WorldWideScience

Sample records for direct readout infrared

  1. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  2. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  3. JPSS Science Data Services for the Direct Readout Community

    Science.gov (United States)

    Chander, Gyanesh; Lutz, Bob

    2014-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.

  4. Multi-path interferometric Josephson directional amplifier for qubit readout

    Science.gov (United States)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  5. Image processing system design for microcantilever-based optical readout infrared arrays

    Science.gov (United States)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  6. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    Science.gov (United States)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  7. Direct ion storage dosimetry systems for photon, beta and neutron radiation with instant readout capabilities

    International Nuclear Information System (INIS)

    Wernli, C.; Kahilainen, J.

    2001-01-01

    The direct ion storage (DIS) dosemeter is a new type of electronic dosemeter from which the dose information for both H p (10) and H p (0.07) can be obtained instantly at the workplace by using an electronic reader unit. The number of readouts is unlimited and the stored information is not affected by the readout procedure. The accumulated dose can also be electronically reset by authorised personnel. The DIS dosemeter represents a potential alternative for replacing the existing film and thermoluminescence dosemeters (TLDs) used in occupational monitoring due to its ease of use and low operating costs. The standard version for normal photon and beta dosimetry, as well as a developmental version for neutron dosimetry, have been characterised in several field studies. Two new small size variations are also introduced including a contactless readout device and a militarised version optimised for field use. (author)

  8. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Fossum, Eric R.

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  9. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    Science.gov (United States)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  10. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    Science.gov (United States)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  11. Design issues of a low cost lock-in amplifier readout circuit for an infrared detector

    Science.gov (United States)

    Scheepers, L.; Schoeman, J.

    2014-06-01

    In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout

  12. Direct and inverse problems of infrared tomography

    DEFF Research Database (Denmark)

    Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander

    2016-01-01

    The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...

  13. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  14. A 10 MHz micropower CMOS front end for direct readout of pixel detectors

    International Nuclear Information System (INIS)

    Campbell, M.; Heijne, E.H.M.; Jarron, P.; Krummenacher, F.; Enz, C.C.; Declercq, M.; Vittoz, E.; Viertel, G.

    1990-01-01

    In the framework of the CERN-LAA project for detector R and D, a micropower circuit of 200 μmx200 μm with a current amplifier, a latched comparator and a digital memory element has been tested electrically and operated in connection with linear silicon detector arrays. The experimental direct-readout (DRO) chip comprises a matrix of 9x12 circuit cells and has been manufactured in a 3 μm CMOS technology. Particles and X-ray photons below 22 keV were detected, and thresholds can be set between 2000 and 20000 e - . The noise is less than 4 keV FWHM or 500 e - rms and the power dissipation per pixel element is 30 μW. The chip can be coupled to a detector matrix using bump bonding. (orig.)

  15. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Science.gov (United States)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  16. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  17. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    International Nuclear Information System (INIS)

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  18. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    Science.gov (United States)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  19. Dissecting direct and indirect readout of cAMP receptor protein DNA binding using an inosine and 2,6-diaminopurine in vitro selection system

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter E.; Møllegaard, Niels Erik

    2008-01-01

    The DNA interaction of the Escherichia coli cyclic AMP receptor protein (CRP) represents a typical example of a dual recognition mechanism exhibiting both direct and indirect readout. We have dissected the direct and indirect components of DNA recognition by CRP employing in vitro selection...... is functionally intact. The majority of the selected sites contain the natural consensus sequence TGTGAN(6)TCACA (i.e. TITIDN(6)TCDCD). Thus, direct readout of the consensus sequence is independent of minor groove conformation. Consequently, the indirect readout known to occur in the TG/CA base pair step (primary...... kink site) in the consensus sequence is not affected by I-D substitutions. In contrast, the flanking regions are selected as I/C rich sequences (mostly I-tracts) instead of A/T rich sequences which are known to strongly increase CRP binding, thereby demonstrating almost exclusive indirect readout...

  20. Effect of readout direction in the edge profile on the modulation transfer function of computed radiographic systems by use of the edge method.

    Science.gov (United States)

    Tanaka, Nobukazu; Morishita, Junji; Tsuda, Norisato; Ohki, Masafumi

    2013-07-01

    We investigated the effect of the readout direction of the edge profile obtained by the edge method on the presampled modulation transfer function (MTF) in various computed radiographic (CR) systems. There were no differences in the MTFs derived from two edge profiles in the sub-scanning direction of four CR systems used in this study. On the other hand, the MTFs measured at a readout direction from the low (edge) to the high (direct exposure) exposure region were higher than those measured at a readout direction from the high to the low exposure region in the laser-beam scanning direction for three of the four CR systems. Although this phenomenon depends on the CR system, it is important to understand and indicate both MTFs at the two edge profiles in the laser-beam scanning direction for accurate assessment of the resolution property.

  1. A 32x32 Direct Hybrid Germanium Photoconductor Array with CTIA Readout Multiplexer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a two-dimensional far infrared photoconductor array with the following key design features: 1- A...

  2. A 172 $\\mu$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data.

    Science.gov (United States)

    Pamula, Venkata Rajesh; Valero-Sarmiento, Jose Manuel; Yan, Long; Bozkurt, Alper; Hoof, Chris Van; Helleputte, Nick Van; Yazicioglu, Refet Firat; Verhelst, Marian

    2017-06-01

    A compressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172  μ W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.

  3. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  4. Sub-wavelength plasmonic readout for direct linear analysis of optically tagged DNA

    Science.gov (United States)

    Varsanik, Jonathan; Teynor, William; LeBlanc, John; Clark, Heather; Krogmeier, Jeffrey; Yang, Tian; Crozier, Kenneth; Bernstein, Jonathan

    2010-02-01

    This work describes the development and fabrication of a novel nanofluidic flow-through sensing chip that utilizes a plasmonic resonator to excite fluorescent tags with sub-wavelength resolution. We cover the design of the microfluidic chip and simulation of the plasmonic resonator using Finite Difference Time Domain (FDTD) software. The fabrication methods are presented, with testing procedures and preliminary results. This research is aimed at improving the resolution limits of the Direct Linear Analysis (DLA) technique developed by US Genomics [1]. In DLA, intercalating dyes which tag a specific 8 base-pair sequence are inserted in a DNA sample. This sample is pumped though a nano-fluidic channel, where it is stretched into a linear geometry and interrogated with light which excites the fluorescent tags. The resulting sequence of optical pulses produces a characteristic "fingerprint" of the sample which uniquely identifies any sample of DNA. Plasmonic confinement of light to a 100 nm wide metallic nano-stripe enables resolution of a higher tag density compared to free space optics. Prototype devices have been fabricated and are being tested with fluorophore solutions and tagged DNA. Preliminary results show evanescent coupling to the plasmonic resonator is occurring with 0.1 micron resolution, however light scattering limits the S/N of the detector. Two methods to reduce scattered light are presented: index matching and curved waveguides.

  5. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  6. A DTN-ready application for the real-time dissemination of Earth Observation data received by Direct Readout stations

    Science.gov (United States)

    Paronis, Dimitris; Daglis, Ioannis A.; Diamantopoulos, Sotirios; Tsaoussidis, Vassilis; Tsigkanos, Antonis; Ghita, Bogdan; Evans, Michael

    2014-05-01

    The majority of Earth observation satellites operate in low Earth sun-synchronous orbit and transmit data captured by a variety of sensors. The effective dissemination of satellite data in real-time is a crucial parameter for disaster monitoring in particular. Generally, a spacecraft collects data and then stores it on-board until it passes over dedicated ground stations to transmit the data. Additionally, some satellites (e.g. Terra, Aqua, Suomi-NPP, NOAA series satellites) have the so-called Direct Broadcast (DB) capability, which is based on a real-time data transmission sub-system. Compatible Direct Readout (DR) stations in direct line of sight are able to receive these transmissions. To date data exchange between DR stations have not been fully exploited for real-time data dissemination. Stations around the world store data locally, which is then disseminated on demand via Internet gateways based on the standard TCP-IP protocols. On the other hand, Delay Tolerant Networks (DTNs), which deliver data by enabling store-and-forward transmission in order to cope with link failures, service disruptions and network congestion, could prove as an alternative/complementary transmission mechanism for the efficient dissemination of data. The DTN architecture allows for efficient utilization of the network, using in-network storage and taking advantage of the network availability among the interconnected nodes. Although DTNs were originally developed for high-propagation delay, challenged connectivity environments such as deep space, the broader research community has investigated possible architectural enhancements for various emerging applications (e.g., terrestrial infrastructure, ground-to-air communications, content retrieval and dissemination). In this paper, a scheme for the effective dissemination of DB data is conceptualized, designed and implemented based on store-and-forward transmission capabilities provided by DTNs. For demonstration purposes, a set-up has

  7. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  8. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  9. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  10. A high-throughput readout architecture based on PCI-Express Gen3 and DirectGMA technology

    International Nuclear Information System (INIS)

    Rota, L.; Vogelgesang, M.; Perez, L.E. Ardila; Caselle, M.; Chilingaryan, S.; Dritschler, T.; Zilio, N.; Kopmann, A.; Balzer, M.; Weber, M.

    2016-01-01

    Modern physics experiments produce multi-GB/s data rates. Fast data links and high performance computing stages are required for continuous data acquisition and processing. Because of their intrinsic parallelism and computational power, GPUs emerged as an ideal solution to process this data in high performance computing applications. In this paper we present a high-throughput platform based on direct FPGA-GPU communication. The architecture consists of a Direct Memory Access (DMA) engine compatible with the Xilinx PCI-Express core, a Linux driver for register access, and high- level software to manage direct memory transfers using AMD's DirectGMA technology. Measurements with a Gen3 x8 link show a throughput of 6.4 GB/s for transfers to GPU memory and 6.6 GB/s to system memory. We also assess the possibility of using the architecture in low latency systems: preliminary measurements show a round-trip latency as low as 1 μs for data transfers to system memory, while the additional latency introduced by OpenCL scheduling is the current limitation for GPU based systems. Our implementation is suitable for real-time DAQ system applications ranging from photon science and medical imaging to High Energy Physics (HEP) systems

  11. CdTe layer structures for X-ray and gamma-ray detection directly grown on the Medipix readout-chip by MBE

    Science.gov (United States)

    Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.

    2017-11-01

    This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.

  12. SCAN- a maintenance-free flowrate meter with direct digital read-out for computerised control applications in radiochemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Shah, B V; Siddiqui, I A; Theyyunni, T K [Process Engineering and Systems Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    In radiochemical plants, the choice of flowrate sensor is subject to stringent requirements of fail-safe design and freedom from maintenance. The SCAN remote digital direct indicating flowrate meter described in this paper was developed to meet the requirements of flowrate and transmitting it to the control room, and to a computerised control system. SCAN is designed on the principle that flowrate through an orifice is a function of the head of liquid acting upon it. SCAN consists of a small chamber which receives the flow, and discharges it through an orifice located in bottom. The level of liquid in the pot represents the flowrate of the input stream. SCAN has been developed into an accurate, rugged and practical device by refinements in the design of internals, and by introducing a special end-section which makes the calibration insensitive to location. An important feature of SCAN is that it is passive, maintenance free, fail-safe device and contains no moving parts. There is no liquid hold up in the SCAN when idle, which is a desirable feature for the radiochemical plant environment. (author). 3 figs., 2 tabs.

  13. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Science.gov (United States)

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  14. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  16. Direction of Wolf-Rayet stars in a very powerful far-infrared galaxy - Direct evidence for a starburst

    International Nuclear Information System (INIS)

    Armus, L.; Heckman, T.M.; Miley, G.K.

    1988-01-01

    Spectra covering the wavelength range 4476-7610 A are presented for the powerful far-infrared galaxy IRAS 01003-2238. The broad emission band centered at a rest wavelength of roughly 4660 A, and other broad weaker features are interpreted, as arising from the combined effect of approximately 100,000 late Wolf-Rayet stars of the WN subtype. This represents perhaps the most direct evidence to date for the presence of a large number of hot massive stars in the nucleus of a very powerful far-infrared galaxy. The high number of Wolf-Rayet stars in relation to the number of O-type stars may be interpreted as arguing against continuous steady state star formation in 01003-2238, in favor of a recent burst of star formation occurring approximately 100 million yrs ago. 24 references

  17. The IBL Readout System

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2010-01-01

    The first upgrade for the ATLAS pixel detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer having new electronics assembled an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth and also compatible with the existing system to be integrated into it. The talk will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  18. The IBL Readout System

    CERN Document Server

    Dopke, J; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, having new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  19. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  20. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  1. An extraordinary directive radiation based on optical antimatter at near infrared.

    Science.gov (United States)

    Mocella, Vito; Dardano, Principia; Rendina, Ivo; Cabrini, Stefano

    2010-11-22

    In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

  2. LHCb: A new Readout Control system for the LHCb Upgrade

    CERN Multimedia

    Alessio, F

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.

  3. A Fastbus-based silicon strip readout system

    International Nuclear Information System (INIS)

    Neoustroev, P.; Stepanov, V.; Svoiski, M.; Uvarov, L.; Matthew, P.; Russ, J.; Cooper, P.

    1995-01-01

    The readout system we describe here is built specifically to work with the LBL-designed SVX chip. It is typical of systems using a master sequencer module to direct the trigger and readout cycles of the sparse data source and to push data into a digitization and storage module. (orig.)

  4. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  5. Readout electronic for multichannel detectors

    International Nuclear Information System (INIS)

    Kulibaba, V.I.; Maslov, N.I.; Naumov, S.V.

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc

  6. Do the results of respirable dust samples obtained from direct-on-filter X-ray diffraction, direct-on-filter infrared and indirect infrared (KBr pellet) methods correlate?

    CSIR Research Space (South Africa)

    Pretorius, C

    2010-11-01

    Full Text Available The objective of this study was to determine whether a correlation exists between the quartz results obtained from direct-on-filter X-ray Diffraction analysis, direct-on-filter Fourier-Transform Infrared analysis and indirect analysis (Potassium...

  7. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    Science.gov (United States)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  8. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  9. Infrared photoexcitation spectroscopy of conducting polymer and C60 composites: direct evidence of photo-induced electron transfer

    NARCIS (Netherlands)

    Lee, Kwanghee; Janssen, R.A.J.; Sariciftci, N.S.; Heeger, A.J.

    1994-01-01

    We report direct spectral evidence of photoinduced electron transfer from the excited state of conducting polymer onto C60 by infrared photoexcitation spectroscopy, from 0.01 eV (100 cm-1) to 1.3 eV (11,000 cm-1). The photoinduced absorption spectra of poly(3-octylthiophene) (P30T) and

  10. Infrared spectrophotometry, a rapid and effective tool for characterization of direct distillation naphthas

    International Nuclear Information System (INIS)

    Baldrich Ferrer, Carlos A; Novoa Mantilla, Luz Angela

    2005-01-01

    The characterization of naphtha obtained by direct distillation of medium and heavy crude oils is often limited by the low yield of these fractions. Gas chromatography is a technique that allows a complete determination of the chemical composition of this fraction. However, the prediction of properties such as octane rating and RVP from chromatographic data is a difficult task because there are not adequate models to predict the interaction of the different components, and particularly in the case of heavier fractions, there are some problems for the complete separation of components under the gas chromatographic conditions. The IR technology constitutes a rapid and effective tool to predict several properties of naphtha from the correlation of the spectrum in the infrared area and the properties. In this study, prediction models were developed in a Petrospec Cetane 2000 analyzer, in order to predict in a fast and simple way, the density, the antiknock index and the aromatic content of straight run naphtha obtained in a standard crude oil distillation unit. The equipment used was designed in the factory for the exclusive characterization of medium distillation and not for lighter fractions therefore this work constitutes an innovation given the extensive applications of this type of analyzers

  11. Detectability of planetary rings around super-earths by direct infrared imaging

    International Nuclear Information System (INIS)

    Morel, Carine

    2013-01-01

    Super-Earths, of which more than 80 have already been discovered, draw a lot of attention. With masses between those of the Earth and Neptune, they are ideal targets for searching for bio-signatures. All the gas giants of the solar system have a ring system, and even the Earth is suspected to have had rings in the past; their presence around super-Earths is thus expected and could give information on the formation process of these planets. The characterization of Super-Earths and their environment has thus become an important goal of modern astronomy. They are still difficult to study because of their small size, but the potential presence of planetary rings can make them easier to observe by the transit method and by direct imaging. This PhD evaluates the possibilities of detecting and characterizing rings around super-Earths by direct infrared imaging with the ELT-METIS instrument. To do this, a model to simulate the thermal emission of a super-Earth and its rings is developed. It is then used to study the influence of physical parameters and orientation of the rings and of planetary orbit on their detectability. The results show that ELT-METIS will be able to detect rings similar to the B and C rings of Saturn, extended within the Roche limit. The super-Earths surrounded by rings will be observable in middle orbit, between about 0.4 and 1 AU, around hot stars within 20 pc of the Sun. It is also shown that the photometric monitoring along the orbit of a super-Earth surrounded by rings should help constrain some of their physical characteristics. (author) [fr

  12. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  13. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  14. The PAUCam readout electronics system

    Science.gov (United States)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  15. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  16. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  17. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qing-Wen; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Thomas Tam, Pak-Hin, E-mail: xywang@nju.edu.cn, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  18. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  19. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  20. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  1. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    Science.gov (United States)

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  2. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  3. Pad readout for gas detectors using 128-channel integrated preamplifiers

    International Nuclear Information System (INIS)

    Fischer, P.; Drees, A.; Glassel, P.

    1988-01-01

    A novel two-dimensional readout scheme for gas detectors is presented which uses small metal pads with 2.54 mm pitch as an anode. The pads are read out via 128-channel VLSI low-noise preamplifier/multiplexer chips. These chips are mounted on 2.8x2.8 cm/sup 2/ modules which are directly plugged onto the detector backplane, daisy-chained with jumpers and read out sequentially. The readout has been successfully tested with a low-pressure, two-step, TMAE-filled UV-RICH detector prototype. A single electron efficiently of >90% was observed at moderate chamber gains (<10/sup 6/). The method offers high electronic amplification, low noise, and high readout speed with a very flexible and compact design, suited for space-limited applications

  4. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  5. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results

    Science.gov (United States)

    Lagouarde, J.-P.; Irvine, M.

    2008-12-01

    The measurements of surface temperature are prone to important directional anisotropy related to the structure of the canopy and the radiative and energy exchanges inside of it. Directional effects must be taken into account for a number of practical applications such as the correction of large swath satellite data, the assimilation of thermal infrared (TIR) measurements in surface models, the design of future spatial missions… For urban canopies, experimental measurements of TIR directional anisotropy previously performed during summer days over Marseille in the framework of the ESCOMPTE campaign (2001) revealed significant angular surface temperature variations with noticeable hot spot effects whose intensity was related to the canopy structure. The CAPITOUL project ( http://medias.cnrs.fr/capitoul/ ) provided the opportunity to extend these results to other seasons and to nighttime conditions. The experimental setup is based on the use of 2 airborne TIR cameras with different lenses, inclination and resolution, and installed aboard a small aircraft. The flight protocol allowed the retrieval of directional anisotropy in all azimutal directions and in a range of zenith viewing angles between nadir and 62°. Measurements were performed during several intensive operation periods (IOP) in summer (2004 july), autumn (2004 September and October) and winter (2005 February). Only the first results of the 2004 autumn and 2005 winter IOPs are presented in this paper. The results obtained in daytime conditions confirm the systematic hot spot effects observed in previous experiments over cities. The variations found seem to be particularly important in winter when sun elevation is low: for instance they range between -4 and 10 K between oblique and nadir viewing in February. During nighttime conditions, angular variations are much lower (always less than 2 K between nadir and 60° zenithal viewing angle), whichever the azimutal viewing direction.

  6. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  7. Directional support value of Gaussian transformation for infrared small target detection.

    Science.gov (United States)

    Yang, Changcai; Ma, Jiayi; Qi, Shengxiang; Tian, Jinwen; Zheng, Sheng; Tian, Xin

    2015-03-20

    Robust small target detection is one of the key techniques in IR search and tracking systems for self-defense or attacks. In this paper we present a robust solution for small target detection in a single IR image. The key ideas of the proposed method are to use the directional support value of Gaussian transform (DSVoGT) to enhance the targets, and use the multiscale representation provided by DSVoGT to reduce the false alarm rate. The original image is decomposed into sub-bands in different orientations by convolving the image with the directional support value filters, which are deduced from the weighted mapped least-squares-support vector machines (LS-SVMs). Based on the sub-band images, a support value of Gaussian matrix is constructed, and the trace of this matrix is then defined as the target measure. The corresponding multiscale correlations of the target measures are computed for enhancing target signal while suppressing the background clutter. We demonstrate the advantages of the proposed method on real IR images and compare the results against those obtained from standard detection approaches, including the top-hat filter, max-mean filter, max-median filter, min-local-Laplacian of Gaussian (LoG) filter, as well as LS-SVM. The experimental results on various cluttered background images show that the proposed method outperforms other detectors.

