WorldWideScience

Sample records for direct reacting anolyte-catholyte

  1. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn

    2012-12-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 ± 0.4 mol H2/mole acetate and gas production rate of 2.2 ± 0.2 m3 H2/m3/d were achieved here with an initial anolyte pH = 9 and catholyte NaCl concentration of 98 mM. Further increases in the salt concentration substantially reduced the anolyte pH to as low as 4.6, resulting in reduced MEC performance due to pH inhibition of exoelectrogens. Cathodic hydrogen recovery was high (rcat > 90%) as hydrogen consumption by hydrogenotrophic methanogens was prevented by separating the anode and cathode chambers using a membrane. These results show that the MEC can be optimized for hydrogen production through proper choices in the concentration of a non-buffered saline catholyte and initial anolyte pH in two chamber MECs. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2012-01-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3

  3. Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell

    KAUST Repository

    Davis, Robert J.; Kim, Younggy; Logan, Bruce E.

    2013-01-01

    A microbial desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water. Protons produced from the oxidation of organics at the anode result in anolyte acidification and reduce performance. A new method was used here to mitigate anolyte acidification based on adding non-buffered saline catholyte effluent from a previous cycle to the anolyte at the beginning of the next cycle. This method was tested using a larger-scale MDC (267 mL) containing four anode brushes and a three cell pair membrane stack. With an anolyte salt concentration increased by an equivalent of 75 mM NaCl using the catholyte effluent, salinity was reduced by 26.0 ± 0.5% (35 g/L NaCl initial solution) in a 10 h cycle, compared to 18.1 ± 2.0% without catholyte addition. This improvement was primarily due to the increase in buffering capacity of the anolyte, although increased conductivity slightly improved performance as well. There was some substrate loss from the anolyte by diffusion into the membrane stack, but this was decreased from 11% to 2.6% by increasing the anolyte conductivity (7.6 to 14 mS/cm). These results demonstrated that catholyte effluent can be utilized as a useful product for mitigating anolyte acidification and improving MDC performance. © 2013 American Chemical Society.

  4. Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell

    KAUST Repository

    Davis, Robert J.

    2013-09-03

    A microbial desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water. Protons produced from the oxidation of organics at the anode result in anolyte acidification and reduce performance. A new method was used here to mitigate anolyte acidification based on adding non-buffered saline catholyte effluent from a previous cycle to the anolyte at the beginning of the next cycle. This method was tested using a larger-scale MDC (267 mL) containing four anode brushes and a three cell pair membrane stack. With an anolyte salt concentration increased by an equivalent of 75 mM NaCl using the catholyte effluent, salinity was reduced by 26.0 ± 0.5% (35 g/L NaCl initial solution) in a 10 h cycle, compared to 18.1 ± 2.0% without catholyte addition. This improvement was primarily due to the increase in buffering capacity of the anolyte, although increased conductivity slightly improved performance as well. There was some substrate loss from the anolyte by diffusion into the membrane stack, but this was decreased from 11% to 2.6% by increasing the anolyte conductivity (7.6 to 14 mS/cm). These results demonstrated that catholyte effluent can be utilized as a useful product for mitigating anolyte acidification and improving MDC performance. © 2013 American Chemical Society.

  5. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An FeIII Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications.

    Science.gov (United States)

    Tsitovich, Pavel B; Kosswattaarachchi, Anjula M; Crawley, Matthew R; Tittiris, Timothy Y; Cook, Timothy R; Morrow, Janet R

    2017-11-02

    A reversible Fe 3+ /Fe 2+ redox couple of an azamacrocyclic complex is evaluated as an electrolyte with a pH-tunable potential range for aqueous redox-flow batteries (RFBs). The Fe III complex is formed by 1,4,7-triazacyclononane (TACN) appended with three 2-methyl-imidazole donors, denoted as Fe(Tim). This complex exhibits pH-sensitive redox couples that span E 1/2 (Fe 3+ /Fe 2+ )=317 to -270 mV vs. NHE at pH 3.3 and pH 12.8, respectively. The 590 mV shift in potential and kinetic inertness are driven by ionization of the imidazoles at various pH values. The Fe 3+ /Fe 2+ redox is proton-coupled at alkaline conditions, and bulk electrolysis is non-destructive. The electrolyte demonstrates high charge/discharge capacities at both acidic and alkaline conditions throughout 100 cycles. Given its tunable redox, fast electrochemical kinetics, exceptional stability/cyclability, this complex is promising for the design of aqueous RFB catholytes and anolytes that utilize the earth-abundant element iron. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  8. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  9. Effect of anolyte on growth and division of Chinese hamster cancerous cells

