WorldWideScience

Sample records for direct readout infrared

  1. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  2. Image processing system design for microcantilever-based optical readout infrared arrays

    Science.gov (United States)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  3. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  4. JPSS Science Data Services for the Direct Readout Community

    Science.gov (United States)

    Chander, Gyanesh; Lutz, Bob

    2014-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.

  5. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    Science.gov (United States)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  6. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Science.gov (United States)

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  7. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    Science.gov (United States)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  8. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    Science.gov (United States)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  9. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    International Nuclear Information System (INIS)

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  10. Multi-path interferometric Josephson directional amplifier for qubit readout

    Science.gov (United States)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  11. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Fossum, Eric R.

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  12. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  13. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Science.gov (United States)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  14. Direct ion storage dosimetry systems for photon, beta and neutron radiation with instant readout capabilities

    International Nuclear Information System (INIS)

    Wernli, C.; Kahilainen, J.

    2001-01-01

    The direct ion storage (DIS) dosemeter is a new type of electronic dosemeter from which the dose information for both H p (10) and H p (0.07) can be obtained instantly at the workplace by using an electronic reader unit. The number of readouts is unlimited and the stored information is not affected by the readout procedure. The accumulated dose can also be electronically reset by authorised personnel. The DIS dosemeter represents a potential alternative for replacing the existing film and thermoluminescence dosemeters (TLDs) used in occupational monitoring due to its ease of use and low operating costs. The standard version for normal photon and beta dosimetry, as well as a developmental version for neutron dosimetry, have been characterised in several field studies. Two new small size variations are also introduced including a contactless readout device and a militarised version optimised for field use. (author)

  15. Dissecting direct and indirect readout of cAMP receptor protein DNA binding using an inosine and 2,6-diaminopurine in vitro selection system

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter E.; Møllegaard, Niels Erik

    2008-01-01

    The DNA interaction of the Escherichia coli cyclic AMP receptor protein (CRP) represents a typical example of a dual recognition mechanism exhibiting both direct and indirect readout. We have dissected the direct and indirect components of DNA recognition by CRP employing in vitro selection...... is functionally intact. The majority of the selected sites contain the natural consensus sequence TGTGAN(6)TCACA (i.e. TITIDN(6)TCDCD). Thus, direct readout of the consensus sequence is independent of minor groove conformation. Consequently, the indirect readout known to occur in the TG/CA base pair step (primary...... kink site) in the consensus sequence is not affected by I-D substitutions. In contrast, the flanking regions are selected as I/C rich sequences (mostly I-tracts) instead of A/T rich sequences which are known to strongly increase CRP binding, thereby demonstrating almost exclusive indirect readout...

  16. Effect of readout direction in the edge profile on the modulation transfer function of computed radiographic systems by use of the edge method.

    Science.gov (United States)

    Tanaka, Nobukazu; Morishita, Junji; Tsuda, Norisato; Ohki, Masafumi

    2013-07-01

    We investigated the effect of the readout direction of the edge profile obtained by the edge method on the presampled modulation transfer function (MTF) in various computed radiographic (CR) systems. There were no differences in the MTFs derived from two edge profiles in the sub-scanning direction of four CR systems used in this study. On the other hand, the MTFs measured at a readout direction from the low (edge) to the high (direct exposure) exposure region were higher than those measured at a readout direction from the high to the low exposure region in the laser-beam scanning direction for three of the four CR systems. Although this phenomenon depends on the CR system, it is important to understand and indicate both MTFs at the two edge profiles in the laser-beam scanning direction for accurate assessment of the resolution property.

  17. Design issues of a low cost lock-in amplifier readout circuit for an infrared detector

    Science.gov (United States)

    Scheepers, L.; Schoeman, J.

    2014-06-01

    In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout

  18. Optical readout method for solid-state dosemeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Eichner, F.N.; Stahl, K.A.; Miller, S.D.

    1986-07-01

    The readout of solid-state dosemeters is usually accomplished by heating to produce thermoluminescence. This technique has several disadvantages including stressing the dosemeter crystals, melting Teflon enclosures, and destroying the thin dosemeters designed for beta particle measurements. An optical readout method is being developed to avoid these difficulties. Standard dosemeters were irradiated to a dose of approximately 0.02 Sv with 137 Cs gamma rays. The dosemeters were then irradiated with light produced by a high-intensity xenon lamp. Various wavelength bands, from the ultraviolet through the visible and to the near-infrared, were used. The degree of trap emptying was found to be proportional to the total optical power incident. With the intensities used in the preliminary experiments, over 90% trap emptying was achieved. This new technique will prove useful for dosemeters that are encased in plastic for automatic processing. The details of this optical readout method, along with some possible applications in neutron and beta dosimetry are described. 7 refs., 3 figs

  19. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  20. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  1. A Fastbus-based silicon strip readout system

    International Nuclear Information System (INIS)

    Neoustroev, P.; Stepanov, V.; Svoiski, M.; Uvarov, L.; Matthew, P.; Russ, J.; Cooper, P.

    1995-01-01

    The readout system we describe here is built specifically to work with the LBL-designed SVX chip. It is typical of systems using a master sequencer module to direct the trigger and readout cycles of the sparse data source and to push data into a digitization and storage module. (orig.)

  2. LHCb: A new Readout Control system for the LHCb Upgrade

    CERN Multimedia

    Alessio, F

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.

  3. Direct and inverse problems of infrared tomography

    DEFF Research Database (Denmark)

    Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander

    2016-01-01

    The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...

  4. A 10 MHz micropower CMOS front end for direct readout of pixel detectors

    International Nuclear Information System (INIS)

    Campbell, M.; Heijne, E.H.M.; Jarron, P.; Krummenacher, F.; Enz, C.C.; Declercq, M.; Vittoz, E.; Viertel, G.

    1990-01-01

    In the framework of the CERN-LAA project for detector R and D, a micropower circuit of 200 μmx200 μm with a current amplifier, a latched comparator and a digital memory element has been tested electrically and operated in connection with linear silicon detector arrays. The experimental direct-readout (DRO) chip comprises a matrix of 9x12 circuit cells and has been manufactured in a 3 μm CMOS technology. Particles and X-ray photons below 22 keV were detected, and thresholds can be set between 2000 and 20000 e - . The noise is less than 4 keV FWHM or 500 e - rms and the power dissipation per pixel element is 30 μW. The chip can be coupled to a detector matrix using bump bonding. (orig.)

  5. A low-power small-area ADC array for IRFPA readout

    Science.gov (United States)

    Zhong, Shengyou; Yao, Libin

    2013-09-01

    The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications

  6. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  7. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  8. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  9. A new readout control system for the LHCb upgrade at CERN

    International Nuclear Information System (INIS)

    Alessio, F; Jacobsson, R

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and a first hardware implementation of a new fast Readout Control system for the LHCb upgrade, which will be entirely based on FPGAs and bi-directional links. We also outline the real-time implementations of the new Readout Control system, together with solutions on how to handle the synchronous distribution of timing and synchronous information to the complex upgraded LHCb readout architecture. One section will also be dedicated to the control and usage of the newly developed CERN GBT chipset to transmit fast and slow control commands to the upgraded LHCb Front-End electronics. At the end, we outline the plans for the deployment of the system in the global LHCb upgrade readout architecture.

  10. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  11. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  12. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  13. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    Science.gov (United States)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  14. Do the results of respirable dust samples obtained from direct-on-filter X-ray diffraction, direct-on-filter infrared and indirect infrared (KBr pellet) methods correlate?

    CSIR Research Space (South Africa)

    Pretorius, C

    2010-11-01

    Full Text Available The objective of this study was to determine whether a correlation exists between the quartz results obtained from direct-on-filter X-ray Diffraction analysis, direct-on-filter Fourier-Transform Infrared analysis and indirect analysis (Potassium...

  15. Pad readout for gas detectors using 128-channel integrated preamplifiers

    International Nuclear Information System (INIS)

    Fischer, P.; Drees, A.; Glassel, P.

    1988-01-01

    A novel two-dimensional readout scheme for gas detectors is presented which uses small metal pads with 2.54 mm pitch as an anode. The pads are read out via 128-channel VLSI low-noise preamplifier/multiplexer chips. These chips are mounted on 2.8x2.8 cm/sup 2/ modules which are directly plugged onto the detector backplane, daisy-chained with jumpers and read out sequentially. The readout has been successfully tested with a low-pressure, two-step, TMAE-filled UV-RICH detector prototype. A single electron efficiently of >90% was observed at moderate chamber gains (<10/sup 6/). The method offers high electronic amplification, low noise, and high readout speed with a very flexible and compact design, suited for space-limited applications

  16. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  17. Readout electronic for multichannel detectors

    International Nuclear Information System (INIS)

    Kulibaba, V.I.; Maslov, N.I.; Naumov, S.V.

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc

  18. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    Science.gov (United States)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  19. The IBL Readout System

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2010-01-01

    The first upgrade for the ATLAS pixel detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer having new electronics assembled an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth and also compatible with the existing system to be integrated into it. The talk will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  20. The IBL Readout System

    CERN Document Server

    Dopke, J; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, having new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  1. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  2. Readout ASIC for ILC-FPCCD vertex detector

    International Nuclear Information System (INIS)

    Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro

    2010-01-01

    The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.

  3. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  4. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)]. E-mail: Popov@jlab.org; Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Welch, Benjamin L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  5. Development of a Timepix3 readout system based on the Merlin readout system

    International Nuclear Information System (INIS)

    Crevatin, G.; Carrato, S.; Horswell, I.; Omar, D.; Tartoni, N.; Cautero, G.

    2015-01-01

    Timepix3 chip is a new ASIC specifically designed to readout hybrid pixel detectors. The main purpose of Timepix3 is to measure the time of arrival of events. This characteristic can be exploited very effectively to develop detectors for time resolved experiments at synchrotron radiation facilities. In order to investigate how the ASIC can be applied to synchrotron experiments the Merlin readout system, developed at Diamond for the Medipix3 ASIC, has been adapted to readout the Timepix3 ASIC. The first tests of the ASIC with pulse injection and with alpha particles show that its behaviour is consistent with its nominal characteristics

  6. Analog electro-optical readout of SiPMs for compact, low power ToF PET/MRI

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F; Levin, Craig S

    2014-01-01

    The aim of this work is to demonstrate time of flight (ToF) performance from analog electro-optical transmission of SiPM-based PET detector signals. In electro-optical readout schemes, scintillation signals are converted to near-infrared light by a laser diode and transmitted out of the MRI bore with fiber-optics [], greatly reducing the PET system's footprint, power consumption, and mutual interference with the MRI.

  7. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  8. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  9. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  10. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.; Omran, Hesham; Naous, Rawan; Salem, Ahmed Sultan; Fahmy, H. A. H.; Lu, W. D.; Salama, Khaled N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  11. Light-to-light readout system of the CMS electromagnetic calorimeter

    CERN Document Server

    Denes, P; Lustermann, W; Mathez, H; Pangaud, P; Walder, J P

    2001-01-01

    For the CMS experiment at the Large Hadron Collider at CERN, an 8OOOO-crysral electromagnetic calorimeter will measure electron and photon energies with high precision over a dynamic range of roughly 16 bits. The readout electronics will be located directly behind the crystals, and must survive a total dose of up to 2x10 Gy along with 5x10**1**3 n/cm**2. A readout chain consisting of a custom wide-range acquisition circuit, commercial ADC and custom optical link for each crystal is presently under construction. An overview of the design is presented, with emphasis on the large-scale fiber communication system. 11 Refs.

  12. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  13. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    Science.gov (United States)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  14. Performance of a high-resolution CsI(Tl)-PIN readout detector

    International Nuclear Information System (INIS)

    Kudenko, Yu.G.; Imazato, J.

    1992-10-01

    A study of a large-volume CsI(Tl) detector with a PIN diode readout was carried out. Our results show a light output of ≤20000 photoelectrons/MeV, an equivalent noise charge (rms) of about 900 electrons, and an equivalent noise level of ≤ 60 keV. We obtained an energy resolution of 11.2% (fwhm) for 1275 keV gamma rays from a 22 Na source. The characteristics of the PIN - preamplifier system as well as the parameters of a small CsI(Tl) - PIN detector with a direct and wavelength shifter readout are also reported. (author)

  15. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  16. The Data Merger Readout Controller for the NA48 experiment data acquisition electronics

    International Nuclear Information System (INIS)

    Galagedera, S.B.; Brierton, B.; Halsall, R.

    1996-01-01

    The NA48 experiment at the CERN SPS offers a four fold improvement in statistical and systematic error over earlier measurements of the magnitude of the direct CP (Charge-Parity) violation of the neutral Kaon system. This requires maximum event readout efficiency, controlled event building and fast monitoring of run time errors. The event data flow in particular must be sustained at 100 Mbyte/s. The Data Merger Readout Controller presented in this paper offers this facility at minimal production cost

  17. A 172 $\\mu$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data.

    Science.gov (United States)

    Pamula, Venkata Rajesh; Valero-Sarmiento, Jose Manuel; Yan, Long; Bozkurt, Alper; Hoof, Chris Van; Helleputte, Nick Van; Yazicioglu, Refet Firat; Verhelst, Marian

    2017-06-01

    A compressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172  μ W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.

  18. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  19. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    Science.gov (United States)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  20. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  1. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Study of the spatial resolution for binary readout detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-07-11

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  3. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  4. Development of readout system for FE-I4 pixel module using SiTCP

    Energy Technology Data Exchange (ETDEWEB)

    Teoh, J.J., E-mail: jjteoh@champ.hep.sci.osaka-u.ac.jp [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Hanagaki, K. [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y. [Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba City, Ibaraki-ken 305-0801 (Japan)

    2013-12-11

    The ATLAS pixel detector will be replaced in the future High Luminosity-Large Hadron Collider (HL-LHC) upgrade to preserve or improve the detector performance at high luminosity environment. To meet the tight requirements of the upgrade, a new pixel Front-End (FE) Integrated Circuit (IC) called FE-I4 has been developed. We have then devised a readout system for the new FE IC. Our system incorporates Silicon Transmission Control Protocol (SiTCP) technology (Uchida, 2008 [1]) which utilizes the standard TCP/IP and UDP communication protocols. This technology allows direct data access and transfer between a readout hardware chain and PC via a high speed Ethernet. In addition, the communication protocols are small enough to be implemented in a single Field-Programable Gate Array (FPGA). Relying on this technology, we have been able to construct a very compact, versatile and fast readout system. We have developed a firmware and software together with the readout hardware chain. We also have established basic functionalities for reading out FE-I4.

  5. First considerations for a readout system for the ILD TPC with the Timepix3

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Tobias [Universitaet Bonn (Germany); Collaboration: LCTPC-Deutschland-Collaboration

    2016-07-01

    For the planned International Linear Collider (ILC) two detectors are proposed. One of them, the International Large Detector (ILD) uses a Time Projektion Chamber (TPC) as the main tracking device. As a readout system for this TPC, pixel chips are one of the considered options. An integrated Micromegas stage is foreseen as gas amplification stage, which is built directly on top of the chip. Since first tests of a Pixel-TPC with 160 Timepix ASICs showed promising results, one is interested in developing a detector using the Timepix3 ASIC. It has several advantages, first of all its feature to measure ToT and a ToA at the same time and its significantly increased readout rate. For this purpose a readout system needs to be developed which fulfils the requirements of the Timpix3 ASIC and also has a high scalability. The main challenges are the high speed readout with a clock of up to 640 MHz and the reliability of the system. Also, the data driven as well as the frame-based readout of the Timepix3 needs to be considered for the implementation. The main goal is to provide a fast and parallel readout of several million channels. An overview and the status of the planning is given. Also, the development challenges are discussed.

  6. A custom readout electronics for the BESIII CGEM detector

    International Nuclear Information System (INIS)

    Rolo, M. Da Rocha; Alexeev, M.; Amoroso, A.; Bianchi, F.; Cossio, F.; Mori, F. De; Destefanis, M.; Ferroli, R. Baldini; Chai, J.Y.; Bertani, M.; Calcaterra, A.; Capodiferro, M.; Cerioni, S.; Bettoni, D.; Canale, N.; Carassiti, V.; Chiozzi, S.; Cibinetto, G.; Ramusino, A. Cotta; Bugalho, R.

    2017-01-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM

  7. A custom readout electronics for the BESIII CGEM detector

    Science.gov (United States)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout

  8. BATS, the readout control of UA1

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; Dorenbosch, J.; Jimack, M.; Szoncso, F.; Taurok, A.; Walzel, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1991-04-15

    A steadily rising luminosity and different readout architectures for the various detector systems of UA1 required a new data flow control to minimize the dead time. BATS, a finite state machine conceived around two microprocessors in a single VME crate, improved flexibility and reliability. Compatibility with BATS streamlined all readout branches. BATS also proved to be a valuable asset in spotting readout problems and previously undetected data flow bottlenecks. (orig.).

  9. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  10. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  11. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  12. The PAUCam readout electronics system

    Science.gov (United States)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  13. Readout scheme for the Baby-MIND detector

    CERN Document Server

    Noah, Etam; Cadoux, F; Favre, Y; Martinez, B; Nicola, L; Parsa, S; Rayner, M; Antonova, M; Fedotov, S; Izmaylov, A; Kleymenova, A; Khabibullin, M; Khotyantsev, A; Kudenko, Y; Likhacheva, V; Mefodiev, A; Mineev, O; Ovsiannikova, T; Shaykhiev, A; Suvorov, S; Yershov, N; Tsenov, R

    2016-01-01

    A readout scheme has been designed for the plastic scintillator bars of the Baby-MIND detector modules. This spectrometer will measure momentum and identify the charge of 1 GeV/c muons with magnetized iron plates interleaved with detector modules. One challenge the detector aims to address is that of keeping high charge identification efficiencies for momenta below 1 GeV/c where multiple scattering in the iron plates degrades momentum resolution. A front-end board has been developed, with 3 CITIROC readout chips per board and up to 96 channels. Hamamatsu MPPCs type S12571-025C photosensors were chosen for readout of wavelength shifting fibers embedded in plastic scintillators. Procurement of the MPPCs has been carried out to instrument 3000 channels in total. Design choices and first results of this readout scheme are presented.

  14. The construction and performance of a large cylindrical wire chamber with cathode readout

    International Nuclear Information System (INIS)

    Deiters, K.; Donat, A.; Friebel, W.; Heller, R.; Kirsch, S.; Krankenhagen, R.; Lange, W.; Leiste, R.; Lohmann, W.; Lustermann, W.; Peng, Y.; Roeser, U.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Wilhelmi, M.

    1991-12-01

    The construction and performance of two large coaxial cylindrical multiwire proportional chambers with cathode readout, denoted as Z-Detector, forming the outer part of the L3 central tracking detector, are described. Three self supporting cylinders of about 1 m length and 1 m diameter, constructed as a sandwich of Kapton foil and foam, form the mechanical frame. It represents 2% of a radiation length. In each chamber one cathode layer is subdivided in helical strips and the other one in rings. The readout of the charges induced on the cathode strips and the other one in rings. The readout of the charges induced on the cathode strips provides the avalanche position along the beam (z-) direction. The detector has been running in the L3 experiment at LEP for nearly two years. The resolution of the z-measurement is 320 μm, the double track resolution is about 10 mm. The efficiency of each chamber is 96%. (orig.)

  15. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  16. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  17. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    International Nuclear Information System (INIS)

    Wigmans, Richard; Nural, Akchurin

    2013-01-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals

  18. D-Zero muon readout electronics design

    International Nuclear Information System (INIS)

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D null Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D null Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed

  19. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  20. The readout system for the ALICE zero degree calorimeters

    CERN Document Server

    Siddhanta, S; De Falco, A; Floris, M; Masoni, A; Puddu, G; Serci, S; Uras, A; Usai, G; Arnaldi, R; Bianchi, L; Bossu, F; Chiavassa, E; De Marco, N; Ferretti, A; Gagliardi, M; Gallio, M; Luparello, G; Musso, A; Oppedisano, C; Piccotti, A; Scomparin, E; Vercellin, E; Cortese, P; Dellacasa, G

    2011-01-01

    ALICE at the CERN LHC will investigate the physics of strongly interacting matter at extreme energy densities where the formation of the Quark Gluon Plasma is expected. Its properties can be studied from observations like the production of mesons w ith charm and beauty quarks. These signals have to be studied as a function of energy density, which is determined by the centrality of collisions. One of the physics observables that is closely related with the centrality of the collision is the number o f spectator nucleons that can be measured by the Zero Degree Calorimeters (ZDC). Having a direct geometric interpretation allows to extract the impact parameter with minimal model assumptions. This paper describes the readout system of the ZDC. The ZDC re adout consists of a VME system with a ZDC Readout Card, a VME Processor, Discriminators, a ZDC Trigger Card, scalers, QDCs and TDCs. The system was successfully tested during the 2009 ALICE data taking and is currently operational at the LHC.

  1. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  2. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  3. Design and Performance of the CMS Pixel Detector Readout Chip

    CERN Document Server

    Kästli, H C; Erdmann, W; Hörmann, C; Horisberger, R P; Kotlinski, D; Meier, B; Hoermann, Ch.

    2006-01-01

    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.

  4. The readout system of the new H1 silicon detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Henschel, H.; Haynes, W.J.; Noyes, G.W.; Joensson, L.; Gabathuler, K.; Horisberger, R.; Wagener, M.; Eichler, R.; Erdmann, W.; Niggli, H.; Pitzl, D.

    1995-03-01

    The H1 detector at HERA at DESY undergoes presently a major upgrade. In this context silicon strip detectors have been installed at beginning of 1995. The high bunch crossing frequency of HERA (10.4 MHz) demands a novel readout architecture which includes pipelining, signal processing and data reduction at a very early stage. The front end readout is hierarchically organized. The detector elements are read out by the APC chip which contains an analog pipeline and performs first background subtraction. Up to five readout chips are controlled by a Decoder Chip. The readout processor module (OnSiRoC) operates the detectors, controls the Decoder Chips and performs a first level data reduction. The paper describes the readout architecture of the H1 Silicon Detectors and performance data of the complete readout chain. (orig.)