  8. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Science.gov (United States)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  9. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  10. BATS, the readout control of UA1

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; Dorenbosch, J.; Jimack, M.; Szoncso, F.; Taurok, A.; Walzel, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1991-04-15

    A steadily rising luminosity and different readout architectures for the various detector systems of UA1 required a new data flow control to minimize the dead time. BATS, a finite state machine conceived around two microprocessors in a single VME crate, improved flexibility and reliability. Compatibility with BATS streamlined all readout branches. BATS also proved to be a valuable asset in spotting readout problems and previously undetected data flow bottlenecks. (orig.).

  11. Optical readout method for solid-state dosemeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Eichner, F.N.; Stahl, K.A.; Miller, S.D.

    1986-07-01

    The readout of solid-state dosemeters is usually accomplished by heating to produce thermoluminescence. This technique has several disadvantages including stressing the dosemeter crystals, melting Teflon enclosures, and destroying the thin dosemeters designed for beta particle measurements. An optical readout method is being developed to avoid these difficulties. Standard dosemeters were irradiated to a dose of approximately 0.02 Sv with 137 Cs gamma rays. The dosemeters were then irradiated with light produced by a high-intensity xenon lamp. Various wavelength bands, from the ultraviolet through the visible and to the near-infrared, were used. The degree of trap emptying was found to be proportional to the total optical power incident. With the intensities used in the preliminary experiments, over 90% trap emptying was achieved. This new technique will prove useful for dosemeters that are encased in plastic for automatic processing. The details of this optical readout method, along with some possible applications in neutron and beta dosimetry are described. 7 refs., 3 figs

  12. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  13. Quantifying direct carbon dioxide emissions from wastewater treatment units by nondispersive infrared sensor (NDIR) - A pilot study.

    Science.gov (United States)

    Kosse, Pascal; Kleeberg, Tasja; Lübken, Manfred; Matschullat, Jörg; Wichern, Marc

    2018-08-15

    Treatment of nutrient-rich wastewater potentially results in direct release of greenhouse gases (GHGs) such as CO 2 , N 2 O or CH 4 - and thus affects Waste Water Treatment Plant's carbon footprint. Accurate CO 2 quantification is challenging due to various chemical, physical and operational conditions. A floating chamber equipped with a nondispersive infrared, single beam, dual wavelength sensor has been evaluated for a pilot approach to quantify fugitive CO 2 emissions above different wastewater treatment units. Total average CO 2 flux was 1182gCO 2 ·m -2 ·d -1 with minimum and maximum fluxes of 829gCO 2 ·m -2 ·d -1 and 1493gCO 2 ·m -2 ·d -1 , respectively. Total observed CO 2 emissions were in 7 to 17kgCO 2 ·PE -1 ·a -1 (average 12kgCO 2 ·PE -1 ·a -1 ). The nitrification tank accounted for about 94.3% of the emissions, followed by secondary clarification (ca. 4.3%) and denitrification (ca. 1.4%), based on those average annual CO 2 emissions per population equivalent (PE). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jian-Bo; Sun, Su-Qin; Tang, Xu-Dong; Zhang, Jing-Zhao; Zhou, Qun

    2016-08-05

    Herbal powder preparation is a kind of widely-used herbal product in the form of powder mixture of herbal ingredients. Identification of herbal ingredients is the first and foremost step in assuring the quality, safety and efficacy of herbal powder preparations. In this research, Fourier transform infrared (FT-IR) microspectroscopic identification method is proposed for the direct and simultaneous recognition of multiple organic and inorganic ingredients in herbal powder preparations. First, the reference spectrum of characteristic particles of each herbal ingredient is assigned according to FT-IR results and other available information. Next, a statistical correlation threshold is determined as the lower limit of correlation coefficients between the reference spectrum and a larger number of calibration characteristic particles. After validation, the reference spectrum and correlation threshold can be used to identify herbal ingredient in mixture preparations. A herbal ingredient is supposed to be present if correlation coefficients between the reference spectrum and some sample particles are above the threshold. Using this method, all kinds of herbal materials in powder preparation Kouqiang Kuiyang San are identified successfully. This research shows the potential of FT-IR microspectroscopic identification method for the accurate and quick identification of ingredients in herbal powder preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A low-power small-area ADC array for IRFPA readout

    Science.gov (United States)

    Zhong, Shengyou; Yao, Libin

    2013-09-01

    The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications

  16. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)]. E-mail: Popov@jlab.org; Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Welch, Benjamin L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  17. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  18. Hybrid amplifier for calorimetry with photodiode readout

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, V V

    1994-12-31

    A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.

  19. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  20. Common Readout System in ALICE

    CERN Document Server

    Jubin, Mitra

    2016-01-01

    The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.

  1. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  2. Common Readout System in ALICE

    CERN Document Server

    Jubin, Mitra

    2017-01-01

    The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.

  3. Digital readout alpha survey instrument

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1976-01-01

    A prototype solid-state digital readout alpha particle survey instrument has been designed and constructed. The meter incorporates a Ludlum alpha scintillator as a detector, digital logic circuits for control and timing, and a Digilin counting module with reflective liquid crystal display. The device is used to monitor alpha radiation from a surface. Sample counts are totalized over 10-second intervals and displayed digitally in counts per minute up to 19,999. Tests over source samples with counts to 15,600 cpm have shown the device to be rapid, versatile and accurate. The instrument can be fabricated in one man-week and requires about $835 in material costs. A complete set of drawings is included

  4. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    Science.gov (United States)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  5. The Data Merger Readout Controller for the NA48 experiment data acquisition electronics

    International Nuclear Information System (INIS)

    Galagedera, S.B.; Brierton, B.; Halsall, R.

    1996-01-01

    The NA48 experiment at the CERN SPS offers a four fold improvement in statistical and systematic error over earlier measurements of the magnitude of the direct CP (Charge-Parity) violation of the neutral Kaon system. This requires maximum event readout efficiency, controlled event building and fast monitoring of run time errors. The event data flow in particular must be sustained at 100 Mbyte/s. The Data Merger Readout Controller presented in this paper offers this facility at minimal production cost

  6. Fulfilling the pedestrian protection directive using a long-wavelength infrared camera designed to meet both performance and cost targets

    Science.gov (United States)

    Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran

    2006-04-01

    Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.

  7. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  8. Calibration of ALIBAVA readout system

    Energy Technology Data Exchange (ETDEWEB)

    Trofymov, Artur [DESY, Hamburg (Germany); Collaboration: ATLAS experiment-Collaboration

    2015-07-01

    The High Luminosity Large Hadron Collider (LH-LHC) is the upgrade of the LHC that foreseen to increase the instantaneous luminosity by a factor ten with a total integrated luminosity of 3000 fb{sup -1}. The ATLAS experiment will need to build a new tracker to operate in the new severe LH-LHC conditions (increasing detector granularity to cope with much higher channel occupancy, designing radiation-hard sensors and electronics to cope with radiation damage). Charge collection efficiency (CCE) of silicon strip sensors for the new ATLAS tracker can be done with ALIBAVA analog readout system (analog system gives more information about signal from all strips than digital). In this work the preliminary results of ALIBAVA calibration using two different methods (with ''source data'' and ''calibration data'') are presented. Calibration constant obtained by these methods is necessary for knowing collected charge on the silicon strip sensors and for having the ability to compare it with measurements done at the test beam.

  9. A custom readout electronics for the BESIII CGEM detector

    Science.gov (United States)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout

  10. A custom readout electronics for the BESIII CGEM detector

    International Nuclear Information System (INIS)

    Rolo, M. Da Rocha; Alexeev, M.; Amoroso, A.; Bianchi, F.; Cossio, F.; Mori, F. De; Destefanis, M.; Ferroli, R. Baldini; Chai, J.Y.; Bertani, M.; Calcaterra, A.; Capodiferro, M.; Cerioni, S.; Bettoni, D.; Canale, N.; Carassiti, V.; Chiozzi, S.; Cibinetto, G.; Ramusino, A. Cotta; Bugalho, R.

    2017-01-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM

  11. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    of longitudinal fibers, scintillator and quartz respectively, and therefore capable of deter- ... The main idea of multiple readout calorimetry is to indepen- ... in a campaign of R&D and tests (with sources, cosmic rays and beams) through-.

  12. Study of the spatial resolution for binary readout detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-07-11

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  13. Readout ASIC for ILC-FPCCD vertex detector

    International Nuclear Information System (INIS)

    Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro

    2010-01-01

    The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.

  14. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  15. First considerations for a readout system for the ILD TPC with the Timepix3

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Tobias [Universitaet Bonn (Germany); Collaboration: LCTPC-Deutschland-Collaboration

    2016-07-01

    For the planned International Linear Collider (ILC) two detectors are proposed. One of them, the International Large Detector (ILD) uses a Time Projektion Chamber (TPC) as the main tracking device. As a readout system for this TPC, pixel chips are one of the considered options. An integrated Micromegas stage is foreseen as gas amplification stage, which is built directly on top of the chip. Since first tests of a Pixel-TPC with 160 Timepix ASICs showed promising results, one is interested in developing a detector using the Timepix3 ASIC. It has several advantages, first of all its feature to measure ToT and a ToA at the same time and its significantly increased readout rate. For this purpose a readout system needs to be developed which fulfils the requirements of the Timpix3 ASIC and also has a high scalability. The main challenges are the high speed readout with a clock of up to 640 MHz and the reliability of the system. Also, the data driven as well as the frame-based readout of the Timepix3 needs to be considered for the implementation. The main goal is to provide a fast and parallel readout of several million channels. An overview and the status of the planning is given. Also, the development challenges are discussed.

  16. A new readout control system for the LHCb upgrade at CERN

    International Nuclear Information System (INIS)

    Alessio, F; Jacobsson, R

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and a first hardware implementation of a new fast Readout Control system for the LHCb upgrade, which will be entirely based on FPGAs and bi-directional links. We also outline the real-time implementations of the new Readout Control system, together with solutions on how to handle the synchronous distribution of timing and synchronous information to the complex upgraded LHCb readout architecture. One section will also be dedicated to the control and usage of the newly developed CERN GBT chipset to transmit fast and slow control commands to the upgraded LHCb Front-End electronics. At the end, we outline the plans for the deployment of the system in the global LHCb upgrade readout architecture.

  17. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  18. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  19. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  20. Imaging achievements with the Vernier readout

    CERN Document Server

    Lapington, J S; Worth, L B C; Tandy, J A

    2002-01-01

    We describe the Vernier anode, a high resolution and charge division image readout for microchannel plate detectors. It comprises a planar structure of insulated electrodes deposited on an insulating substrate. The charge cloud from an event is divided amongst all nine electrodes and the charge ratio uniquely determines the two-dimensional position coordinate of the charge centroid. We discuss the design of the anode pattern and describe the advantages offered by this readout. The cyclic variation of the electrode structure allows the image resolution to exceed the charge measurement resolution and enables the entire active area of the readout to be utilized. In addition, fixed pattern noise is greatly reduced. We present results demonstrating the position resolution and image linearity. A position resolution of 10 mu m FWHM is demonstrated and the overall imaging performance is shown to be limited by the microchannel plate pore spacing. We present measurements of the image distortions and describe techniques...

  1. The NA60 experiment readout architecture

    CERN Document Server

    Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H

    2004-01-01

    The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).

  2. D-Zero muon readout electronics design

    International Nuclear Information System (INIS)

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D null Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D null Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed

  3. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  4. Development of a Timepix3 readout system based on the Merlin readout system

    International Nuclear Information System (INIS)

    Crevatin, G.; Carrato, S.; Horswell, I.; Omar, D.; Tartoni, N.; Cautero, G.

    2015-01-01

    Timepix3 chip is a new ASIC specifically designed to readout hybrid pixel detectors. The main purpose of Timepix3 is to measure the time of arrival of events. This characteristic can be exploited very effectively to develop detectors for time resolved experiments at synchrotron radiation facilities. In order to investigate how the ASIC can be applied to synchrotron experiments the Merlin readout system, developed at Diamond for the Medipix3 ASIC, has been adapted to readout the Timepix3 ASIC. The first tests of the ASIC with pulse injection and with alpha particles show that its behaviour is consistent with its nominal characteristics

  5. Direct determination of lycopene content in tomatoes (Lycopersicon esculentum) by attenuated total reflectance infrared spectroscopy and multivariate analysis.

    Science.gov (United States)

    Halim, Yuwana; Schwartz, Steven J; Francis, David; Baldauf, Nathan A; Rodriguez-Saona, Luis E

    2006-01-01

    Lycopene is a potent antioxidant that has been shown to play critical roles in disease prevention. Efficient assays for detection and quantification of lycopene are desirable as alternatives to time- and labor-intensive methods. Attenuated total reflectance infrared (ATR-IR) spectroscopy was used for quantification of lycopene in tomato varieties. Calibration models were developed by partial least-squares regression (PLSR) using quantitative measures of lycopene concentration from liquid chromatography as reference method. IR spectra showed a distinct marker band at 957 cm(-1) for trans Carbon-Hydrogen (CH) deformation vibration of lycopene. PLSR models predicted the lycopene content accurately and reproducibly with a correlation coefficient (sigma) of 0.96 and standard error of cross-validation ATR-IR spectroscopy allowed for rapid, simple, and accurate determination of lycopene in tomatoes with minimal sample preparation. Results suggest that the ATR-IR method is applicable for high-throughput quantitative analysis and screening for lycopene in tomatoes.

  6. Comparison between two possible CMS Barrel Muon Readout Architectures

    International Nuclear Information System (INIS)

    Aguayo, P.; Barcala, J.M.; Molinero, A.; Pablos, J.L.; Willmott, C.; Alberdi, J.; Marin, J.; Navarrete, J.; Romero, L.

    1997-01-01

    A comparison between two possible readout arquitectures for the CMS muon barrel readout electronics is presented, including various aspects like costs, reliability, installation, staging and maintenance. A review of the present baseline architecture is given in the appendix. (Author)

  7. Latest generation of ASICs for photodetector readout

    International Nuclear Information System (INIS)

    Seguin-Moreau, N.

    2013-01-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips

  8. Authenticated communication from quantum readout of PUFs

    NARCIS (Netherlands)

    Skoric, Boris; Pinkse, Pepijn Willemszoon Harry; Mosk, Allard

    2016-01-01

    Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this

  9. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of ...

  10. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  11. Readout of the upgraded ALICE-ITS

    International Nuclear Information System (INIS)

    Szczepankiewicz, A.

    2016-01-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  12. Readout of the upgraded ALICE-ITS

    Energy Technology Data Exchange (ETDEWEB)

    Szczepankiewicz, A., E-mail: Adam.Szczepankiewicz@cern.ch [CERN, Geneva (Switzerland); Institute of Computer Science, Warsaw University of Technology, Warsaw (Poland)

    2016-07-11

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  13. Latest generation of ASICs for photodetector readout

    Science.gov (United States)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  14. Latest generation of ASICs for photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Seguin-Moreau, N., E-mail: seguin@lal.in2p3.fr [Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud, Bâtiment 200, 91898 Orsay Cedex (France)

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips.

  15. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  16. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Author Affiliations. Wojciech Wierba1 on behalf of the FCAL Collaboration. The Henryk Niewodniczański ...

  17. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  18. Resistive Plate Chambers for hadron calorimetry: Tests with analog readout

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Repond, Jose [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: repond@hep.anl.gov; Underwood, David [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Xia, Lei [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-07-21

    Resistive Plate Chambers (RPCs) are being developed for use in a hadron calorimeter with very fine segmentation of the readout. The design of the chambers and various tests with cosmic rays are described. This paper reports on the measurements with multi-bit (or analog) readout of either a single larger or multiple smaller readout pads.

  19. Direct Determination of the Absorption of Graphene Mono- and Multi-layers in the Visible and Near-Infrared

    Science.gov (United States)

    Wu, Yang; Mak, Kin Fai; Lui, Chun Hung; Maultzsch, Janina; Heinz, Tony

    2008-03-01

    Single-crystal mono- and multi-layer graphene samples were prepared by mechanical exfoliation on quartz substrates. The absorption spectra of samples of 1 -- 8 monolayer thickness were measured in the optical and near-infrared range. The absorption coefficient was found to be largely independent of photon energy and linear in the number of graphene layers. Such absorption measurements can thus be used to determine the thickness of mesoscopic graphite to monolayer accuracy, as already demonstrated in the context of Rayleigh scattering [Casiraghi et al. Nano Letters 2007]. By analysis of the optical transmission problem for a thin film at the air-quartz interface, we deduced an absorption of 2.3% per layer. The magnitude of the monolayer absorption agrees with the value of πα, where α is the fine-structure constant, and corresponds the result obtained from a tight-binding model of the graphene electronic structure [Gusynin et al. PRL 2006]. The predicted (and measured) optical absorption, we note, is equivalent to a constant optical conductance ofπe^22h=6.09x10-5φ-1.

  20. Performance of a high-resolution CsI(Tl)-PIN readout detector

    International Nuclear Information System (INIS)

    Kudenko, Yu.G.; Imazato, J.

    1992-10-01

    A study of a large-volume CsI(Tl) detector with a PIN diode readout was carried out. Our results show a light output of ≤20000 photoelectrons/MeV, an equivalent noise charge (rms) of about 900 electrons, and an equivalent noise level of ≤ 60 keV. We obtained an energy resolution of 11.2% (fwhm) for 1275 keV gamma rays from a 22 Na source. The characteristics of the PIN - preamplifier system as well as the parameters of a small CsI(Tl) - PIN detector with a direct and wavelength shifter readout are also reported. (author)

  1. The construction and performance of a large cylindrical wire chamber with cathode readout

    International Nuclear Information System (INIS)

    Deiters, K.; Donat, A.; Friebel, W.; Heller, R.; Kirsch, S.; Krankenhagen, R.; Lange, W.; Leiste, R.; Lohmann, W.; Lustermann, W.; Peng, Y.; Roeser, U.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Wilhelmi, M.

    1991-12-01

    The construction and performance of two large coaxial cylindrical multiwire proportional chambers with cathode readout, denoted as Z-Detector, forming the outer part of the L3 central tracking detector, are described. Three self supporting cylinders of about 1 m length and 1 m diameter, constructed as a sandwich of Kapton foil and foam, form the mechanical frame. It represents 2% of a radiation length. In each chamber one cathode layer is subdivided in helical strips and the other one in rings. The readout of the charges induced on the cathode strips and the other one in rings. The readout of the charges induced on the cathode strips provides the avalanche position along the beam (z-) direction. The detector has been running in the L3 experiment at LEP for nearly two years. The resolution of the z-measurement is 320 μm, the double track resolution is about 10 mm. The efficiency of each chamber is 96%. (orig.)

  2. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy.

    Science.gov (United States)

    Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina

    2015-02-01

    The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®

  3. Design and Performance of the CMS Pixel Detector Readout Chip

    CERN Document Server

    Kästli, H C; Erdmann, W; Hörmann, C; Horisberger, R P; Kotlinski, D; Meier, B; Hoermann, Ch.

    2006-01-01

    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.

  4. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    Energy Technology Data Exchange (ETDEWEB)

    Aseev, Pavel, E-mail: pavel.aseev@upm.es; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique [Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mánuel, José M.; Jiménez, Juan J.; García, Rafael [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); Morales, Francisco M. [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, 11510 Cádiz (Spain); Senichev, Alexander [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Lienau, Christoph [Institute of Physics and Center of Interface Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg (Germany); and others

    2015-02-16

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.

  5. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    International Nuclear Information System (INIS)

    Aseev, Pavel; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique; Mánuel, José M.; Jiménez, Juan J.; García, Rafael; Morales, Francisco M.; Senichev, Alexander; Lienau, Christoph

    2015-01-01

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology

  6. The readout system for the ALICE zero degree calorimeters

    CERN Document Server

    Siddhanta, S; De Falco, A; Floris, M; Masoni, A; Puddu, G; Serci, S; Uras, A; Usai, G; Arnaldi, R; Bianchi, L; Bossu, F; Chiavassa, E; De Marco, N; Ferretti, A; Gagliardi, M; Gallio, M; Luparello, G; Musso, A; Oppedisano, C; Piccotti, A; Scomparin, E; Vercellin, E; Cortese, P; Dellacasa, G

    2011-01-01

    ALICE at the CERN LHC will investigate the physics of strongly interacting matter at extreme energy densities where the formation of the Quark Gluon Plasma is expected. Its properties can be studied from observations like the production of mesons w ith charm and beauty quarks. These signals have to be studied as a function of energy density, which is determined by the centrality of collisions. One of the physics observables that is closely related with the centrality of the collision is the number o f spectator nucleons that can be measured by the Zero Degree Calorimeters (ZDC). Having a direct geometric interpretation allows to extract the impact parameter with minimal model assumptions. This paper describes the readout system of the ZDC. The ZDC re adout consists of a VME system with a ZDC Readout Card, a VME Processor, Discriminators, a ZDC Trigger Card, scalers, QDCs and TDCs. The system was successfully tested during the 2009 ALICE data taking and is currently operational at the LHC.

