermal properties. Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric composite. Knife threats and quasistatic penetration tests were performed on the neat fabrics and STF/fabric composite targets for both engineered spike and knife on areal density basis. The results showed that STF impregnated fabrics have better penetration resistance as compared to neat fabrics without affecting the fabric flexibility. This indicates that the addition of STF to the fabric have enhanced the fabric performance and can be used in liquid body armor applications.

  4. Spinning and tumbling of micron-sized triangles in a micro-channel shear flow

    Science.gov (United States)

    Fries, J.; Kumar, M. Vijay; Mihiretie, B. Mekonnen; Hanstorp, D.; Mehlig, B.

    2018-03-01

    We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners, we can observe the spinning directly. In general, the spinning frequency is different from the tumbling frequency and the spinning is affected by tumbling. This gives rise to doubly periodic angular dynamics.

  5. Beam Shear Design According to Eurocode 2 - Limitations for the Concrete Strut Inclinations

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Hestbech, Lars; Fisker, Jakob

    2011-01-01

    and are presented. These beams are all designed to fail in shear and the shear reinforcement is designed for different values of the concrete strut inclinations (cot θ varies from 1.5 to 3.4). These tests indicate a clear connection between the values of the concrete strut inclinations and crack width in the SLS......The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested....... In cases where larger crack widths (w > 0.4 mm) can be accepted, larger values of the concrete strut inclinations can be chosen. This will lead to less shear reinforcements. The results are also compared with analytical analysis based on energy methods. At the SLS the beams are expected to be cracked...

  6. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  7. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  8. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    Science.gov (United States)

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.

  9. Experimental and Computational Study of Ductile Fracture in Small Punch Tests

    Directory of Open Access Journals (Sweden)

    Betül Gülçimen Çakan

    2017-10-01

    Full Text Available A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.

  10. Experimental and Computational Study of Ductile Fracture in Small Punch Tests.

    Science.gov (United States)

    Gülçimen Çakan, Betül; Soyarslan, Celal; Bargmann, Swantje; Hähner, Peter

    2017-10-17

    A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.

  11. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  12. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints

    Science.gov (United States)

    Sona, Mrunali; Prabhu, K. Narayan

    2017-09-01

    The failure of solder joints due to imposed stresses in an electronic assembly is governed by shear bond strength. In the present study, the effect of wetting gravity regime on single-lap shear strength of Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu solder alloys reflowed between bare copper substrates as well as Ni-coated Cu substrates was investigated. Samples were reflowed for 10 s, T gz (time corresponding to the end of gravity regime) and 100 s individually and tested for single-lap shear strength. The single-lap shear test was also carried out on eutectic Sn-Pb/Cu- and Sn-Pb/Ni-coated Cu specimens to compare the shear strength values obtained with those of lead-free alloys. The eutectic Sn-Pb showed significantly higher ultimate shear strength on bare Cu substrates when compared to Sn-Ag-Cu alloys. However, SAC alloys reflowed on nickel-coated copper substrate exhibited higher shear strength when compared to eutectic Sn-Pb/Ni-coated Cu specimens. All the substrate/solder/substrate lap joint specimens that were reflowed for the time corresponding to the end of gravity regime exhibited maximum ultimate shear strength.

  13. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  14. Effect of composite warming on shear bond strength.

    Science.gov (United States)

    McDaniel, Thomas F; Sigrist, Thomas W; Johnson, Gary M

    2018-01-01

    Several manufacturers produce devices designed to warm composite resins used in restorative dentistry. Previous investigators have examined the effects of heating composite restorative resins prior to placement and polymerization. Heating has been reported to reduce viscosity, improve ease of placement, enhance monomer conversion, and reduce microleakage. The aim of the present study was to compare shear bond strengths of room temperature (22°C) and prewarmed (54°C) restorative composite resin. Extracted bovine mandibular incisors were sectioned sagittally and embedded in acrylic cylinders. Enamel was selectively etched with 37% phosphoric acid, rinsed, and dried. Self-etching primer was applied to both enamel and dentin. Self-etching adhesive was then applied and photopolymerized. Composite resin capsules were then divided into prewarmed and room temperature groups. Fourteen composite specimens prewarmed in an incubator were applied to the prepared enamel and dentin and photopolymerized. Fourteen room temperature composite specimens were likewise placed. After storage in water for 24 hours, all composite specimens were subjected to shear stress testing. The resulting data were analyzed with a t test (P = 0.05). There was no statistically significant difference between the shear bond strengths of the prewarmed and room temperature composite resin specimens. Warming does not appear to affect bond strength of composite resin bonded to both dentin and enamel.

  15. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  16. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  17. Physical test of a particle simulation model in a sheared granular system.

    Science.gov (United States)

    Rycroft, Chris H; Orpe, Ashish V; Kudrolli, Arshad

    2009-09-01

    We report a detailed comparison of a slow gravity-driven sheared granular flow with a discrete-element simulation performed in the same geometry. In the experiments, grains flow inside a silo with a rectangular cross section and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index-matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The simulations use a Cundall-Strack contact model between the grains using contact parameters that have been used in many other previous studies and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. We then perform a detailed comparison of the particle fluctuation properties as measured by the displacement probability distribution function and the mean square displacement. All in all, our study suggests a high level of quantitative agreement between the simulations and experiments.

  18. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  19. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  20. Fusion performance analysis of plasmas with reversed magnetic shear in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Nazikian, R.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    A case for substantial loss of fast ions degrading the performance of tokamak fusion test reactor plasmas [Phys. Plasmas 2, 2176 (1995)] with reversed magnetic shear (RS) is presented. The principal evidence is obtained from an experiment with short (40 - 70 ms) tritium beam pulses injected into deuterium beam heated RS plasmas [Phys. Rev. Lett. 82, 924 (1999)]. Modeling of this experiment indicates that up to 40% beam power is lost on a time scale much shorter than the beam - ion slowing down time. Critical parameters which connect modeling and experiment are: The total 14 MeV neutron emission, its radial profile, and the transverse stored energy. The fusion performance of some plasmas with internal transport barriers is further deteriorated by impurity accumulation in the plasma core. copyright 1999 American Institute of Physics