  5. Hybrid amplifier for calorimetry with photodiode readout

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, V V

    1994-12-31

    A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.

  6. Direction of Wolf-Rayet stars in a very powerful far-infrared galaxy - Direct evidence for a starburst

    International Nuclear Information System (INIS)

    Armus, L.; Heckman, T.M.; Miley, G.K.

    1988-01-01

    Spectra covering the wavelength range 4476-7610 A are presented for the powerful far-infrared galaxy IRAS 01003-2238. The broad emission band centered at a rest wavelength of roughly 4660 A, and other broad weaker features are interpreted, as arising from the combined effect of approximately 100,000 late Wolf-Rayet stars of the WN subtype. This represents perhaps the most direct evidence to date for the presence of a large number of hot massive stars in the nucleus of a very powerful far-infrared galaxy. The high number of Wolf-Rayet stars in relation to the number of O-type stars may be interpreted as arguing against continuous steady state star formation in 01003-2238, in favor of a recent burst of star formation occurring approximately 100 million yrs ago. 24 references

  7. 100 Gbps PCI-Express readout for the LHCb upgrade

    International Nuclear Information System (INIS)

    Durante, P.; Neufeld, N.; Schwemmer, R.; Balbi, G.; Marconi, U.

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new generation of readout boards, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We show throughput measurements across the PCI-Express bus, on Altera Stratix 5 devices, using a DMA mechanism and different synchronization schemes between the FPGA and the readout unit. Finally we discuss hardware and software design considerations necessary to achieve a data throughput of 100 Gbps in the final readout board

  8. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  9. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  10. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  11. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  12. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  13. A new method of readout in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Kellermann, Peer Oliver; Gornik, Erich; Ertl, Adolf

    1998-01-01

    Radiochromic film as a dosimetry medium offers several advantages in high-resolution radiography. A new technique of readout was developed to measure the optical density distributions of the film in purely directed light. This technique implements radiochromic film dosimetry near the film's absorption maximum by using a single-mode top-surface emitting laser diode (675.2 nm). The effective sensitivity of the film, compared with a helium-neon laser densitometer (632.8 nm), is increased approximately threefold. Good accuracy, high spatial resolution and simple assembly of the readout system is achieved. Beam profiles of the four final collimator helmets of a Leksell Gamma Knife (Elekta Inc., Sweden) were experimentally determined. Measured profiles and full-widths at half maximum are consistent with the computer generated data of the dose planning system (Kula 4.4, Elekta Inc., Sweden). The output factor of the 4 mm collimator (the smallest collimator with the steepest dose gradient), essential for the application of well defined doses, was checked. The measurements established an output factor of 826±9 that lies 9±1% lower than the adjusted one. (author)

  14. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  15. 60 GHz wireless data transfer for tracker readout systems—first studies and results

    International Nuclear Information System (INIS)

    Dittmeier, S.; Berger, N.; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2014-01-01

    To allow highly granular trackers to contribute to first level trigger decisions or event filtering, a fast readout system with very high bandwidth is required. Space, power and material constraints, however, pose severe limitations on the maximum available bandwidth of electrical or optical data transfers. A new approach for the implementation of a fast readout system is the application of a wireless data transfer at a carrier frequency of 60 GHz. The available bandwidth of several GHz allows for data rates of multiple Gbps per link. 60 GHz transceiver chips can be produced with a small form factor and a high integration level. A prototype transceiver currently under development at the University of Heidelberg is briefly described in this paper. To allow easy and fast future testing of the chip's functionality, a bit error rate test has been developed with a commercially available transceiver. Crosstalk might be a big issue for a wireless readout system with many links in a tracking detector. Direct crosstalk can be avoided by using directive antennas, linearly polarized waves and frequency channeling. Reflections from tracking modules can be reduced by applying an absorbing material like graphite foam. Properties of different materials typically used in tracking detectors and graphite foam in the 60 GHz frequency range are presented. For data transmission tests, links using commercially available 60 GHz transmitters and receivers are used. Studies regarding crosstalk and the applicability of graphite foam, Kapton horn antennas and polarized waves are shown

  16. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  17. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  18. Readout of the upgraded ALICE-ITS

    International Nuclear Information System (INIS)

    Szczepankiewicz, A.

    2016-01-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  19. Readout of the upgraded ALICE-ITS

    Energy Technology Data Exchange (ETDEWEB)

    Szczepankiewicz, A., E-mail: Adam.Szczepankiewicz@cern.ch [CERN, Geneva (Switzerland); Institute of Computer Science, Warsaw University of Technology, Warsaw (Poland)

    2016-07-11

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  20. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J.J.A.; Bueno, J.; Yates, Stephen J.C.; Yurduseven, O.; Llombart Juan, N.; Karatsu, K.; Baryshev, A. M.; Ferrarini, L; Endo, A.; Thoen, D.J.; de Visser, P.J.; Janssen, R.M.J.; Murugesan, V.; Driessen, E.F.C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-01-01

    Aims. Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  1. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  2. Resistive Plate Chambers for hadron calorimetry: Tests with analog readout

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Repond, Jose [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: repond@hep.anl.gov; Underwood, David [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Xia, Lei [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-07-21

    Resistive Plate Chambers (RPCs) are being developed for use in a hadron calorimeter with very fine segmentation of the readout. The design of the chambers and various tests with cosmic rays are described. This paper reports on the measurements with multi-bit (or analog) readout of either a single larger or multiple smaller readout pads.

  3. FASTBUS readout system for the CDF DAQ upgrade

    International Nuclear Information System (INIS)

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum

  4. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  5. FAIR: A new fast trigger and readout bus system

    International Nuclear Information System (INIS)

    Ordine, A.; Boiano, A.; Zaghi, A.

    1998-01-01

    FAIR (FAst Intercrate Readout) is a synchronous ECL bus system dedicated to readout. It is based on a new trigger and readout hardware level protocol and on a new control system that learns how to setup and control modules. The hardware protocol along with the data structure allow both readout and event building at the same time at the rate of 22 ns/longword (1.44 Gbit/s) without the need of CPUs. It performs trigger management and full pipelining by using a multilevel FIFO structure. FAIR provides for a multi-crate front-end environment and uses an embedded serial network to accomplish front-end control and setup. The data transfer measured performances and the control system are presented in some detail

  6. Flexible high-speed FASTBUS master for data read-out and preprocessing

    International Nuclear Information System (INIS)

    Wurz, A.; Manner, R.

    1990-01-01

    This paper describes a single slot FASTBUS master module. It can be used for read-out and preprocessing of data that are read out from FASTBUS modules, e.g., and ADC system. The module consists of a 25 MHz, 32-bit processor MC 68030 with cache memory and memory management, a floating point coprocessor MC68882, 4 MBytes of main memory, and FASTBUS master and slave interfaces. In addition, a DMA controller for read-out of FASTBUS data is provided. The processor allows I/O via serial ports, a 16-bit parallel port, and a transputer link. Additional interfaces are planned. The main memory is multi-ported and can be accessed directly by the CPU, the FASTBUS, and external masters via the high-speed local bus that is accessible by way of a connector. The FASTBUS interface supports most of the standard operations in master and slave mode

  7. Imaging achievements with the Vernier readout

    CERN Document Server

    Lapington, J S; Worth, L B C; Tandy, J A

    2002-01-01

    We describe the Vernier anode, a high resolution and charge division image readout for microchannel plate detectors. It comprises a planar structure of insulated electrodes deposited on an insulating substrate. The charge cloud from an event is divided amongst all nine electrodes and the charge ratio uniquely determines the two-dimensional position coordinate of the charge centroid. We discuss the design of the anode pattern and describe the advantages offered by this readout. The cyclic variation of the electrode structure allows the image resolution to exceed the charge measurement resolution and enables the entire active area of the readout to be utilized. In addition, fixed pattern noise is greatly reduced. We present results demonstrating the position resolution and image linearity. A position resolution of 10 mu m FWHM is demonstrated and the overall imaging performance is shown to be limited by the microchannel plate pore spacing. We present measurements of the image distortions and describe techniques...

  8. The NA60 experiment readout architecture

    CERN Document Server

    Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H

    2004-01-01

    The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).

  9. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  10. A readout buffer prototype for ATLAS high-level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2001-01-01

    Readout buffers are critical components in the dataflow chain of the ATLAS trigger/data-acquisition system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several readout buffers are grouped to form a readout buffer complex that acts as a data server for the high-level trigger selection algorithms and for the final data-collection system. This paper describes a functional prototype of a readout buffer based on a custom-made PCI mezzanine card that is designed to accept input data at up to 160 MB /s, to store up to 8 MB of data, and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel 1960 processor and complex programmable logic devices. We present the integration of several of these cards in a readout buffer complex. We measure various performance figures and discuss to which extent these can fulfil ATLAS needs. (5 refs).

  11. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  12. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  13. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  14. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  15. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  16. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  17. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  18. An intelligent readout controller for Fastbus, the Fermilab FSCC

    International Nuclear Information System (INIS)

    Bowden, M.; Kwarciany, R.; Urish, J.

    1990-01-01

    This paper reports on the Fermilab FASTBUS Smart Crate Controller which is intended as a fast, versatile, and cost effective solution for the readout of FASTBUS crates. The on-board 68020 provides intelligence and a programmable microsequencer controls the main readout path. The FSCC supports communication via serial RS 232, Ethernet, and FASTBUS. The main readout path may be programmed for a variety of protocols. Currently, RS 422, VDAS, ECL line, and fiber-optic interfaces are being developed. Hardware interfacing is via the FASTBUS auxiliary connector using a personality card. Provision is made for some on-board formatting and processing of data. The 68020 may sample the data, also headers and word counts may be inserted into the data stream. Data is buffered by FIFOs to allow asynchronous readout

  19. First performance results of the ALICE TPC Readout Control Unit 2

    OpenAIRE

    Zhao, Chengxin; Alme, Johan; Alt, Torsten; Appelshäuser, Harald; Bratrud, Lars Karlot Stubberud; Castro, Andrew; Costa, Filippo; David, Ernö; Gunji, Tako; Kirsch, S; Kiss, Tivadar; Langøy, Rune; Lien, Jørgen; Lippmann, C; Oskarsson, Anders

    2016-01-01

    - This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level ir...

  20. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  1. Latest generation of ASICs for photodetector readout

    Science.gov (United States)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  2. Latest generation of ASICs for photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Seguin-Moreau, N., E-mail: seguin@lal.in2p3.fr [Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud, Bâtiment 200, 91898 Orsay Cedex (France)

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips.

  3. Latest generation of ASICs for photodetector readout

    International Nuclear Information System (INIS)

    Seguin-Moreau, N.

    2013-01-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips

  4. A radiation-tolerant electronic readout system for portal imaging

    Science.gov (United States)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  5. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  6. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  7. 100 Gbps PCI-Express Readout for the LHCb Upgrade

    CERN Document Server

    Durante, Paolo; Schwemmer, Rainer; Marconi, Umberto; Balbi, Gabriele; Lax, Ignazio

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new common readout board, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We describe a new high-performance DMA controller for data acquisition, implemented on an FPGA, coupled with a custom software module for the Linux kernel. Lastly, we describe how these components can be leveraged to achieve a throughput of 100 Gbit/s per readout board.

  8. Comparison between two possible CMS Barrel Muon Readout Architectures

    International Nuclear Information System (INIS)

    Aguayo, P.; Barcala, J.M.; Molinero, A.; Pablos, J.L.; Willmott, C.; Alberdi, J.; Marin, J.; Navarrete, J.; Romero, L.

    1997-01-01

    A comparison between two possible readout arquitectures for the CMS muon barrel readout electronics is presented, including various aspects like costs, reliability, installation, staging and maintenance. A review of the present baseline architecture is given in the appendix. (Author)

  9. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  10. Comparing interferometry techniques for multi-degree of freedom test mass readout

    International Nuclear Information System (INIS)

    Isleif, Katharina-Sophie; Gerberding, Oliver; Mehmet, Moritz; Schwarze, Thomas S; Heinzel, Gerhard; Danzmann, Karsten

    2016-01-01

    Laser interferometric readout systems with 1pm/Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts. (paper)

  11. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  12. The selective read-out processor for the CMS electromagnetic calorimeter

    CERN Document Server

    Girão de Almeida, Nuño Miguel; Faure, Jean Louis; Gachelin, Olivier; Gras, Philippe; Mandjavidze, Irakli; Mur, Michel; Varela, João

    2005-01-01

    This paper describes the selective read-out processor (SRP) proposed for the electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at LHC (CERN). The aim is to reduce raw ECAL data to a level acceptable by the CMS data acquisition (DAQ) system. For each positive level 1 trigger, the SRP is guided by trigger primitive generation electronics to identify ECAL regions with energy deposition satisfying certain programmable criteria. It then directs the ECAL read-out electronics to apply predefined zero suppression levels to the crystal data, depending whether the crystals fall within these regions or not. The main challenges for the SRP are some 200 high speed (1.6 Gbit/s) I/O channels, asynchronous operation at up to 100 kHz level 1 trigger rate, a 5- mu s real-time latency requirement and a need to retain flexibility in choice of selection algorithms. The architecture adopted for the SRP is based on modern parallel optic pluggable modules and high density field programmable gate array ...

  13. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-01-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  14. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    Science.gov (United States)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  15. Online readout and control unit for high-speed / high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1996-09-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  16. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  17. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  18. Novel concept of TDI readout circuit for LWIR detector

    Science.gov (United States)

    Kim, Byunghyuck; Yoon, Nanyoung; Lee, Hee Chul; Kim, Choong-Ki

    2000-07-01

    Noise property is the prime consideration in readout circuit design. The output noise caused by the photon noise, which dominates total noise in BLIP detectors, is limited by the integration time that an element looks at a specific point in the scene. Large integration time leads to a low noise performance. Time-delay integration (TDI) is used to effectively increase the integration time and reduce the photon noise. However, it increases the number of dead pixels and requires large integration capacitors and low noise output stage of the readout circuit. In this paper, to solve these problems, we propose a new concept of readout circuit, which performs background suppression, cell-to-cell background current non-uniformity compensation, and dead pixel correction using memory, ADC, DAC, and current copier cell. In simulation results, comparing with the conventional TDI readout circuit, the integration capacitor size can be reduced to 1/5 and trans-impedance gain can be increased by five times. Therefore, the new TDI readout circuit does not require large area and low noise output stage. And the error of skimming current is less than 2%, and the fixed pattern noise induced by cell-to-cell background current variation is reduced to less than 1%.

  19. CdTe layer structures for X-ray and gamma-ray detection directly grown on the Medipix readout-chip by MBE

    Science.gov (United States)

    Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.

    2017-11-01

    This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.

  20. Yarr: A PCIe based readout system for semiconductor tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Timon [Bergische Universitaet Wuppertal, Wuppertal (Germany); CERN, Geneva (Switzerland); Maettig, Peter [Bergische Universitaet Wuppertal, Wuppertal (Germany); Pernegger, Heinz [CERN, Geneva (Switzerland)

    2015-07-01

    The Yarr readout system is a novel DAQ concept, using an FPGA board connected via PCIe to a computer, to read out semiconductor tracking systems. The system uses the FPGA as a reconfigurable IO interface which, in conjunction with the very high speed of the PCIe bus, enables a focus of processing the data stream coming from the pixel detector in software. Modern computer system could potentially make the need of custom signal processing hardware in readout systems obsolete and the Yarr readout system showcases this for FE-I4 chips, which are state-of-the-art readout chips used in the ATLAS Pixel Insertable B-Layer and developed for tracking in high multiplicity environments. The underlying concept of the Yarr readout system tries to move intelligence from hardware into the software without the loss of performance, which is made possible by modern multi-core processors. The FPGA board firmware acts like a buffer and does no further processing of the data stream, enabling rapid integration of new hardware due to minimal firmware minimisation.

  1. A read-out buffer prototype for ATLAS high level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2000-01-01

    Read-Out Buffers are critical components in the dataflow chain of the ATLAS Trigger/DAQ system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several Read-Out Buffers are grouped to form a Read-Out Buffer Complex that acts as a data server for the High Level Triggers selection algorithms and for the final data collection system. This paper describes a functional prototype of a Read-Out Buffer based on a custom made PCI mezzanine card that is designed to accept input data at up to 160 MB/s, to store up to 8 MB of data and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel I960 processor and CPLDs. We present the integration of several of these cards in a Read-Out Buffer Complex. We measure various performance figures and we discuss to which extent these can fulfill ATLAS needs. 5 Refs.

  2. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  3. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  4. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    Science.gov (United States)

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  5. A Triggerless readout system for the ANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, M.

    2015-01-01

    One of the physics goals of the future ANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this

  6. Optimal CCD readout by digital correlated double sampling

    Science.gov (United States)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  7. Superresolution near-field readout in phase-change optical disk data storage

    International Nuclear Information System (INIS)

    Peng Chubing

    2001-01-01

    Readout of a phase-change optical disk with a superresolution (SR) near-field structure (Super-RENS) is theoretically examined on the basis of three-dimensional, full-wave vector diffraction theory. Calculations have demonstrated that Super-RENS has a high spatial resolution beyond the diffraction limit in readout. The read signal is dependent on the nature of SR, the layer structure of the disk, and the state of polarization of the incident laser beam. For the Super-RENS in which antimony is used for SR readout, the readout signal is quite small, and the estimated carrier-to-noise ratio (CNR) is only ∼30 dB for marks of 300 nm. For the Super-RENS in which a metallic region is formed during readout, the read signal is large, and the CNR can be as high as 50 dB in reading 300-nm marks

  8. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  9. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  10. Sub-10ps monolithic and low-power photodetector readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.

    2009-01-01

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device

  11. Sub-10ps monolithic and low-power photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.

    2009-02-20

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device.

  12. Backshort-Under-Grid arrays for infrared astronomy

    Science.gov (United States)

    Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2006-04-01

    We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.

  13. An optical fiber-based flexible readout system for micro-pattern gas detectors

    Science.gov (United States)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  14. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  15. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  16. Optimization of MKID noise performance via readout technique for astronomical applications

    Science.gov (United States)

    Czakon, Nicole G.; Schlaerth, James A.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP.

  17. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  18. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  19. Development of telescope readout system based on FELIX for testbeam experiments

    CERN Document Server

    Wu, Weihao; Chen, Hucheng; Chen, Kai; Lacobucci, Giuseppe; Lanni, Francessco; Liu, Hongbin; Barrero Pinto, Mateus Vicente; Xu, Lailin

    2017-01-01

    The High Voltage CMOS (HV-CMOS) sensors are extensively investigated by the ATLAS collaboration in the High-Luminosity LHC (HL-LHC) upgrade of the Inner Tracker (ITk) detector. A testbeam telescope, based on the ATLAS IBL (Insertable B-Layer) silicon pixel modules, has been built to characterize the HV-CMOS sensor prototypes. The Front-End LInk eXchange (FELIX) system is a new approach to function as the gateway between front-ends and the commodity switched network in the different detectors of the ATLAS upgrade. A FELIX based readout system has been developed for the readout of the testbeam telescope, which includes a Telescope Readout FMC Card as interface between the IBL DC (double-chip) modules and a Xilinx ZC706 evaluation board. The test results show that the FELIX based telescope readout system is capable of sensor calibration and readout of a high-density pixel detector in test beam experiments in an effective way.

  20. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    Science.gov (United States)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  1. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  2. Evaluation of Fermi read-out of the Atlas Tilecal prototype

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Alifanov, A.

    1998-01-01

    Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of FERMI data. The resulting energy resolution is better than the one obtained with the standard read-out. (orig.)

  3. Uncooled infrared focal plane array imaging in China

    Science.gov (United States)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  4. Uncooled infrared sensors: rapid growth and future perspective

    Science.gov (United States)

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  5. The readout performance evaluation of PowerPC

    International Nuclear Information System (INIS)

    Chu Yuanping; Zhang Hongyu; Zhao Jingwei; Ye Mei; Tao Ning; Zhu Kejun; Tang Suqiu; Guo Yanan

    2003-01-01

    PowerPC, as a powerful low-cost embedded computer, is one of the very important research objects in recent years in the project of BESIII data acquisition system. The researches on the embedded system and embedded computer have achieved many important results in the field of High Energy Physics especially in the data acquisition system. The one of the key points to design an acquisition system using PowerPC is to evaluate the readout ability of PowerPC correctly. The paper introduce some tests for the PowerPC readout performance. (authors)

  6. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  7. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  8. Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors

    Science.gov (United States)

    Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team

    2018-06-01

    We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.

  9. Design and prototyping of a readout aggregation ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Frank; Schatral, Sven; Bruening, Ulrich [ZITI, Universitaet Heidelberg (Germany); Som, Indranil; Bhattacharyya, Tarun [Indian Institute of Technology, Kharagpur (India); Collaboration: CBM-Collaboration

    2015-07-01

    In close collaboration between the Indian Institute of Technology Kharagpur (IITKGP) and the Institute for Computer Engineering (ZITI) at the University of Heidelberg a readout aggregation ASIC was designed. This happened in the context of the Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR). The ASIC is designed in 65nm TSMC technology. Its miniASIC tapeout to verify the analog and high-speed components is scheduled to the first quarter of 2015. This mixed-signal ASIC consists of a full-custom 5Gb/s serializer/deserializer, designed by the IITKGP including design elements such as phase-locked loop, bandgap reference, and clock data recovery, and a digital designed network communication and aggregation part designed by the ZITI. In addition, there are test structures and an I2C readout integrated to ease bring up and monitoring. A specialty of this test ASIC is the aggregation of links featuring different data rates, running with bundles of 500 MB/s LVDS. This enables flexible readout setups of mixed detectors respectively readout of various chips. As communication protocol, a unified link protocol is used including control messages, data messages, and synchronization messages on an identical lane. The design has been simulated, verified, and hardware emulated using Spartan 6 FPGAs.