  7. A new method of readout in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Kellermann, Peer Oliver; Gornik, Erich; Ertl, Adolf

    1998-01-01

    Radiochromic film as a dosimetry medium offers several advantages in high-resolution radiography. A new technique of readout was developed to measure the optical density distributions of the film in purely directed light. This technique implements radiochromic film dosimetry near the film's absorption maximum by using a single-mode top-surface emitting laser diode (675.2 nm). The effective sensitivity of the film, compared with a helium-neon laser densitometer (632.8 nm), is increased approximately threefold. Good accuracy, high spatial resolution and simple assembly of the readout system is achieved. Beam profiles of the four final collimator helmets of a Leksell Gamma Knife (Elekta Inc., Sweden) were experimentally determined. Measured profiles and full-widths at half maximum are consistent with the computer generated data of the dose planning system (Kula 4.4, Elekta Inc., Sweden). The output factor of the 4 mm collimator (the smallest collimator with the steepest dose gradient), essential for the application of well defined doses, was checked. The measurements established an output factor of 826±9 that lies 9±1% lower than the adjusted one. (author)

  8. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  9. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  10. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  11. LSST camera readout chip ASPIC: test tools

    International Nuclear Information System (INIS)

    Antilogus, P; Bailly, Ph; Juramy, C; Lebbolo, H; Martin, D; Jeglot, J; Moniez, M; Tocut, V; Wicek, F

    2012-01-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  12. Dual-readout calorimetry with scintillating crystals

    International Nuclear Information System (INIS)

    Pinci, D

    2009-01-01

    The dual-readout approach, which allows an event-by-event measurement of the electromagnetic shower fraction, was originally demonstrated with the DREAM sampling calorimeter. This approach can be extended to homogeneous detectors like crystals if Cherenkov and scintillation light can be separated. In this paper we present several methods we developed for distinguishing the two components in PWO and BGO based calorimeters and the results obtained.

  13. Analog readout for optical reservoir computers

    OpenAIRE

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Schrauwen, Benjamin; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed a...

  14. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  15. Performance of MSGC with analog pipeline readout

    International Nuclear Information System (INIS)

    Gomez, F.; Adeva, B.; Gracia, G.; Lopez, M.A.; Nunez, T.; Pazos, A.; Plo, M.; Rodriguez, A.; Santamarina, C.; Vazquez, P.

    1997-01-01

    We analyse some of the performance characteristics of a chromium MSGC operated with Ar-DME 50%-50% in a test beam at CERN. Excellent signal-to-noise ratio and efficiency has been achieved with this gas mixture using cathode analog pipeline readout. We also determine optimal parameters for the sampling algorithm in order to work in a random trigger experiment (fixed target). (orig.)

  16. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  17. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  18. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  19. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  20. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  1. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  2. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  3. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    Science.gov (United States)

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87albumin and total protein in human plasma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Analog electro-optical readout of SiPMs for compact, low power ToF PET/MRI

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F; Levin, Craig S

    2014-01-01

    The aim of this work is to demonstrate time of flight (ToF) performance from analog electro-optical transmission of SiPM-based PET detector signals. In electro-optical readout schemes, scintillation signals are converted to near-infrared light by a laser diode and transmitted out of the MRI bore with fiber-optics [], greatly reducing the PET system's footprint, power consumption, and mutual interference with the MRI.

  6. Cryogenic readout integrated circuits for submillimeter-wave camera

    International Nuclear Information System (INIS)

    Nagata, H.; Kobayashi, J.; Matsuo, H.; Akiba, M.; Fujiwara, M.

    2006-01-01

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6μV/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit

  7. Cryogenic readout integrated circuits for submillimeter-wave camera

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)]. E-mail: hirohisa.nagata@nao.ac.jp; Kobayashi, J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Matsuo, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akiba, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan); Fujiwara, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2006-04-15

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6{mu}V/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit.

  8. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  9. The readout system of the new H1 silicon detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Henschel, H.; Haynes, W.J.; Noyes, G.W.; Joensson, L.; Gabathuler, K.; Horisberger, R.; Wagener, M.; Eichler, R.; Erdmann, W.; Niggli, H.; Pitzl, D.

    1995-03-01

    The H1 detector at HERA at DESY undergoes presently a major upgrade. In this context silicon strip detectors have been installed at beginning of 1995. The high bunch crossing frequency of HERA (10.4 MHz) demands a novel readout architecture which includes pipelining, signal processing and data reduction at a very early stage. The front end readout is hierarchically organized. The detector elements are read out by the APC chip which contains an analog pipeline and performs first background subtraction. Up to five readout chips are controlled by a Decoder Chip. The readout processor module (OnSiRoC) operates the detectors, controls the Decoder Chips and performs a first level data reduction. The paper describes the readout architecture of the H1 Silicon Detectors and performance data of the complete readout chain. (orig.)

  10. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  11. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  12. Silicon microstrip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Masciocchi, S.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.S.; Timm, S.; Vorwalter, K.; Werding, R.

    1995-01-01

    A new silicon strip detector has been designed for the fixed target experiment WA89 at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into a FASTBUS memory. The detector provides a fast readout by offering zero-suppressed data extraction on the chip. The silicon counters are the largest detectors built on a monocrystal so far in order to achieve good transversal acceptance. Construction and performance during the 1993 data taking run are discussed. ((orig.))

  13. Test vehicles for CMS HGCAL readout ASIC

    CERN Document Server

    Thienpont, Damien

    2017-01-01

    This paper presents first measurement results of two test vehicles ASIC embedding some building blocks for the future CMS High Granularity CALorimeter (HGCAL) read-out ASIC. They were fabricated in CMOS 130 nm, in order to first design the Analog and Mixed-Signal blocks before going to a complete and complex chip. Such a circuit needs to achieve low noise high dynamic range charge measurement and 20 ps resolution timing capability. The results show good analog performance but with higher noise levels compared to simulations. We present the results of the preamplifiers, shapers and ADCs.

  14. A fast readout system for scintillation detectors

    International Nuclear Information System (INIS)

    Steijger, J.; Kok, E.; Kwakkel, E.; Visschers, J.L.; Zwart, A.N.M.

    1991-01-01

    A system of fast readout electronics for segmented scintillation detectors has been constructed and is now operational. Instead of delaying the analog signals in long coaxial cables, they are digitized immediately and stored in dual-port memories, while the trigger decision is being made. A VMEbus system collects the data from these memories on the data acquisition modules within one crate. Several VME crates are connected via a transputer network to transport the data to an event builder. A separate transputer network is used to perform the VME cycles, needed for the computer-controlled tuning of the experiment. (orig.)

  15. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    Science.gov (United States)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  16. 100 Gbps PCI-Express readout for the LHCb upgrade

    International Nuclear Information System (INIS)

    Durante, P.; Neufeld, N.; Schwemmer, R.; Balbi, G.; Marconi, U.

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new generation of readout boards, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We show throughput measurements across the PCI-Express bus, on Altera Stratix 5 devices, using a DMA mechanism and different synchronization schemes between the FPGA and the readout unit. Finally we discuss hardware and software design considerations necessary to achieve a data throughput of 100 Gbps in the final readout board

  17. Infrared Heaters

    Science.gov (United States)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  18. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    Science.gov (United States)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  19. Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines.

    Science.gov (United States)

    Chau, Siu-Leung; Tang, Ho-Wai; Ng, Kwan-Ming

    2016-05-05

    With a coating of gold nanoparticles (AuNPs), over-the-counter (OTC) drugs and Chinese herbal medicine granules in KBr pellets could be analyzed by Fourier Transform Infra-red (FT-IR) spectroscopy and Surface-assisted Laser Desorption/Ionization mass spectrometry (SALDI-MS). FT-IR spectroscopy allows fast detection of major active ingredient (e.g., acetaminophen) in OTC drugs in KBr pellets. Upon coating a thin layer of AuNPs on the KBr pellet, minor active ingredients (e.g., noscapine and loratadine) in OTC drugs, which were not revealed by FT-IR, could be detected unambiguously using AuNPs-assisted LDI-MS. Moreover, phytochemical markers of Coptidis Rhizoma (i.e. berberine, palmatine and coptisine) could be quantified in the concentrated Chinese medicine (CCM) granules by the SALDI-MS using standard addition method. The quantitative results matched with those determined by high-performance liquid chromatography with ultraviolet detection. Being strongly absorbing in UV yet transparent to IR, AuNPs successfully bridged FT-IR and SALDI-MS for direct analysis of active ingredients in the same solid sample. FT-IR allowed the fast analysis of major active ingredient in drugs, while SALDI-MS allowed the detection of minor active ingredient in the presence of excipient, and also quantitation of phytochemicals in herbal granules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube

    International Nuclear Information System (INIS)

    Kim, Jaejin; Hwang, Jinyoung; Chung, Hoeil

    2008-01-01

    Both near-infrared (NIR) and Raman spectroscopy have been studied for the quantitative measurement of components (H 3 PO 4 , HNO 3 , and CH 3 COOH) in an etchant solution and the corresponding prediction robustness has been evaluated. Both measurements were accomplished by illuminating radiation directly through a Teflon tube. Raman spectral features of each component were much clearer and more selective than those observed in the NIR spectrum. Especially, NIR spectral variation pertinent to H 3 PO 4 and HNO 3 were mostly based on the displacement and perturbation of water bands rather than due solely to NIR absorption. Therefore, the resulting spectral variations were not highly specific. When the validation set contained minor spectral variations resulting from a slight instrumental change, NIR prediction performance for all three components degraded substantially by showing obvious prediction bias. However, the accuracies of Raman predictions were maintained. Since partial least squares (PLS) models for each component were built using NIR spectra of poor specificity with broadly overlapping features, even minor spectral differences introduced by instrumental variations sensitively influenced the prediction performance of the NIR models. Overall, the selectivity (specificity) of a targeting spectroscopic method should be considered critically to secure prediction robustness for monitoring components in an etchant solution

  1. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  2. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  3. Development of readout system for FE-I4 pixel module using SiTCP

    Energy Technology Data Exchange (ETDEWEB)

    Teoh, J.J., E-mail: jjteoh@champ.hep.sci.osaka-u.ac.jp [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Hanagaki, K. [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y. [Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba City, Ibaraki-ken 305-0801 (Japan)

    2013-12-11

    The ATLAS pixel detector will be replaced in the future High Luminosity-Large Hadron Collider (HL-LHC) upgrade to preserve or improve the detector performance at high luminosity environment. To meet the tight requirements of the upgrade, a new pixel Front-End (FE) Integrated Circuit (IC) called FE-I4 has been developed. We have then devised a readout system for the new FE IC. Our system incorporates Silicon Transmission Control Protocol (SiTCP) technology (Uchida, 2008 [1]) which utilizes the standard TCP/IP and UDP communication protocols. This technology allows direct data access and transfer between a readout hardware chain and PC via a high speed Ethernet. In addition, the communication protocols are small enough to be implemented in a single Field-Programable Gate Array (FPGA). Relying on this technology, we have been able to construct a very compact, versatile and fast readout system. We have developed a firmware and software together with the readout hardware chain. We also have established basic functionalities for reading out FE-I4.

  4. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  5. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  6. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  7. Evolution of the dual-readout calorimeter

    International Nuclear Information System (INIS)

    Penzo, Aldo

    2007-01-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of, fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy). (author)

  8. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  9. Control software for the CBM readout chain

    Energy Technology Data Exchange (ETDEWEB)

    Loizeau, Pierre-Alain [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment, which will be built at FAIR, will use free-streaming readout electronics to acquire high-statistics data-sets of physics probes in fixed target heavy-ion collisions. Since no simple signatures suitable for a hardware trigger are available for most of them, reconstruction and selection of the interesting collisions will be done in software, in a computer farm called First Level Event Selector (FLES). The raw data coming from the detectors is pre-processed, pre-calibrated and aggregated in a FPGA based layer called Data Preprocessing Boards (DPB). IPbus will be used to communicate with the DPBs and through them with the elements of the readout chain closer to detectors. A slow control environment based on this software is developed by CBM to configure in an efficient way the DPBs as well as the Front-End Electronics and monitor their performances. This contribution presents the layout planned for the slow control software, its first implementation and corresponding test results.

  10. MWPC with highly segmented cathode pad readout

    International Nuclear Information System (INIS)

    Debbe, R.; Fischer, J.; Lissauer, D.

    1989-01-01

    Experiments being conducted with high energy heavy ion beams at Brookhaven National Laboratory and at CERN have shown the importance of developing position sensitive detectors capable of handling events with high multiplicity in environments of high track density as will also be the case in future high luminosity colliders like SSC and RHIC. In addition, these detectors are required to have a dynamic range wide enough to detect minimum ionizing particles and heavy ions like oxygen or silicon. We present here a description of work being done on a prototype of such a detector at BNL. Results from a similar counter are also presented in this Conference. The ''pad chamber'' is a detector with a cathode area subdivided into a very large number of pixel-like elements such that a charged particle traversing the detector at normal incidence leaves an induced charge on a few localized pads. The pads are interconnected by a resistive strip, and readout amplifiers are connected to the resistive strip at appropriate, carefully determined spacings. The pattern of tracks in a multi-hit event is easily recognized, and a centroid-finding readout system allows position determination to a small fraction of the basic cell size. 5 refs., 9 figs

  11. Two-dimensional readout system for radiation detector

    International Nuclear Information System (INIS)

    Lee, L.Y.

    1975-01-01

    A two dimensional readout system has been provided for reading out locations of scintillations produced in a scintillation type radiation detector array wherein strips of scintillator material are arranged in a parallel planar array. Two sets of light guides are placed perpendicular to the scintillator strips, one on the top and one on the bottom to extend in alignment across the strips. Both the top and bottom guides are composed of a number of 90 0 triangular prisms with the lateral side forming the hypotenuse equal to twice the width of a scintillator strip. The prism system reflects light from a scintillation along one of the strips back and forth through adjacent strips to light pipes coupled to the outermost strips of the detector array which transmit light pulses to appropriate detectors to determine the scintillation along one axis. Other light pipes are connected to the end portions of the strips to transmit light from the individual strips to appropriate light detectors to indicate the particular strip activated, thereby determining the position of a scintillation along the other axis. The number of light guide pairs may be equal the number of the scintillation strips when equal spatial resolution for each of the two coordinates is desired. When the scintillator array detects an event which produces a scintillation along one of the strips, the emitted light travels along four different paths, two of which are along the strip, and two of which are through the light guide pair perpendicular to the strips until all four beams reach the outer edges of the array where they may be transmitted to light detectors by means of light pipes connected therebetween according to a binary code for direct digital readout. (U.S.)

  12. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  13. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  14. A Triggerless readout system for the ANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, M.

    2015-01-01

    One of the physics goals of the future ANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this

  15. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  16. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  17. Investigation of DEPFET as vertex detector at ILC. Intrinsic properties, radiation hardness and alternative readout schemes

    International Nuclear Information System (INIS)

    Rummel, Stefan

    2009-01-01

    The International Linear Collider (ILC) is supposed to be the next generation lepton collider. The detectors at ILC are intended to be precision instruments improving the performance in impact parameter (IP), momentum and energy resolution significantly compared to previous detectors at lepton colliders. To achieve this goal it is necessary to develop new detector technologies or pushing existing technologies to their technological edges. Regarding the Vertex detector (VTX) this implies challenges in resolution, material budget, power consumption and readout speed. A promising technology for the Vertex detector is the Depleted Field Effect Transistor (DEPFET). The DEPFET is a semiconductor device with in-pixel ampli cation integrated on a fully depleted bulk. This allows building detectors with intrinsically high SNR due to the large sensitive volume and the small input capacitance at the rst ampli er. To reach the ambitious performance goals it is important to understand its various features: clear performance, internal amplification, noise and radiation hardness. The intrinsic noise is analyzed, showing that the contribution of the DEPFET is below 50 e - at the required speed. Moreover it is possible to show that the internal ampli cation could be further improved to more than 1nA/e - using the standard DEPFET technology. The clear performance is investigated on matrix level utilizing a dedicated setup for single pixel testing which allows direct insight into the DEPFET operation, without the complexity of the full readout system. It is possible to show that a full clear could be achieved with a voltage pulse of 10 V. Furthermore a novel clear concept - the capacitive coupled clear gate - is demonstrated. The radiation hardness is studied with respect to the system performance utilizing various irradiations with ionizing and non ionizing particles. The impact on the bulk as well as the interface damage is investigated. Up to now the readout is performed with

  18. Investigation of DEPFET as vertex detector at ILC. Intrinsic properties, radiation hardness and alternative readout schemes

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Stefan

    2009-07-20

    The International Linear Collider (ILC) is supposed to be the next generation lepton collider. The detectors at ILC are intended to be precision instruments improving the performance in impact parameter (IP), momentum and energy resolution significantly compared to previous detectors at lepton colliders. To achieve this goal it is necessary to develop new detector technologies or pushing existing technologies to their technological edges. Regarding the Vertex detector (VTX) this implies challenges in resolution, material budget, power consumption and readout speed. A promising technology for the Vertex detector is the Depleted Field Effect Transistor (DEPFET). The DEPFET is a semiconductor device with in-pixel ampli cation integrated on a fully depleted bulk. This allows building detectors with intrinsically high SNR due to the large sensitive volume and the small input capacitance at the rst ampli er. To reach the ambitious performance goals it is important to understand its various features: clear performance, internal amplification, noise and radiation hardness. The intrinsic noise is analyzed, showing that the contribution of the DEPFET is below 50 e{sup -} at the required speed. Moreover it is possible to show that the internal ampli cation could be further improved to more than 1nA/e{sup -} using the standard DEPFET technology. The clear performance is investigated on matrix level utilizing a dedicated setup for single pixel testing which allows direct insight into the DEPFET operation, without the complexity of the full readout system. It is possible to show that a full clear could be achieved with a voltage pulse of 10 V. Furthermore a novel clear concept - the capacitive coupled clear gate - is demonstrated. The radiation hardness is studied with respect to the system performance utilizing various irradiations with ionizing and non ionizing particles. The impact on the bulk as well as the interface damage is investigated. Up to now the readout is performed

  19. MAROC, a generic photomultiplier readout chip

    International Nuclear Information System (INIS)

    Blin, S; Barrillon, P; La Taille, C de

    2010-01-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ∼ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ∼ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  20. MAROC, a generic photomultiplier readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Blin, S; Barrillon, P; La Taille, C de, E-mail: blin@lal.in2p3.f [CNRS/IN2p3/LAL-OMEGA, Universite Paris Sud, Bat.200, 91898 Orsay (France)

    2010-12-15

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( {approx} 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: {approx} 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  1. MAROC, a generic photomultiplier readout chip

    Science.gov (United States)

    Blin, S.; Barrillon, P.; de La Taille, C.

    2010-12-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ~ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ~ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  2. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-01-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  3. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    Science.gov (United States)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  4. Online readout and control unit for high-speed / high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1996-09-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  5. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  6. FASTBUS readout system for the CDF DAQ upgrade

    International Nuclear Information System (INIS)

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum

  7. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  8. 100 Gbps PCI-Express Readout for the LHCb Upgrade

    CERN Document Server

    Durante, Paolo; Schwemmer, Rainer; Marconi, Umberto; Balbi, Gabriele; Lax, Ignazio

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new common readout board, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We describe a new high-performance DMA controller for data acquisition, implemented on an FPGA, coupled with a custom software module for the Linux kernel. Lastly, we describe how these components can be leveraged to achieve a throughput of 100 Gbit/s per readout board.

  9. 60 GHz wireless data transfer for tracker readout systems—first studies and results

    International Nuclear Information System (INIS)

    Dittmeier, S.; Berger, N.; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2014-01-01

    To allow highly granular trackers to contribute to first level trigger decisions or event filtering, a fast readout system with very high bandwidth is required. Space, power and material constraints, however, pose severe limitations on the maximum available bandwidth of electrical or optical data transfers. A new approach for the implementation of a fast readout system is the application of a wireless data transfer at a carrier frequency of 60 GHz. The available bandwidth of several GHz allows for data rates of multiple Gbps per link. 60 GHz transceiver chips can be produced with a small form factor and a high integration level. A prototype transceiver currently under development at the University of Heidelberg is briefly described in this paper. To allow easy and fast future testing of the chip's functionality, a bit error rate test has been developed with a commercially available transceiver. Crosstalk might be a big issue for a wireless readout system with many links in a tracking detector. Direct crosstalk can be avoided by using directive antennas, linearly polarized waves and frequency channeling. Reflections from tracking modules can be reduced by applying an absorbing material like graphite foam. Properties of different materials typically used in tracking detectors and graphite foam in the 60 GHz frequency range are presented. For data transmission tests, links using commercially available 60 GHz transmitters and receivers are used. Studies regarding crosstalk and the applicability of graphite foam, Kapton horn antennas and polarized waves are shown

  10. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    International Nuclear Information System (INIS)

    Wigmans, Richard; Nural, Akchurin

    2013-01-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals

  11. Light-to-light readout system of the CMS electromagnetic calorimeter

    CERN Document Server

    Denes, P; Lustermann, W; Mathez, H; Pangaud, P; Walder, J P

    2001-01-01

    For the CMS experiment at the Large Hadron Collider at CERN, an 8OOOO-crysral electromagnetic calorimeter will measure electron and photon energies with high precision over a dynamic range of roughly 16 bits. The readout electronics will be located directly behind the crystals, and must survive a total dose of up to 2x10 Gy along with 5x10**1**3 n/cm**2. A readout chain consisting of a custom wide-range acquisition circuit, commercial ADC and custom optical link for each crystal is presently under construction. An overview of the design is presented, with emphasis on the large-scale fiber communication system. 11 Refs.