  10. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  11. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  12. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  13. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.

    1988-01-01

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of ∼2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of ∼25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs

  14. A frame simulator for data produced by 'multi-accumulation' readout detectors

    Science.gov (United States)

    Bonoli, Carlotta; Bortoletto, Favio; Giro, Enrico; Corcione, Leonardo; Ligori, Sebastiano; Nicastro, Luciano

    2010-07-01

    A simulator of data frames produced by 'multi-accumulation' readout detectors has been developed during the feasibility study for the NIS spectrograph, part of the European Euclid mission. The software can emulate various readout strategies, allowing to compare the efficiency of different sampling techniques. Special care is given to two crucial aspects: the minimization of the noise and the effects produced by cosmic hits. The resulting readout noise is analyzed as a function of the background sources, detector native characteristics and readout strategy, while the image deterioration by cosmic rays covers the simulation of hits and their correction efficiency varying the readout modalities. Simulated "multi-accumulation" frames, typical of multiplexer based detectors, are an ideal tool for testing the efficiency of cosmic ray rejection techniques. In the present case cosmic rays are added to each raw frame conforming to the rates and energy expected in the operational L2 region and in the chosen exposure time. Procedures efficiency for cosmic ray identification and correction can also be easily tested in terms of memory occupancy and telemetry rates.

  15. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann [School of Computer Science and Technology, Northwestern Polytechnical University, Xi' an (China)

    2015-07-01

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a

  16. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  17. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  18. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  19. DOSIMO - an interactive web service of the GSF Readout Center

    International Nuclear Information System (INIS)

    Huebner, S.; Lempart, R.

    2002-01-01

    Under the Radiation Protection and X-ray Ordinances, official personnel dosimetry centers are charged with measuring, documenting, and monitoring personnel doses as independent agencies. The GSF Readout Center (AWST) for Personnel Dosimeters and Area Monitors is responsible for monitoring persons occupationally exposed to radiation in the federal states of Baden-Wuerttemberg, Bavaria, Hesse, and Schleswig-Holstein. The largest German readout center uses new media in personnel dosimetry in order to simplify and speed up data transfer. In October 1998, AWST in cooperation with ADANAT ENTIRE SYSTEMS implemented an Internet interface. As a result, AWST is the first European readout center to offer not only a possibility to disseminate information through the Internet by means of the DOSIMO (DOSIMETRY On-line) Internet Service, but also enabling the interactive data exchange by electronic means with authorized customers. DOSIMO users enjoy the decisive advantage of having the results of readout of their dosimeters ready for use as soon as they have become available. (orig.) [de

  20. The AMS silicon tracker readout, performance results with minimum ionizing particles

    CERN Document Server

    Alpat, B; Battiston, R; Bourquin, Maurice; Burger, W J; Extermann, Pierre; Chang, Y H; Hou, S R; Pauluzzi, M; Produit, N; Qiu, S; Rapin, D; Ribordy, R; Toker, O; Wu, S X

    2000-01-01

    First results for the AMS silicon tracker readout performance are presented. Small 20.0*20.0*0.300 mm/sup 3/ silicon microstrip detectors were installed in a 50 GeV electron beam at CERN. The detector readout consisted of prototypes of the tracker data reduction card equipped with a 12-bit ADC and the tracker frontend hybrid with VA_hdr readout chips. The system performance is assessed in terms of signal-to-noise, position resolution, and efficiency. (13 refs).

  1. Challenges of small-pixel infrared detectors: a review.

    Science.gov (United States)

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  2. Optical readout in a multi-module system test for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Nderitu Kirichu, Simon; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector, which is presently under construction. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. It consists of detector modules, optoboards, optical fibres, Back of Crate cards, Readout Drivers, and control computers. In this paper, the system test setup and the operation of the readout chain are described. Also, some results of tests using the final pixel detector readout chain are given

  3. Design and performance of the new cathode readout proportional chambers in LASS

    International Nuclear Information System (INIS)

    Aiken, G.; Aston, D.; Dunwoodie, W.

    1980-10-01

    The design and construction of a new proportional chamber system for the LASS spectrometer are discussed. This system consists of planar and cylindrical chambers employing anode wire and cathode strip readout techniques. The good timing characteristics of anode readout combine with the excellent spatial resolution of cathode readout to provide powerful and compact detectors. Preliminary resolution data are presented along with operating characteristics of the various devices

  4. An extraordinary directive radiation based on optical antimatter at near infrared.

    Science.gov (United States)

    Mocella, Vito; Dardano, Principia; Rendina, Ivo; Cabrini, Stefano

    2010-11-22

    In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

  5. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    -out facilitates measurements in liquid. The probe has been successfully implemented in gaseous as well as in liquid experiments. For example, the probe has been used as an accurate and minute thermal sensor and as a humidity sensor. In liquid, the probe has been used to detect the presence of alcohol in water. (C......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  6. Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

    1998-05-01

    The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  7. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  8. CASAGEM: a readout ASIC for micro pattern gas detectors

    International Nuclear Information System (INIS)

    He Li; Deng Zhi; Liu Yinong

    2012-01-01

    A readout ASIC for micro pattern gas detectors has been designed This ASIC integrates 16 channels for anode readout and 1 channel for cathode readout which can make use of the signal of detector's cathode to generate a trigger Every channel can provide amplification and shaping of detector signals. The ASIC can also provide adjustable gain which can be adjusted from 2 mV/fC to 40 mV/fC, and adjustable shaping time which can be adjusted from 20 ns to 80 ns; so this ASIC can be applied to detectors with wide range output signal and different counting rate. The ASIC is fabricated with Chartered 0.35 μm CMOS process More circuit design Details and test results will be presented. (authors)

  9. Study and optimization of the spatial resolution for detectors with binary readout

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-09-11

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  10. Integrated microelectronic capacitive readout subsystem for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Spathis, Christos; Georgakopoulou, Konstantina; Petrellis, Nikos; Efstathiou, Konstantinos; Birbas, Alexios

    2014-01-01

    A mixed-signal capacitive biosensor readout system is presented with its main readout functionality embedded in an integrated circuit, compatible with complementary metal oxide semiconductor-type biosensors. The system modularity allows its usage as a consumable since it eventually leads to a system-on-chip where sensor and readout circuitry are hosted on the same die. In this work, a constant current source is used for measuring the input capacitance. Compared to most capacitive biosensor readout circuits, this method offers the convenience of adjusting both the range and the resolution, depending on the requirements dictated by the application. The chip consumes less than 5 mW of power and the die area is 0.06 mm 2 . It shows a broad input capacitance range (capable of measuring bio-capacitances from 6 pF to 9.8 nF), configurable resolution (down to 1 fF), robustness to various biological experiments and good linearity. The integrated nature of the readout system is proven to be sufficient both for one-time in situ (consumable-type) bio-measurements and its incorporation into a point-of-care system. (paper)

  11. An FPGA-based sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. This will increase the trigger efficiency especially for final states with only neutral particles substantially. To increase the possible data readout rate, which is currently limited by the digitization stage (LeCroy QDC 1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is being prepared. Based on the 64-channel PANDA-SADC, the CB-SADC design was modified and adapted to the needs of the CBELSA/TAPS experiment. It offers 64 channels in one NIM module, together with modular analog or FPGA-based digital shaping. The data transfer will be realized by two standard gigabit links. Using an FPGA together with SADCs provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery.

  12. Photoproduction γp→pπ0π0. Results and development of a fast FADC-readout for double polarization experiments

    International Nuclear Information System (INIS)

    Szczepanek, T.

    2006-01-01

    This thesis describes the development and testing of a very fast intersection card for the driving and readout of a struck DL300 flash-ADC system. In order to permit an as fast as possible processing and storage of the data, an intersection on the base of a field-programmable integrated circuit was developed, which is placed on PCI/PMC plug-card together with fast memory and can transmit the data to the readout processor via a direct storage transmission from the memory of the control card to the applied CPU. The readout of the DL300 system pursues thereby autonomeously on the integrated circuit. First test measurements in the laboratory show that the flash ADC readout is functionable and dtat rates of 1 kHz or more can be reached. Furthermore the establishment of a graphical control software for the data-acquisition system in combination with a system for the processing, storage, and display of status informations of the data acquisition as well as a hardware synchronization module and an interrupt module on the base of a serial RS-232 intersection for the Linux kernel are presented, which were also developed in the framework of this thesis

  13. A new PCI card for readout in high energy physics experiments

    CERN Document Server

    Floris, M; Marras, D; Usai, G L; David, A

    2004-01-01

    Recently some high energy physics experiments started to adopt readout systems based on the PCI architecture. In this context a new PCI card that can be adapted to several readout schemes has been designed. The card contains a large 64 MB local buffer, programmable FPGA logic and a PLX PCI bridge. The solution to use a PCI bridge external to the programmable logic allows to greatly simplify projects at the level of the on-board local bus. The card is presently used as the basic readout unit of the NA60 experiment. In this context, coupling it to different mezzanine cards it is possible to create interfaces to VME/CAMAC modules or to custom front-end electronics as for the case of the silicon vertex detector. Moreover, it is used as a readout test system for the ALICE muon chambers. (10 refs).

  14. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  15. LSST camera readout chip ASPIC: test tools

    International Nuclear Information System (INIS)

    Antilogus, P; Bailly, Ph; Juramy, C; Lebbolo, H; Martin, D; Jeglot, J; Moniez, M; Tocut, V; Wicek, F

    2012-01-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  16. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  17. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  18. Impact of the 'non-destructive' multiple-readout on the Lorentzian noise

    International Nuclear Information System (INIS)

    Guazzoni, C.; Gatti, E.; Geraci, A.

    2006-01-01

    In this paper, we discuss the effect of 'non-destructive' multiple-readout on the Lorentzian noise. To our knowledge, it is the first time that such interaction is investigated. We have studied the peculiarities of the shape of the optimum weighting function for the multiple-readout technique in the presence of Lorentzian noise and other noise sources. The impact of the Lorentzian noise on the resolution achievable with the multiple-readout technique is analyzed in detail with respect to the interaction between the oscillation time and the characteristic time constant of the Lorentzian noise

  19. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    International Nuclear Information System (INIS)

    Rimminen, H.; Kyynäräinen, J.

    2013-01-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  20. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  1. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  2. Investigation of DEPFET as vertex detector at ILC. Intrinsic properties, radiation hardness and alternative readout schemes

    International Nuclear Information System (INIS)

    Rummel, Stefan

    2009-01-01

    The International Linear Collider (ILC) is supposed to be the next generation lepton collider. The detectors at ILC are intended to be precision instruments improving the performance in impact parameter (IP), momentum and energy resolution significantly compared to previous detectors at lepton colliders. To achieve this goal it is necessary to develop new detector technologies or pushing existing technologies to their technological edges. Regarding the Vertex detector (VTX) this implies challenges in resolution, material budget, power consumption and readout speed. A promising technology for the Vertex detector is the Depleted Field Effect Transistor (DEPFET). The DEPFET is a semiconductor device with in-pixel ampli cation integrated on a fully depleted bulk. This allows building detectors with intrinsically high SNR due to the large sensitive volume and the small input capacitance at the rst ampli er. To reach the ambitious performance goals it is important to understand its various features: clear performance, internal amplification, noise and radiation hardness. The intrinsic noise is analyzed, showing that the contribution of the DEPFET is below 50 e - at the required speed. Moreover it is possible to show that the internal ampli cation could be further improved to more than 1nA/e - using the standard DEPFET technology. The clear performance is investigated on matrix level utilizing a dedicated setup for single pixel testing which allows direct insight into the DEPFET operation, without the complexity of the full readout system. It is possible to show that a full clear could be achieved with a voltage pulse of 10 V. Furthermore a novel clear concept - the capacitive coupled clear gate - is demonstrated. The radiation hardness is studied with respect to the system performance utilizing various irradiations with ionizing and non ionizing particles. The impact on the bulk as well as the interface damage is investigated. Up to now the readout is performed with

  3. Investigation of DEPFET as vertex detector at ILC. Intrinsic properties, radiation hardness and alternative readout schemes

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Stefan

    2009-07-20

    The International Linear Collider (ILC) is supposed to be the next generation lepton collider. The detectors at ILC are intended to be precision instruments improving the performance in impact parameter (IP), momentum and energy resolution significantly compared to previous detectors at lepton colliders. To achieve this goal it is necessary to develop new detector technologies or pushing existing technologies to their technological edges. Regarding the Vertex detector (VTX) this implies challenges in resolution, material budget, power consumption and readout speed. A promising technology for the Vertex detector is the Depleted Field Effect Transistor (DEPFET). The DEPFET is a semiconductor device with in-pixel ampli cation integrated on a fully depleted bulk. This allows building detectors with intrinsically high SNR due to the large sensitive volume and the small input capacitance at the rst ampli er. To reach the ambitious performance goals it is important to understand its various features: clear performance, internal amplification, noise and radiation hardness. The intrinsic noise is analyzed, showing that the contribution of the DEPFET is below 50 e{sup -} at the required speed. Moreover it is possible to show that the internal ampli cation could be further improved to more than 1nA/e{sup -} using the standard DEPFET technology. The clear performance is investigated on matrix level utilizing a dedicated setup for single pixel testing which allows direct insight into the DEPFET operation, without the complexity of the full readout system. It is possible to show that a full clear could be achieved with a voltage pulse of 10 V. Furthermore a novel clear concept - the capacitive coupled clear gate - is demonstrated. The radiation hardness is studied with respect to the system performance utilizing various irradiations with ionizing and non ionizing particles. The impact on the bulk as well as the interface damage is investigated. Up to now the readout is performed

  4. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  5. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita; Shinsho, Kiyomitsu; Wakabayashi, Genichiro; Koba, Yusuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji

    2016-01-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  6. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    Energy Technology Data Exchange (ETDEWEB)

    Nohtomi, Akihiro, E-mail: nohtomi@hs.med.kyushu-u.ac.jp [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shinsho, Kiyomitsu [Graduate School of Human Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, Arakawa-ku, Tokyo 116-8551 (Japan); Wakabayashi, Genichiro [Atomic Energy Research Institute, Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8502 (Japan); Koba, Yusuke [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko [Department of Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ohga, Saiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-10-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  7. Wide field and diffraction limited array camera for SIRTF

    International Nuclear Information System (INIS)

    Fazio, G.G.; Koch, D.G.; Melnick, G.J.

    1986-01-01

    The Infrared Array Camera for the Space Infrared Telescope Facility (SIRTF/IRAC) is capable of two-dimensional photometry in either a wide field or diffraction-limited mode over the wavelength interval from 2 to 30 microns. Three different two-dimensional direct readout (DRO) array detectors are being considered: Band 1-InSb or Si:In (2-5 microns) 128 x 128 pixels, Band 2-Si:Ga (5-18 microns) 64 x 64 pixels, and Band 3-Si:Sb (18-30 microns) 64 x 64 pixels. The hybrid DRO readout architecture has the advantages of low read noise, random pixel access with individual readout rates, and nondestructive readout. The scientific goals of IRAC are discussed, which are the basis for several important requirements and capabilities of the array camera: (1) diffraction-limited resolution from 2-30 microns, (2) use of the maximum unvignetted field of view of SIRTF, (3) simultaneous observations within the three infrared spectral bands, and (4) the capability for broad and narrow bandwidth spectral resolution. A strategy has been developed to minimize the total electronic and environmental noise sources to satisfy the scientific requirements. 7 references

  8. Front-end electronics and readout system for the ILD TPC

    CERN Document Server

    Hedberg, V; Lundberg, B; Mjörnmark, U; Oskarsson, A; Österman, L; De Lentdecker, G; Yang, Y; Zhang, F

    2015-01-01

    A high resolution TPC is the main option for a central tracking detector at the future International Linear Collider (ILC). It is planned that the MPGD (Micro Pattern Gas Detector) technology will be used for the readout. A Large Prototype TPC at DESY has been used to test the performance of MPGDs in an electron beam of energies up to 6 GeV. The first step in the technology development was to demonstrate that the MPGDs are able to achieve the necessary performance set by the goals of ILC. For this ’proof of principle’ phase, the ALTRO front-end electronics from the ALICE TPC was used, modified to adapt to MPGD readout. The proof of principle has been verified and at present further improvement of the MPGD technology is going on, using the same readout electronics. The next step is the ’feasibility phase’, which aims at producing front-end electronics comparable in size (few mm2) to the readout pads of the TPC. This development work is based on the succeeding SALTRO16 chip, which combines the analogue ...

  9. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  10. A new TLD badge with machine readable ID for fully automated readout

    International Nuclear Information System (INIS)

    Kannan, S. Ratna P.; Kulkarni, M.S.

    2003-01-01

    The TLD badge currently being used for personnel monitoring of more than 40,000 radiation workers has a few drawbacks such as lack of on-badge machine readable ID code, delicate two-point clamping of dosimeters on an aluminium card with the chances of dosimeters falling off during handling or readout, projections on one side making automation of readout difficult etc. A new badge has been designed with a 8-digit identification code in the form of an array of holes and smooth exteriors to enable full automation of readout. The new badge also permits changing of dosimeters when necessary. The new design does not affect the readout time or the dosimetric characteristics. The salient features and the dosimetric characteristics are discussed. (author)

  11. Readout Unit-FPGA version for link multipexers, DAQ and VELO trigger

    CERN Document Server

    Müller, H; Guirao, A; Bal, F

    2003-01-01

    The FPGA-based Readout Unit (RU) was designed as entry stage to the readout networks of the LHCb data acquisition and L1-VELO topology trigger systems. The RU performs subevent building from up to 16 custom S-link inputs towards a commercial readout network via a PCI interface card. For output to custom links, as required in datalink multiplexer applications, an output S-link transmitter interface is alternatively available. Baseline readout networks for the RU are intelligent Gbit-ethernet NIC cards for the DAQ system and SCI shared memory network for the L1-VELO system. Any new protocols, like 10Gbit ethernet or Infiniband may be adopted as far as proper PCI interfaces and Linux device drivers will become available. The two baseline RU modes of operation are: 1.) link-multiplexer with N*Slink to single-Slink 2.) eventbuilder interface with quad Slink-to-PCI network interface.

  12. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  13. Kinetic inductance detectors for far-infrared spectroscopy

    International Nuclear Information System (INIS)

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  14. Kinetic inductance detectors for far-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barlis, A., E-mail: abarlis@physics.upenn.edu [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Aguirre, J. [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Stevenson, T. [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States)

    2016-07-11

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  15. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine.

    Science.gov (United States)

    Chen, Jin-Long; Yan, Xiu-Ping; Meng, Kang; Wang, Shu-Feng

    2011-11-15

    While the super fluorescence quenching capacity of graphene and graphene oxide (GO) has been extensively employed to develop fluorescent sensors, their own unique fluorescence and its potential for chemo-/biosensing have seldom been explored. Here we report a GO-based photoinduced charge transfer (PCT) label-free near-infrared (near-IR) fluorescent biosensor for dopamine (DA). The multiple noncovalent interactions between GO and DA and the ultrafast decay at the picosecond range of the near-IR fluorescence of GO resulted in effective self-assembly of DA molecules on the surface of GO, and significant fluorescence quenching, allowing development of a PCT-based biosensor with direct readout of the near-IR fluorescence of GO for selective and sensitive detection of DA. The developed method gave a detection limit of 94 nM and a relative standard deviation of 2.0% for 11 replicate detections of 2.0 μM DA and was successfully applied to the determination of DA in biological fluids with quantitative recovery (98-115%).

  16. A radiation tolerance study of the ALICE TPC Readout Control Unit 2

    CERN Document Server

    Zhao, Chengxin; Balk, Helge; Alme, Johan

    2017-11-17

    ALICE is a general-purpose detector that is designed to study the physics of quark-gluon plasma. The Time Projection Chamber (TPC) is one of the major detectors of ALICE. The TPC electronics consists of 4356 Front-end cards (FECs), which are controlled by 216 Readout Control Units (RCU). Each RCU connects to between 18 and 25 FECs using a multi-drop bus. In LHC Run1, the Readout Control Unit 1 (RCU1) performed even better than specification. However, in Run2 the energy of colliding beams is increased from 8 TeV to 14 TeV (maximum value) and higher luminosity, which leads to larger event size and higher radiation load on the electronics. As a solution, the Readout Control Unit 2 (RCU2) is designed to provide faster readout speed and improved radiation tolerance with respect to the RCU1. The RCU2 is conceptually similar to the RCU1 and it reuses the existing infrastructure and readout architecture of the TPC electronics. However, the multi-drop bus is split into four branches from the two branches and the bandw...

  17. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...... whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min...

  18. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    of longitudinal fibers, scintillator and quartz respectively, and therefore capable of deter- ... The main idea of multiple readout calorimetry is to indepen- ... in a campaign of R&D and tests (with sources, cosmic rays and beams) through-.

  19. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  20. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  1. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  2. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  3. The ALICE Time of Flight Readout System AFRO

    CERN Document Server

    Kluge, A

    1999-01-01

    The ALICE Time of Flight Detector system comprises more than 100.000 channels and covers an area of more than 100 m2. The timing resolution should be better than 150 ps. This combination of requirements poses a major challenge to the readout system. All detector timing measurements are referenced to a unique start signal t0. This signal is generated at the time an event occurs. Timing measurements are performed using a multichannel TDC chip which requires a 40 MHz reference clock signal. The general concept of the readout system is based on a modular architecture. Detector cells are combined to modules of 1024 channels. Each of these modules can be read out and calibrated independently from each other. By distributing a reference signal, a timing relationship between the modules is established. This reference signal can either be the start signal t0 or the TDC-reference clock. The readout architecture is divided into three steps; the TDC controller, the module controller, and the time of flight controller. Th...