  12. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  13. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  14. Flexible high-speed FASTBUS master for data read-out and preprocessing

    International Nuclear Information System (INIS)

    Wurz, A.; Manner, R.

    1990-01-01

    This paper describes a single slot FASTBUS master module. It can be used for read-out and preprocessing of data that are read out from FASTBUS modules, e.g., and ADC system. The module consists of a 25 MHz, 32-bit processor MC 68030 with cache memory and memory management, a floating point coprocessor MC68882, 4 MBytes of main memory, and FASTBUS master and slave interfaces. In addition, a DMA controller for read-out of FASTBUS data is provided. The processor allows I/O via serial ports, a 16-bit parallel port, and a transputer link. Additional interfaces are planned. The main memory is multi-ported and can be accessed directly by the CPU, the FASTBUS, and external masters via the high-speed local bus that is accessible by way of a connector. The FASTBUS interface supports most of the standard operations in master and slave mode

  15. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  16. Conformational heterogeneity of the bacteriopheophytin electron acceptor HA in reaction centers from Rhodopseudomonas viridis revealed by Fourier transform infrared spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Breton, J; Bibikova, M; Oesterhelt, D; Nabedryk, E

    1999-08-31

    The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.

  17. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Science.gov (United States)

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  18. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  19. Fast timing readout for silicon strip detectors

    International Nuclear Information System (INIS)

    Jhingan, A.; Saneesh, N.; Kumar, M.

    2016-01-01

    The development and performance of a 16 channel hybrid fast timing amplifier (FTA), for extracting timing information from silicon strip detectors (SSD), is described. The FTA will be used in a time of flight (TOF) measurement, in which one SSD is used to obtain the ion velocity (A) as well as the energy information of a scattered particle. The TOF information with a thin transmission SSD, acting as ΔE detector (Z) in a detector telescope, will provide a unique detection system for the identification of reaction products in the slowed down beam campaign of low energy branch (LEB) at NUSTAR-FAIR. Such a system will also provide large solid angle coverage with ~ 100% detection efficiency, and adequate segmentation for angular information. A good timing resolution (≤ 100 ps) enables to have shorter flight paths, thus a closely packed 4π array should be feasible. Preamplifiers for energy readout in SSD are easily available. A major constraint with SSDs is the missing high density multichannel preamplifiers which can provide both fast timing as well as energy. Provision of both timing and energy processing, generally makes circuit bulky, with higher power consumption, which may not be suitable in SSD arrays. In case of DSSSD, the problem was overcome by using timing from one side and energy from the other side. A custom designed 16 channel FTA has been developed for DSSSD design W from Micron Semiconductors, UK

  20. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  1. The Belle II SVD data readout system

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, R., E-mail: Richard.Thalmeier@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technolog y Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 12116 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); and others

    2017-02-11

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  2. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  3. Nonlinear parity readout with a microwave photodetector

    Science.gov (United States)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  4. A radiation-tolerant electronic readout system for portal imaging

    Science.gov (United States)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  5. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  6. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  7. An intelligent readout controller for Fastbus, the Fermilab FSCC

    International Nuclear Information System (INIS)

    Bowden, M.; Kwarciany, R.; Urish, J.

    1990-01-01

    This paper reports on the Fermilab FASTBUS Smart Crate Controller which is intended as a fast, versatile, and cost effective solution for the readout of FASTBUS crates. The on-board 68020 provides intelligence and a programmable microsequencer controls the main readout path. The FSCC supports communication via serial RS 232, Ethernet, and FASTBUS. The main readout path may be programmed for a variety of protocols. Currently, RS 422, VDAS, ECL line, and fiber-optic interfaces are being developed. Hardware interfacing is via the FASTBUS auxiliary connector using a personality card. Provision is made for some on-board formatting and processing of data. The 68020 may sample the data, also headers and word counts may be inserted into the data stream. Data is buffered by FIFOs to allow asynchronous readout

  8. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  9. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.; Omran, Hesham; Naous, Rawan; Salem, Ahmed Sultan; Fahmy, H. A. H.; Lu, W. D.; Salama, Khaled N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  10. Readout scheme for the Baby-MIND detector

    CERN Document Server

    Noah, Etam; Cadoux, F; Favre, Y; Martinez, B; Nicola, L; Parsa, S; Rayner, M; Antonova, M; Fedotov, S; Izmaylov, A; Kleymenova, A; Khabibullin, M; Khotyantsev, A; Kudenko, Y; Likhacheva, V; Mefodiev, A; Mineev, O; Ovsiannikova, T; Shaykhiev, A; Suvorov, S; Yershov, N; Tsenov, R

    2016-01-01

    A readout scheme has been designed for the plastic scintillator bars of the Baby-MIND detector modules. This spectrometer will measure momentum and identify the charge of 1 GeV/c muons with magnetized iron plates interleaved with detector modules. One challenge the detector aims to address is that of keeping high charge identification efficiencies for momenta below 1 GeV/c where multiple scattering in the iron plates degrades momentum resolution. A front-end board has been developed, with 3 CITIROC readout chips per board and up to 96 channels. Hamamatsu MPPCs type S12571-025C photosensors were chosen for readout of wavelength shifting fibers embedded in plastic scintillators. Procurement of the MPPCs has been carried out to instrument 3000 channels in total. Design choices and first results of this readout scheme are presented.

  11. FAIR: A new fast trigger and readout bus system

    International Nuclear Information System (INIS)

    Ordine, A.; Boiano, A.; Zaghi, A.

    1998-01-01

    FAIR (FAst Intercrate Readout) is a synchronous ECL bus system dedicated to readout. It is based on a new trigger and readout hardware level protocol and on a new control system that learns how to setup and control modules. The hardware protocol along with the data structure allow both readout and event building at the same time at the rate of 22 ns/longword (1.44 Gbit/s) without the need of CPUs. It performs trigger management and full pipelining by using a multilevel FIFO structure. FAIR provides for a multi-crate front-end environment and uses an embedded serial network to accomplish front-end control and setup. The data transfer measured performances and the control system are presented in some detail

  12. A four gain readout integrated circuit: FRIC 96 1

    International Nuclear Information System (INIS)

    Bussat, J.M.; Bohner, G.; Lecoq, J.; Colas, J.; Rossetto, O.; Dzahini, D.; Pouxe, J.

    1996-01-01

    The main difficulty for the readout electronics of the ATLAS LARG calorimeter is to handle the 16 bit dynamic range without spoiling the signal to noise ratio. A possible way to split the input. (authors)

  13. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  14. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  15. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  16. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  17. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  18. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  19. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  20. The readout system for the ArTeMis camera

    Science.gov (United States)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used

  1. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  2. Readout and characterisation of new silicon pixel photodiode array for use in PET

    International Nuclear Information System (INIS)

    Hooper, P.; Ward, G.; Lerch, R.; Rozenfeld, A.

    2002-01-01

    Full text: Positron emission tomography (PET) is a functional imaging tool, which is able to quantify physiological, and biochemical processes in vivo using short-lived cyclotron-produced radiotracers. The main physical principle of PET is the simultaneous measurement of two 511 keV photons which are emitted in opposite directions following the annihilation of a positron in tissue. The accuracy of tracking these photons determines the accuracy of localising the radiotracer in the body, which is referred to as the spatial resolution of the system. Compared with conventional single photon imaging with gamma cameras, PET provides superior spatial resolution and sensitivity. However, compared with anatomical imaging techniques, the spatial resolution remains relatively poor at approximately 4-6 mm full width at half maximum (FWHM), compared with 1 mm FWHM for MRI. The Centre for Medical Radiation Physics at the University of Wollongong is developing a new Positron Emission Tomography (PET) detection sub-module that will significantly improve the spatial resolution of PET. The new sub-module design is simple and robust to minimise module assembly complications and is completely independent of photomultiplier tubes. The new sub-module has also been designed to maximise its flexibility for easy sub-module coupling so as to form a complete, customised, detection module to be used in PET scanners dedicated to human brain and breast, and small animal studies. A new computer controlled gantry allows the system to be used for PET and SPECT applications. Silicon 8x8 detector arrays have been developed by CMRP and will be optically coupled scintillation crystals and readout using the VIKING tM hybrid preamplifier chip to form the basis of the new module Characterisation of the pixel photodiode array has been performed to check the uniformity of the response of the array. This characterisation has been done using a pulsed, near infra-red laser diode system and alpha particles

  3. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Science.gov (United States)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  4. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  5. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  6. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  7. Yarr: A PCIe based readout system for semiconductor tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Timon [Bergische Universitaet Wuppertal, Wuppertal (Germany); CERN, Geneva (Switzerland); Maettig, Peter [Bergische Universitaet Wuppertal, Wuppertal (Germany); Pernegger, Heinz [CERN, Geneva (Switzerland)

    2015-07-01

    The Yarr readout system is a novel DAQ concept, using an FPGA board connected via PCIe to a computer, to read out semiconductor tracking systems. The system uses the FPGA as a reconfigurable IO interface which, in conjunction with the very high speed of the PCIe bus, enables a focus of processing the data stream coming from the pixel detector in software. Modern computer system could potentially make the need of custom signal processing hardware in readout systems obsolete and the Yarr readout system showcases this for FE-I4 chips, which are state-of-the-art readout chips used in the ATLAS Pixel Insertable B-Layer and developed for tracking in high multiplicity environments. The underlying concept of the Yarr readout system tries to move intelligence from hardware into the software without the loss of performance, which is made possible by modern multi-core processors. The FPGA board firmware acts like a buffer and does no further processing of the data stream, enabling rapid integration of new hardware due to minimal firmware minimisation.

  8. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  9. A readout buffer prototype for ATLAS high-level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2001-01-01

    Readout buffers are critical components in the dataflow chain of the ATLAS trigger/data-acquisition system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several readout buffers are grouped to form a readout buffer complex that acts as a data server for the high-level trigger selection algorithms and for the final data-collection system. This paper describes a functional prototype of a readout buffer based on a custom-made PCI mezzanine card that is designed to accept input data at up to 160 MB /s, to store up to 8 MB of data, and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel 1960 processor and complex programmable logic devices. We present the integration of several of these cards in a readout buffer complex. We measure various performance figures and discuss to which extent these can fulfil ATLAS needs. (5 refs).

  10. Novel concept of TDI readout circuit for LWIR detector

    Science.gov (United States)

    Kim, Byunghyuck; Yoon, Nanyoung; Lee, Hee Chul; Kim, Choong-Ki

    2000-07-01

    Noise property is the prime consideration in readout circuit design. The output noise caused by the photon noise, which dominates total noise in BLIP detectors, is limited by the integration time that an element looks at a specific point in the scene. Large integration time leads to a low noise performance. Time-delay integration (TDI) is used to effectively increase the integration time and reduce the photon noise. However, it increases the number of dead pixels and requires large integration capacitors and low noise output stage of the readout circuit. In this paper, to solve these problems, we propose a new concept of readout circuit, which performs background suppression, cell-to-cell background current non-uniformity compensation, and dead pixel correction using memory, ADC, DAC, and current copier cell. In simulation results, comparing with the conventional TDI readout circuit, the integration capacitor size can be reduced to 1/5 and trans-impedance gain can be increased by five times. Therefore, the new TDI readout circuit does not require large area and low noise output stage. And the error of skimming current is less than 2%, and the fixed pattern noise induced by cell-to-cell background current variation is reduced to less than 1%.

  11. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  12. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  13. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.

    1994-01-01

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10 -3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  14. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    -out facilitates measurements in liquid. The probe has been successfully implemented in gaseous as well as in liquid experiments. For example, the probe has been used as an accurate and minute thermal sensor and as a humidity sensor. In liquid, the probe has been used to detect the presence of alcohol in water. (C......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  15. CASAGEM: a readout ASIC for micro pattern gas detectors

    International Nuclear Information System (INIS)

    He Li; Deng Zhi; Liu Yinong

    2012-01-01

    A readout ASIC for micro pattern gas detectors has been designed This ASIC integrates 16 channels for anode readout and 1 channel for cathode readout which can make use of the signal of detector's cathode to generate a trigger Every channel can provide amplification and shaping of detector signals. The ASIC can also provide adjustable gain which can be adjusted from 2 mV/fC to 40 mV/fC, and adjustable shaping time which can be adjusted from 20 ns to 80 ns; so this ASIC can be applied to detectors with wide range output signal and different counting rate. The ASIC is fabricated with Chartered 0.35 μm CMOS process More circuit design Details and test results will be presented. (authors)

  16. Sub-10ps monolithic and low-power photodetector readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.

    2009-01-01

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device

  17. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  18. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  19. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  20. Sub-10ps monolithic and low-power photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.

    2009-02-20

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device.

  1. DRM2: the readout board for the ALICE TOF upgrade

    CERN Document Server

    Falchieri, Davide

    2018-01-01

    For the upgrade of the ALICE TOF electronics, we have designed a new version of the readout board, named DRM2, a card able to read the data coming from the TDC Readout Module boards via VME. A Microsemi Igloo2 FPGA acts as the VME master and interfaces the GBTx link for transmitting data and receiving triggers and a low-jitter clock. Compared to the old board, the DRM2 is able to cope with faster trigger rates and provides a larger data bandwidth towards the DAQ. The results of the measurements on the received clock jitter and data transmission performances in a full crate are given.

  2. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  3. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  4. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  5. Updates on the most recent results in dual readout calorimetry

    International Nuclear Information System (INIS)

    Cascella, M.

    2011-01-01

    The Dual REAdout Method (DREAM) consists in comparing the scintillation and Cherenkov light generated in the shower development process. By comparing the two, the electromagnetic fraction of the hadronic shower can be measured event-by-event, to eliminate the effects of fluctuations in this fraction. In this paper the DREAM fiber calorimeter and its successor, the newDREAM prototype that is currently under construction, will be described. We will also report on the efforts to study the Cherenkov component of the output of high-Z crystals and to realize a dual-readout electromagnetic section that can achieve outstanding electromagnetic resolution whit out compromising the hadronic resolution.

  6. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  7. A time projection chamber with GEM-based readout

    Energy Technology Data Exchange (ETDEWEB)

    Attié, David [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Behnke, Ties [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); Bellerive, Alain [Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 (Canada); Bezshyyko, Oleg [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv 01601 (Ukraine); Bhattacharya, Deb Sankar [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); now at Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, Purba [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); now at National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha (India); Bhattacharya, Sudeb [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Caiazza, Stefano [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz (Germany); Colas, Paul [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Lentdecker, Gilles De [Inter University ULB-VUB, Av. Fr. Roosevelt 50, B1050 Bruxelles (Belgium); Dehmelt, Klaus [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Desch, Klaus [Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn (Germany); and others

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  8. Vertically integrated pixel readout chip for high energy physics

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 (micro)m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 (micro)m 2 pixels, laid out in an array of 48 x 48 pixels.

  9. The readout performance evaluation of PowerPC

    International Nuclear Information System (INIS)

    Chu Yuanping; Zhang Hongyu; Zhao Jingwei; Ye Mei; Tao Ning; Zhu Kejun; Tang Suqiu; Guo Yanan

    2003-01-01

    PowerPC, as a powerful low-cost embedded computer, is one of the very important research objects in recent years in the project of BESIII data acquisition system. The researches on the embedded system and embedded computer have achieved many important results in the field of High Energy Physics especially in the data acquisition system. The one of the key points to design an acquisition system using PowerPC is to evaluate the readout ability of PowerPC correctly. The paper introduce some tests for the PowerPC readout performance. (authors)

  10. Development of a Crosstalk Suppression Algorithm for KID Readout

    Science.gov (United States)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  11. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  12. Direct observation of the discrete energy spectrum of two lanthanide-based single-chain magnets by far-infrared spectroscopy

    Science.gov (United States)

    Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo

    2014-05-01

    The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.

  13. A near-infrared reflectance spectroscopic method for the direct analysis of several fodder-related chemical components in drumstick (Moringa oleifera Lam.) leaves.

    Science.gov (United States)

    Zhang, Junjie; Li, Shuqi; Lin, Mengfei; Yang, Endian; Chen, Xiaoyang

    2018-05-01

    The drumstick tree has traditionally been used as foodstuff and fodder in several countries. Due to its high nutritional value and good biomass production, interest in this plant has increased in recent years. It has therefore become important to rapidly and accurately evaluate drumstick quality. In this study, we addressed the optimization of Near-infrared spectroscopy (NIRS) to analyze crude protein, crude fat, crude fiber, iron (Fe), and potassium (K) in a variety of drumstick accessions (N = 111) representing different populations, cultivation programs, and climates. Partial least-squares regression with internal cross-validation was used to evaluate the models and identify possible spectral outliers. The calibration statistics for these fodder-related chemical components suggest that NIRS can predict these parameters in a wide range of drumstick types with high accuracy. The NIRS calibration models developed in this study will be useful in predicting drumstick forage quality for these five quality parameters.

  14. Research directed at developing a classical theory to describe isotope separation of polyatomic molecules illuminated by intense infrared radiation. Final report, May 7-September 30, 1979

    International Nuclear Information System (INIS)

    Lamb, W.E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories

  15. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    Science.gov (United States)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  16. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    Science.gov (United States)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  17. Far infrared through millimeter backshort-under-grid arrays

    Science.gov (United States)

    Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.

    2006-06-01

    We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.

  18. Backshort-Under-Grid arrays for infrared astronomy

    Science.gov (United States)

    Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2006-04-01

    We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.

  19. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  20. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    International Nuclear Information System (INIS)

    OCONNOR, P.; GRATCHEV, V.; KANDASAMY, A.; POLYCHRONAKOS, V.; TCHERNIATINE, V.; PARSONS, J.; SIPPACH, W.

    1999-01-01

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm 2 /s

  1. Design and prototyping of a readout aggregation ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Frank; Schatral, Sven; Bruening, Ulrich [ZITI, Universitaet Heidelberg (Germany); Som, Indranil; Bhattacharyya, Tarun [Indian Institute of Technology, Kharagpur (India); Collaboration: CBM-Collaboration

    2015-07-01

    In close collaboration between the Indian Institute of Technology Kharagpur (IITKGP) and the Institute for Computer Engineering (ZITI) at the University of Heidelberg a readout aggregation ASIC was designed. This happened in the context of the Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR). The ASIC is designed in 65nm TSMC technology. Its miniASIC tapeout to verify the analog and high-speed components is scheduled to the first quarter of 2015. This mixed-signal ASIC consists of a full-custom 5Gb/s serializer/deserializer, designed by the IITKGP including design elements such as phase-locked loop, bandgap reference, and clock data recovery, and a digital designed network communication and aggregation part designed by the ZITI. In addition, there are test structures and an I2C readout integrated to ease bring up and monitoring. A specialty of this test ASIC is the aggregation of links featuring different data rates, running with bundles of 500 MB/s LVDS. This enables flexible readout setups of mixed detectors respectively readout of various chips. As communication protocol, a unified link protocol is used including control messages, data messages, and synchronization messages on an identical lane. The design has been simulated, verified, and hardware emulated using Spartan 6 FPGAs.

  2. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  3. Investigation of the readout electronics of DELPHI surround muon chamber

    International Nuclear Information System (INIS)

    Khovanskij, N.; Krumshtejn, Z.; Ol'shevskij, A.; Sadovskij, A.; Sedykh, Yu.; Molnar, J.; Sicho, P.; Tomsa, Z.

    1995-01-01

    The characteristics of the readout electronics of the DELPHI surround muon chambers with various AMPLEX chips (AMPLEX 16 and AMPLEX-SICAL) are presented. This electronics is studied in a cosmic rays test of the real surround muon chamber model. 4 refs., 6 figs., 1 tab

  4. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  5. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  6. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, Edwin; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and

  7. DOSIMO - an interactive web service of the GSF Readout Center

    International Nuclear Information System (INIS)

    Huebner, S.; Lempart, R.

    2002-01-01

    Under the Radiation Protection and X-ray Ordinances, official personnel dosimetry centers are charged with measuring, documenting, and monitoring personnel doses as independent agencies. The GSF Readout Center (AWST) for Personnel Dosimeters and Area Monitors is responsible for monitoring persons occupationally exposed to radiation in the federal states of Baden-Wuerttemberg, Bavaria, Hesse, and Schleswig-Holstein. The largest German readout center uses new media in personnel dosimetry in order to simplify and speed up data transfer. In October 1998, AWST in cooperation with ADANAT ENTIRE SYSTEMS implemented an Internet interface. As a result, AWST is the first European readout center to offer not only a possibility to disseminate information through the Internet by means of the DOSIMO (DOSIMETRY On-line) Internet Service, but also enabling the interactive data exchange by electronic means with authorized customers. DOSIMO users enjoy the decisive advantage of having the results of readout of their dosimeters ready for use as soon as they have become available. (orig.) [de

  8. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  9. Dead Time in the LAr Calorimeter Front-End Readout

    CERN Document Server

    Gingrich, D M

    2002-01-01

    We present readout time, latency, buffering, and dead-time calculations for the switched capacitor array controllers of the LAr calorimeter. The dead time is compared with algorithms for the dead-time generation in the level-1 central trigger processor.