  4. Studies on sampling and homogeneous dual readout calorimetry with meta-crystals

    CERN Document Server

    Mavromanolakis, G; Lecoq, P

    2011-01-01

    The meta-crystals concept is an approach that consists of using both undoped and properly doped heavy crystal fibers of identical material as the active medium of a calorimeter. The undoped fibers behave as Cherenkov radiators while the doped ones behave as scintillators. A dual readout calorimeter can be built with its sensitive volume composed of a mixture of both types of crystals. In addition if the calorimeter is adequately finely segmented it can also function as a particle flow calorimeter at the same time. In this way one could possibly combine the advantages of both the particle flow concept and the dual readout scheme. We discuss the approach of dual readout calorimetry with meta-crystals made of Lutetium Aluminium Garnet (LuAG). We brie fly present studies on the material development and first testbeam activities and then focus on performance expectation studies based on simulation. We discuss in more detail the results from generic systematic scannings of the design parameters of a dual readout ca...

  5. Fast readout of the COMPASS RICH CsI-MWPC chambers

    CERN Document Server

    Abbon, P; Deschampbs, H; Kunne, F; Gerasimov, S; Ketzer, B; Konorov, I; Kravtchuk, N; Magnon, A; Neyret, D; Panebianco, S; Paul, S; Rebourgeard, P; Tessaroto, F

    2006-01-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with “slow” signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5–6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficien...

  6. A time projection chamber with GEM-based readout

    Energy Technology Data Exchange (ETDEWEB)

    Attié, David [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Behnke, Ties [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); Bellerive, Alain [Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 (Canada); Bezshyyko, Oleg [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv 01601 (Ukraine); Bhattacharya, Deb Sankar [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); now at Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, Purba [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); now at National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha (India); Bhattacharya, Sudeb [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Caiazza, Stefano [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz (Germany); Colas, Paul [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Lentdecker, Gilles De [Inter University ULB-VUB, Av. Fr. Roosevelt 50, B1050 Bruxelles (Belgium); Dehmelt, Klaus [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Desch, Klaus [Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn (Germany); and others

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  7. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  8. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC.

    Science.gov (United States)

    Zhang, Guo-Jun; Chai, Kevin Tshun Chuan; Luo, Henry Zhan Hong; Huang, Joon Min; Tay, Ignatius Guang Kai; Lim, Andy Eu-Jin; Je, Minkyu

    2012-05-15

    Early detection of cardiac biomarkers for diagnosis of heart attack is the key to saving lives. Conventional method of detection like the enzyme-linked immunosorbent assay (ELISA) is time consuming and low in sensitivity. Here, we present a label-free detection system consisting of an array of silicon nanowire sensors and an interface readout application specific integrated circuit (ASIC). This system provides a rapid solution that is highly sensitive and is able to perform direct simultaneous-multiplexed detection of cardiac biomarkers in serum. Nanowire sensor arrays were demonstrated to have the required selectivity and sensitivity to perform multiplexed detection of 100 fg/ml troponin T, creatine kinase MM, and creatine kinase MB in serum. A good correlation between measurements from a probe station and the readout ASIC was obtained. Our detection system is expected to address the existing limitations in cardiac health management that are currently imposed by the conventional testing platform, and opens up possibilities in the development of a miniaturized device for point-of-care diagnostic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Implementation of a Customisable Readout Sequence for the ALICE ITS Upgrade Explorer Family Chips

    CERN Document Server

    Gazzari, Matthias

    2014-01-01

    Within the ALICE ITS upgrade R&D programme the Explorer family chips are developed featuring 11700 pixels which are split into 18 different sectors with different properties. These pixels are read out sequentially leading to a time span of 2.34ms between the first and last pixel. Due to the long readout time, shot noise induced by the leakage currents in the in-pixel analogue memories makes the comparison of different sensor implementations located in distant sectors on the Explorer family chips difficult. In order to reduce this noise contribution a customisable readout sequence is developed to read parts instead of the whole chip which reduces the overall readout time. This readout sequence is integrated in the existing characterisation framework in order to choose the best performing sensor implementation through pixel-by-pixel comparison without readout-induced effects.

  10. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  11. Development of a Crosstalk Suppression Algorithm for KID Readout

    Science.gov (United States)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  12. Two-dimensional readout system for radiation detector

    International Nuclear Information System (INIS)

    Lee, L.Y.

    1975-01-01

    A two dimensional readout system has been provided for reading out locations of scintillations produced in a scintillation type radiation detector array wherein strips of scintillator material are arranged in a parallel planar array. Two sets of light guides are placed perpendicular to the scintillator strips, one on the top and one on the bottom to extend in alignment across the strips. Both the top and bottom guides are composed of a number of 90 0 triangular prisms with the lateral side forming the hypotenuse equal to twice the width of a scintillator strip. The prism system reflects light from a scintillation along one of the strips back and forth through adjacent strips to light pipes coupled to the outermost strips of the detector array which transmit light pulses to appropriate detectors to determine the scintillation along one axis. Other light pipes are connected to the end portions of the strips to transmit light from the individual strips to appropriate light detectors to indicate the particular strip activated, thereby determining the position of a scintillation along the other axis. The number of light guide pairs may be equal the number of the scintillation strips when equal spatial resolution for each of the two coordinates is desired. When the scintillator array detects an event which produces a scintillation along one of the strips, the emitted light travels along four different paths, two of which are along the strip, and two of which are through the light guide pair perpendicular to the strips until all four beams reach the outer edges of the array where they may be transmitted to light detectors by means of light pipes connected therebetween according to a binary code for direct digital readout. (U.S.)

  13. Far infrared through millimeter backshort-under-grid arrays

    Science.gov (United States)

    Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.

    2006-06-01

    We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.

  14. R and D of MPGD-readout TPC for the International Linear Collider experiment

    International Nuclear Information System (INIS)

    Yonamine, R

    2012-01-01

    A Time Projection Chamber (TPC) is chosen for the central tracker of the ILD detector, one of two detector concepts planned for the International Linear Collider (ILC). Physics goals at the ILC will require a TPC with a position resolution of 100 μm and superior track separation, which are not achievable with a conventional Multi-Wire Proportional Chamber (MWPC) readout. A MPGD readout offers improved position resolution and track separation due to measuring the signal at the anode and minimization of E × B effect. For several years, the LC TPC collaboration has been developing a MPGD readout using various small TPC prototypes and the Large Prototype TPC that is operated in a test beam at DESY. The MPGD technologies being tested are GEM and Micromegas with resistive charge broadening, with both traditional pad and CMOS pixel readout. Readout modules with both GEM and Micromegas gas amplification have achieved a position resolution on the order of 100 μm at B = 1 T. In this paper we report on the recent R and D toward the ILD TPC.

  15. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  16. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    International Nuclear Information System (INIS)

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  17. Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Document Server

    Alessio, F; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, R; Wyllie, K

    2015-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  18. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  19. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Jonassen, Johnny; Jensen, Carsten; Schmidt, Mai Lykkegaard

    2015-01-01

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2

  20. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  1. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    International Nuclear Information System (INIS)

    Naumann, C L; Tejedor, L A; Martínez, G

    2013-01-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (''COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  2. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  3. Infrared photoexcitation spectroscopy of conducting polymer and C60 composites: direct evidence of photo-induced electron transfer

    NARCIS (Netherlands)

    Lee, Kwanghee; Janssen, R.A.J.; Sariciftci, N.S.; Heeger, A.J.

    1994-01-01

    We report direct spectral evidence of photoinduced electron transfer from the excited state of conducting polymer onto C60 by infrared photoexcitation spectroscopy, from 0.01 eV (100 cm-1) to 1.3 eV (11,000 cm-1). The photoinduced absorption spectra of poly(3-octylthiophene) (P30T) and

  4. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  5. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  6. Evaluation of mixed-signal noise effects in photon-counting X-ray image sensor readout circuits

    International Nuclear Information System (INIS)

    Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt

    2006-01-01

    In readout electronics for photon-counting pixel detectors, the tight integration between analog and digital blocks causes the readout electronics to be sensitive to on-chip noise coupling. This noise coupling can result in faulty luminance values in grayscale X-ray images, or as color distortions in a color X-ray imaging system. An exploration of simulating noise coupling in readout circuits is presented which enables the discovery of sensitive blocks at as early a stage as possible, in order to avoid costly design iterations. The photon-counting readout system has been simulated for noise coupling in order to highlight the existing problems of noise coupling in X-ray imaging systems. The simulation results suggest that on-chip noise coupling should be considered and simulated in future readout electronics systems for X-ray detectors

  7. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  8. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  9. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  10. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of ...

  11. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    International Nuclear Information System (INIS)

    Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A

    2011-01-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  12. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  13. The read-out chain of the CBM STS detector

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Joerg; Emschermann, David [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the QCD phase diagram at high baryon densities during nucleus-nucleus collisions in a fixed target setup. Its physics goals require interaction rates up to 10 MHz, which can be exploited with fast and radiation hard detectors equipped with free-streaming front-end and readout electronics, connected to a common Data Aquisition (DAQ) system to forward data to the First Level Event Selector (FLES). The core component of the CBM DAQ system is the Data Processing Board (DPB) implementing three important functionalities: - The incoming data via multiple lower-speed, short distance links is preprocessed, concentrated and forwarded to the FLES via higher-speed, long distance links. - The DPBs provide an interface for the Detector Control System (DCS) to configure readout and front-end electronics (FEE). - As part of the Timing and Fast Control (TFC) system the DPBs ensure transmission of the reference clock and synchronous commands necessary to synchronize the FEE. This contribution presents the readout and DAQ chain on the example of the core subdetector, the Silicon Tracking System (STS).

  14. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  15. Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    International Nuclear Information System (INIS)

    Abbon, P.; Delagnes, E.; Deschamps, H.; Kunne, F.; Gerasimov, S.; Ketzer, B.; Konorov, I.; Kravtchuk, N.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.; Tessaroto, F.

    2006-01-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with 'slow' signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5-6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate

  16. A novel integrated circuit for semiconductor radiation detectors with sparse readout

    International Nuclear Information System (INIS)

    Zhang Yacong; Chen Zhognjian; Lu Wengao; Zhao Baoying; Ji Lijiu

    2008-01-01

    A novel fully integrated CMOS readout circuit for semiconductor radiation detector with sparse readout is presented. The new sparse scheme is: when one channel is being read out, the trigger signal from other channels is delayed and then processed. Therefore, the dead time is reduced and so is the error rate. Besides sparse readout, sequential readout is also allowed, which means the analog voltages and addresses of all the channels are read out sequentially once there is a channel triggered. The circuit comprises Charge Sensitive Amplifier (CSA), pulse shaper, peak detect and hold circuit, and digital logic. A test chip of four channels designed in a 0.5 μ DPTM CMOS technology has been taped out. The results of post simulation indicate that the gain is 79.3 mV/fC with a linearity of 99.92%. The power dissipation is 4 mW per channel. Theory analysis and calculation shows that the error probability is approximately 2.5%, which means a reduction of about 37% is obtained compared with the traditional scanning scheme, assuming a 16-channel system with a particle rate of 100 k/s per channel. (authors)

  17. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  18. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  19. Vertically integrated pixel readout chip for high energy physics

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 (micro)m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 (micro)m 2 pixels, laid out in an array of 48 x 48 pixels.

  20. A 40 GByte/s read-out system for GEM

    International Nuclear Information System (INIS)

    Bowden, M.; Carrel, J.; Dorenbosch, J.; Kapoor, V.

    1994-04-01

    The preliminary design of the read-out system for the GEM (Gammas, Electrons, Muons) detector at the Superconducting Super Collider is presented. The system reads all digitized data from the detector data sources at a Level 1 trigger rate of up to 100 kHz. A total read-out bandwidth of 40 GBytes/s is available. Data are stored in buffers that are accessible for further event filtering by an on-line, processor farm. Data are transported to the farm only as they are needed by the higher-level trigger algorithms, leading to a reduced bandwidth requirement in the Data Acquisition System

  1. Calibration of the RPC charge readout in the ARGO-YBJ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aielli, G. [Dipartimento di Fisica dell& #x27; Universita & #x27; Tor Vergata& #x27; , via della Ricerca Scientifica 1, 00133 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Bacci, C. [Dipartimento di Fisica dell& #x27; Universita & #x27; Roma Tre& #x27; , via della Vasca Navale 84, 00146 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Roma3, via della Vasca Navale 84, 00146 Roma (Italy); Bartoli, B. [Dipartimento di Fisica dell& #x27; Universita di Napoli, Complesso Universitario di Monte Sant& #x27; Angelo, via Cintia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte Sant& #x27; Angelo, via Cintia, 80126 Napoli (Italy); Bernardini, P. [Dipartimento di Fisica dell& #x27; Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Bi, X.J. [Key Laboratory of Particle Astrophyics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918, 100049 Beijing (China); Bleve, C. [Dipartimento di Fisica dell& #x27; Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma3, via della Vasca Navale 84, 00146 Roma (Italy); and others

    2012-01-01

    The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10{sup 4}/m{sup 2}, enabling the study of the primary cosmic rays with energies in the 'knee' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle density in the dynamic range (up to 200/m{sup 2}).

  2. On the importance of the 2nd readout as a function of dose

    International Nuclear Information System (INIS)

    Batel, V.I.; Alves, J.G.; Rangel, S.; Abrantes, J.N.

    2005-01-01

    Full text: The individual monitoring service at ITN-DPRSN is based on a TLD dosimetry system. The system is comprised of two 6600 Harshaw readers and on the Harshaw 8814 TL card and holder containing two LiF:Mg,Ti (TLD-100) detectors for the evaluation of H p (10) and H p (0.07). As part of our normal reading procedure, after the readout for dose evaluation a second reading is always carried out before the dosemeters are considered ready for another use and shipped to clients. Second readouts produce the residual signal and confirm the dosemeter is reset. However, it is a time-consuming task and particularly in the low dose cases, the question arises whether it could be avoided? In this paper the importance of a second readout was evaluated and is presented. Four experiments were performed using two groups of twenty-five randomly selected dosemeters. In each group the dosemeters were organized in sets of five and each set was irradiated to a different dose of 0.5, 1, 5, 10 and 50 mSv and processed. This was repeated for ten times. In the first experiment the dosemeters were read for dose evaluation and a second readout was always performed. In the second experiment the second readout was suppressed. The third and fourth experiments were as the first and second, but the dosemeters were irradiated to an additional dose of 0.50 mSv in between. The results obtained from experiments one and two, evaluate the importance of the second readout on the reproducibility of the measurement as a function of dose. Experiments three and four also provide information on the capacity to detect an intermediate low dose of 0.5 mSv, as a function of dose, for the normal reading procedure and when the second readout is avoided. In this paper the importance of the second readout is studied performing reproducibility measurements as a function of dose and by testing the capacity to detect the 0.5 mSv intermediate dose also as a function of dose. (author)

  3. Characterisation of the VMM3 Front-end read-out ASIC

    CERN Document Server

    Bartels, Lara Maria

    2018-01-01

    This research project was conducted in the RD51 collaboration at CERN, which is involved in the development of micropattern gaseous detector technologies and read-out systems. One example in the broad range of possible applications of such gaseous detectors is the NMX macromolecular diffractometer instrument planned for the European spallation source (ESS) which is currently under construction in Lund, Sweden. For the NMX instrument neutron detectors with high rate capabilities, high stability and excellent spatial resolution are required. A group working in the RD51 collaboration at CERN within the BrightnESS project aims to fulfil those requirements using gas electron multiplier (GEM) detectors with Gadolinium foils as neutron converters [PFE]. In order to match the high rate capability of the detectors, new front-end read-out systems need to be tested and implemented. This project aims to understand and test the capabilities of the VMM3 as the front-end read-out ASIC for GEM detectors.

  4. Cryogenic readout integrated circuits for submillimeter-wave camera

    International Nuclear Information System (INIS)

    Nagata, H.; Kobayashi, J.; Matsuo, H.; Akiba, M.; Fujiwara, M.

    2006-01-01

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6μV/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit

  5. Cryogenic readout integrated circuits for submillimeter-wave camera

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)]. E-mail: hirohisa.nagata@nao.ac.jp; Kobayashi, J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Matsuo, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akiba, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan); Fujiwara, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2006-04-15

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6{mu}V/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit.

  6. LHCb : Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Multimedia

    Alessio, Federico; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, Richard; Wyllie, Ken

    2014-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  7. Evolution of the dual-readout calorimeter

    International Nuclear Information System (INIS)

    Penzo, Aldo

    2007-01-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of, fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy). (author)

  8. Upgrade of the TOTEM DAQ using the Scalable Readout System (SRS)

    International Nuclear Information System (INIS)

    Quinto, M; Cafagna, F; Fiergolski, A; Radicioni, E

    2013-01-01

    The main goals of the TOTEM Experiment at the LHC are the measurements of the elastic and total p-p cross sections and the studies of the diffractive dissociation processes. At LHC, collisions are produced at a rate of 40 MHz, imposing strong requirements for the Data Acquisition Systems (DAQ) in terms of trigger rate and data throughput. The TOTEM DAQ adopts a modular approach that, in standalone mode, is based on VME bus system. The VME based Front End Driver (FED) modules, host mezzanines that receive data through optical fibres directly from the detectors. After data checks and formatting are applied in the mezzanine, data is retransmitted to the VME interface and to another mezzanine card plugged in the FED module. The VME bus maximum bandwidth limits the maximum first level trigger (L1A) to 1 kHz rate. In order to get rid of the VME bottleneck and improve scalability and the overall capabilities of the DAQ, a new system was designed and constructed based on the Scalable Readout System (SRS), developed in the framework of the RD51 Collaboration. The project aims to increase the efficiency of the actual readout system providing higher bandwidth, and increasing data filtering, implementing a second-level trigger event selection based on hardware pattern recognition algorithms. This goal is to be achieved preserving the maximum back compatibility with the LHC Timing, Trigger and Control (TTC) system as well as with the CMS DAQ. The obtained results and the perspectives of the project are reported. In particular, we describe the system architecture and the new Opto-FEC adapter card developed to connect the SRS with the FED mezzanine modules. A first test bench was built and validated during the last TOTEM data taking period (February 2013). Readout of a set of 3 TOTEM Roman Pot silicon detectors was carried out to verify performance in the real LHC environment. In addition, the test allowed a check of data consistency and quality

  9. SPIDR, a general-purpose readout system for pixel ASICs

    International Nuclear Information System (INIS)

    Heijden, B. van der; Visser, J.; Beuzekom, M. van; Boterenbrood, H.; Munneke, B.; Schreuder, F.; Kulis, S.

    2017-01-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a 'soft core' CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four

  10. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2017-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  11. Technology for the compatible integration of silicon detectors with readout electronics

    International Nuclear Information System (INIS)

    Zimmer, G.

    1984-01-01

    Compatible integration of detectors and readout electronics on the same silicon substrate is of growing interest. As the methods of microelectronics technology have already been adapted for detector fabrication, a common technology basis for detectors and readout electronics is available. CMOS technology exhibits most attractive features for the compatible realization of readout electronics when advanced LSI processing steps are combined with detector requirements. The essential requirements for compatible integration are the availability of high resistivity (100)-oriented single crystalline silicon substrate, the formation of suitably doped areas for MOS circuits and the isolation of the low voltage circuit from the detector operated at much higher supply voltage. Junction isolation as a first approach based on present production technology and dielectric isolation based on an advanced SOI-LSI technology are discussed as the most promising solutions for present and future applications, respectively. (orig.)

  12. Microstrip electrode readout noise for load-dominated long shaping-time systems

    International Nuclear Information System (INIS)

    Collier, Kelsey; Cunnington, Taylor; Crosby, Sean; Fadeyev, Vitaliy; Martinez-McKinney, Forest; Mistry, Khilesh; Schumm, Bruce A.; Spencer, Edwin; Taylor, Aaron; Wilder, Max

    2013-01-01

    In cases such as that of the proposed International Linear Collider (ILC), for which the beam-delivery and detector-occupancy characteristics permit a long shaping-time readout of the microstrip sensors, it is possible to envision long (∼1 meter) daisy-chained ‘ladders’ of fine-pitch sensors read out by a single front-end amplifier. In this study, a long shaping-time (∼2μsec) front-end amplifier has been used to measure readout noise as a function of detector load. Comparing measured noise to that expected from lumped and distributed models of the load network, it is seen that network effects significantly mitigate the amount of readout noise contributed by the detector load. Further reduction in noise is demonstrated for the case that the sensor load is read out from its center rather than its end

  13. Microstrip electrode readout noise for load-dominated long shaping-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Kelsey; Cunnington, Taylor; Crosby, Sean; Fadeyev, Vitaliy; Martinez-McKinney, Forest; Mistry, Khilesh; Schumm, Bruce A., E-mail: baschumm@ucsc.edu; Spencer, Edwin; Taylor, Aaron; Wilder, Max

    2013-11-21

    In cases such as that of the proposed International Linear Collider (ILC), for which the beam-delivery and detector-occupancy characteristics permit a long shaping-time readout of the microstrip sensors, it is possible to envision long (∼1 meter) daisy-chained ‘ladders’ of fine-pitch sensors read out by a single front-end amplifier. In this study, a long shaping-time (∼2μsec) front-end amplifier has been used to measure readout noise as a function of detector load. Comparing measured noise to that expected from lumped and distributed models of the load network, it is seen that network effects significantly mitigate the amount of readout noise contributed by the detector load. Further reduction in noise is demonstrated for the case that the sensor load is read out from its center rather than its end.