  10. Flexible geometry hodoscope using proportional chamber cathode read-out

    International Nuclear Information System (INIS)

    Aubret, C.; Bellefon, A. de; Benoit, P.; Brunet, J.M.; Tristram, G.

    1978-01-01

    The construction of a cathode read-out proportional chamber, used as a low mass hodoscope is described. Results on efficiency, time resolution and space resolution are shown. The associative logic, which permits the use of the chamber as a coplanarity chamber is briefly presented

  11. A time projection chamber with microstrip read-out

    International Nuclear Information System (INIS)

    Bootsma, T.M.V.; Van den Brink, A.; De Haas, A.P.; Kamermans, R.; Kuijer, P.G.; De Laat, C.T.A.M.; Van Nieuwenhuizen, G.J.; Ostendorf, R.; Snellings, R.J.M.; Twenhoefel, C.J.W.; Peghaire, A.

    1994-01-01

    The design and testing of a novel detector for heavy-ion physics in the intermediate-energy regime is described. This detector consists of a large drift chamber with microstrip read-out in combination with thick plastic scintillators. With this system particle identification and energy determination with high spatial resolution and multiple hit capacity is achieved. ((orig.))

  12. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  13. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    International Nuclear Information System (INIS)

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  14. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  15. First performance results of the ALICE TPC Readout Control Unit 2

    OpenAIRE

    Zhao, Chengxin; Alme, Johan; Alt, Torsten; Appelshäuser, Harald; Bratrud, Lars Karlot Stubberud; Castro, Andrew; Costa, Filippo; David, Ernö; Gunji, Tako; Kirsch, S; Kiss, Tivadar; Langøy, Rune; Lien, Jørgen; Lippmann, C; Oskarsson, Anders

    2016-01-01

    - This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level ir...

  16. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  17. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  18. Optimal CCD readout by digital correlated double sampling

    Science.gov (United States)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  19. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  20. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy.

    Science.gov (United States)

    Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto

    2015-01-01

    Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.

  1. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  2. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  3. Upgrade of the TOTEM DAQ using the Scalable Readout System (SRS)

    International Nuclear Information System (INIS)

    Quinto, M; Cafagna, F; Fiergolski, A; Radicioni, E

    2013-01-01

    The main goals of the TOTEM Experiment at the LHC are the measurements of the elastic and total p-p cross sections and the studies of the diffractive dissociation processes. At LHC, collisions are produced at a rate of 40 MHz, imposing strong requirements for the Data Acquisition Systems (DAQ) in terms of trigger rate and data throughput. The TOTEM DAQ adopts a modular approach that, in standalone mode, is based on VME bus system. The VME based Front End Driver (FED) modules, host mezzanines that receive data through optical fibres directly from the detectors. After data checks and formatting are applied in the mezzanine, data is retransmitted to the VME interface and to another mezzanine card plugged in the FED module. The VME bus maximum bandwidth limits the maximum first level trigger (L1A) to 1 kHz rate. In order to get rid of the VME bottleneck and improve scalability and the overall capabilities of the DAQ, a new system was designed and constructed based on the Scalable Readout System (SRS), developed in the framework of the RD51 Collaboration. The project aims to increase the efficiency of the actual readout system providing higher bandwidth, and increasing data filtering, implementing a second-level trigger event selection based on hardware pattern recognition algorithms. This goal is to be achieved preserving the maximum back compatibility with the LHC Timing, Trigger and Control (TTC) system as well as with the CMS DAQ. The obtained results and the perspectives of the project are reported. In particular, we describe the system architecture and the new Opto-FEC adapter card developed to connect the SRS with the FED mezzanine modules. A first test bench was built and validated during the last TOTEM data taking period (February 2013). Readout of a set of 3 TOTEM Roman Pot silicon detectors was carried out to verify performance in the real LHC environment. In addition, the test allowed a check of data consistency and quality

  4. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...... whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min...

  5. Feasibility studies for a wireless 60 GHz tracking detector readout

    International Nuclear Information System (INIS)

    Dittmeier, S.; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2016-01-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m"2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  6. Feasibility studies for a wireless 60 GHz tracking detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Dittmeier, S., E-mail: dittmeier@physi.uni-heidelberg.de; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2016-09-11

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m{sup 2}) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  7. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann [School of Computer Science and Technology, Northwestern Polytechnical University, Xi' an (China)

    2015-07-01

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a

  8. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  9. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC.

    Science.gov (United States)

    Zhang, Guo-Jun; Chai, Kevin Tshun Chuan; Luo, Henry Zhan Hong; Huang, Joon Min; Tay, Ignatius Guang Kai; Lim, Andy Eu-Jin; Je, Minkyu

    2012-05-15

    Early detection of cardiac biomarkers for diagnosis of heart attack is the key to saving lives. Conventional method of detection like the enzyme-linked immunosorbent assay (ELISA) is time consuming and low in sensitivity. Here, we present a label-free detection system consisting of an array of silicon nanowire sensors and an interface readout application specific integrated circuit (ASIC). This system provides a rapid solution that is highly sensitive and is able to perform direct simultaneous-multiplexed detection of cardiac biomarkers in serum. Nanowire sensor arrays were demonstrated to have the required selectivity and sensitivity to perform multiplexed detection of 100 fg/ml troponin T, creatine kinase MM, and creatine kinase MB in serum. A good correlation between measurements from a probe station and the readout ASIC was obtained. Our detection system is expected to address the existing limitations in cardiac health management that are currently imposed by the conventional testing platform, and opens up possibilities in the development of a miniaturized device for point-of-care diagnostic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    Science.gov (United States)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  11. The selective read-out processor for the CMS electromagnetic calorimeter

    CERN Document Server

    Girão de Almeida, Nuño Miguel; Faure, Jean Louis; Gachelin, Olivier; Gras, Philippe; Mandjavidze, Irakli; Mur, Michel; Varela, João

    2005-01-01

    This paper describes the selective read-out processor (SRP) proposed for the electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at LHC (CERN). The aim is to reduce raw ECAL data to a level acceptable by the CMS data acquisition (DAQ) system. For each positive level 1 trigger, the SRP is guided by trigger primitive generation electronics to identify ECAL regions with energy deposition satisfying certain programmable criteria. It then directs the ECAL read-out electronics to apply predefined zero suppression levels to the crystal data, depending whether the crystals fall within these regions or not. The main challenges for the SRP are some 200 high speed (1.6 Gbit/s) I/O channels, asynchronous operation at up to 100 kHz level 1 trigger rate, a 5- mu s real-time latency requirement and a need to retain flexibility in choice of selection algorithms. The architecture adopted for the SRP is based on modern parallel optic pluggable modules and high density field programmable gate array ...

  12. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.

    2002-01-01

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data

  13. Radiopurity assessment of the energy readout for the NEXT double beta decay experiment

    Science.gov (United States)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2017-08-01

    The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr&aposaneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4×10-4 counts keV-1 kg-1 y-1, satisfying the sensitivity requirements of the NEXT experiment.

  14. The GOTTHARD charge integrating readout detector: design and characterization

    International Nuclear Information System (INIS)

    Mozzanica, A; Bergamaschi, A; Dinapoli, R; Greiffenberg, D; Henrich, B; Johnson, I; Valeria, R; Schmitt, B; Xintian, S; Graafsma, H; Lohmann, M

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  15. TID-dependent current measurements of IBL readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Dette, Karola [TU Dortmund, Experimentelle Physik IV (Germany); CERN (Switzerland); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    The ATLAS detector consists of several subsystems with a hybrid pixel detector as the innermost component of the tracking system. The pixel detector has been composed of three layers of silicon sensor assemblies during the first data taking run of the LHC and has been upgraded with a new 4th layer, the so-called Insertable B-Layer (IBL), in summer 2014. Each silicon sensor of the IBL is connected to a Front End readout chip (FE-I4) via bump bonds. During the first year of data taking an increase of the LV current produced by the readout chips was observed. This increase could be traced back to radiation damage inside the silicon. The dependence of the current on the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations and will be presented in this talk.

  16. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  17. The universal read-out controller for CBM at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Sebastian; Abel, Norbert; Gebelein, Jano [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Collaboration: CBM-Collaboration

    2011-07-01

    Since 2007 we design and develop the firmware for the read-out controller (ROC) for data acquisition of the CBM detector at FAIR. While our first implementation solely focused on the nXYTER chip, today we are also designing and implementing readout logic for the GET4 chip which is supposed to be part of the time of flight (TOF) detector. Furthermore, we fully support both Ethernet and Optical transport as two transparent solutions. This addresses the different requirements of a laboratory setup and the final detector setup respectively. The usage of a strict modularization of the Read Out Controller firmware enables us to provide an Universal ROC where front-end specific logic and transport logic can be combined in a very flexible way. Fault tolerance techniques are only required for some of those modules and hence are only implemented there.

  18. A readout system for the wavelength-shifting optical module

    Energy Technology Data Exchange (ETDEWEB)

    Foesig, Carl-Christian; Boeser, Sebastian [Johannes Gutenberg-Universitaet, Mainz (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The success of IceCube and the plans for an IceCube-Gen2 stimulate the development of new photo sensors. The approach of the Wavelength-shifting Optical Module is to provide a device which has a low dark noise rate combined with a high detection efficiency. A small PMT is used to detect red shifted photons guided in a coated PMMA tube, originally emitted by a wavelength shifting coating that absorbs photons in the UV Region. We have studied several PMTs for their usability with the IceCube-Gen2 readout system. Relevant parameters are the pulse widths in relation to the bandwidth of the IceCube-Gen2 readout electronics and the dark noise rates.

  19. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  20. Test of a PCIe based readout option for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Simon; Lange, Soeren; Kuehn, Wolfgang [Justus-Liebig-Universitaet Giessen (Germany); Engel, Heiko [Goethe-Universitaet Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The future PANDA detector will achieve an event rate at about 20 MHz resulting in a high data load of up to 200 GB/s. The data acquisition system will be based on a triggerless readout concept, leading to the requirement of large data bandwidths. The data reduction will be guaranteed on the first level by an array of FPGAs running a full on-line reconstruction followed by the second level of a CPU/GPU cluster to achieve a reduction factor more than 1000. The C-RORC (Common Readout Receiver Card), originally developed for ALICE, provides on the one hand 12 optical links with 6.25 Gbps each, and on the other hand a PCIe interface with up to 40 Gbps. The receiver card has been installed and tested, and the firmware has been adjusted for the Panda data format. Test results are presented.

  1. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  2. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    Science.gov (United States)

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  3. Evaluation of an Integrated Read-Out Layer Prototype

    International Nuclear Information System (INIS)

    Abu-Ajamieh, Fayez

    2011-01-01

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  4. Resistive-strips micromegas detectors with two-dimensional readout

    Science.gov (United States)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  5. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  6. Performance of an optical readout GEM-based TPC

    International Nuclear Information System (INIS)

    Margato, L.M.S.; Fraga, F.A.F.; Fetal, S.T.G.; Fraga, M.M.F.R.; Balau, E.F.S.; Blanco, A.; Marques, R. Ferreira; Policarpo, A.J.P.L

    2004-01-01

    We report on the operation of a GEM-based small TPC using an optical readout. The detector was operated with a mixture of Ar+CF 4 using 5.48 MeV alpha particles obtained from a 241 Am source and the GEM scintillation was concurrently read by a CCD camera and a photomultiplier. Precision collimators were used to define the track orientation. Qualitative results on the accuracy of the track angle, length and charge deposition measurements are presented

  7. High precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  8. A high precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  9. Dual-Readout Calorimetry with Lead Tungstate Crystals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light ...

  10. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  11. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  12. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS

    International Nuclear Information System (INIS)

    DE GERONIMO, G.; O CONNOR, P.; KANDASAMY, A.; GROSHOLZ, J.

    2002-01-01

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 (micro)m CMOS and tested. Design concepts and experimental results are discussed

  13. The ALICE Time of Flight Readout System AFRO

    CERN Document Server

    Kluge, A

    1999-01-01

    The ALICE Time of Flight Detector system comprises more than 100.000 channels and covers an area of more than 100 m2. The timing resolution should be better than 150 ps. This combination of requirements poses a major challenge to the readout system. All detector timing measurements are referenced to a unique start signal t0. This signal is generated at the time an event occurs. Timing measurements are performed using a multichannel TDC chip which requires a 40 MHz reference clock signal. The general concept of the readout system is based on a modular architecture. Detector cells are combined to modules of 1024 channels. Each of these modules can be read out and calibrated independently from each other. By distributing a reference signal, a timing relationship between the modules is established. This reference signal can either be the start signal t0 or the TDC-reference clock. The readout architecture is divided into three steps; the TDC controller, the module controller, and the time of flight controller. Th...

  14. Electronic readout for THGEM detectors based on FPGA TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Tobias; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Kunz, Tobias; Michalski, Christoph; Schopferer, Sebastian; Szameitat, Tobias [Physikalisches Institut, Freiburg Univ. (Germany); Collaboration: COMPASS-II RICH upgrade Group

    2013-07-01

    In the framework of the RD51 programme the characteristics of a new detector design, called THGEM, which is based on multi-layer arrangements of printed circuit board material, is investigated. The THGEMs combine the advantages for covering gains up to 10{sup 6} in electron multiplication at large detector areas and low material budget. Studies are performed by extending the design to a hybrid gas detector by adding a Micromega layer, which significantly improves the ion back flow ratio of the chamber. With the upgrade of the COMPASS experiment at CERN a MWPC plane of the RICH-1 detector will be replaced by installing THGEM chambers. This summarizes to 40k channels of electronic readout, including amplification, discrimination and time-to-digital conversion of the anode signals. Due to the expected hit rate of the detector we design a cost-efficient TDC, based on Artix7 FPGA technology, with time resolution below 100 ps and sufficient hit buffer depth. To cover the large readout area the data is transferred via optical fibres to a central readout system which is part of the GANDALF framework.

  15. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  16. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  17. The read-out chain of the CBM STS detector

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Joerg; Emschermann, David [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the QCD phase diagram at high baryon densities during nucleus-nucleus collisions in a fixed target setup. Its physics goals require interaction rates up to 10 MHz, which can be exploited with fast and radiation hard detectors equipped with free-streaming front-end and readout electronics, connected to a common Data Aquisition (DAQ) system to forward data to the First Level Event Selector (FLES). The core component of the CBM DAQ system is the Data Processing Board (DPB) implementing three important functionalities: - The incoming data via multiple lower-speed, short distance links is preprocessed, concentrated and forwarded to the FLES via higher-speed, long distance links. - The DPBs provide an interface for the Detector Control System (DCS) to configure readout and front-end electronics (FEE). - As part of the Timing and Fast Control (TFC) system the DPBs ensure transmission of the reference clock and synchronous commands necessary to synchronize the FEE. This contribution presents the readout and DAQ chain on the example of the core subdetector, the Silicon Tracking System (STS).

  18. SPIDR, a general-purpose readout system for pixel ASICs

    International Nuclear Information System (INIS)

    Heijden, B. van der; Visser, J.; Beuzekom, M. van; Boterenbrood, H.; Munneke, B.; Schreuder, F.; Kulis, S.

    2017-01-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a 'soft core' CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four

  19. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  20. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J.J.A.; Bueno, J.; Yates, Stephen J.C.; Yurduseven, O.; Llombart Juan, N.; Karatsu, K.; Baryshev, A. M.; Ferrarini, L; Endo, A.; Thoen, D.J.; de Visser, P.J.; Janssen, R.M.J.; Murugesan, V.; Driessen, E.F.C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-01-01

    Aims. Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  1. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  2. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    International Nuclear Information System (INIS)

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-01-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air

  3. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  4. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 μm) and thick (>30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed

  5. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  6. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  7. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    Science.gov (United States)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  8. Pixel detector readout electronics with two-level discriminator scheme

    International Nuclear Information System (INIS)

    Pengg, F.

    1998-01-01

    In preparation for a silicon pixel detector with more than 3,000 readout channels per chip for operation at the future large hadron collider (LHC) at CERN the analog front end of the readout electronics has been designed and measured on several test-arrays with 16 by 4 cells. They are implemented in the HP 0.8 microm process but compatible with the design rules of the radiation hard Honeywell 0.8 microm bulk process. Each cell contains bump bonding pad, preamplifier, discriminator and control logic for masking and testing within a layout area of only 50 microm by 140 microm. A new two-level discriminator scheme has been implemented to cope with the problems of time-walk and interpixel cross-coupling. The measured gain of the preamplifier is 900 mV for a minimum ionizing particle (MIP, about 24,000 e - for a 300 microm thick Si-detector) with a return to baseline within 750 ns for a 1 MIP input signal. The full readout chain (without detector) shows an equivalent noise charge to 60e - r.m.s. The time-walk, a function of the separation between the two threshold levels, is measured to be 22 ns at a separation of 1,500 e - , which is adequate for the 40 MHz beam-crossing frequency at the LHC. The interpixel cross-coupling, measured with a 40fF coupling capacitance, is less than 3%. A single cell consumes 35 microW at 3.5 V supply voltage

  9. Performance of the CAMEX64 silicon strip readout chip

    International Nuclear Information System (INIS)

    Yarema, R.J.

    1989-06-01

    The CAMEX64 is a 64 channel full custom CMOS chip designed specifically for the readout of silicon strip detectors. CAMEX which stands for CMOS Multichannel Analog MultiplEXer for Silicon Strip Detectors was designed by members of the Franhofer Institute for Microelectronic Circuits and Systems and the Max Planck Institute for Physics and Astrophysics. Each CAMEX channel has a switched capacitor charge sensitive amplifier with 4 sampling capacitors and a multiplexing scheme for reading out each of the channels on an analog bus. The device uses multiple sampling capacitors to filter and reduce input noise. Filtering is controlled through sampling techniques using external clocks. The device operates in a double correlated sampling mode and therefore cannot separate detector leakage current from a charge input. Normal operation of this device is similar to all other silicon readout chips designed and built thus far in that there is a data acquisition cycle during which charge is simultaneously accepted on all channels for a short period of time from a detector array, followed by a readout cycle where that charge or hit information is read out. This device works especially well for colliding beam experiments where the time of charge arrival is accurately known. However it can be used in fixed target or asynchronous mode where the time of charge arrival is not well known. In the asynchronous mode it appears that gain is somewhat dependent on the time interval required to decide whether or not to accept charge input information and thus the maximum signal to noise performance found with the synchronous mode may not be achieved in the asynchronous mode. 18 figs., 5 tabs

  10. Design and performance of the new cathode readout proportional chambers in LASS

    International Nuclear Information System (INIS)

    Aiken, G.; Aston, D.; Dunwoodie, W.

    1980-10-01

    The design and construction of a new proportional chamber system for the LASS spectrometer are discussed. This system consists of planar and cylindrical chambers employing anode wire and cathode strip readout techniques. The good timing characteristics of anode readout combine with the excellent spatial resolution of cathode readout to provide powerful and compact detectors. Preliminary resolution data are presented along with operating characteristics of the various devices

  11. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  12. Drift chamber readout system of the DIRAC experiment

    CERN Document Server

    Afanasiev, L G

    2002-01-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  13. The STAR Heavy Flavor Tracker PXL detector readout electronics

    International Nuclear Information System (INIS)

    Schambach, J.; Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.; Sun, X.; Szelezniak, M.

    2016-01-01

    The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ('PXL') subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector

  14. A new electronic read-out for the YAPPET scanner

    International Nuclear Information System (INIS)

    Damiani, C.; Ramusino, A.C.A. Cotta; Malaguti, R.; Guerra, A. Del; Domenico, G. Di; Zavattini, G.

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper

  15. Drift chamber and pulse height readout systems using analog multiplexing

    International Nuclear Information System (INIS)

    Cisneros, E.L; Kang, H.K.; Hall, J.N.; Larsen, R.S.

    1976-11-01

    Drift chamber and pulse-height readout systems are being developed for use in a new large scale detector at the SPEAR colliding beam facility. The systems are based upon 32 channels of sample-and-hold together with an analog multiplexer in a single-width CAMAC module. The modules within each crate are scanned by an autonomous controller containing a single ADC and memory plus arithmetic capability for offset, gain and linearity corrections. The drift chamber module has a facility for extracting hit wire information for use in trigger decision circuitry

  16. Fabrication of the GLAST Silicon Tracker Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

    2006-03-03

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

  17. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    Czech Academy of Sciences Publication Activity Database

    Sielewicz, K. M.; Rinella, G. A.; Bonora, M.; Ferencei, Jozef; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vaňát, Tomáš

    2017-01-01

    Roč. 12, JAN (2017), č. článku C01008. ISSN 1748-0221. [Topical Workshop on Electronics for Particle Physics. Karlsruhe, 26.09.2016-30.09.2016] R&D Projects: GA MŠk LM2015056; GA MŠk(CZ) LG15052; GA MŠk LM2015058 Institutional support: RVO:61389005 Keywords : digital electronic circuits * electronic detector readout concepts * modlar electronics * radiation-hard electronics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  18. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  19. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Barranco-Luque, M.; Fabjan, C.W.; Frandsen, P.K.