  14. Electronic readout for THGEM detectors based on FPGA TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Tobias; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Kunz, Tobias; Michalski, Christoph; Schopferer, Sebastian; Szameitat, Tobias [Physikalisches Institut, Freiburg Univ. (Germany); Collaboration: COMPASS-II RICH upgrade Group

    2013-07-01

    In the framework of the RD51 programme the characteristics of a new detector design, called THGEM, which is based on multi-layer arrangements of printed circuit board material, is investigated. The THGEMs combine the advantages for covering gains up to 10{sup 6} in electron multiplication at large detector areas and low material budget. Studies are performed by extending the design to a hybrid gas detector by adding a Micromega layer, which significantly improves the ion back flow ratio of the chamber. With the upgrade of the COMPASS experiment at CERN a MWPC plane of the RICH-1 detector will be replaced by installing THGEM chambers. This summarizes to 40k channels of electronic readout, including amplification, discrimination and time-to-digital conversion of the anode signals. Due to the expected hit rate of the detector we design a cost-efficient TDC, based on Artix7 FPGA technology, with time resolution below 100 ps and sufficient hit buffer depth. To cover the large readout area the data is transferred via optical fibres to a central readout system which is part of the GANDALF framework.

  15. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  16. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    International Nuclear Information System (INIS)

    Lai-Xin, Jiang; Yi-Qun, Wu; Yang, Wang; Jing-Song, Wei; Fu-Xi, Gan

    2009-01-01

    Sb–Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb–Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 380 nm are read out by a dynamic setup, the laser wavelength is 780 nm and the numerical aperture of pickup lens is 0.45. The effects of the Sb–Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb–Bi mask layer is about 0.5 mW, and the corresponding carrier-to-noise ratio is about 20 dB at the film thickness of 50 nm. The super-resolution mechanism of the Sb–Bi alloy mask layer is discussed based on its temperature dependence of reflection

  17. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  18. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  19. Central FPGA-based destination and load control in the LHCb MHz event readout

    International Nuclear Information System (INIS)

    Jacobsson, R.

    2012-01-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  20. Central FPGA-based destination and load control in the LHCb MHz event readout

    Science.gov (United States)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  1. Clinical Evaluation of a Dual-Side Readout Technique Computed Radiography System in Chest Radiography of Premature Neonates

    International Nuclear Information System (INIS)

    Carlander, A.; Hansson, J.; Soederberg, J.; Steneryd, K.; Baath, M.

    2008-01-01

    Background: Recently, the dual-side readout technique has been introduced in computed radiography, leading to an increase in detective quantum efficiency (DQE) compared with the single-side readout technique. Purpose: To evaluate if the increase in DQE with the dual-side readout technique results in a higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose. Material and Methods: Twenty-four chest radiographs of premature neonates were collected from both a single-side readout technique system and a double-side readout technique system. The images were processed in the same image-processing station in order for the comparison to be only dependent on the difference in readout technique. Five radiologists rated the fulfillment of four image quality criteria, which were based on important anatomical landmarks. The given ratings were analyzed using visual grading characteristics (VGC) analysis. Results: The VGC analysis showed that the reproduction of the carina with the main bronchi and the thoracic vertebrae behind the heart was better with the dual-side readout technique, whereas no significant difference for the reproduction of the central vessels or the peripheral vessels could be observed. Conclusions: The results indicate that the higher DQE of the dual-side readout technique leads to higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose. Keywords: Digital radiography; lung; observer performance; pediatrics; thorax

  2. A Low-Noise Direct Incremental A/D Converter for FET-Based THz Imaging Detectors

    Directory of Open Access Journals (Sweden)

    Moustafa Khatib

    2018-06-01

    Full Text Available This paper presents the design, implementation and characterization results of a pixel-level readout chain integrated with a FET-based terahertz (THz detector for imaging applications. The readout chain is fabricated in a standard 150-nm CMOS technology and contains a cascade of a preamplification and noise reduction stage based on a parametric chopper amplifier and a direct analog-to-digital conversion by means of an incremental ΣΔ converter, performing a lock-in operation with modulated sources. The FET detector is integrated with an on-chip antenna operating in the frequency range of 325–375 GHz and compliant with all process design rules. The cascade of the FET THz detector and readout chain is evaluated in terms of responsivity and Noise Equivalent Power (NEP measurements. The measured readout input-referred noise of 1.6 μ V r m s allows preserving the FET detector sensitivity by achieving a minimum NEP of 376 pW/ Hz in the optimum bias condition, while directly providing a digital output. The integrated readout chain features 65-dB peak-SNR and 80-μ W power consumption from a 1.8-V supply. The area of the antenna-coupled FET detector and the readout chain fits a pixel pitch of 455 μm, which is suitable for pixel array implementation. The proposed THz pixel has been successfully applied for imaging of concealed objects in a paper envelope under continuous-wave illumination.

  3. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  4. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  5. Grain-A Java data analysis system for Total Data Readout

    International Nuclear Information System (INIS)

    Rahkila, P.

    2008-01-01

    Grain is a data analysis system developed to be used with the novel Total Data Readout data acquisition system. In Total Data Readout all the electronics channels are read out asynchronously in singles mode and each data item is timestamped. Event building and analysis has to be done entirely in the software post-processing the data stream. A flexible and efficient event parser and the accompanying software system have been written entirely in Java. The design and implementation of the software are discussed along with experiences gained in running real-life experiments

  6. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  7. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  8. A 32x32 Direct Hybrid Germanium Photoconductor Array with CTIA Readout Multiplexer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a two-dimensional far infrared photoconductor array with the following key design features: 1- A...

  9. Test of high time resolution MRPC with different readout modes for the BESIII upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)

    2014-11-01

    In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.

  10. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    Science.gov (United States)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  11. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  12. AREUS - a software framework for the ATLAS Readout Electronics Upgrade Simulation

    CERN Document Server

    Horn, Philipp; The ATLAS collaboration

    2018-01-01

    The design of readout electronics for the LAr calorimeters of the ATLAS detector to be operated at the future High-Luminosity LHC (HL-LHC) requires a detailed simulation of the full readout chain in order to find optimal solutions for the analog and digital processing of the detector signals. Due to the long duration of the LAr calorimeter pulses relative to the LHC bunch crossing time, out-of-time signal pile-up needs to be taken intoaccountandrealisticpulsesequencesmustbesimulatedtogetherwiththeresponseoftheelectronics. For this purpose, the ATLAS Readout Electronics Upgrade Simulation framework (AREUS) has been developed based on the Observer design pattern to provide a fast and flexible simulation tool. Energy deposits in the LAr calorimeters from fully simulated HL-LHC collision events are taken as input. Simulated and measured analog pulse shapes proportional to these energies are then combined in discrete time series with proper representation of electronics noise. Analog-to-digital conversion, gain se...

  13. Dead-time free pixel readout architecture for ATLAS front-end IC

    CERN Document Server

    Einsweiler, Kevin F; Kleinfelder, S A; Luo, L; Marchesini, R; Milgrome, O; Pengg, F X

    1999-01-01

    A low power sparse scan readout architecture has been developed for the ATLAS pixel front-end IC. The architecture supports a dual discriminator and extracts the time over threshold (TOT) information along with a 2-D spatial address $9 of the hits associating them with a unique 7-bit beam crossing number. The IC implements level-1 trigger filtering along with event building (grouping together all hits in a beam crossing) in the end of column (EOC) buffer. The $9 events are transmitted over a 40 MHz serial data link with the protocol supporting buffer overflow handling by appending error flags to events. This mixed-mode full custom IC is implemented in 0.8 mu HP process to meet the $9 requirements for the pixel readout in the ATLAS inner detector. The circuits have been tested and the IC provides dead-time-less ambiguity free readout at 40 MHz data rate.

  14. Authenticated communication from quantum readout of PUFs

    NARCIS (Netherlands)

    Skoric, Boris; Pinkse, Pepijn Willemszoon Harry; Mosk, Allard

    2016-01-01

    Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this

  15. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  16. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  17. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    Science.gov (United States)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  18. A review of lyoluminescence dosimetry and a new readout method using liquid scintillation techniques

    International Nuclear Information System (INIS)

    Ziemer, P.L.; Hanig, R.; Fayerman, L.K.

    1978-01-01

    Lyoluminescence dosimetry is useful as a personnel monitor and also as a neutron dosimeter. A review of lyoluminescence is given including readout systems, the machanisms of light emission, radiometric characteristics of lyoluminescence dosimeters, factor affecting response and liquid scintillation lyoluminscence readout

  19. Readout system of TPC/MPD NICA project

    Energy Technology Data Exchange (ETDEWEB)

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.; Cheremukhina, G. A.; Fateev, O. V.; Korotkova, A. M.; Levchanovskiy, F. V.; Lukstins, J.; Movchan, S. A.; Razin, S. V.; Rybakov, A. A.; Vereschagin, S. V., E-mail: vereschagin@jinr.ru; Zanevsky, Yu. V.; Zaporozhets, S. A.; Zruyev, V. N. [Joint Institute for Nuclear Research (Russian Federation)

    2015-12-15

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noise charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.

  20. Control software for the CBM readout chain

    Energy Technology Data Exchange (ETDEWEB)

    Loizeau, Pierre-Alain [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment, which will be built at FAIR, will use free-streaming readout electronics to acquire high-statistics data-sets of physics probes in fixed target heavy-ion collisions. Since no simple signatures suitable for a hardware trigger are available for most of them, reconstruction and selection of the interesting collisions will be done in software, in a computer farm called First Level Event Selector (FLES). The raw data coming from the detectors is pre-processed, pre-calibrated and aggregated in a FPGA based layer called Data Preprocessing Boards (DPB). IPbus will be used to communicate with the DPBs and through them with the elements of the readout chain closer to detectors. A slow control environment based on this software is developed by CBM to configure in an efficient way the DPBs as well as the Front-End Electronics and monitor their performances. This contribution presents the layout planned for the slow control software, its first implementation and corresponding test results.

  1. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  2. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  3. Alanine dosimetry using a spectrophotometric ferric-xylenol orange complex readout

    International Nuclear Information System (INIS)

    Laere, K. van; Buysse, J.; Berkvens, P.

    1989-01-01

    The spectrophotometric dosimetric method using the indirect oxidation of ferrous ions after dissolution of irradiated DL-and L-alanine has been thoroughly investigated with respect to its composition, read-out procedure and dose-response. Optimal concentration of 0.10 N H 2 SO 4 , 0.2 mM xylenol orange and 0.2 mM Fe 2+ were found, giving an absorption maximum at 547 nm. Standardization of chemical processing procedures allows a reproducibility better than 0.5%. The useful dose range has been extended to 0.03-12 kGy by means of slightly different read-out procedure. The quantitative concept of ''indirect yield'', G id , was introduced for this procedure as a measure of the indirect oxidation capacity of the radicals. It was found to be G id,0 (Fe 3+ ) 7.1 ions/100 eV transferred into the alanine. The spectrophotometric readout combines the highly advantageous use of alanine as a dosemeter with the straightforwardness, accuracy and low costs of the chemical procedure. (author)

  4. GOSSIPO-4: Evaluation of a Novel PLL-Based TDC-Technique for the Readout of GridPix-Detectors

    CERN Document Server

    Brezina, C; Zappon, F; Van Beuzekom, M; Campbell, M; Desch, K; Van der Graaf, H; Gromov, V; Kluit, R; Llopart, X; Poikela, T; Zivkovic, V

    2014-01-01

    The direct readout of Micro-Pattern Gaseous Detectors (MPGDs) with bare pixel chips introduces the need for a new generation of readout electronics featuring a high spatial granularity as well as a highly accurate time measurement in each pixel. GOSSIPO-4, fabricated in a 130 nm CMOS technology, is a demonstrator ASIC investigating the potential of a new TDC-concept that is based on a chip-wide 40 MHz clock which is complemented by an additional 640 MHz clock. The latter is created upon demand by local oscillators distributed across the pixel matrix. PLL tuning of the local oscillators allows for automatic compensation of frequency fluctuations caused by process parameter, supply voltage and temperature variations. The developed PLL locks within s and achieves a duty cycle of 50.75% with a time interval error of only 23.4 ps. Mean DNL and INL of the TDC are less than 20% of the time bin size of 1.56 ns under all anticipated conditions.

  5. A readout system for the wavelength-shifting optical module

    Energy Technology Data Exchange (ETDEWEB)

    Foesig, Carl-Christian; Boeser, Sebastian [Johannes Gutenberg-Universitaet, Mainz (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The success of IceCube and the plans for an IceCube-Gen2 stimulate the development of new photo sensors. The approach of the Wavelength-shifting Optical Module is to provide a device which has a low dark noise rate combined with a high detection efficiency. A small PMT is used to detect red shifted photons guided in a coated PMMA tube, originally emitted by a wavelength shifting coating that absorbs photons in the UV Region. We have studied several PMTs for their usability with the IceCube-Gen2 readout system. Relevant parameters are the pulse widths in relation to the bandwidth of the IceCube-Gen2 readout electronics and the dark noise rates.

  6. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Author Affiliations. Wojciech Wierba1 on behalf of the FCAL Collaboration. The Henryk Niewodniczański ...

  7. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  8. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  9. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The data generated in the detector will be transferred to the new Read-Out Drivers (sRODs) located in off-detector for every bunch crossing before any event selection is applied. Furthermore, the sROD will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger. It will implement pipeline memories to cope with the latencies and rates specified in the new trigger schema and in overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The new TileCal read-out architecture will be presented includi...

  10. Transmission-Line Readout with Good Time and Space Resolutions for Planacon MCP-PMTs

    CERN Document Server

    Tang, F; Byrum, K; Drake, G; Ertley, C; Frisch, H; Genat, J-F; May, E

    2008-01-01

    With commercially-available multi-anode microchannel plate photomultiplier tubes (MCP-PMT) and electronics, resolutions significantly better than 10 psec have been achieved in small systems with a few readout channels[1,2]. For large-scale time-of-flight systems used in particle physics, which may cover tens of square meters, a solution must be found with a manageable number of electronics channels and low total power consumption on the readout electronics without degrading the system timing resolution. We present here the design of a transmission-line readout for a Photonis Planacon MCP-PMT that has these characteristics. The tube, which is 5 cm square, is characterized by signal pulse rise times in the order of 200 psec and transit time spreads (TTS) in the order of 25 psec[1, 2]. The model 85011-011 MCP has 1024 anode pads laid out in an array of 32 by 32 on the back of the tube. The proposed readout is implemented on a Rogers 4350B printed circuit board with 32 parallel 50-ohm transmission lines on 1.6 mm...

  11. Development and characterisation of a radiation hard readout chip for the LHCb experiment

    CERN Document Server

    Baumeister, Daniel; Stachel, Johanna

    2003-01-01

    Within this doctoral thesis parts of the radiation hard readout chip Beetle have been developed and characterised, before and after irradiation. The design work included the analogue memory with the corresponding readout amplifier as well as components of the digital control circuitry. An interface compatible with the I2C-standard and the control logic for event readout have been implemented. A scheme has been developed which ensures the robustness of the Beetle chip against Single-Event Upset (SEU). This includes the consistent use of triple-redundant memory devices together with a self-triggered correction in parts of the circuit. The Beetle ASIC is a 128 channel pipelined readout chip for silicon strip detectors. The front-end consists of a charge-sensitive preamplifier and a CR-RC pulse shaper. It features an equivalent noise charge of ENC = 497 e− +48.3 e−/pF·Cin. The analogue memory is a switched capacitor array, which provides a latency of max. 4 µs. The 128 channels are transmitted off chip in 9...

  12. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  13. A low-power CMOS readout IC design for bolometer applications

    Science.gov (United States)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  14. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  15. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  16. FEREAD: Front End Readout software for the Fermilab PAN-DA data acquisition system

    International Nuclear Information System (INIS)

    Dorries, T.; Haire, M.; Moore, C.; Pordes, R.; Votava, M.

    1989-05-01

    The FEREAD system provides a multi-tasking framework for controlling the execution of experiment specific front end readout processes. It supports initializing the front end data acquisition hardware, queueing and processing readout activation signals, cleaning up at the end of data acquisition, and transferring configuration parameters and statistical data between a ''Host'' computer and the readout processes. FEREAD is implemented as part of the PAN-DA software system and is designed to run on any Motorola 68k based processor board. It has been ported to the FASTBUS General Purpose Master (GPM) interface board and the VME MVME133A processor board using the pSOS/Microtec environment. 12 refs., 2 figs

  17. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  18. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  19. The design and PCB layout of the CDF Run 2 calorimetry readout module

    International Nuclear Information System (INIS)

    Theresa Shaw

    1999-01-01

    The CDF Calorimetry Readout module, called the ADMEM, has been designed to contain both the analog circuitry which digitizes the phototube charge pulses, and the digital logic which supports the readout of the results through the CDF Run 2 DAQ system. The ADMEM module is a 9Ux400mm VMEbus module, which is housed in a CDF VMEbus VIPA crate. The ADMEM must support near deadtimeless operation, with data being digitized and stored for possible readout every 132ns or 7.6 Mhz. This paper will discuss the implementation of the analog and digital portions of the ADMEM module, and how the board was laid out to avoid the coupling of digital noise into the analog circuitry

  20. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Multimedia

    Liberali, V; Rizzi, A; Re, V; Minuti, M; Pangaud, P; Barbero, M B; Pacher, L; Kluit, R; Hinchliffe, I; Manghisoni, M; Giubilato, P; Faccio, F; Pernegger, H; Krueger, H; Gensolen, F D; Bilei, G M; Da rocha rolo, M D; Prydderch, M L; Fanucci, L; Grillo, A A; Bellazzini, R; Palomo pinto, F R; Michelis, S; Huegging, F G; Kishishita, T; Marchiori, G; Christian, D C; Kaestli, H C; Meier, B; Andreazza, A; Key-charriere, M; Linssen, L; Dannheim, D; Conti, E; Hemperek, T; Menouni, M; Fougeron, D; Genat, J; Bomben, M; Marzocca, C; Demaria, N; Mazza, G; Van bakel, N A; Palla, F; Grippo, M T; Magazzu, G; Ratti, L; Abbaneo, D; Crescioli, F; Deptuch, G W; Neue, G; De robertis, G; Passeri, D; Placidi, P; Gromov, V; Morsani, F; Paccagnella, A; Christiansen, J; Dho, E; Wermes, N; Rymaszewski, P; Rozanov, A; Wang, A; Lipton, R J; Havranek, M; Neviani, A; Marconi, S; Karagounis, M; Godiot, S; Calderini, G; Seidel, S C; Horisberger, R P; Garcia-sciveres, M A; Stabile, A; Beccherle, R; Bacchetta, N

    The present hybrid pixel detectors in operation at the LHC represent a major achievement. They deployed a new technology on an unprecedented scale and their success firmly established pixel tracking as indispensable for future HEP experiments. However, extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. We propose a new RD collaboration specifically focused on the development of pixel readout Integrated Circuits (IC). The IC challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm$^{2}$), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. We propose a collaboration to design the next generation of hybrid pixel readout chips to enable the ATLAS and CMS Phase 2 pixel upgrades. This does not imply that ATLAS and CMS must use the same exact pixel readout chip, as most of the dev...

  1. On-ground characterization of the Euclid's CCD273-based readout chain

    Science.gov (United States)

    Szafraniec, Magdalena; Azzollini, R.; Cropper, M.; Pottinger, S.; Khalil, A.; Hailey, M.; Hu, D.; Plana, C.; Cutts, A.; Hunt, T.; Kohley, R.; Walton, D.; Theobald, C.; Sharples, R.; Schmoll, J.; Ferrando, P.

    2016-07-01

    Euclid is a medium class European Space Agency mission scheduled for launch in 2020. The goal of the survey is to examine the nature of Dark Matter and Dark Energy in the Universe. One of the cosmological probes used to analyze Euclid's data, the weak lensing technique, measures the distortions of galaxy shapes and this requires very accurate knowledge of the system point spread function (PSF). Therefore, to ensure that the galaxy shape is not affected, the detector chain of the telescope's VISible Instrument (VIS) needs to meet specific performance performance requirements. Each of the 12 VIS readout chains consisting of 3 CCDs, readout electronics (ROE) and a power supply unit (RPSU) will undergo a rigorous on-ground testing to ensure that these requirements are met. This paper reports on the current status of the warm and cold testing of the VIS Engineering Model readout chain. Additionally, an early insight to the commissioning of the Flight Model calibration facility and program is provided.

  2. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    Science.gov (United States)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  3. TID-dependent current measurements of IBL readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Dette, Karola [TU Dortmund, Experimentelle Physik IV (Germany); CERN (Switzerland); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    The ATLAS detector consists of several subsystems with a hybrid pixel detector as the innermost component of the tracking system. The pixel detector has been composed of three layers of silicon sensor assemblies during the first data taking run of the LHC and has been upgraded with a new 4th layer, the so-called Insertable B-Layer (IBL), in summer 2014. Each silicon sensor of the IBL is connected to a Front End readout chip (FE-I4) via bump bonds. During the first year of data taking an increase of the LV current produced by the readout chips was observed. This increase could be traced back to radiation damage inside the silicon. The dependence of the current on the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations and will be presented in this talk.

  4. Dual-readout calorimetry with scintillating crystals

    International Nuclear Information System (INIS)

    Pinci, D

    2009-01-01

    The dual-readout approach, which allows an event-by-event measurement of the electromagnetic shower fraction, was originally demonstrated with the DREAM sampling calorimeter. This approach can be extended to homogeneous detectors like crystals if Cherenkov and scintillation light can be separated. In this paper we present several methods we developed for distinguishing the two components in PWO and BGO based calorimeters and the results obtained.

  5. Analog readout for optical reservoir computers

    OpenAIRE

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Schrauwen, Benjamin; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed a...

  6. Gas proportional detectors with interpolating cathode pad readout for high track multiplicities

    International Nuclear Information System (INIS)

    Yu, Bo.