    1982-01-01

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  20. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  1. Mixed species radioiodine air sampling readout and dose assessment system

    International Nuclear Information System (INIS)

    Distenfeld, C.H.; Klemish, J.R. Jr.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector

  2. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  3. Radiation effects on the Viking-2 preamplifier-readout chip

    International Nuclear Information System (INIS)

    Fallot-Burghardt, W.; Hawblitzel, C.; Hofmann, W.; Knoepfle, K.T.; Seeger, M.; Brenner, R.; Nygaard, E.; Rudge, A.; Toker, O.; Weilhammer, P.; Yoshioka, K.

    1994-01-01

    We have studied the radiation sensitivity of the Viking-2 VLSI circuit which has been designed for the readout of silicon strip detectors and manufactured at Mietec in 1.5 μm CMOS technology. Both biased and unbiased chips have been irradiated with a 137 Cs γ source up to a total dose of 2 kGy (200 krad) after which all tested chips were still fully functional. We report the characteristic changes of device parameters with dose, including equivalent noise charge for different capacitive loads, and determine transistor threshold shifts and change of mobilities. ((orig.))

  4. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  5. Comparing interferometry techniques for multi-degree of freedom test mass readout

    International Nuclear Information System (INIS)

    Isleif, Katharina-Sophie; Gerberding, Oliver; Mehmet, Moritz; Schwarze, Thomas S; Heinzel, Gerhard; Danzmann, Karsten

    2016-01-01

    Laser interferometric readout systems with 1pm/Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts. (paper)

  6. Study and optimization of the spatial resolution for detectors with binary readout

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-09-11

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  7. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.

    1988-01-01

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of ∼2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of ∼25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs

  8. An infrared view of high Tc superconductors

    International Nuclear Information System (INIS)

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  9. Photoproduction γp→pπ0π0. Results and development of a fast FADC-readout for double polarization experiments

    International Nuclear Information System (INIS)

    Szczepanek, T.

    2006-01-01

    This thesis describes the development and testing of a very fast intersection card for the driving and readout of a struck DL300 flash-ADC system. In order to permit an as fast as possible processing and storage of the data, an intersection on the base of a field-programmable integrated circuit was developed, which is placed on PCI/PMC plug-card together with fast memory and can transmit the data to the readout processor via a direct storage transmission from the memory of the control card to the applied CPU. The readout of the DL300 system pursues thereby autonomeously on the integrated circuit. First test measurements in the laboratory show that the flash ADC readout is functionable and dtat rates of 1 kHz or more can be reached. Furthermore the establishment of a graphical control software for the data-acquisition system in combination with a system for the processing, storage, and display of status informations of the data acquisition as well as a hardware synchronization module and an interrupt module on the base of a serial RS-232 intersection for the Linux kernel are presented, which were also developed in the framework of this thesis

  10. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita; Shinsho, Kiyomitsu; Wakabayashi, Genichiro; Koba, Yusuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji

    2016-01-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  11. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    Energy Technology Data Exchange (ETDEWEB)

    Nohtomi, Akihiro, E-mail: nohtomi@hs.med.kyushu-u.ac.jp [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shinsho, Kiyomitsu [Graduate School of Human Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, Arakawa-ku, Tokyo 116-8551 (Japan); Wakabayashi, Genichiro [Atomic Energy Research Institute, Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8502 (Japan); Koba, Yusuke [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko [Department of Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ohga, Saiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-10-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  12. Description of the SAltro-16 chip for gas detector readout

    CERN Document Server

    Aspell, P; Garcia Garcia, E; de Gaspari, M; Mager, M; Musa, L; Rehman, A; Trampitsch, G

    2010-01-01

    The S-ALTRO prototype chip is a mixed-signal integrated circuit designed to be one of the building blocks of the readout electronics for gas detectors. Its architecture is based in the ALTRO (ALICE TPC Read Out) chip, being its main difference the integration of the charge shaping amplifier in the same IC. Just like ALTRO chip, the prototype architecture and programmability make it suitable for the readout of a wider class of detectors. In one single chip, 16 analogue signals from the detector are shaped, digitised, processed, compressed and stored in a multi-acquisition memory. The Analogue-to- Digital converters embedded in the chip have a 10-bit dynamic range and a maximum sampling rate up to 40MHz. After digitisation, a pipelined Data Processor is able to remove from the input signal a wide range of perturbations, related to the non- ideal behaviour of the detector, temperature variation of the electronics, environmental noise, etc. Moreover, the Data Processor is able to suppress the pulse tail within 1�...

  13. Combined readout of a triple-GEM detector

    Science.gov (United States)

    Antochi, V. C.; Baracchini, E.; Cavoto, G.; Di Marco, E.; Marafini, M.; Mazzitelli, G.; Pinci, D.; Renga, F.; Tomassini, S.; Voena, C.

    2018-05-01

    Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of μm were measured on the GEM plane along with an energy resolution of 20%÷30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 μm. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.

  14. The New APD Based Readout for the Crystal Barrel Calorimeter

    International Nuclear Information System (INIS)

    Urban, M; Honisch, Ch; Steinacher, M

    2015-01-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds

  15. Front end readout electronics for the CMS hadron calorimeter

    CERN Document Server

    Shaw, Terri M

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm sup 2. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  16. SPAD array chips with full frame readout for crystal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter; Blanco, Roberto; Sacco, Ilaria; Ritzert, Michael [Heidelberg University (Germany); Weyers, Sascha [Fraunhofer Institute for Microelectronic Circuits and Systems (Germany)

    2015-05-18

    We present single photon sensitive 2D camera chips containing 88x88 avalanche photo diodes which can be read out in full frame mode with up to 400.000 frames per second. The sensors have an imaging area of ~5mm x 5mm covered by square pixels of ~56µm x 56µm with a ~55% fill factor in the latest chip generation. The chips contain a self triggering logic with selectable (column) multiplicities of up to >=4 hits within an adjustable coincidence time window. The photon accumulation time window is programmable as well. First prototypes have demonstrated low dark count rates of <50kHz/mm2 (SPAD area) at 10 degree C for 10% masked pixels. One chip version contains an automated readout of the photon cluster position. The readout of the detailed photon distribution for single events allows the characterization of light sharing, optical crosstalk etc., in crystals or crystal arrays as they are used in PET instrumentation. This knowledge could lead to improvements in spatial or temporal resolution.

  17. Fast optical readout for Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    Charged lepton flavour violation is highly suppressed in the Standard Model, which results in a prediction for the branching ratio of μ{sup +}→e{sup +}e{sup +}e{sup -} below O(10{sup -54}). The Mu3e experiment will search for this rare decay with a sensitivity of 10{sup -16}. An observation would be a clear sign for new physics. A high muon stopping rate of 2.10{sup 9} Hz is required so that sufficient statistics can be accumulated in about one year of data taking. The high event rate and the requirement of a full online track reconstruction demand a fast readout system which should provide a bandwidth above 1 Tbit/s. Reconfigurable devices, namely FPGAs, can easily parallelise the data processing, so it becomes possible to sort, merge, pack and route the data with low latency at high throughput. Optical fibres are the only option for the interconnection between different FPGA-based boards. The fibres also reduce the crosstalk and signal attenuation, especially over long distance links. As part of the readout system prototyping, firmware for synchronous merging of different data streams is being developed. In addition, the optical links have been tested and show a bit error rate below O(10{sup -16}) at 6.4 Gbit/s for a single fibre.

  18. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  19. The digital readout system for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lofstedt, Bo

    2000-01-01

    The CMS Electromagnetic Calorimeter is a high-precision detector demanding innovative solutions in order to cope with the high dynamic range and the extreme high resolution of the detector as well as with the harsh environment created by the high level of radiation and the 4 T magnetic field. The readout system is partly placed within the detector and partly in the adjacent counting room. As the on-detector electronics must cope with the harsh environment the use of standard components is excluded for this part of the system. This paper describes the solutions adopted for the high-precision analogue stages, the A-D conversion, the optical transfer of the raw data from the on-detector part to the so-called Upper Level Readout, placed in the counting room, and the functionality of the latter. The ECAL is instrumental in providing information to the first-level trigger process and the generation of this information will be described. Also, the problem of reducing the raw data volume (6x10 12 bytes/s) to a level that can be handled by the central DAQ system (10 5 bytes/s) without degrading the physics performance will be discussed

  20. The TOTEM DAQ based on the Scalable Readout System (SRS)

    Science.gov (United States)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  1. A continuous read-out TPC for the ALICE upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, C., E-mail: C.Lippmann@gsi.de

    2016-07-11

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb–Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  2. A TDC integrated circuit for drift chamber readout

    International Nuclear Information System (INIS)

    Passaseo, M.; Petrolo, E.; Veneziano, S.

    1995-01-01

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 μm CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.)

  3. A TDC integrated circuit for drift chamber readout

    Energy Technology Data Exchange (ETDEWEB)

    Passaseo, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Petrolo, E. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Veneziano, S. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)

    1995-12-11

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 {mu}m CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.).

  4. Development of radiation hard readout electronics for LHCb

    CERN Document Server

    Sexauer, Edgar; Lindenstruth, Volker

    2001-01-01

    The experiment LHCb is under development at CERN and aims to measure CP-violation in the B-Meson system at very high precision. The experiment makes use of a vertex detector that is equipped with silicon microstrip detectors. A chip suitable for the readout of this detector has been developed in a working group at the ASIC-laboratory Heidelberg. This readout chip 'Beetle-1.0' contains 128 analog input stages of a charge sensitive preamplifier, a pulse shaper and a buffer. The analog signal is fed into a comparator, from which a fast trigger signal can be derived. The following pipeline, realized as an array of gate capacitances, can be used to either store the analog output of the input amplifiers or to store the digital comparator output. External trigger signals mark events that have to be read out and the according pipeline location is stored in a derandomizing buffer. Pending events are read out from the pipeline via a charge-sensitive, resetable amplifier and an analog multiplexer, which serializes the s...

  5. Readout system of TPC/MPD NICA project

    Energy Technology Data Exchange (ETDEWEB)

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.; Cheremukhina, G. A.; Fateev, O. V.; Korotkova, A. M.; Levchanovskiy, F. V.; Lukstins, J.; Movchan, S. A.; Razin, S. V.; Rybakov, A. A.; Vereschagin, S. V., E-mail: vereschagin@jinr.ru; Zanevsky, Yu. V.; Zaporozhets, S. A.; Zruyev, V. N. [Joint Institute for Nuclear Research (Russian Federation)

    2015-12-15

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noise charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.

  6. Front end readout electronics for the CMS hadron calorimeter

    International Nuclear Information System (INIS)

    Terri M. Shaw et al.

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm 2 . For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes

  7. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  8. Readout and trigger electronics for the TPC vertex chamber

    International Nuclear Information System (INIS)

    Ronan, M.T.; Jared, R.C.; McGathen, T.K.; Eisner, A.M.; Broeder, W.J.; Godfrey, G.L.

    1987-10-01

    The introduction of the vertex chamber required the addition of new front-end electronics and a new 1024-channel, high-accuracy TDC system. The preamplifier/discriminator should be capable of triggering on the first electrons and the time digitzer should preserve the measurement resolution. For the TDC's, in order to maintain compatibility with the existing TPC readout system, an upgrade of a previous inner drift chamber digitizer system has been chosen. Tests of the accuracy and stability of the original design indicated that the new design specifications would be met. The TPC detector requires a fast pretrigger to turn on its gating grid within 500 ns of the e/sup +/e/sup -/ beam crossing time, to minimize the loss of ionization information. A pretrigger based on the Straw Chamber signals, operating at a rate of about 2 K/sec, will be used for charged particle final states. In addition, in order to reject low mass Two-Photon events at the final trigger level, an accurate transverse momentum cutoff will be made by the Straw Chamber trigger logic. In this paper, we describe the readout and trigger electronics systems which have been built to satisfy the above requirements. 5 refs., 8 figs

  9. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    Science.gov (United States)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the

  10. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  11. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  12. A double photomultiplier Compton camera and its readout system for mice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Cristiano Lino [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Padova, Via Marzolo 8, Padova 35131 (Italy); Atroshchenko, Kostiantyn [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Baldazzi, Giuseppe [Physics Department, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy and INFN Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Bello, Michele [INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Uzunov, Nikolay [Department of Natural Sciences, Shumen University, 115 Universitetska str., Shumen 9712, Bulgaria and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Di Domenico, Giovanni [Physics Department, University of Ferrara, Via Saragat 1, Ferrara 44122 (Italy) and INFN Ferrara, Via Saragat 1, Ferrara 44122 (Italy)

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  13. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  14. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  15. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  16. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  17. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    Science.gov (United States)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  18. A review of lyoluminescence dosimetry and a new readout method using liquid scintillation techniques

    International Nuclear Information System (INIS)

    Ziemer, P.L.; Hanig, R.; Fayerman, L.K.

    1978-01-01

    Lyoluminescence dosimetry is useful as a personnel monitor and also as a neutron dosimeter. A review of lyoluminescence is given including readout systems, the machanisms of light emission, radiometric characteristics of lyoluminescence dosimeters, factor affecting response and liquid scintillation lyoluminscence readout

  19. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  20. Implementation of a Customisable Readout Sequence for the ALICE ITS Upgrade Explorer Family Chips

    CERN Document Server

    Gazzari, Matthias

    2014-01-01

    Within the ALICE ITS upgrade R&D programme the Explorer family chips are developed featuring 11700 pixels which are split into 18 different sectors with different properties. These pixels are read out sequentially leading to a time span of 2.34ms between the first and last pixel. Due to the long readout time, shot noise induced by the leakage currents in the in-pixel analogue memories makes the comparison of different sensor implementations located in distant sectors on the Explorer family chips difficult. In order to reduce this noise contribution a customisable readout sequence is developed to read parts instead of the whole chip which reduces the overall readout time. This readout sequence is integrated in the existing characterisation framework in order to choose the best performing sensor implementation through pixel-by-pixel comparison without readout-induced effects.

  1. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  2. Superresolution near-field readout in phase-change optical disk data storage

    International Nuclear Information System (INIS)

    Peng Chubing

    2001-01-01

    Readout of a phase-change optical disk with a superresolution (SR) near-field structure (Super-RENS) is theoretically examined on the basis of three-dimensional, full-wave vector diffraction theory. Calculations have demonstrated that Super-RENS has a high spatial resolution beyond the diffraction limit in readout. The read signal is dependent on the nature of SR, the layer structure of the disk, and the state of polarization of the incident laser beam. For the Super-RENS in which antimony is used for SR readout, the readout signal is quite small, and the estimated carrier-to-noise ratio (CNR) is only ∼30 dB for marks of 300 nm. For the Super-RENS in which a metallic region is formed during readout, the read signal is large, and the CNR can be as high as 50 dB in reading 300-nm marks

  3. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  4. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  5. Optical readout in a multi-module system test for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Nderitu Kirichu, Simon; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector, which is presently under construction. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. It consists of detector modules, optoboards, optical fibres, Back of Crate cards, Readout Drivers, and control computers. In this paper, the system test setup and the operation of the readout chain are described. Also, some results of tests using the final pixel detector readout chain are given

  6. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  7. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine.

    Science.gov (United States)

    de Castro, Eduardo da S G; Cassella, Ricardo J

    2016-05-15

    Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Studies of avalanche photodiodes for scintillating fibre tracking readout

    International Nuclear Information System (INIS)

    Fenker, H.; Thomas, J.

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ''Geiger Mode'' have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed

  9. The 'KATOD-1' strip readout ASIC for cathode strip chamber

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Gorbunov, N.V.; Karzhavin, V.Yu.; Khabarov, V.S.; Movchan, S.A.; Smolin, D.A.; Dvornikov, O.V.; Shumejko, N.M.; Chekhovskij, V.A.

    2001-01-01

    The 'KATOD-1', a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2 : +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology

  10. A prototype pixel readout chip for asynchronous detection applications

    International Nuclear Information System (INIS)

    Raymond, D.M.; Hall, G.; Lewis, A.J.; Sharp, P.H.

    1991-01-01

    A two-dimensional array of amplifier cells has been fabricated as a prototype readout system for a matching array of silicon diode detectors. Each cell contains a preamplifier, shaping amplifier, comparator and analogue signal storage in an area of 300 μmx320 μm using 3 μm CMOS technology. Full size chips will be bump bonded to pixel detector arrays. Low noise and asynchronous operation are novel design features. With noise levels of less than 250 rms electrons for input capacitances up to 600 fF, pixel detectors will be suitable for autoradiography, synchrotron X-ray and high energy particle detection applications. The design of the prototype chip is presented and future developments and prospects for applications are discussed. (orig.)

  11. SEU tolerant memory design for the ATLAS pixel readout chip

    International Nuclear Information System (INIS)

    Menouni, M; Barbero, M; Breugnon, P; Fougeron, D; Gensolen, F; Arutinov, D; Backhaus, M; Gonella, L; Hemperek, T; Karagounis, M; Beccherle, R; Darbo, G; Caminada, L; Dube, S; Fleury, J; Garcia-Sciveres, M; Gnani, D; Jensen, F; Gromov, V; Kluit, R

    2013-01-01

    The FE-I4 chip for the B-layer upgrade is designed in a 130 nm CMOS process. For this design, configuration memories are based on the DICE latches where layout considerations are followed to improve the tolerance to SEU. Tests have shown that DICE latches for which layout approaches are adopted are 30 times more tolerant to SEU than the standard DICE latches. To prepare for the new pixel readout chip planned for the future upgrades, a prototype chip containing 512 pixels has been designed in a 65 nm CMOS process and a new approach is adopted for SEU tolerant latches. Results in terms of SEU and TID tolerance are presented.

  12. Front-end readout system for PHENIX RICH

    International Nuclear Information System (INIS)

    Tanaka, Y.; Hara, H.; Ebisu, K.; Hibino, M.; Kametani, S.; Kikuchi, J.; Wintenberg, A.L.; Walker, J.W.; Franck, S.; Moscone, C.; Jones, J.P.; Young, G.R.; Matsumoto, T.; Sakaguchi, T.; Oyama, K.; Hamagaki, H.

    2000-01-01

    A front-end readout system with a custom backplane and custom circuit modules has been developed for the RICH subsystem of the PHENIX experiment. The design specifications and test results of the backplane and the modules are presented in this paper. In the module design, flexibility for modification is maximized through the use of Complex Programmable Logic Devices. In the backplane design, a source-synchronous bus architecture is adopted for the data and control bus. The transfer speed of the backplane has reached 640 Mbyte/s with a 128-bit data bus. Total transaction time is estimated to be less than 30 μs per event when this system is used in the experiment. This result indicates that the performance satisfies the data-rate requirement of the PHENIX experiment

  13. Development of a 10-inch HPD with integrated readout electronics

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, Peter; Giunta, M; Malakhov, N; Menzione, A; Pegna, R; Piccioli, A; Raffaelli, F; Sartori, G

    2003-01-01

    A round 10-in. diameter Hybrid Photodiode (HPD) with spherical entrance window is under development for Cherenkov imaging applications in cosmic ray astronomy. The HPD adopts the fountain focusing electron optics, which, as already demonstrated in the 5 inch Pad HPD, allows for a linear demagnification of the image over practically the full tube diameter. Self-triggering front-end electronics providing also sparse readout capability, has been tested. High-efficiency Rb//2Te cathodes have been produced on a UV extended borosilicate glass windows with very thin conductive underlayers of Indium Tin Oxide. We report on the design of the 10- in. HPD, the fabrication procedure and first tests of a 5-in. HPD with Rb//2Te photocathode and 2048 channels.

  14. Feasibility studies for a wireless 60 GHz tracking detector readout

    CERN Document Server

    Dittmeier, Sebastian; Soltveit, Hans Kristian; Wiedner, Dirk

    2016-01-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the in...

  15. NIKEL-AMC: readout electronics for the NIKA2 experiment

    International Nuclear Information System (INIS)

    Bourrion, O.; Bouly, J.L.; Bouvier, J.; Bosson, G.; Catalano, A.; Li, C.; Macías-Pérez, J.F.; Tourres, D.; Ponchant, N.; Vescovi, C.; Benoit, A.; Calvo, M.; Goupy, J.; Monfardini, A.

    2016-01-01

    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.

  16. Performance of a liquid argon Accordion calorimeter with fast readout

    International Nuclear Information System (INIS)

    Aubert, B.; Bazan, A.; Beaugiraud, B.; Colas, J.; Leflour, T.; Maire, M.; Vialle, J.P.; Wingerter-Seez, I.; Zolnierowski, Y.P.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Chevalley, J.L.; Fabjan, C.W.; Fournier, D.; Franz, A.; Gildemeister, O.; Jenni, P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Richter, W.; Soderqvist, J.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.F.; Renardy, J.F.; Teiger, J.; Zaccone, H.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cravero, A.; Ferrari, A.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Perini, L.; Pessina, G.; Sala, P.; Sciamanna, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Jean, P.; Iconomidou-Fayard, L.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Unal, G.; Fuglesang, C.; Lefebvre, M.; Towers, S.

    1992-01-01

    A prototype lead-liquid-argon electromagnetic calorimeter with parallel plates and Accordion geometry has been equipped with high speed readout electronics and tested with electron and muon beams at the CERN SPS. For a response peaking time of about 35 ns, fast enough for operation at the future hadron colliders, the energy resolution for electrons is 9.6%/√E[GeV] with a local constant term of 0.3% and a noise contribution of 0.33/E[GeV]. The spatial accuracy achieved with a detector granularity of 2.7 cm is 3.7 mm/√E[GeV] and the angular resolution 12 mrad at 60 GeV. (orig.)

  17. Dual-Readout Calorimetry for High-Quality Energy

    CERN Multimedia

    During the past seven years, the DREAM collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development ${(dual}$ ${readout}$), the fluctuations in the electromagnetic shower fraction could be measured event by event their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contirbutions of nuclear evaporation neutrons to the signals and thus reduce the effects of fluctuations in "invisible energy". We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrat...

  18. A fast ADC system for silicon μstrips readout

    International Nuclear Information System (INIS)

    Inzani, P.; Pedrini, D.; Sala, S.

    1986-01-01

    A new fast ADC module has been designed. It is part of a large readout system for a high resolution vertex detector consisting of 12 silicon microstrip planes with more than 8000 channels. The module employs a set of monolithic gated integrators on input (LeCroy MIQ 401) multiplexed on a single 8 bit FADC (Thompson EFX8308). A built-in preprocessing, performed through look up tables, accomplishes equalization and reduction of the data and makes high level trigger feasible. As an additional feature, fast histogramming of all the channels in parallel has been made possible with an internal memory. Special care has been paid to realize a low cost and low power consumption system

  19. PADI ASIC for straw tube read-out

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Traeger, Michael; Fruehauf, Jochen; Schmidt, Christian [GSI, Darmstadt (Germany); Ciobanu, Mircea [ISS, Bucharest (Romania); Collaboration: CBM-Collaboration

    2016-07-01

    A prototype of the CBM MUCH straw tube detector consisting of six individual straws of 6mm inner diameter and 220 mm length filled with Ar/CO{sub 2} gas mixture has been tested at the COSY accelerator in Juelich. The straw tubes were connected to the FEET-PADI6-HDa PCB equipped with PADI-6 fast amplifier/discriminator ASIC. As a reference counter in this measurement the scCVD diamond detector has been used delivering excellent timing, time resolution below 100 ps (sigma), and very precise position information, below 50 μm. The demonstrated position resolution of about 160 μm of the straw tube read out with PADI-6 ASIC confirms the capability of the PADI chip and puts this development as a very attractive readout option for straw tubes and wire chambers.

  20. Simple optical readout for ethanol-chlorobenzene dosimetry system

    International Nuclear Information System (INIS)

    Ilijas, B.; Razem, D.

    1999-01-01

    Optical readout of the ethanol-chlorobenzene (ECB) or Dvornik dosimetry system is based on the development of the coloured secondary complex of ferric thiocyanate which has a maximum absorption at 485 nm. The applicability of a rugged, hand-held, battery powered filter colorimeter operating at 480 nm has been investigated as a reader for this purpose. This simple reader performs very well within absorbance one displaying an excellent linearity of absorbance with the concentration of Cl - ions. It is shown that by choosing the appropriate dilution factor when preparing the secondary complex solution the entire useful dose range of the dosimeter up to 2 MGy can be covered. The applicability of this reader to some other liquid chemical dosimeters is also discussed. (author)

  1. Simple optical readout for ethanol - chlorobenzene dosimetry system

    International Nuclear Information System (INIS)

    Ilijas, B.; Razem, D.

    1999-01-01

    Optical readout of the ethanol-chlorobenzene (ECB or Dvornik dosimetry system) is based on the development of coloured secondary complex of ferric thiocyanate which has a maximum absorption at 485 nm. The applicability of a rugged, hand-held, battery powered filter colorimeter operating at 480 nm has been investigated as a reader for this purpose. This simple reader performs very well within absorbance displaying an excellent linearity of absorbance with the concentration of Cl - ions. It was shown, by choosing the appropriate dilution factor when preparing the secondary complex solution, the entire useful dose range of the dosimeter up to 2 MGy can be covered. The applicability of the same reader to some other liquid chemical dosimeters is also discussed. (author)

  2. Operation of a GEM-TPC with pixel readout

    CERN Document Server

    Brezina, C; Kaminski, J; Killenberg, M; Krautscheid, T

    2012-01-01

    A prototype time projection chamber with 26 cm drift length was operated with a short-spaced triple gas electron multiplier (GEM) stack in a setup triggering on cosmic muon tracks. A small part of the anode plane is read out with a CMOS pixel application-specified integrated circuit (ASIC) named Timepix, which provides ultimate readout granularity. Pixel clusters of charge depositions corresponding to single primary electrons are observed and analyzed to reconstruct charged particle tracks. A dataset of several weeks of cosmic ray data is analyzed. The number of clusters per track length is well described by simulation. The obtained single point resolution approaches 50 m at short drift distances and is well reproduced by a simple model of single-electron diffusion.

  3. The "KATOD-1" Strip Readout ASIC for Cathode Strip Chamber

    CERN Document Server

    Golutvin, I A; Karjavin, V Yu; Khabarov, V S; Movchan, S A; Smolin, D A; Dvornikov, O V; Shumeiko, N M; Tchekhovski, V A

    2001-01-01

    The "KATOD-1", a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with tail cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2\\div +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology.

  4. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  5. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  6. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits

    CERN Document Server

    Wu, Rong; Makinwa, Kofi A A

    2013-01-01

    This book presents innovative solutions in the design of precision instrumentation amplifier and read-out ICs, which can be used to boost millivolt-level signals transmitted by modern sensors, to levels compatible with the input ranges of typical Analog-to-Digital Converters (ADCs).  The discussion includes the theory, design and realization of interface electronics for bridge transducers and thermocouples. It describes the use of power efficient techniques to mitigate low frequency errors, resulting in interface electronics with high accuracy, low noise and low drift. Since this book is mainly about techniques for eliminating low frequency errors, it describes the nature of these errors and the associated dynamic offset cancellation techniques used to mitigate them.  Surveys comprehensively offset cancellation and accuracy improvement techniques applied in precision amplifier designs; Presents techniques in precision circuit design to mitigate low frequency errors in millivolt-level signals transmitted by ...

  7. ROCK: The readout controller for the KLOE experiment

    International Nuclear Information System (INIS)

    Aloisio, A.; Cavaliere, S.; Cevenini, F.; Volpe, D. della; Merola, L.; Fiore, D.J.; Parascandolo, P.

    1996-01-01

    A read-out controller (ROCK) has been developed for the Data Acquisition System of the KLOE High Energy Physics experiment, based in Frascati, Italy. The ROCK performs data acquisition in an event-driven fashion on the AUXbus, a custom high speed parallel bus. The AUXbus's main features are data cycles labeled by event number, sparse data scan operations and an asynchronous protocol optimized to achieve data rates up to 15 MHz. On a standard VMEbus, the ROCK allows for data snooping and real-time performance monitoring, without additional overhead on data acquisition. ROCK boards can be linked together via a custom cable bus (Cbus) to build a complex DAQ subsystem. The ROCK board has been designed around three 4.2 K gate XILINX FPGAs. Dual port FIFO banks are used to decouple the asynchronous buses. A preliminary version of the board is presented and test results are briefly discussed

  8. Production Performance of the ATLAS Semiconductor Tracker Readout System

    CERN Document Server

    Mitsou, V A

    2006-01-01

    The ATLAS Semiconductor Tracker (SCT) together with the pixel and the transition radiation detectors will form the tracking system of the ATLAS experiment at LHC. It will consist of 20000 single-sided silicon microstrip sensors assembled back-to-back into modules mounted on four concentric barrels and two end-cap detectors formed by nine disks each. The SCT module production and testing has finished while the macro-assembly is well under way. After an overview of the layout and the operating environment of the SCT, a description of the readout electronics design and operation requirements will be given. The quality control procedure and the DAQ software for assuring the electrical functionality of hybrids and modules will be discussed. The focus will be on the electrical performance results obtained during the assembly and testing of the end-cap SCT modules.

  9. A software approach for readout and data acquisition in CMS

    CERN Document Server

    Antchev, G H; Chatellier, S; Cittolin, Sergio; Erhan, S; Gigi, D; Gutleber, J; Jacobs, C; Meijers, F; Nicolau, R; Orsini, L; Pollet, Lucien; Rácz, A; Samyn, D; Sinanis, N; Sphicas, Paris

    2000-01-01

    Traditional systems dominated by performance constraints tend to neglect other qualities such as maintainability and configurability. Object-Orientation allows one to encapsulate the technology differences in communication sub-systems and to provide a uniform view of data transport layer to the systems engineer. We applied this paradigm to the design and implementation of intelligent data servers in the Compact Muon Solenoid (CMS) data acquisition system at CERN to easily exploiting the physical communication resources of the available equipment. CMS is a high-energy physics experiment under study that incorporates a highly distributed data acquisition system. This paper outlines the architecture of one part, the so called Readout Unit, and shows how we can exploit the object advantage for systems with specific data rate requirements. A C++ streams communication layer with zero copying functionality has been established for UDP, TCP, DLPI and specific Myrinet and VME bus communication on the VxWorks real-time...

  10. Design of readout electronics for a scintillating plate calorimeter

    International Nuclear Information System (INIS)

    Crawley, H.B.; Meyer, W.T.; Rosenberg, E.I.; Thomas, W.D.; Blair, R.E.; Buehring, A.; Dawson, J.; Hill, N.; Noland, R.; Petereit, E.; Price, L.E.; Proudfoot, J.; Spinka, H.; Talaga, R.; Trost, H.J.; Underwood, D.; Wickland, A.B.; Hurlbut, C.; Hagopian, V.; Johnson, K.; Imlay, R.; McNeil, R.; Metcalf, W.; Bolen, L.; Cremaldi, L.; Reidy, J.; Summers, D.; Fu, P.; Gabriel, T.; Handler, T.; Ficenec, J.R.; Lu, B.; Mo, L.; Piilonen, L.E.; Nunamaker, T.; Burke, M.; Hackworth, D.T.; Porter, T.F.; Ravas, R.J.; Scherbarth, D.; Swensrud, R.; Carlsmith, D.; Foudas, C.; Lackey, J.; Loveless, D.; Reeder, D.; Robb, P.; Smith, W.H.

    1990-01-01

    A scintillator calorimeter produces unique problems for the designer of readout electronics. On the one hand the narrow time structure of scintillator pulses, ∼10 nsec, is well matched to the rf structure of the SSC and gives hope of isolating information from individual beam crossings. On the other hand, the compensation mechanism and the need to broaden the pulse shape for use with analog signal sampling devices gives a somewhat wider time structure, ∼50-100 nsec. Furthermore the granularity of such a device implies that the full energy of an electromagnetic shower may be totally contained within one readout channel. If the resolution of the electronics is not to compromise the intrinsic resolution of the calorimeter, assumed to be σ/E ∼ 15%/√E + 1% (E in Gev), coverage of the full dynamic range (40,000:1) requires at least two 12-bit devices with 7 bits of overlap for a linear front-end electronics chain. The positioning of the electronics also is a critical issue. At luminosities of 10 33 cm -2 sec -1 , electronics placed on the calorimeter must withstand doses of at least 10 10 neutron/cm 2 and 2,000 Rad per year at 90 degree. In the past year, the scintillating calorimeter collaboration has begun studying these and related issues. Among the work reported below is: a study related to remote location of the calorimeter electronics, a comprehensive program to evaluate the properties of FADCs capable of operation at 60-80 MHz, design of a analog memory unit and development of a benchmark system to help evaluate components under development both within and outside the authors' collaboration

  11. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  12. Katherine: Ethernet Embedded Readout Interface for Timepix3

    Science.gov (United States)

    Burian, P.; Broulím, P.; Jára, M.; Georgiev, V.; Bergmann, B.

    2017-11-01

    The Timepix3—the latest generation of hybrid particle pixel detectors of Medipix family—yields a lot of new possibilities, i.e. a high hit-rate, a time resolution of 1.56 ns, event data-driven readout mode, and the capability of measuring the Time-over-Threshold (ToT - energy) and the Time-of-Arrival (ToA) simultaneously. This paper introduces a newly developed readout device for the Timepix3, called "Katherine", featuring a Gigabit Ethernet interface. The primary benefit of the Katherine is the operation of Timepix3 at long distance (up to 100 m) from computer or server, which is advantageous for the installation at beam lines, where the access is difficult or where radiation levels are too high for human interventions. The maximal hit-rate is limited by the bandwidth of the Ethernet connection (peer-to-peer connection; up to 16 Mhit/s). Since the Katherine interface is equipped with a processor of high computational power (ARM Cortex-A9 dual-core processor), it permits the use as a stand-alone (autonomous) radiation detector. The key features of the device are described in detail. These are the implemented high voltage power supply offering both polarities of bias voltage (up to ± 300 V), the automatic data sending to a sever via SSH, the automatic compensation of ToA values from columns with shifted matrix clock, etc. A dedicated control software was developed, which can be used for the detector preparation (sensor equalization, the DACs dependency scan, and the THL scan) and measurement control. Measured energy spectra from photon fields are shown.

  13. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  14. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  15. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    International Nuclear Information System (INIS)

    Patterson, Ryan; Backhouse, Christopher; Bays, Kirk; Lozier, Joseph; Pershey, Daniel

    2016-01-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award's proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA's recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  16. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  17. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  18. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    Science.gov (United States)

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  20. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine.

    Science.gov (United States)

    Chen, Jin-Long; Yan, Xiu-Ping; Meng, Kang; Wang, Shu-Feng

    2011-11-15

    While the super fluorescence quenching capacity of graphene and graphene oxide (GO) has been extensively employed to develop fluorescent sensors, their own unique fluorescence and its potential for chemo-/biosensing have seldom been explored. Here we report a GO-based photoinduced charge transfer (PCT) label-free near-infrared (near-IR) fluorescent biosensor for dopamine (DA). The multiple noncovalent interactions between GO and DA and the ultrafast decay at the picosecond range of the near-IR fluorescence of GO resulted in effective self-assembly of DA molecules on the surface of GO, and significant fluorescence quenching, allowing development of a PCT-based biosensor with direct readout of the near-IR fluorescence of GO for selective and sensitive detection of DA. The developed method gave a detection limit of 94 nM and a relative standard deviation of 2.0% for 11 replicate detections of 2.0 μM DA and was successfully applied to the determination of DA in biological fluids with quantitative recovery (98-115%).

  1. FY 2006 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  2. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization.

    Science.gov (United States)

    Fu, Yuan; Lin, Hongyu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon

    2014-11-24

    Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    Science.gov (United States)

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  4. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    Science.gov (United States)

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Optimization of MKID noise performance via readout technique for astronomical applications

    Science.gov (United States)

    Czakon, Nicole G.; Schlaerth, James A.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP.

  6. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  7. An optical fiber-based flexible readout system for micro-pattern gas detectors

    Science.gov (United States)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  8. Uncooled infrared focal plane array imaging in China

    Science.gov (United States)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  9. Uncooled infrared sensors: rapid growth and future perspective

    Science.gov (United States)

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  10. Impact of the 'non-destructive' multiple-readout on the Lorentzian noise

    International Nuclear Information System (INIS)

    Guazzoni, C.; Gatti, E.; Geraci, A.

    2006-01-01

    In this paper, we discuss the effect of 'non-destructive' multiple-readout on the Lorentzian noise. To our knowledge, it is the first time that such interaction is investigated. We have studied the peculiarities of the shape of the optimum weighting function for the multiple-readout technique in the presence of Lorentzian noise and other noise sources. The impact of the Lorentzian noise on the resolution achievable with the multiple-readout technique is analyzed in detail with respect to the interaction between the oscillation time and the characteristic time constant of the Lorentzian noise

  11. Evaluation of Fermi read-out of the Atlas Tilecal prototype

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Alifanov, A.

    1998-01-01

    Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of FERMI data. The resulting energy resolution is better than the one obtained with the standard read-out. (orig.)

  12. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    International Nuclear Information System (INIS)

    Rimminen, H.; Kyynäräinen, J.

    2013-01-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  13. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  14. LHCb : Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Multimedia

    Alessio, Federico; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, Richard; Wyllie, Ken

    2014-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  15. Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Document Server

    Alessio, F; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, R; Wyllie, K

    2015-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  16. The AMS silicon tracker readout, performance results with minimum ionizing particles

    CERN Document Server

    Alpat, B; Battiston, R; Bourquin, Maurice; Burger, W J; Extermann, Pierre; Chang, Y H; Hou, S R; Pauluzzi, M; Produit, N; Qiu, S; Rapin, D; Ribordy, R; Toker, O; Wu, S X

    2000-01-01

    First results for the AMS silicon tracker readout performance are presented. Small 20.0*20.0*0.300 mm/sup 3/ silicon microstrip detectors were installed in a 50 GeV electron beam at CERN. The detector readout consisted of prototypes of the tracker data reduction card equipped with a 12-bit ADC and the tracker frontend hybrid with VA_hdr readout chips. The system performance is assessed in terms of signal-to-noise, position resolution, and efficiency. (13 refs).

  17. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    International Nuclear Information System (INIS)

    Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A

    2011-01-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  18. On the comparison of analog and digital SiPM readout in terms of expected timing performance

    International Nuclear Information System (INIS)

    Gundacker, S.; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.

    2015-01-01

    In time of flight positron emission tomography (TOF-PET) and in particular for the EndoTOFPET-US Project (Frisch, 2013 [1]), and other applications for high energy physics, the multi-digital silicon photomultiplier (MD-SiPM) was recently proposed (Mandai and Charbon, 2012 [2]), in which the time of every single photoelectron is being recorded. If such a photodetector is coupled to a scintillator, the largest and most accurate timing information can be extracted from the cascade of the scintillation photons, and the most probable time of positron emission determined. The readout concept of the MD-SiPM is very different from that of the analog SiPM, where the individual photoelectrons are merely summed up and the output signal fed into the readout electronics. We have developed a comprehensive Monte Carlo (MC) simulation tool that describes the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal. In previous studies we have compared MC simulations with coincidence time resolution (CTR) measurements and found good agreement within less than 10% for crystals of different lengths (from 3 mm to 20 mm) coupled to SiPMs from Hamamatsu. In this work we will use the developed MC tool to directly compare the highest possible time resolution for both the analog and digital readout of SiPMs with different scintillator lengths. The presented studies reveal that the analog readout of SiPMs with microcell signal pile-up and leading edge discrimination can lead to nearly the same time resolution as compared to the maximum likelihood time estimation applied to MD-SiPMs. Consequently there is no real preference for either a digital or analog SiPM for the sake of achieving highest time resolution. However, the best CTR in the analog SiPM is observed for a rather small range of optimal threshold values, whereas the MD-SiPM provides stable CTR after roughly 20 registered photoelectron timestamps in

  19. Merlin: a fast versatile readout system for Medipix3

    International Nuclear Information System (INIS)

    Plackett, R; Horswell, I; Gimenez, E N; Marchal, J; Omar, D; Tartoni, N

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in 'pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  20. Merlin: a fast versatile readout system for Medipix3

    Science.gov (United States)

    Plackett, R.; Horswell, I.; Gimenez, E. N.; Marchal, J.; Omar, D.; Tartoni, N.

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in `pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  1. Toward a Micro-Scale Acoustic Direction-Finding Sensor with Integrated Electronic Readout

    Science.gov (United States)

    2013-06-01

    equipment and the project. I am indebted to the NPS Physics Department faculty for their excellent teaching , which pre- pared me well for doctoral...Distance from bridge center (µm) D efl ec tio n (n m ) Rigid bridge Finite element Long beam Figure 2.4: Comparison of the two analytical flexing models

  2. Integration of a High Sensitivity MEMS Directional Sound Sensor With Readout Electronics

    Science.gov (United States)

    2012-12-01

    Capacitive Transimpedance Amplifier Analysis ............................ 15   3.   Low Pass Filter and Output Buffer Analysis...GUI Graphical User Interface HV16 High Voltage (16V) Hz Hertz IAMP Capacitive Transimpedance Amplifier IC Integrated Circuit K&S Kulicke & Soffa... Transimpedance Amplifier (IAMP), a low-pass filter, and an output buffer. The functionality of the MS3110 can best be understood by first considering the

  3. Infrared observations of planetary atmospheres

    International Nuclear Information System (INIS)

    Orton, G.S.; Baines, K.H.; Bergstralh, J.T.