    1991-12-01

    New techniques for position encoding in very high rate particle and photon detectors will be required in experiments planned for future particle accelerators such as the Superconducting Super Collider and new, high intensity, synchrotron sources. Studies of two interpolating cathode ''pad'' readout systems are described in this thesis. They are well suited for high multiplicity, two dimensional unambiguous position sensitive detection of minimum ionizing particles and heavy ions as well as detection of x-rays at high counting rates. One of the readout systems uses subdivided rows of pads interconnected by resistive strips as the cathode of a multiwire proportional chamber (MWPC). A position resolution of less than 100 μm rms, for 5.4 keV x-rays, and differential non-linearity of 12% have been achieved. Low mass (∼0.6% of a radiation length) detector construction techniques have been developed. The second readout system uses rows of chevron shaped cathode pads to perform geometrical charge division. Position resolution (FWHM) of about 1% of the readout spacing and differential non-linearity of 10% for 5.4 keV x-rays have been achieved. A review of other interpolating methods is included. Low mass cathode construction techniques are described. In conclusion, applications and future developments are discussed. 54 refs

  7. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, Edwin; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and

  8. On the comparison of analog and digital SiPM readout in terms of expected timing performance

    International Nuclear Information System (INIS)

    Gundacker, S.; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.

    2015-01-01

    In time of flight positron emission tomography (TOF-PET) and in particular for the EndoTOFPET-US Project (Frisch, 2013 [1]), and other applications for high energy physics, the multi-digital silicon photomultiplier (MD-SiPM) was recently proposed (Mandai and Charbon, 2012 [2]), in which the time of every single photoelectron is being recorded. If such a photodetector is coupled to a scintillator, the largest and most accurate timing information can be extracted from the cascade of the scintillation photons, and the most probable time of positron emission determined. The readout concept of the MD-SiPM is very different from that of the analog SiPM, where the individual photoelectrons are merely summed up and the output signal fed into the readout electronics. We have developed a comprehensive Monte Carlo (MC) simulation tool that describes the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal. In previous studies we have compared MC simulations with coincidence time resolution (CTR) measurements and found good agreement within less than 10% for crystals of different lengths (from 3 mm to 20 mm) coupled to SiPMs from Hamamatsu. In this work we will use the developed MC tool to directly compare the highest possible time resolution for both the analog and digital readout of SiPMs with different scintillator lengths. The presented studies reveal that the analog readout of SiPMs with microcell signal pile-up and leading edge discrimination can lead to nearly the same time resolution as compared to the maximum likelihood time estimation applied to MD-SiPMs. Consequently there is no real preference for either a digital or analog SiPM for the sake of achieving highest time resolution. However, the best CTR in the analog SiPM is observed for a rather small range of optimal threshold values, whereas the MD-SiPM provides stable CTR after roughly 20 registered photoelectron timestamps in

  9. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  10. Design of a hysteretic SQUID as the readout for a dc SQUID

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper present a design for an optimal hysteretic SQUID readout circuit for a DC SQUID, thus eliminating the need for bulky output transformers or resonance matching circuits. The hysteretic readout system, which is based in part on standard sampling theory, is compared to another similar system and shown to be superior in terms of slew rate and immunity of electromagnetic interference. The circuit will be useful in optimizing the performance of biomagnetic systems

  11. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  12. Development of a new photo-detector readout technique for PET and CT imaging

    CERN Document Server

    Powolny, François; Auffray, Etiennette; Dosanjh, Manjit; Jarron, Pierre; Kaplon, Jan; Lecoq, Paul; Meyer, T C; Trummer, Julia; Velitchko, Sandra

    2007-01-01

    In the framework of the European FP6's BioCare project, we develop a novel photo-detector readout technique to increase sensitivity and timing precision for molecular imaging in Positron Emission Tomography (PET) and Computer Tomography (CT). Within the Project's work packages, the CERN-BioCare group focuses on the development of a PET detection head suitable to process data from both PET and CT operation in one unit. The detector module consists of a LSO matrix coupled to an APD array. The signal is processed by a fast and low noise readout electronics recently developed for experiments at the Large Hadron Collider (LHC) at CERN. The functioning of the individual system components and the performance of the entire readout channel are presented.

  13. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    CERN Document Server

    Mazza, Gianni

    2017-01-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with 13 bit resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  14. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    Energy Technology Data Exchange (ETDEWEB)

    Siwak, N. P. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States); Fan, X. Z.; Ghodssi, R. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Kanakaraju, S.; Richardson, C. J. K. [Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States)

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  15. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  16. A high resolution scintillating fibre (SCIFI) tracking device with CCD readout

    International Nuclear Information System (INIS)

    Atkinson, M.N.; Crennell, D.J.; Fisher, C.M.; Hughes, P.T.; Kirkby, J.; Fent, J.; Freund, P.; Osthoff, A.; Pretzl, K.

    1987-06-01

    The authors present initial test beam measurements of a high resolution scintillating fibre detector with charge coupled device readout. The analysis procedure is discussed and the performance of the detector and its readout assembly is evaluated. A detected photon density is found along minimum ionising tracks of 2.0 mm -1 , with a straight-line RMS residual of 19.3 +- 2.9 μm, giving rise to a track impact parameter precision of 8.8 +- 2.0 μm. The two-track resolution is found to be 52 μm. (author)

  17. Updates on the most recent results in dual readout calorimetry

    International Nuclear Information System (INIS)

    Cascella, M.

    2011-01-01

    The Dual REAdout Method (DREAM) consists in comparing the scintillation and Cherenkov light generated in the shower development process. By comparing the two, the electromagnetic fraction of the hadronic shower can be measured event-by-event, to eliminate the effects of fluctuations in this fraction. In this paper the DREAM fiber calorimeter and its successor, the newDREAM prototype that is currently under construction, will be described. We will also report on the efforts to study the Cherenkov component of the output of high-Z crystals and to realize a dual-readout electromagnetic section that can achieve outstanding electromagnetic resolution whit out compromising the hadronic resolution.

  18. DRM2: the readout board for the ALICE TOF upgrade

    CERN Document Server

    Falchieri, Davide

    2018-01-01

    For the upgrade of the ALICE TOF electronics, we have designed a new version of the readout board, named DRM2, a card able to read the data coming from the TDC Readout Module boards via VME. A Microsemi Igloo2 FPGA acts as the VME master and interfaces the GBTx link for transmitting data and receiving triggers and a low-jitter clock. Compared to the old board, the DRM2 is able to cope with faster trigger rates and provides a larger data bandwidth towards the DAQ. The results of the measurements on the received clock jitter and data transmission performances in a full crate are given.

  19. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  20. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  1. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  2. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.

    1994-01-01

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10 -3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  3. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  4. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  5. Combined readout of a triple-GEM detector

    Science.gov (United States)

    Antochi, V. C.; Baracchini, E.; Cavoto, G.; Di Marco, E.; Marafini, M.; Mazzitelli, G.; Pinci, D.; Renga, F.; Tomassini, S.; Voena, C.

    2018-05-01

    Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of μm were measured on the GEM plane along with an energy resolution of 20%÷30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 μm. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.

  6. Direct reading dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1985-01-01

    This invention is a direct reading dosimeter which is light, small enough to be worn on a person, and measures both dose rates and total dose. It is based on a semiconductor sensor. The gate threshold voltage change rather than absolute value is measured and displayed as a direct reading of the dose rate. This is effected by continuously switching the gate of an MOS transistor from positive to negative bias. The output can directly drive a digital readout or trigger an audible alarm. The sensor device can be a MOSFET, bipolar transistor, or MOSFET capacitor which has its electrical characteristics change due to the trapped charge in the insulating layer of the device

  7. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  8. Characteristics of a delay-line readout in a cylindrical drift chamber system

    International Nuclear Information System (INIS)

    Barber, R.; Ahmed, M.W.; Dzemidzic, M.; Empl, A.; Hungerford, E.V.; Lan, K.J.; Wilson, J.; Cooper, M.D.; Gagliardi, C.A.; Haim, D.; Kim, G.J.; Koetke, D.D.; Tribble, R.E.; Van Ausdeln, L.A.

    2002-01-01

    This paper reports on the design, construction, and operational characteristics of a delay-line readout implemented on the cathode foils of a cylindrical drift chamber system. The readout was used to determine the position of an event along the length of the 1.74 m drift wires in the MEGA detectors used at the Los Alamos Meson Physics Facility. The performance of the system is interpreted by comparison to a PSPICE simulation, and to simple analytical models

  9. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    International Nuclear Information System (INIS)

    Ramfos, Ioannis; Birbas, Alexios; Blionas, Spyridon

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges. (paper)

  10. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  11. Time over threshold readout method of SiPM based small animal PET detector

    International Nuclear Information System (INIS)

    Valastyan, I.; Gal, J.; Hegyesi, G.; Kalinka, G.; Nagy, F.; Kiraly, B.; Imrek, J.; Molnar, J.

    2012-01-01

    Complete text of publication follows. The aim of the work was to design a readout concept for silicon photomultiplier (SiPM) sensor array used in small animal PET scanner. The detector module consist of LYSO 35x35 scintillation crystals, 324 SiPM sensors (arranged in 2x2 blocks and those quads in a 9x9 configuration) and FPGA based readout electronics. The dimensions of the SiPM matrix are area: 48x48 mm 2 and the size of one SiPM sensor is 1.95x2.2 mm 2 . Due to the high dark current of the SiPM, conventional Anger based readout method does not provide sufficient crystal position maps. Digitizing the 324 SiPM channels is a straightforward way to obtain proper crystal position maps. However handling hundreds of analogue input channels and the required DSP resources cause large racks of data acquisition electronics. Therefore coding of the readout channels is required. Proposed readout method: The coding of the 324 SiPMs consists two steps: Step 1) Reduction of the channels from 324 to 36: Row column readout, SiPMs are connected to each other in column by column and row-by row, thus the required channels are 36. The dark current of 18 connected SiPMs is small in off for identifying pulses coming from scintillating events. Step 2) Reduction of the 18 rows and columns to 4 channels: Comparators were connected to each rows and columns, and the level was set above the level of dark noise. Therefore only few comparators are active when scintillation light enters in the tile. The output of the comparator rows and columns are divided to two parts using resistor chains. Then the outputs of the resistor chains are digitized by a 4 channel ADC. However instead of the Anger method, time over threshold (ToT) was used. Figure 1 shows the readout concept of the SiPM matrix. In order to validate the new method and optimize the front-end electronics of the detector, the analogue signals were digitized before the comparators using a CAEN DT5740 32 channel digitizer, then the

  12. Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  13. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    Science.gov (United States)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  14. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Åkerstedt, Henrik; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  15. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Multimedia

    Schwemmer, R; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb readout uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain t...

  16. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  17. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    Science.gov (United States)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  18. Optimized readout configuration for PIXE spectrometers based on Silicon Drift Detectors: Architecture and performance

    International Nuclear Information System (INIS)

    Alberti, R.; Grassi, N.; Guazzoni, C.; Klatka, T.

    2009-01-01

    An optimized readout configuration based on a charge preamplifier with pulsed-reset has been designed for Silicon Drift Detectors (SDDs) to be used in Particle Induced X-ray Emission (PIXE) measurements. The customized readout electronics is able to manage the large pulses originated by the protons backscattered from the target material that would otherwise cause significant degradation of X-ray spectra and marked increase in dead time. In this way, the excellent performance of SDDs can be exploited in high-quality proton-induced spectroscopy of low- and medium-energy X-rays. This paper describes the designed readout architecture and the performance characterization carried out in a PIXE setup with MeV proton beams.

  19. A four gain readout integrated circuit: FRIC 96 1

    International Nuclear Information System (INIS)

    Bussat, J.M.; Bohner, G.; Lecoq, J.; Colas, J.; Rossetto, O.; Dzahini, D.; Pouxe, J.

    1996-01-01

    The main difficulty for the readout electronics of the ATLAS LARG calorimeter is to handle the 16 bit dynamic range without spoiling the signal to noise ratio. A possible way to split the input. (authors)

  20. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  1. Progress on the development of a detector mounted analog and digital readout system for the ATLAS TRT

    CERN Document Server

    Baxter, C; Dressnandt, N; Gay, C; Lundberg, B; Munar, A; Mayers, G; Newcomer, M; Van Berg, R; Williams, H H

    2004-01-01

    The 430,000 element ATLAS Transition Radiation straw tube Tracker (TRT) is divided into a central barrel tracker consisting of 104,000 axially mounted straws and two radially arranged end caps on either side of the barrel with 160,000 straws each. To achieve a track position resolution of 140 mu m, the front end electronics must operate at a low (2fC) threshold with a time marking capability of ~1ns. Two ASICs, the ASDBLR and DTMROC provide the complete pipelined readout chain. Custom designed FBGA packages for the ASICs provide a small enough outline to be detector mounted and the extensive use of low level differential signals make mounting the analog packages on printed circuit boards directly opposite the 40 MHz digital chips feasible. The readout electronics for the barrel occupies a potentially important part of the active tracker volume and an aggressive effort has been made to make it as compact as possible. Utilizing a single board for both analog and digital ASICS a 0.1 cm /sup 3/ per channel volume...

  2. A TDC integrated circuit for drift chamber readout

    International Nuclear Information System (INIS)

    Passaseo, M.; Petrolo, E.; Veneziano, S.

    1995-01-01

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 μm CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.)

  3. A TDC integrated circuit for drift chamber readout

    Energy Technology Data Exchange (ETDEWEB)

    Passaseo, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Petrolo, E. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Veneziano, S. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)

    1995-12-11

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 {mu}m CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.).

  4. Radiopurity assessment of the energy readout for the NEXT double beta decay experiment

    Science.gov (United States)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2017-08-01

    The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr&aposaneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4×10-4 counts keV-1 kg-1 y-1, satisfying the sensitivity requirements of the NEXT experiment.

  5. BiCMOS amplifier-discriminator integrated circuit for gas-filled detector readout

    International Nuclear Information System (INIS)

    Herve, C.; Dzahini, D.; Le Caer, T.; Richer, J.-P.; Torki, K.

    2005-01-01

    The paper presents a 16-channel amplifier-discriminator designed in BiCMOS technology. It will be used for the binary parallel readout of gas-filled detectors being designed at the European Synchrotron Radiation Facility. The circuit (named AMS211) has been manufactured. The measured transimpedance gain (400 KΩ), bandwidth (25 MHz) and noise (1570 e - +95 e - /pF ENC) well match the simulated results. The discriminator thresholds are individually controlled by built-in Digital to Analogue Converter. The experience gained with a first prototype of readout electronics indicates that the AMS211 should meet our requirements

  6. BiCMOS amplifier-discriminator integrated circuit for gas-filled detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Herve, C. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)]. E-mail: herve@esrf.fr; Dzahini, D. [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Le Caer, T. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Richer, J.-P. [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Torki, K. [Laboratoire TIMA, Grenoble (France)

    2005-03-21

    The paper presents a 16-channel amplifier-discriminator designed in BiCMOS technology. It will be used for the binary parallel readout of gas-filled detectors being designed at the European Synchrotron Radiation Facility. The circuit (named AMS211) has been manufactured. The measured transimpedance gain (400 K{omega}), bandwidth (25 MHz) and noise (1570 e{sup -}+95 e{sup -}/pF ENC) well match the simulated results. The discriminator thresholds are individually controlled by built-in Digital to Analogue Converter. The experience gained with a first prototype of readout electronics indicates that the AMS211 should meet our requirements.

  7. Development of a hadron blind detector using a finely segmented pad readout

    International Nuclear Information System (INIS)

    Kanno, Koki; Aoki, Kazuya; Aramaki, Yoki; En'yo, Hideto; Kawama, Daisuke; Komatsu, Yusuke; Masumoto, Shinichi; Nakai, Wataru; Obara, Yuki; Ozawa, Kyoichiro; Sekimoto, Michiko; Shibukawa, Takuya; Takahashi, Tomonori; Watanabe, Yosuke; Yokkaichi, Satoshi

    2016-01-01

    We constructed a hadron blind detector (HBD) using a finely segmented pad readout. The finely segmented pad readout enabled us to adopt an advanced particle identification method which applies a threshold to the number of pad hits in addition to the total amount of collected charge. The responses of the detector to electrons and pions were evaluated using a negatively charged secondary beam at 1.0 GeV/c containing 20% electrons at the J-PARC K1.1BR beam line. We observed 7.3 photoelectrons per incident electron. Using the advanced particle identification method, an electron detection efficiency of 83% was achieved with a pion rejection factor of 120. The method improved the pion rejection by approximately a factor of five, compared to the one which just applies a threshold to the amount of collected charge. The newly introduced finely segmented pad readout was found to be effective in rejecting pions.

  8. The Front-End Concentrator card for the RD51 Scalable Readout System

    International Nuclear Information System (INIS)

    Toledo, J; Esteve, R; Monzó, J M; Tarazona, A; Muller, H; Martoiu, S

    2011-01-01

    Conventional readout systems exist in many variants since the usual approach is to build readout electronics for one given type of detector. The Scalable Readout System (SRS) developed within the RD51 collaboration relaxes this situation considerably by providing a choice of frontends which are connected over a customizable interface to a common SRS DAQ architecture. This allows sharing development and production costs among a large base of users as well as support from a wide base of developers. The Front-end Concentrator card (FEC), a RD51 common project between CERN and the NEXT Collaboration, is a reconfigurable interface between the SRS online system and a wide range of frontends. This is accomplished by using application-specific adapter cards between the FEC and the frontends. The ensemble (FEC and adapter card are edge mounted) forms a 6U × 220 mm Eurocard combo that fits on a 19'' subchassis. Adapter cards exist already for the first applications and more are in development.

  9. Development of a hadron blind detector using a finely segmented pad readout

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Koki, E-mail: kkanno@post.kek.jp [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoki, Kazuya [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Aramaki, Yoki; En' yo, Hideto; Kawama, Daisuke [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Komatsu, Yusuke; Masumoto, Shinichi [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakai, Wataru [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Obara, Yuki [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ozawa, Kyoichiro; Sekimoto, Michiko [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Shibukawa, Takuya [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Takahashi, Tomonori [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Watanabe, Yosuke [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yokkaichi, Satoshi [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-05-21

    We constructed a hadron blind detector (HBD) using a finely segmented pad readout. The finely segmented pad readout enabled us to adopt an advanced particle identification method which applies a threshold to the number of pad hits in addition to the total amount of collected charge. The responses of the detector to electrons and pions were evaluated using a negatively charged secondary beam at 1.0 GeV/c containing 20% electrons at the J-PARC K1.1BR beam line. We observed 7.3 photoelectrons per incident electron. Using the advanced particle identification method, an electron detection efficiency of 83% was achieved with a pion rejection factor of 120. The method improved the pion rejection by approximately a factor of five, compared to the one which just applies a threshold to the amount of collected charge. The newly introduced finely segmented pad readout was found to be effective in rejecting pions.

  10. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00567140; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events even at rather low transverse energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of 1 MHz are planned, combined with longer latencies up to 60 micro-seconds in order to read out the necessary data from all detector channels. Under these conditions, the current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons a replacement of the LAr front-end and back-end readout system is foreseen for all 182,500 readout channels, with the exception of t...

  11. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  12. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  13. An asynchronous data-driven readout prototype for CEPC vertex detector

    Science.gov (United States)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  14. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    International Nuclear Information System (INIS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P.L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C.A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.

    2015-01-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented

  15. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: yangping0710@126.com [Central China Normal University, Wuhan (China); Aglieri, G.; Cavicchioli, C. [CERN, 1210 Geneva 23 (Switzerland); Chalmet, P.L. [MIND, Archamps (France); Chanlek, N. [Suranaree University of Technology, Nakhon Ratchasima (Thailand); Collu, A. [University of Cagliari, Cagliari (Italy); INFN (Italy); Gao, C. [Central China Normal University, Wuhan (China); Hillemanns, H.; Junique, A. [CERN, 1210 Geneva 23 (Switzerland); Kofarago, M. [CERN, 1210 Geneva 23 (Switzerland); University of Utrecht, Utrecht (Netherlands); Keil, M.; Kugathasan, T. [CERN, 1210 Geneva 23 (Switzerland); Kim, D. [Dongguk and Yonsei University, Seoul (Korea, Republic of); Kim, J. [Pusan National University, Busan (Korea, Republic of); Lattuca, A. [University of Torino, Torino (Italy); INFN (Italy); Marin Tobon, C.A. [CERN, 1210 Geneva 23 (Switzerland); Marras, D. [University of Cagliari, Cagliari (Italy); INFN (Italy); Mager, M.; Martinengo, P. [CERN, 1210 Geneva 23 (Switzerland); Mazza, G. [University of Torino, Torino (Italy); INFN (Italy); and others

    2015-06-11

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  16. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    Science.gov (United States)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  17. Performance of MSGC with analog pipeline readout

    International Nuclear Information System (INIS)

    Gomez, F.; Adeva, B.; Gracia, G.; Lopez, M.A.; Nunez, T.; Pazos, A.; Plo, M.; Rodriguez, A.; Santamarina, C.; Vazquez, P.

    1997-01-01

    We analyse some of the performance characteristics of a chromium MSGC operated with Ar-DME 50%-50% in a test beam at CERN. Excellent signal-to-noise ratio and efficiency has been achieved with this gas mixture using cathode analog pipeline readout. We also determine optimal parameters for the sampling algorithm in order to work in a random trigger experiment (fixed target). (orig.)

  18. Developing infrared array controller with software real time operating system

    Science.gov (United States)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  19. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  20. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS

    International Nuclear Information System (INIS)

    DE GERONIMO, G.; O CONNOR, P.; KANDASAMY, A.; GROSHOLZ, J.

    2002-01-01

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 (micro)m CMOS and tested. Design concepts and experimental results are discussed

  1. Contributions to noise in the data readout for Trigger Tracker in the LHCb Experiment

    CERN Document Server

    Bieler, Ueli

    This thesis reports the analysis of contributions to noise in the data readout for Trigger Tracker in the LHCb experiment. Measurements have shown that some specific data channels have more noise than the others. This additional contributions to noise cannot be explained by basic electronic noise principles of the detector but by noise sources in the readout chain. The focus is on the channels near the header. Because of a crosstalk effect in the readout electronics the pseudo- digital header affects the close-by analog data channels. Therefore the correlation between the header and the data channels is studied precisely by self-made analysis tools in order to develop an algorithm that cancels the crosstalk contribution to noise. Thanks the algorithm the noise can be reduced efficiently.

  2. The universal read-out controller for CBM at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Sebastian; Abel, Norbert; Gebelein, Jano [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Collaboration: CBM-Collaboration

    2011-07-01

    Since 2007 we design and develop the firmware for the read-out controller (ROC) for data acquisition of the CBM detector at FAIR. While our first implementation solely focused on the nXYTER chip, today we are also designing and implementing readout logic for the GET4 chip which is supposed to be part of the time of flight (TOF) detector. Furthermore, we fully support both Ethernet and Optical transport as two transparent solutions. This addresses the different requirements of a laboratory setup and the final detector setup respectively. The usage of a strict modularization of the Read Out Controller firmware enables us to provide an Universal ROC where front-end specific logic and transport logic can be combined in a very flexible way. Fault tolerance techniques are only required for some of those modules and hence are only implemented there.

  3. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  4. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  5. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  6. Dead Time in the LAr Calorimeter Front-End Readout

    CERN Document Server

    Gingrich, D M

    2002-01-01

    We present readout time, latency, buffering, and dead-time calculations for the switched capacitor array controllers of the LAr calorimeter. The dead time is compared with algorithms for the dead-time generation in the level-1 central trigger processor.

  7. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    International Nuclear Information System (INIS)

    OCONNOR, P.; GRATCHEV, V.; KANDASAMY, A.; POLYCHRONAKOS, V.; TCHERNIATINE, V.; PARSONS, J.; SIPPACH, W.

    1999-01-01

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm 2 /s

  8. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    International Nuclear Information System (INIS)

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-01-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air

  9. Systematic Comparison of the MINOS Near and Far Detector Readout Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Anatael [Univ. of Oxford (United Kingdom). Queen' s College

    2005-06-22

    The MINOS experiment is a neutrino oscillation baseline experiment intending to use high resolution L/E neutrinos to measure the atmospheric neutrino oscillations parameters to unprecedented precision. Two detectors have been built to realize the measurements, a Near detector, located about 1km downstream from the beam target at the Fermi Laboratory, and a Far detector, located at 736km, at the Soudan Laboratory. The technique relies on the Near detector to measure the un-oscillated neutrino spectrum, while the Far detector measures the neutrino spectrum once oscillated. The comparison between the two measurements is expected to allow MINOS to measure Δm2 beyond 10% precision level. The Near and Far detectors have been built similarly to minimize possible systematic effects. Both detectors have been endowed with different readout systems, as the beam event rates are very different. The MINOS calibration detector (CalDet), installed at CERN, was instrumented with both readout systems such that they can simultaneously measure and characterize the energy deposition (response and event topology) of incident known particle from test-beams. This thesis presents the investigations to quantify the impact of the performance of both readout systems on the MINOS results using the measurements obtained with CalDet. The relative comparison of the responses of both readout systems have been measured to be consistent with being identical within a systematic uncertainty of 0.6%. The event topologies have been found to be negligibly affected. In addition, the performance of the detector simulations have been thoroughly investigated and validated to be in agreement with data within similar level of uncertainties.

  10. A high efficiency readout architecture for a large matrix of pixels.

    Science.gov (United States)

    Gabrielli, A.; Giorgi, F.; Villa, M.

    2010-07-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  11. A high efficiency readout architecture for a large matrix of pixels

    International Nuclear Information System (INIS)

    Gabrielli, A; Giorgi, F; Villa, M

    2010-01-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm 2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  12. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    Science.gov (United States)

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  13. A Full Slice Test Version of a Tentative Upgraded Readout System for TileCal

    CERN Document Server

    Muschter, S; The ATLAS collaboration; Bohm, C; Eriksson, D; Kavianipour, H; Oreglia, M; Tang, F

    2011-01-01

    The upgrade plans on the ATLAS hadronic calorimeter (TileCal) include the full readout of all data to the counting room. In order to study functional requirements of the future upgraded TileCal readout system we have assembled a minimal TDAQ slice. The aim is to implement a tentative readout chain for TileCal, starting with a newly developed 3-in-1 FE-board from University of Chicago and ending with the storage of triggered data on a PC. Later we will use PMT pulses, amplified and shaped by the 3-in-1 board, as a data source. However, for simplicity we start by using well defined calibration pulses also generated by the 3-in-1 board. The pulses are sampled by a 12 bit ADC, which is connected to an ML605 evaluation board from XILINX. These boards emulate the new on-detector electronics. The ML605 communicates via two 5Gb/s optical links with a Virtex-6 FPGA development board from HighTech Global which emulates the off-detector electronics. The off-detector board is situated in a PC and uses PCIe for readout an...

  14. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Document Server

    Schwemmer, Rainer; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb read-out uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment’s raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out cha...

  15. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  16. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  17. Experimental studies on using silicon photodiode as read-out component of CsI(Tl) crystal

    International Nuclear Information System (INIS)

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Experimental studies on using silicon photodiode as the read-out component of CsI(Tl) crystal are reported. The read-out properties of two different types of silicon photodiode produced by Hamamatsu were measured, including relations between energy resolution and bias, shaping time, sensitive area of photodiode and the dimension of the crystal

  18. High-speed crystal detection and characterization using a fast-readout detector.

    Science.gov (United States)

    Aishima, Jun; Owen, Robin L; Axford, Danny; Shepherd, Emma; Winter, Graeme; Levik, Karl; Gibbons, Paul; Ashton, Alun; Evans, Gwyndaf

    2010-09-01

    A novel raster-scanning method combining continuous sample translation with the fast readout of a Pilatus P6M detector has been developed on microfocus beamline I24 at Diamond Light Source. This fast grid-scan tool allows the rapid evaluation of large sample volumes without the need to increase the beam size at the sample through changes in beamline hardware. A slow version is available for slow-readout detectors. Examples of grid-scan use in centring optically invisible samples and in detecting and characterizing numerous microcrystals on a mesh-like holder illustrate the most common applications of the grid scan now in routine use on I24.

  19. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  20. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  1. An infrared view of high Tc superconductors

    International Nuclear Information System (INIS)

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  2. Resonant detectors and focal plane arrays for infrared detection

    Science.gov (United States)

    Choi, K. K.; Allen, S. C.; Sun, J. G.; DeCuir, E. A.

    2017-08-01

    We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2-0.5 × 1018 cm-3 and a thin active layer thickness of 0.6-1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.

  3. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  4. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  5. A TPC-like readout method for high precision muon-tracking using GEM-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)

    2016-07-01

    Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.

  6. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    International Nuclear Information System (INIS)

    Patterson, Ryan; Backhouse, Christopher; Bays, Kirk; Lozier, Joseph; Pershey, Daniel

    2016-01-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award's proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA's recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  7. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  8. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  9. Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout.

    Directory of Open Access Journals (Sweden)

    Marta Vidorreta

    Full Text Available Arterial Spin Labeled (ASL perfusion MRI enables non-invasive, quantitative measurements of tissue perfusion, and has a broad range of applications including brain functional imaging. However, ASL suffers from low signal-to-noise ratio (SNR, limiting image resolution. Acquisitions using 3D readouts are optimal for background-suppression of static signals, but can be SAR intensive and typically suffer from through-plane blurring. In this study, we investigated the use of accelerated 3D readouts to obtain whole-brain, high-SNR ASL perfusion maps and reduce SAR deposition. Parallel imaging was implemented along the partition-encoding direction in a pseudo-continuous ASL sequence with background-suppression and 3D RARE Stack-Of-Spirals readout, and its performance was evaluated in three small cohorts. First, both non-accelerated and two-fold accelerated single-shot versions of the sequence were evaluated in healthy volunteers during a motor-photic task, and the performance was compared in terms of temporal SNR, GM-WM contrast, and statistical significance of the detected activation. Secondly, single-shot 1D-accelerated imaging was compared to a two-shot accelerated version to assess benefits of SNR and spatial resolution for applications in which temporal resolution is not paramount. Third, the efficacy of this approach in clinical populations was assessed by applying the single-shot 1D-accelerated version to a larger cohort of elderly volunteers. Accelerated data demonstrated the ability to detect functional activation at the subject level, including cerebellar activity, without loss in the perfusion signal temporal stability and the statistical power of the activations. The use of acceleration also resulted in increased GM-WM contrast, likely due to reduced through-plane partial volume effects, that were further attenuated with the use of two-shot readouts. In a clinical cohort, image quality remained excellent, and expected effects of age and sex

  10. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00069444; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular dete...

  11. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  12. The GOTTHARD charge integrating readout detector: design and characterization

    International Nuclear Information System (INIS)

    Mozzanica, A; Bergamaschi, A; Dinapoli, R; Greiffenberg, D; Henrich, B; Johnson, I; Valeria, R; Schmitt, B; Xintian, S; Graafsma, H; Lohmann, M

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  13. Test of a PCIe based readout option for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Simon; Lange, Soeren; Kuehn, Wolfgang [Justus-Liebig-Universitaet Giessen (Germany); Engel, Heiko [Goethe-Universitaet Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The future PANDA detector will achieve an event rate at about 20 MHz resulting in a high data load of up to 200 GB/s. The data acquisition system will be based on a triggerless readout concept, leading to the requirement of large data bandwidths. The data reduction will be guaranteed on the first level by an array of FPGAs running a full on-line reconstruction followed by the second level of a CPU/GPU cluster to achieve a reduction factor more than 1000. The C-RORC (Common Readout Receiver Card), originally developed for ALICE, provides on the one hand 12 optical links with 6.25 Gbps each, and on the other hand a PCIe interface with up to 40 Gbps. The receiver card has been installed and tested, and the firmware has been adjusted for the Panda data format. Test results are presented.

  14. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  15. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  16. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Collaboration: ALPS-II collaboration

    2013-09-15

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 {mu}Hz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  17. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, Jan; Hamburg Univ.; Horns, Dieter

    2013-09-01

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 μHz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  18. Development of radiation hard readout electronics for LHCb

    CERN Document Server

    Sexauer, Edgar; Lindenstruth, Volker

    2001-01-01

    The experiment LHCb is under development at CERN and aims to measure CP-violation in the B-Meson system at very high precision. The experiment makes use of a vertex detector that is equipped with silicon microstrip detectors. A chip suitable for the readout of this detector has been developed in a working group at the ASIC-laboratory Heidelberg. This readout chip 'Beetle-1.0' contains 128 analog input stages of a charge sensitive preamplifier, a pulse shaper and a buffer. The analog signal is fed into a comparator, from which a fast trigger signal can be derived. The following pipeline, realized as an array of gate capacitances, can be used to either store the analog output of the input amplifiers or to store the digital comparator output. External trigger signals mark events that have to be read out and the according pipeline location is stored in a derandomizing buffer. Pending events are read out from the pipeline via a charge-sensitive, resetable amplifier and an analog multiplexer, which serializes the s...

  19. Pixel detector readout electronics with two-level discriminator scheme

    International Nuclear Information System (INIS)

    Pengg, F.

    1998-01-01

    In preparation for a silicon pixel detector with more than 3,000 readout channels per chip for operation at the future large hadron collider (LHC) at CERN the analog front end of the readout electronics has been designed and measured on several test-arrays with 16 by 4 cells. They are implemented in the HP 0.8 microm process but compatible with the design rules of the radiation hard Honeywell 0.8 microm bulk process. Each cell contains bump bonding pad, preamplifier, discriminator and control logic for masking and testing within a layout area of only 50 microm by 140 microm. A new two-level discriminator scheme has been implemented to cope with the problems of time-walk and interpixel cross-coupling. The measured gain of the preamplifier is 900 mV for a minimum ionizing particle (MIP, about 24,000 e - for a 300 microm thick Si-detector) with a return to baseline within 750 ns for a 1 MIP input signal. The full readout chain (without detector) shows an equivalent noise charge to 60e - r.m.s. The time-walk, a function of the separation between the two threshold levels, is measured to be 22 ns at a separation of 1,500 e - , which is adequate for the 40 MHz beam-crossing frequency at the LHC. The interpixel cross-coupling, measured with a 40fF coupling capacitance, is less than 3%. A single cell consumes 35 microW at 3.5 V supply voltage

  20. The prototype readout chain for CBM using the AFCK board and its software components

    Science.gov (United States)

    Loizeau, Pierre-Alain; Emscherman, David; Lehnert, Jörg; Müller, Walter F. J.; Yang, Junfeng

    2015-09-01

    This paper presents a prototype for the readout chain of the Compressed Baryonic Matter (CBM) experiment using the AFCK FPGA board as Data Processing Board (DPB). The components of the readout chain are described, followed by some test setups, all based on different flavors of AFCK-DPB. Details about the functional blocks in the different versions of the DPB firmware are given, followed by a description of the corresponding software elements.

  1. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  2. Flexible geometry hodoscope using proportional chamber cathode read-out

    International Nuclear Information System (INIS)

    Aubret, C.; Bellefon, A. de; Benoit, P.; Brunet, J.M.; Tristram, G.

    1978-01-01

    The construction of a cathode read-out proportional chamber, used as a low mass hodoscope is described. Results on efficiency, time resolution and space resolution are shown. The associative logic, which permits the use of the chamber as a coplanarity chamber is briefly presented

  3. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    Science.gov (United States)

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-03-29

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.

  4. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2010-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors, total about 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur ~2017, the current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr collaboration is developing: front-end analog and mixed-signal ASIC design, radiation resistance optical-links in SOS, high-speed back-end processing units based on FPGA architectures and power supply d...

  5. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2009-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur around 2016. The current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The frontend readout will send out data continuously at each bunch crossing through highspeed radiation resistant optical links. The data (100Gbps each board) will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a much higher granularity than what currently implemented. We present here an overview of the R&D activities and architectural s...

  6. Digital column readout architecture for the ATLAS pixel 025 mum front end IC

    CERN Document Server

    Mandelli, E; Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Marchesini, R; Meddeler, G; Peric, I

    2002-01-01

    A fast low noise, limited power, radiation-hard front-end chip was developed for reading out the Atlas Pixel Silicon Detector. As in the past prototypes, every chip is used to digitize and read out charge and time information from hits on each one of its 2880 inputs. The basic column readout architecture idea was adopted and modified to allow a safe transition to quarter micron technology. Each pixel cell, organized in a 160 multiplied by 18 matrix, can be independently enabled and configured in order to optimize the analog signal response and to prevent defective pixels from saturating the readout. The digital readout organizes hit data coming from each column, with respect to time, and output them on a low-level serial interface. A considerable effort was made to design state machines free of undefined states, where single-point defects and charge deposited by heavy ions in the silicon could have led to unpredicted forbidden states. 7 Refs.

  7. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    Science.gov (United States)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  8. The 160 TES bolometer read-out using FDM for SAFARI

    Science.gov (United States)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  9. XA readout chip characteristics and CdZnTe spectral measurements

    International Nuclear Information System (INIS)

    Barbier, L.M.; Birsa, F.; Odom, J.

    1999-01-01

    The authors report on the performance of a CdZnTe (CZT) array readout by an XA (X-ray imaging chip produced at the AMS foundry) application specific readout chip (ASIC). The array was designed and fabricated at NASA/Goddard Space Flight Center (GSFC) as a prototype for the Burst Arc-Second Imaging and Spectroscopy gamma-ray instrument. The XA ASIC was obtained from Integrated Detector and Electronics (IDE), in Norway. Performance characteristics and spectral data for 241 Am are presented both at room temperature and at -20 C. The measured noise (σ) was 2.5 keV at 60 keV at room temperature. This paper represents a progress report on work with the XA ASIC and CZT detectors. Work is continuing and in particular, larger arrays are planned for future NASA missions

  10. A double photomultiplier Compton camera and its readout system for mice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Cristiano Lino [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Padova, Via Marzolo 8, Padova 35131 (Italy); Atroshchenko, Kostiantyn [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Baldazzi, Giuseppe [Physics Department, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy and INFN Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Bello, Michele [INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Uzunov, Nikolay [Department of Natural Sciences, Shumen University, 115 Universitetska str., Shumen 9712, Bulgaria and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Di Domenico, Giovanni [Physics Department, University of Ferrara, Via Saragat 1, Ferrara 44122 (Italy) and INFN Ferrara, Via Saragat 1, Ferrara 44122 (Italy)

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  11. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    International Nuclear Information System (INIS)

    Alvarenga, T.A.; Anjos, J.C.; Azzi, G.; Cerqueira, A.S.; Chimenti, P.; Costa, J.A.; Dornelas, T.I.; Farias, P.C.M.A.; Guedes, G.P.; Gonzalez, L.F.G.; Kemp, E.; Lima, H.P.; Machado, R.; Nóbrega, R.A.; Pepe, I.M.; Ribeiro, D.B.S.; Simas Filho, E.F.; Valdiviesso, G.A.; Wagner, S.

    2016-01-01

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  12. Design and characterization of the readout ASIC for the BESIII CGEM detector

    CERN Document Server

    Cossio, Fabio; Bugalho, Ricardo; Chai, Junying; Cheng, Weishuai; Da Rocha Rolo, Manuel Dionisio; Di Francesco, Agostino; Greco, Michela; Leng, Chongyang; Li, Huaishen; Maggiora, Marco; Marcello, Simonetta; Mignone, Marco; Rivetti, Angelo; Varela, Joao; Wheadon, Richard

    2018-01-01

    TIGER (Turin Integrated Gem Electronics for Readout) is a mixed-mode ASIC for the readout of signals from CGEM (Cylindrical Gas Electron Multiplier) detector in the upgraded inner tracker of the BESIII experiment, carried out at BEPCII in Beijing. The ASIC includes 64 channels, each of which features a dual-branch architecture optimized for timing and energy measurement. The input signal time-of-arrival and charge measurement is provided by low-power TDCs, based on analogue interpolation techniques, and Wilkinson ADCs, with a fully-digital output. The silicon results of TIGER first prototype are presented showing its full functionality.

  13. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    Morton, E.J.; Antonuk, L.E.; Berry, J.E.; Huang, W.; Mody, P.; Yorkston, J.; Longo, M.J.

    1993-01-01

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  14. A time projection chamber with microstrip read-out

    International Nuclear Information System (INIS)

    Bootsma, T.M.V.; Van den Brink, A.; De Haas, A.P.; Kamermans, R.; Kuijer, P.G.; De Laat, C.T.A.M.; Van Nieuwenhuizen, G.J.; Ostendorf, R.; Snellings, R.J.M.; Twenhoefel, C.J.W.; Peghaire, A.

    1994-01-01

    The design and testing of a novel detector for heavy-ion physics in the intermediate-energy regime is described. This detector consists of a large drift chamber with microstrip read-out in combination with thick plastic scintillators. With this system particle identification and energy determination with high spatial resolution and multiple hit capacity is achieved. ((orig.))

  15. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  16. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  17. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  18. Results from a test of a Cu-scintillator calorimeter module with photodiode readout

    International Nuclear Information System (INIS)

    Fischer, F.; Kiesling, C.; Lorenz, E.; Mageras, G.; Scholz, S.

    1986-05-01

    A calorimeter module of 17 radiation lengths depth has been built. Wavelength shifter (WLS) bars coupled to rectangular silicon photodiodes (PD's) are use as readout. Considerations in the design of the WLS bars, with particular emphasis on optimising the efficiency for PD readout, are discussed. The energy resolution for electrons has been determined to be about 9%/√E between 2 and 50 GeV. The response to hadrons is presented and the prospects for the construction of a full-sized hadron calorimeter are discussed. (orig.)

  19. MWPC with highly segmented cathode pad readout

    International Nuclear Information System (INIS)

    Debbe, R.; Fischer, J.; Lissauer, D.

    1989-01-01

    Experiments being conducted with high energy heavy ion beams at Brookhaven National Laboratory and at CERN have shown the importance of developing position sensitive detectors capable of handling events with high multiplicity in environments of high track density as will also be the case in future high luminosity colliders like SSC and RHIC. In addition, these detectors are required to have a dynamic range wide enough to detect minimum ionizing particles and heavy ions like oxygen or silicon. We present here a description of work being done on a prototype of such a detector at BNL. Results from a similar counter are also presented in this Conference. The ''pad chamber'' is a detector with a cathode area subdivided into a very large number of pixel-like elements such that a charged particle traversing the detector at normal incidence leaves an induced charge on a few localized pads. The pads are interconnected by a resistive strip, and readout amplifiers are connected to the resistive strip at appropriate, carefully determined spacings. The pattern of tracks in a multi-hit event is easily recognized, and a centroid-finding readout system allows position determination to a small fraction of the basic cell size. 5 refs., 9 figs

  20. An FPGA-based Sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. The Crystal Barrel Calorimeter has been upgraded replacing its photodiode readout by APDs, which allows the integration of the calorimeter into the first level trigger. Since the possible DAQ rate is currently limited by the digitization stage (LeCroy QDC1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is the second important step in the upgrade of the detector system. Based on the 64-channel PANDA-SADC, the design was modified, adapting it to the needs of the CBELSA/TAPS experiment. The CB-SADC offers 64 channels in one NIM module with up to 14 bit rate at 125 MHz, accompanied by a modular analog input stage and power supply. Data processing and reduction are realized with Kintex7 FPGAs. Readout is possible via gigabit ethernet links. Using an FPGA provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery. The SADC development is discussed, and first measurements performed in comparison to the presently used LeCroy QDC are presented.

  1. Electronics and readout of a large area silicon detector for LHC

    International Nuclear Information System (INIS)

    Borer, K.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Scampoli, P.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Bibby, J.H.; Hawkings, R.J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J.

    1994-01-01

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquisition systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10 C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture. (orig.)