    1988-01-01

    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

  4. Direct reading dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1985-01-01

    This invention is a direct reading dosimeter which is light, small enough to be worn on a person, and measures both dose rates and total dose. It is based on a semiconductor sensor. The gate threshold voltage change rather than absolute value is measured and displayed as a direct reading of the dose rate. This is effected by continuously switching the gate of an MOS transistor from positive to negative bias. The output can directly drive a digital readout or trigger an audible alarm. The sensor device can be a MOSFET, bipolar transistor, or MOSFET capacitor which has its electrical characteristics change due to the trapped charge in the insulating layer of the device

  5. High-throughput in vivo genotoxicity testing: an automated readout system for the somatic mutation and recombination test (SMART.

    Directory of Open Access Journals (Sweden)

    Benoit Lombardot

    Full Text Available Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods.

  6. GOSSIPO-4: Evaluation of a Novel PLL-Based TDC-Technique for the Readout of GridPix-Detectors

    CERN Document Server

    Brezina, C; Zappon, F; Van Beuzekom, M; Campbell, M; Desch, K; Van der Graaf, H; Gromov, V; Kluit, R; Llopart, X; Poikela, T; Zivkovic, V

    2014-01-01

    The direct readout of Micro-Pattern Gaseous Detectors (MPGDs) with bare pixel chips introduces the need for a new generation of readout electronics featuring a high spatial granularity as well as a highly accurate time measurement in each pixel. GOSSIPO-4, fabricated in a 130 nm CMOS technology, is a demonstrator ASIC investigating the potential of a new TDC-concept that is based on a chip-wide 40 MHz clock which is complemented by an additional 640 MHz clock. The latter is created upon demand by local oscillators distributed across the pixel matrix. PLL tuning of the local oscillators allows for automatic compensation of frequency fluctuations caused by process parameter, supply voltage and temperature variations. The developed PLL locks within s and achieves a duty cycle of 50.75% with a time interval error of only 23.4 ps. Mean DNL and INL of the TDC are less than 20% of the time bin size of 1.56 ns under all anticipated conditions.

  7. Progress on the development of a detector mounted analog and digital readout system for the ATLAS TRT

    CERN Document Server

    Baxter, C; Dressnandt, N; Gay, C; Lundberg, B; Munar, A; Mayers, G; Newcomer, M; Van Berg, R; Williams, H H

    2004-01-01

    The 430,000 element ATLAS Transition Radiation straw tube Tracker (TRT) is divided into a central barrel tracker consisting of 104,000 axially mounted straws and two radially arranged end caps on either side of the barrel with 160,000 straws each. To achieve a track position resolution of 140 mu m, the front end electronics must operate at a low (2fC) threshold with a time marking capability of ~1ns. Two ASICs, the ASDBLR and DTMROC provide the complete pipelined readout chain. Custom designed FBGA packages for the ASICs provide a small enough outline to be detector mounted and the extensive use of low level differential signals make mounting the analog packages on printed circuit boards directly opposite the 40 MHz digital chips feasible. The readout electronics for the barrel occupies a potentially important part of the active tracker volume and an aggressive effort has been made to make it as compact as possible. Utilizing a single board for both analog and digital ASICS a 0.1 cm /sup 3/ per channel volume...

  8. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  9. Four-channel readout ASIC for silicon pad detectors

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Zamiatin, N.I.

    2000-01-01

    A custom front-end readout ASIC has been designed for silicon calorimeters supposed to be used in high-energy physics experiments. The ASIC was produced using BJT-JFET technology. It contains four channels of a fast low-noise charge-sensitive preamplifier (CSP) with inverting outputs summed by a linear adder (LA) followed by an RC-CR shaping amplifier (SA) with 30 ns peaking time. Availability of separate outputs of the CSPs and the LA makes it possible to join any number of silicon detector layers to obtain the longitudinal and transversal resolution required using only this ASIC in any silicon calorimeter minitower configuration. Noise performance is ENC=1800e - +18e - /pF at 30 ns peaking time for detector capacitance up to C d =400 pF. Rise time is 8 ns at input capacitance C d =100 pF. Power dissipation is less than 50 mW/ chip at voltage supply 5 V

  10. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    Science.gov (United States)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  11. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  12. X-ray and gamma ray detector readout system

    Science.gov (United States)

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  13. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Eid, S.; Sobhy, R.; Kovacs, A.

    2003-01-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex--having a purple colour--has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated

  14. Development of Digital Readout Electronics for the CMS Tracker

    CERN Document Server

    Corrin, E P

    2002-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. The CMS tracker has 10 million readout channels being sampled at a rate of 40 MHz, then read out at up to 100 kHz, generating huge volumes of data; it is essential that the system can handle these rates without any of the data being lost or corrupted. The CMS tracker FED processes the data, removing pedestal and common mode-noise, and then performing hit and cluster finding. Strips below threshold are discarded, resulting in a significant reduction in data size. These zero suppressed data are stored in a buffer before being sent to the DAQ. The processing on the FEDs is done using FPGAs. Programmable logic was chosen over custom ASICs because of the lower cost, faster design and verification process, and the ability to easily upgrade the firmware at a later date. This thesis is concerned with the digital read...

  15. Low-noise readout circuit for SWIR focal plane arrays

    Science.gov (United States)

    Altun, Oguz; Tasdemir, Ferhat; Nuzumlali, Omer Lutfi; Kepenek, Reha; Inceturkmen, Ercihan; Akyurek, Fatih; Tunca, Can; Akbulut, Mehmet

    2017-02-01

    This paper reports a 640x512 SWIR ROIC with 15um pixel pitch that is designed and fabricated using 0.18um CMOS process. Main challenge of SWIR ROIC design is related to input circuit due to pixel area and noise limitations. In this design, CTIA with single stage amplifier is utilized as input stage. The pixel design has three pixel gain options; High Gain (HG), Medium Gain (MG), and Low Gain (LG) with corresponding Full-Well-Capacities of 18.7ké, 190ké and 1.56Mé, respectively. According to extracted simulation results, 5.9é noise is achieved at HG mode and 200é is achieved at LG mode of operation. The ROIC can be programmed through an SPI interface. It supports 1, 2 and 4 output modes which enables the user to configure the detector to work at 30, 60 and 120fps frame rates. In the 4 output mode, the total power consumption of the ROIC is less than 120mW. The ROIC is powered from a 3.3V analog supply and allows for an output swing range in excess of 2V. Anti-blooming feature is added to prevent any unwanted blooming effect during readout.

  16. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  17. Toward a reduced-wire readout system for ultrasound imaging.

    Science.gov (United States)

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  18. Characterization of Medipix3 with the MARS readout and software

    CERN Document Server

    Ronaldson, J P; van Leeuwen, D; Doesburg, R M N; Ballabriga, R; Butler, A P H; Donaldson, J; Walsh, M; Nik, S J; Clyne, M N

    2011-01-01

    The Medipix3 x-ray imaging detector has been characterized using the MARS camera. This x-ray camera comprises custom built readout electronics and software libraries designed for the Medipix family of detectors. The performance of the Medipix3 and MARS camera system is being studied prior to use in real-world applications such as the recently developed MARS-CT3 spectroscopic micro-CT scanner. We present the results of characterization measurements, describe methods for optimizing performance and give examples of spectroscopic images acquired with Medipix3 and the MARS camera system. A limited number of operating modes of the Medipix3 chip have been characterized and single-pixel mode has been found to give acceptable performance in terms of energy response, image quality and stability over time. Spectroscopic performance is significantly better in charge-summing mode than single-pixel mode however image quality and stability over time are compromised. There are more modes of operation to be tested and further...

  19. A CMOS smart temperature and humidity sensor with combined readout.

    Science.gov (United States)

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  20. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  1. Performance of monolayer graphene nanomechanical resonators with electrical readout.

    Science.gov (United States)

    Chen, Changyao; Rosenblatt, Sami; Bolotin, Kirill I; Kalb, William; Kim, Philip; Kymissis, Ioannis; Stormer, Horst L; Heinz, Tony F; Hone, James

    2009-12-01

    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching approximately 1 x 10(4) at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.

  2. TELL1: development of a common readout board for LHCb

    International Nuclear Information System (INIS)

    Legger, Federica; Bay, Aurelio; Haefeli, Guido; Locatelli, Laurent

    2004-01-01

    LHCb is one of the four experiments currently under construction at LHC (Large Hadron Collider) at CERN, and its aim is the study of b-quark physics (LHCb Collaboration, CERN-LHCC/98-4). LHCb trigger strategy is based on three levels, and will reduce the event rate from 40 MHz to a few hundred Hz (LHCb Collaboration, CERN/LHCC 2003-031, LHCb TDR 10, September 2003). The first two levels (L0 and L1) will use signals from some part of the detector in order to take fast decisions, while the last one, called High Level Trigger (HLT), will have access to the full event data. An 'off detector' readout board (TELL1) has been developed and will be used by the majority of LHCb subdetectors. It takes L0 accepted data as input and, after data processing which includes event synchronization, L1 Trigger pre-processing and zero suppression, L1 buffering, and HLT zero suppression, the output is sent to L1 Trigger and HLT

  3. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; Berden, G.; Steill, J.D.; Oomens, J.; Eyler, J.R.; Bendiak, B.

    2011-01-01

    All eight d-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  4. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; G. Berden,; Steill, J. D.; Oomens, J.; Eyler, J. R.; Bendiak, B.

    2011-01-01

    All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  5. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  6. A Front-End Readout Architecture for the CMS Barrel Muon Detector: A Feasibility Study

    International Nuclear Information System (INIS)

    Aguayo, P.; Alberdi, J.; Barcala, J.M.; Marin, J.; Molinero, A.; Navarrete, J.; Pablos, J.L. de; Romero, L.; Willmot, C.

    1995-01-01

    A feasibility study of a possible architecture for the CMS barrel muon detector readout electronics is presented. some aspects of system reliability are discussed. Values for the required FIFO's to store data during the first level trigger latency are given

  7. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  8. A new TLD badge with machine readable ID for fully automated readout

    International Nuclear Information System (INIS)

    Kannan, S. Ratna P.; Kulkarni, M.S.

    2003-01-01

    The TLD badge currently being used for personnel monitoring of more than 40,000 radiation workers has a few drawbacks such as lack of on-badge machine readable ID code, delicate two-point clamping of dosimeters on an aluminium card with the chances of dosimeters falling off during handling or readout, projections on one side making automation of readout difficult etc. A new badge has been designed with a 8-digit identification code in the form of an array of holes and smooth exteriors to enable full automation of readout. The new badge also permits changing of dosimeters when necessary. The new design does not affect the readout time or the dosimetric characteristics. The salient features and the dosimetric characteristics are discussed. (author)

  9. Printed low velocity delay lines for cathode readout of proportional chambers

    International Nuclear Information System (INIS)

    Bosshard, R.; Chase, R.L.; Fischer, J.; Radeka, V.

    1974-01-01

    A readout which simultaneously insures a correct electric field, a satisfactory induced signal, the delay function itself, and low particle scattering is described for multiwire proportional chambers. (U.S.)

  10. Researchers develop CCD image sensor with 20ns per row parallel readout time

    CERN Multimedia

    Bush, S

    2004-01-01

    "Scientists at the Rutherford Appleton Laboratory (RAL) in Oxfordshire have developed what they claim is the fastest CCD (charge-coupled device) image sensor, with a readout time which is 20ns per row" (1/2 page)

  11. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  12. Simplification of the DREAM collaboration's “Q/S method” in dual readout calorimetry analysis

    International Nuclear Information System (INIS)

    Groom, Donald E.

    2013-01-01

    The DREAM collaboration has introduced the “Q/S Method” for obtaining the energy estimator from simultaneous Cherenkov and scintillator readouts of individual hadronic events. I show that the algorithm is equivalent to an elementary method.

  13. Data readout system for proportional chambers; Sistema schityvaniya informatsii s proportsional`nykh kamer

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, N I; Sidorov, V T

    1996-12-31

    Paper studies data readout system designed for data output from proportional chambers with up to 1000 channel total number. Short descriptions of the above mentioned units made according to CAMAC standard and their main characteristics are presented here. 2 figs.

  14. A Low Power Rad-Hard ADC for the KID Readout Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal aims to develop a radiation hardened analog-to-digital converter (ADC) required for the Kinetic Inductance Detector (KID) readout electronics. KIDs are...

  15. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  16. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  17. Test of high time resolution MRPC with different readout modes for the BESIII upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)

    2014-11-01

    In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.

  18. Readout Unit-FPGA version for link multipexers, DAQ and VELO trigger

    CERN Document Server

    Müller, H; Guirao, A; Bal, F

    2003-01-01

    The FPGA-based Readout Unit (RU) was designed as entry stage to the readout networks of the LHCb data acquisition and L1-VELO topology trigger systems. The RU performs subevent building from up to 16 custom S-link inputs towards a commercial readout network via a PCI interface card. For output to custom links, as required in datalink multiplexer applications, an output S-link transmitter interface is alternatively available. Baseline readout networks for the RU are intelligent Gbit-ethernet NIC cards for the DAQ system and SCI shared memory network for the L1-VELO system. Any new protocols, like 10Gbit ethernet or Infiniband may be adopted as far as proper PCI interfaces and Linux device drivers will become available. The two baseline RU modes of operation are: 1.) link-multiplexer with N*Slink to single-Slink 2.) eventbuilder interface with quad Slink-to-PCI network interface.

  19. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  20. A new PCI card for readout in high energy physics experiments

    CERN Document Server

    Floris, M; Marras, D; Usai, G L; David, A

    2004-01-01

    Recently some high energy physics experiments started to adopt readout systems based on the PCI architecture. In this context a new PCI card that can be adapted to several readout schemes has been designed. The card contains a large 64 MB local buffer, programmable FPGA logic and a PLX PCI bridge. The solution to use a PCI bridge external to the programmable logic allows to greatly simplify projects at the level of the on-board local bus. The card is presently used as the basic readout unit of the NA60 experiment. In this context, coupling it to different mezzanine cards it is possible to create interfaces to VME/CAMAC modules or to custom front-end electronics as for the case of the silicon vertex detector. Moreover, it is used as a readout test system for the ALICE muon chambers. (10 refs).

  1. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  2. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  3. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  4. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  5. Characteristics of a delay-line readout in a cylindrical drift chamber system

    International Nuclear Information System (INIS)

    Barber, R.; Ahmed, M.W.; Dzemidzic, M.; Empl, A.; Hungerford, E.V.; Lan, K.J.; Wilson, J.; Cooper, M.D.; Gagliardi, C.A.; Haim, D.; Kim, G.J.; Koetke, D.D.; Tribble, R.E.; Van Ausdeln, L.A.

    2002-01-01

    This paper reports on the design, construction, and operational characteristics of a delay-line readout implemented on the cathode foils of a cylindrical drift chamber system. The readout was used to determine the position of an event along the length of the 1.74 m drift wires in the MEGA detectors used at the Los Alamos Meson Physics Facility. The performance of the system is interpreted by comparison to a PSPICE simulation, and to simple analytical models

  6. The prototype readout chain for CBM using the AFCK board and its software components

    Science.gov (United States)

    Loizeau, Pierre-Alain; Emscherman, David; Lehnert, Jörg; Müller, Walter F. J.; Yang, Junfeng

    2015-09-01

    This paper presents a prototype for the readout chain of the Compressed Baryonic Matter (CBM) experiment using the AFCK FPGA board as Data Processing Board (DPB). The components of the readout chain are described, followed by some test setups, all based on different flavors of AFCK-DPB. Details about the functional blocks in the different versions of the DPB firmware are given, followed by a description of the corresponding software elements.

  7. Design of a hysteretic SQUID as the readout for a dc SQUID

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper present a design for an optimal hysteretic SQUID readout circuit for a DC SQUID, thus eliminating the need for bulky output transformers or resonance matching circuits. The hysteretic readout system, which is based in part on standard sampling theory, is compared to another similar system and shown to be superior in terms of slew rate and immunity of electromagnetic interference. The circuit will be useful in optimizing the performance of biomagnetic systems

  8. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  9. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    Science.gov (United States)

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  10. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  11. The time structure of hadronic showers in calorimeters with gas and scintillator readout

    Energy Technology Data Exchange (ETDEWEB)

    Goecke, Philipp [Max-Planck-Institut fuer Physik, Munich (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The focus of the CALICE collaboration is R and D of highly granular calorimeters. One of the possible applications is in a future TeV-scale linear e{sup +}e{sup -} collider for precision SM studies and for direct and indirect the search of new physics. For the hadronic sampling calorimeters subsystem, several absorbers and active material technologies are being investigated. In this frame, two similar experiments have been conducted to study the time structure of hadronic showers: FastRPC uses resistive plate chambers technology for the active layers whereas T3B is based on scintillating tiles coupled to SiPMs. The high sampling frequency of the readout, coupled to deep memory buffers, allows to carefully investigate the intrinsic time structure of hadronic showers with its prompt and delayed components. This study presents a detailed GEANT4 Montecarlo simulation of the FastRPC and T3B setups. It is aimed to reproduce test beam data acquired at CERN SPS where the setups were installed after 5λ of instrumented tungsten-based calorimeter prototypes. The main focus of the simulation lies on the physical processes involved in the time development of an hadronic showers, to asses the discrepancy that emerged in data for the two setups in the intermediate time range of 10 - 50 ns of shower development that can be explained with the neutron interactions in the medium.

  12. Online / Offline reconstruction of trigger-less readout in the R3B experiment at FAIR

    International Nuclear Information System (INIS)

    Kresan, Dmytro; Al-Turany, Mohammad; Uhlig, Florian

    2015-01-01

    The R3B (Reactions with Rare Radioactive Beams) experiment is one of the planned experiments at the future FAIR facility at GSI Darmstadt. R3B will cover experimental reaction studies with exotic nuclei far off stability, thus enabling a broad physics program with rare-isotope beams with emphasis on nuclear structure and dynamics. Several different detection subsystems as well as sophisticated DAQ system and data-analysis software are being developed for this purpose. The data analysis software for R3B is based on FairRoot framework and called R3BRoot. R3BRoot is being used for simulation and detector design studies for the last few years. Recently, it was successfully used directly with the data acquisition and for the analysis of the R3B test beam-time in April 2014. For the future beam times the framework has to deal with the free streaming readout of the detectors. The implementation within R3BRoot to fulfil this trigger-less run mode will be discussed in this paper, as well as the set of tools developed for the online reconstruction and quality assurance of the data during the run. (paper)

  13. PCI Based Read-out Receiver Card in the ALICE DAQ System

    CERN Document Server

    Carena, W; Dénes, E; Divià, R; Schossmaier, K; Soós, C; Sulyán, J; Vascotto, Alessandro; Van de Vyvre, P

    2001-01-01

    The Detector Data Link (DDL) is the high-speed optical link for the ALICE experiment. This link shall transfer the data coming from the detectors at 100 MB/s rate. The main components of the link have been developed: the destination Interface Unit (DIU), the Source Interface Unit (SIU) and the Read-out Receiver Card (RORC). The first RORC version is based on the VME bus. The performance tests show that the maximum VME bandwidth could be reached. Meanwhile the PCI bus became very popular and is used in many platforms. The development of a PCI-based version has been started. The document describes the prototype version in three sections. An overview explains the main purpose of the card: to provide an interface between the DDL and the PCI bus. Acting as a 32bit/33MHz PCI master the card is able to write or read directly to or from the system memory from or to the DDL, respectively. Beside these functions the card can also be used as an autonomous data generator. The card has been designed to be well adapted to ...

  14. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  15. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  16. An integrated control and readout circuit for implantable multi-target electrochemical biosensing.

    Science.gov (United States)

    Ghoreishizadeh, Sara S; Baj-Rossi, Camilla; Cavallini, Andrea; Carrara, Sandro; De Micheli, Giovanni

    2014-12-01

    We describe an integrated biosensor capable of sensing multiple molecular targets using both cyclic voltammetry (CV) and chronoamperometry (CA). In particular, we present our custom IC to realize voltage control and current readout of the biosensors. A mixed-signal circuit block generates sub-Hertz triangular waveform for the biosensors by means of a direct-digital-synthesizer to control CV. A current to pulse-width converter is realized to output the data for CA measurement. The IC is fabricated in 0.18 μm technology. It consumes 220 μW from 1.8 V supply voltage, making it suitable for remotely-powered applications. Electrical measurements show excellent linearity in sub- μA current range. Electrochemical measurements including CA measurements of glucose and lactate and CV measurements of the anti-cancer drug Etoposide have been acquired with the fabricated IC and compared with a commercial equipment. The results obtained with the fabricated IC are in good agreement with those of the commercial equipment for both CV and CA measurements.

  17. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  18. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  19. A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data

    Science.gov (United States)

    Boone, K.; Aldering, G.; Copin, Y.; Dixon, S.; Domagalski, R. S.; Gangler, E.; Pecontal, E.; Perlmutter, S.

    2018-06-01

    We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two, and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3 UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this “binary offset effect” in data, and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.

  20. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.