  2. Front end readout electronics for the CMS hadron calorimeter

    CERN Document Server

    Shaw, Terri M

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm sup 2. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  3. Front end readout electronics for the CMS hadron calorimeter

    International Nuclear Information System (INIS)

    Terri M. Shaw et al.

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm 2 . For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes

  4. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  5. Development of an event builder for the new SADC-readout of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Jan; Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA in Bonn investigates the photoproduction of mesons off nucleons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. Furthermore, an entirely new setup consisting of Sampling-ADCs (SADC) with FPGA-based readout is being prepared to increase the possible data rate achievable. The SADC is capable of sampling pulses from the detector with 80 MHz, extracting features by FPGA-logic and transferring this data via UDP. To improve package-handling, a server-client structure will be provided. It is foreseen to receive packages from each of the 48 SADC units (32 channels each), detect and handle possible package losses, distribute the received information further via TCP and control the SADC-behaviour. In addition and to assist the FPGA firmware development, a tool to monitor outgoing pulses and to extract important features, such as the deposited energy, timing information and pile-up detection to cross-check the information given by the FPGA is being developed.

  6. Printed low velocity delay lines for cathode readout of proportional chambers

    International Nuclear Information System (INIS)

    Bosshard, R.; Chase, R.L.; Fischer, J.; Radeka, V.

    1974-01-01

    A readout which simultaneously insures a correct electric field, a satisfactory induced signal, the delay function itself, and low particle scattering is described for multiwire proportional chambers. (U.S.)

  7. Detectability of planetary rings around super-earths by direct infrared imaging

    International Nuclear Information System (INIS)

    Morel, Carine

    2013-01-01

    Super-Earths, of which more than 80 have already been discovered, draw a lot of attention. With masses between those of the Earth and Neptune, they are ideal targets for searching for bio-signatures. All the gas giants of the solar system have a ring system, and even the Earth is suspected to have had rings in the past; their presence around super-Earths is thus expected and could give information on the formation process of these planets. The characterization of Super-Earths and their environment has thus become an important goal of modern astronomy. They are still difficult to study because of their small size, but the potential presence of planetary rings can make them easier to observe by the transit method and by direct imaging. This PhD evaluates the possibilities of detecting and characterizing rings around super-Earths by direct infrared imaging with the ELT-METIS instrument. To do this, a model to simulate the thermal emission of a super-Earth and its rings is developed. It is then used to study the influence of physical parameters and orientation of the rings and of planetary orbit on their detectability. The results show that ELT-METIS will be able to detect rings similar to the B and C rings of Saturn, extended within the Roche limit. The super-Earths surrounded by rings will be observable in middle orbit, between about 0.4 and 1 AU, around hot stars within 20 pc of the Sun. It is also shown that the photometric monitoring along the orbit of a super-Earth surrounded by rings should help constrain some of their physical characteristics. (author) [fr

  8. ALICE common read-out receiver card status and HLT implementation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Heiko; Kebschull, Udo [IRI, Goethe-Universitaet Frankfurt am Main (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The ALICE Common Read-Out Receiver Card (C-RORC) is an FPGA based PCIe read out board with optical interfaces primarily developed to replace the previous ALICE High-Level Trigger (HLT) and Data Acquisition (DAQ) Read-Out Receiver Cards from Run1 with a state of the art hardware platform to cope with the increased link rates and event data volume of Run2. The large scale production of the C-RORCs for Run2 has been completed in cooperation with ATLAS and the boards are installed in the productive clusters of ALICE HLT, ALICE DAQ and ATLAS TDAQ ROS. This contribution describes the hardware and firmware of the C-RORC in the ALICE HLT application and its online processing capabilities. Additionally, a high level dataflow description approach to implement hardware processing steps more efficiently is presented.

  9. Performance of the CAMEX64 silicon strip readout chip

    International Nuclear Information System (INIS)

    Yarema, R.J.

    1989-06-01

    The CAMEX64 is a 64 channel full custom CMOS chip designed specifically for the readout of silicon strip detectors. CAMEX which stands for CMOS Multichannel Analog MultiplEXer for Silicon Strip Detectors was designed by members of the Franhofer Institute for Microelectronic Circuits and Systems and the Max Planck Institute for Physics and Astrophysics. Each CAMEX channel has a switched capacitor charge sensitive amplifier with 4 sampling capacitors and a multiplexing scheme for reading out each of the channels on an analog bus. The device uses multiple sampling capacitors to filter and reduce input noise. Filtering is controlled through sampling techniques using external clocks. The device operates in a double correlated sampling mode and therefore cannot separate detector leakage current from a charge input. Normal operation of this device is similar to all other silicon readout chips designed and built thus far in that there is a data acquisition cycle during which charge is simultaneously accepted on all channels for a short period of time from a detector array, followed by a readout cycle where that charge or hit information is read out. This device works especially well for colliding beam experiments where the time of charge arrival is accurately known. However it can be used in fixed target or asynchronous mode where the time of charge arrival is not well known. In the asynchronous mode it appears that gain is somewhat dependent on the time interval required to decide whether or not to accept charge input information and thus the maximum signal to noise performance found with the synchronous mode may not be achieved in the asynchronous mode. 18 figs., 5 tabs

  10. A new avalanche photo diode based readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Martin [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at ELSA has proven successful in the measurement of double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions on a polarized neutron target with high efficiency, the main calorimeter consisting of 1320 CsI(Tl) crystals has to be integrated into the first level trigger. Key requirement to achieve this goal is an exchange of the existing PIN photo diode by a new avalanche photo diode (APD) readout. The main advantage of the new readout system is that it will provide timing information which allows a fast trigger signal. The energy resolution will remain compatible to the previous system. Besides the development of automated test routines for the front end electronics, the characterization of all APDs was successfully accomplished in Bonn. After tests with a 3 x 3 CsI(Tl) crystal matrix at the tagged photon beam facilities at ELSA and MAMI the first half of the Crystal Barrel was upgraded in 2014. This talk shows the result of the latest test measurements including the gain stabilization of the new APD readout electronics and presents the progress of the ongoing upgrade.

  11. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  12. A real-time data transmission method based on Linux for physical experimental readout systems

    International Nuclear Information System (INIS)

    Cao Ping; Song Kezhu; Yang Junfeng

    2012-01-01

    In a typical physical experimental instrument, such as a fusion or particle physical application, the readout system generally implements an interface between the data acquisition (DAQ) system and the front-end electronics (FEE). The key task of a readout system is to read, pack, and forward the data from the FEE to the back-end data concentration center in real time. To guarantee real-time performance, the VxWorks operating system (OS) is widely used in readout systems. However, VxWorks is not an open-source OS, which gives it has many disadvantages. With the development of multi-core processor and new scheduling algorithm, Linux OS exhibits performance in real-time applications similar to that of VxWorks. It has been successfully used even for some hard real-time systems. Discussions and evaluations of real-time Linux solutions for a possible replacement of VxWorks arise naturally. In this paper, a real-time transmission method based on Linux is introduced. To reduce the number of transfer cycles for large amounts of data, a large block of contiguous memory buffer for DMA transfer is allocated by modifying the Linux Kernel (version 2.6) source code slightly. To increase the throughput for network transmission, the user software is designed into formation of parallelism. To achieve high performance in real-time data transfer from hardware to software, mapping techniques must be used to avoid unnecessary data copying. A simplified readout system is implemented with 4 readout modules in a PXI crate. This system can support up to 48 MB/s data throughput from the front-end hardware to the back-end concentration center through a Gigabit Ethernet connection. There are no restrictions on the use of this method, hardware or software, which means that it can be easily migrated to other interrupt related applications.

  13. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision

    DEFF Research Database (Denmark)

    Gerberding, Oliver; Diekmann, Christian; Kullmann, Joachim

    2015-01-01

    Precision phase readout of optical beat note signals is one of the core techniques required for inter-satellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts...

  14. Neutron irradiation results for the LHCb silicon tracker data readout system components

    CERN Document Server

    Vollhardt, A

    2003-01-01

    This note reports irradiation data for different components of the LHCb Silicon Tracker data readout system, which will be exposed to neutron fluences due to their location in the readout link service box on the tracking station frame. The components were part of a neutron irradiation campaign in April 2003 at the Prospero reactor at CEA Valduc (France) and were exposed to fluences 5 to 100 times higher than the expected fluences at the experiment. For all tested components, minor or no influence on device performance was measured. We therefore consider the tested components to be compatible with the expected neutron fluences at the foreseen locations in the LHCb experiment.

  15. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Shapiro, S.L.; Nygren, D.; Spieler, H.; Wright, M.

    1990-01-01

    The authors describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50μm by 150μm and dissipating about 20μW of power

  16. Low-noise analog readout channel for SDD in X-ray spectrometry

    Science.gov (United States)

    Atkin, E.; Gusev, A.; Krivchenko, A.; Levin, V.; Malankin, E.; Normanov, D.; Rotin, A.; Sagdiev, I.; Samsonov, V.

    2016-01-01

    A low-noise analog readout channel optimized for operation with the Silicon Drift Detectors (SDDs) with built-in JFET is presented. The Charge Sensitive Amplifier (CSA) operates in a pulse reset mode using the reset diode built-in the SDD detector. The shaper is a 6th order semi-Gaussian filter with switchable discrete shaping times. The readout channel provides the Equivalent Noise Charge (ENC) of 12e- (simulation) and input dynamic range of 30 keV . The measured energy resolution at the 5,89 keV line of a 55Fe X-ray source is 336 eV (FWHM). The channel was prototyped via Europractice in the AMS 350 nm process as miniASIC. The simulation and first measurement results are presented in the paper.

  17. A Discrete Component Low-Noise Preamplifier Readout for a Linear (1x16) SiC Photodiode Array

    Science.gov (United States)

    Kahle, Duncan; Aslam, Shahid; Herrero, Frederico A.; Waczynski, Augustyn

    2016-01-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1x16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analogue signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  18. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    Energy Technology Data Exchange (ETDEWEB)

    Kahle, Duncan [NASA, Goddard Space Flight Center, Detector Systems Branch, Greenbelt, MD 20771 (United States); Aslam, Shahid, E-mail: shahid.aslam-1@nasa.gov [NASA, Goddard Space Flight Center, Planetary Systems Laboratory, Greenbelt, MD 20771 (United States); Herrero, Federico A.; Waczynski, Augustyn [NASA, Goddard Space Flight Center, Detector Systems Branch, Greenbelt, MD 20771 (United States)

    2016-09-11

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  19. FY 2006 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  20. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  1. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  2. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  3. Optimization of a readout board for mass assembly and light yield measurements with a cosmic ray test stand

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Phi [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    We have built a readout board prototype, equipped with SiPMs, scintillators and readout electronics for an highly granular calorimeter. The design was optimized for mass assembly due to about 8 million channels in the final detector. The prototype showed good performance in several test beams and in a cosmic ray test stand, which was built to characterize the MIP response of these kinds of boards. We show an overview of the cosmic ray test stand and measurement results for the readout board and plans for an improved 2nd generation prototype.

  4. Dual-Readout Calorimetry with Lead Tungstate Crystals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light ...

  5. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  6. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  7. Digital readout alpha survey instrument

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1976-01-01

    A prototype solid-state digital readout alpha particle survey instrument has been designed and constructed. The meter incorporates a Ludlum alpha scintillator as a detector, digital logic circuits for control and timing, and a Digilin counting module with reflective liquid crystal display. The device is used to monitor alpha radiation from a surface. Sample counts are totalized over 10-second intervals and displayed digitally in counts per minute up to 19,999. Tests over source samples with counts to 15,600 cpm have shown the device to be rapid, versatile and accurate. The instrument can be fabricated in one man-week and requires about $835 in material costs. A complete set of drawings is included

  8. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    Science.gov (United States)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  9. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.

    2002-01-01

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data

  10. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    Science.gov (United States)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  11. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 μm) and thick (>30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed

  12. High dynamic range low-noise focal plane readout for VLWIR applications implemented with current mode background subtraction

    Science.gov (United States)

    Yang, Guang; Sun, Chao; Shaw, Timothy; Wrigley, Chris; Peddada, Pavani; Blazejewski, Edward R.; Pain, Bedabrata

    1998-09-01

    Design and operation of a low noise CMOS focal pa;ne readout circuit with ultra-high charge handling capacity is presented. Designed for high-background, VLWIR detector readout, each readout unit cell use an accurate dynamic current memory for automatic subtraction of the dark pedestal in current domain enabling measurement of small signals 85 dB below the dark level. The redout circuit operates with low-power dissipation, high linearity, and is capable of handling pedestal currents up to 300 nA. Measurements indicate an effective charge handling capacity of over 5 X 10(superscript 9) charges/pixel with less than 10(superscript 5) electrons of input referred noise.

  13. Resistive-strips micromegas detectors with two-dimensional readout

    Science.gov (United States)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  14. Development of new readout electronics for the ATLAS LAr calorimeter at the sLHC

    CERN Document Server

    Strässner, A

    2009-01-01

    The ATLAS Liquid Argon (LAr) calorimeter consists of 182,486 detector cells whose signals need to be read out, digitized and processed, in order to provide signal timing and the energy deposited in each detector element. The current readout electronics is not designed to sustain the ten times higher radiation levels expected at sLHC in the years beyond 2017, and will be replaced by new electronics with a completely different readout scheme. The future on-detector electronics is planned to send out all data continuously at each bunch crossing, as opposed to the current system which only transfers data at a trigger-accept signal. Multiple high-speed and radiation-resistant optical links will transmit 100 Gbps per front-end board, each covering 128 readout channels. The off-detector processing units will not only process the data in real-time and provide digital data buffering, but will also implement trigger algorithms. An overview about the various components necessary to develop such a complex system will be ...

  15. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  16. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  17. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  18. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    Science.gov (United States)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  19. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  20. Faraday Cup Array Integrated with a Readout IC and Method for Manufacture Thereof

    Science.gov (United States)

    Temple, Dorota (Inventor); Bower, Christopher A. (Inventor); Hedgepath Gilchrist, Kristin (Inventor); Stoner, Brian R. (Inventor)

    2014-01-01

    A detector array and method for making the detector array. The array includes a substrate including a plurality of trenches formed therein, and includes a plurality of collectors electrically isolated from each other, formed on the walls of the trenches, and configured to collect charge particles incident on respective ones of the collectors and to output from said collectors signals indicative of charged particle collection. The array includes a plurality of readout circuits disposed on a side of the substrate opposite openings to the collectors. The readout circuits are configured to read charge collection signals from respective ones of the plurality of collectors.

  1. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  2. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  3. SiGe Integrated Circuit Developments for SQUID/TES Readout

    Science.gov (United States)

    Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.

    2018-03-01

    SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.

  4. Investigation of the readout electronics of DELPHI surround muon chamber

    International Nuclear Information System (INIS)

    Khovanskij, N.; Krumshtejn, Z.; Ol'shevskij, A.; Sadovskij, A.; Sedykh, Yu.; Molnar, J.; Sicho, P.; Tomsa, Z.

    1995-01-01

    The characteristics of the readout electronics of the DELPHI surround muon chambers with various AMPLEX chips (AMPLEX 16 and AMPLEX-SICAL) are presented. This electronics is studied in a cosmic rays test of the real surround muon chamber model. 4 refs., 6 figs., 1 tab

  5. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  6. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  7. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology

    Directory of Open Access Journals (Sweden)

    Preethi Padmanabhan

    2018-02-01

    Full Text Available Gallium nitride (GaN and its alloys are becoming preferred materials for ultraviolet (UV detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs, implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  8. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology.

    Science.gov (United States)

    Padmanabhan, Preethi; Hancock, Bruce; Nikzad, Shouleh; Bell, L Douglas; Kroep, Kees; Charbon, Edoardo

    2018-02-03

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e - , obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  9. An induced charge readout scheme incorporating image charge splitting on discrete pixels

    International Nuclear Information System (INIS)

    Kataria, D.O.; Lapington, J.S.

    2003-01-01

    Top hat electrostatic analysers used in space plasma instruments typically use microchannel plates (MCPs) followed by discrete pixel anode readout for the angular definition of the incoming particles. Better angular definition requires more pixels/readout electronics channels but with stringent mass and power budgets common in space applications, the number of channels is restricted. We describe here a technique that improves the angular definition using induced charge and an interleaved anode pattern. The technique adopts the readout philosophy used on the CRRES and CLUSTER I instruments but has the advantages of the induced charge scheme and significantly reduced capacitance. Charge from the MCP collected by an anode pixel is inductively split onto discrete pixels whose geometry can be tailored to suit the scientific requirements of the instrument. For our application, the charge is induced over two pixels. One of them is used for a coarse angular definition but is read out by a single channel of electronics, allowing a higher rate handling. The other provides a finer angular definition but is interleaved and hence carries the expense of lower rate handling. Using the technique and adding four channels of electronics, a four-fold increase in the angular resolution is obtained. Details of the scheme and performance results are presented

  10. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  11. Evaluation of an Integrated Read-Out Layer Prototype

    International Nuclear Information System (INIS)

    Abu-Ajamieh, Fayez

    2011-01-01

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  12. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Dulucq, Frédéric; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2009-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  13. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2007-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  14. A Read-out and Data Acquisition System for the Outputs of Multi-channel Spectroscopy Amplifiers

    International Nuclear Information System (INIS)

    Kong Jie; Qian Yi; Su Hong; Dong Chengfu

    2009-01-01

    A read-out and data acquisition system for the outputs of multi-channel spectroscopy amplifiers is introduced briefly in this paper. The 16-channel gating integrator/multiplexer developed by us and PXI-DAQ card are used to construct this system. A virtual instrument system for displaying, indicating,measuring and recording of output waveform is accomplished by integrating the PC, hardware, software together flexibly based on the Lab Windows/CVI platform in our read-out and data acquisition system. In this system, an ADC can face the 16 outputs of 16-channel spectroscopy amplifiers, which can improve the system integration and reduce the cost of data acquisition system. The design provided a new way for building the read-out and data acquisition system using the normal modules and spectroscopy amplifiers. This system has been tested and demonstrated that it is intelligent, reliable, real-time and low cost. (authors)

  15. A custom front-end ASIC for the readout and timing of 64 SiPM photosensors

    International Nuclear Information System (INIS)

    Bagliesi, M.G.; Avanzini, C.; Bigongiari, G.; Cecchi, R.; Kim, M.Y.; Maestro, P.; Marrocchesi, P.S.; Morsani, F.

    2011-01-01

    A new class of instruments - based on Silicon PhotoMultiplier (SiPM) photosensors - are currently under development for the next generation of Astroparticle Physics experiments in future space missions. A custom front-end ASIC (Application Specific Integrated Circuit) for the readout of 64 SiPM sensors was specified in collaboration with GM-IDEAS (Norway) that designed and manufactured the ASIC. Our group developed a custom readout board equipped with a 16 bit ADC for the digitization of both pulse height and time information. A time stamp, generated by the ASIC in correspondence of the threshold crossing time, is digitized and recorded for each channel. This allows to define a narrow time window around the physics event that reduces significantly the background due to the SiPM dark count rate. In this paper, we report on the preliminary test results obtained with the readout board prototype.

  16. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  17. The New APD Based Readout for the Crystal Barrel Calorimeter

    International Nuclear Information System (INIS)

    Urban, M; Honisch, Ch; Steinacher, M

    2015-01-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds

  18. Silicon microstrip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Masciocchi, S.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.S.; Timm, S.; Vorwalter, K.; Werding, R.

    1995-01-01

    A new silicon strip detector has been designed for the fixed target experiment WA89 at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into a FASTBUS memory. The detector provides a fast readout by offering zero-suppressed data extraction on the chip. The silicon counters are the largest detectors built on a monocrystal so far in order to achieve good transversal acceptance. Construction and performance during the 1993 data taking run are discussed. ((orig.))

  19. Characterization and Performance of the Cananea Near-infrared Camera (CANICA)

    Science.gov (United States)

    Devaraj, R.; Mayya, Y. D.; Carrasco, L.; Luna, A.

    2018-05-01

    We present details of characterization and imaging performance of the Cananea Near-infrared Camera (CANICA) at the 2.1 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA has a HAWAII array with a HgCdTe detector of 1024 × 1024 pixels covering a field of view of 5.5 × 5.5 arcmin2 with a plate scale of 0.32 arcsec/pixel. The camera characterization involved measuring key detector parameters: conversion gain, dark current, readout noise, and linearity. The pixels in the detector have a full-well-depth of 100,000 e‑ with the conversion gain measured to be 5.8 e‑/ADU. The time-dependent dark current was estimated to be 1.2 e‑/sec. Readout noise for correlated double sampled (CDS) technique was measured to be 30 e‑/pixel. The detector shows 10% non-linearity close to the full-well-depth. The non-linearity was corrected within 1% levels for the CDS images. Full-field imaging performance was evaluated by measuring the point spread function, zeropoints, throughput, and limiting magnitude. The average zeropoint value in each filter are J = 20.52, H = 20.63, and K = 20.23. The saturation limit of the detector is about sixth magnitude in all the primary broadbands. CANICA on the 2.1 m OAGH telescope reaches background-limited magnitudes of J = 18.5, H = 17.6, and K = 16.0 for a signal-to-noise ratio of 10 with an integration time of 900 s.

  20. Review of results for the NA62 gigatracker read-out prototype

    Science.gov (United States)

    Martin, E.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2012-03-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, an experiment studying ultra-rare kaon decays at the CERN SPS. The main characteristics are a time-tagging resoluion of 150ps, with low material budget per station (0.5% X0) and a fluence comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. To compensate the time-walk, two read-out architectures have been designed and produced. The first architecture is based on a Constant Fraction Discriminator (CFD) followed by an on-pixel Time-to-Digital-Converter (TDC). The second architecture is based on a on-pixel group shared TDC. The GTK system developments are described: the integration steps (assembly and cooling) and the results obtained from the prototypes fabricated for the two read-out architectures.