    Directory of Open Access Journals (Sweden)

    saeed Mohammadzadeh

    2009-04-01

    Full Text Available Background: At present, cancer can be controlled by chemotherapy, but unfortunately, this method has strong side effects and scientist try to reduce them using different substances. 2 kinds of activated water called anolyte and catholyte have electrochemical property and antibacterial and oxidative properties respectively. The aim of this research is to study the effect of anolyte on growth and division of cancerous cells. Materials and Methods: In this research, different concentration of anolyte, 1 . 7, 2, 5,8.3 and 10 percent of anolyte and control with 2 and 5 percent of serum physiologic were added on converted cell of Chinese hamster (line b11dii-FAF28 clone 237 in 12 plastic and 15 glass flasks. After adding, converted cell was counted with the help of hoemocytometer and microscope. Data of experiment analyzed and results compared by t test, as well as using Excell software their diagrams were drawn. Results: The results indicated that anolyte had significant effect on cancer cells. In concentration of 1.7% cell division was decreased but in concentration of 8.3 %, division of cancerous cells was blocked and cells were fixed. Conclusion: Considering the low amount of sodium chloride in anolyte, it seems that, this solution (Anolyte hasn’t side effects and advers effect on the cells body.

  10. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  11. Fuel cell catholyte regenerating apparatus

    International Nuclear Information System (INIS)

    Struthers, R. C.

    1985-01-01

    A catholyte regenerating apparatus for a fuel cell having a cathode section containing a catholyte solution and wherein fuel cell reaction reduces the catholyte to gas and water. The apparatus includes means to conduct partically reduced water diluted catholyte from the fuel cell and means to conduct the gas from the fuel cell to a mixing means. An absorption tower containing a volume of gas absorbing liquid solvent receives the mixed together gas and diluted catholyte from the mixing means within the absorption column, the gas is absorbed by the solvent and the gas ladened solvent and diluted catholyte are commingled. A liquid transfer means conducts gas ladened commingled. A liquid transfer means conducts gas ladened commingled solvent and electrolyte from the absorption column to an air supply means wherein air is added and commingled therewith and a stoichiometric volume of oxygen from the air is absorbed thereby. A second liquid transfer means conducts the gas ladened commingled solvent and diluted catholyte into a catalyst column wherein the oxygen and gas react to reconstitute the catholyte from which the gas was generated wna wherein the reconstituted diluted catholyte is separated from the solvent. Recirculating means conducts the solvent from the catalyst column back into the absorption column and liquid conducting means conducts the reconstituted catholyte to a holding tank preparatory for catholyte to a holding tank preparatory for recirculation through the cathode section of the fuel cell

  12. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    Directory of Open Access Journals (Sweden)

    Heng-Yi Lee

    2017-08-01

    Full Text Available A direct borohydride/peroxide fuel cell (DBPFC generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow rate and temperature of the anolyte/catholyte, on DBPFC performance are investigated and discussed. The durability of the DBPFC is also evaluated by galvanostatic discharge at 0.1 A∙cm−2 for over 50 h. The results of this preliminary study show that a DBPFC with porous graphite electrodes can provide a maximum power density of 0.24 W∙cm−2 at 0.8 V. The performance of the DBPFC drops slightly after 50 h of operation; however, the discharge capacity shows no significant decrease.

  13. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries.

    Science.gov (United States)

    Hu, Bo; Tang, Yijie; Luo, Jian; Grove, Grant; Guo, Yisong; Liu, T Leo

    2018-05-09

    A high voltage (1.38 V) total organic aqueous redox flow battery is reported using 1,1'-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium tetrachloride ((NPr)2V) as an anolyte and 4-trimethylammonium-TEMPO chloride (NMe-TEMPO) as a catholyte. The exceptional radical stability of [(NPr)2V]+˙ enabled the flow battery in achieving 97.48% capacity retention for 500 cycles and a power density of 128.2 mW cm-2.

  14. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  15. An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte

    Science.gov (United States)

    Hagemann, Tino; Winsberg, Jan; Grube, Mandy; Nischang, Ivo; Janoschka, Tobias; Martin, Norbert; Hager, Martin D.; Schubert, Ulrich S.

    2018-02-01

    Herein we present a new redox-flow battery (RFB) that employs a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) containing copolymer (P1) as catholyte and the viologen derivative N,N‧-dimethyl-4,4‧-bipyridinium dichloride (MV) as anolyte in an aqueous sodium chloride solution. This is the first time that a combination of an organic polymer and a low-molar-mass organic redox-active material is presented. The electrochemical behavior of the utilized charge-storage materials were investigated by cyclic voltammetry (CV) and feature reversible redox-reactions at E½ = 0.7 V (TEMPO/TEMPO+) and E½ = -0.6 V vs. AgCl/Ag (MV++/MV+•), which lead to a promising cell voltage of 1.3 V in the subsequent battery application. Studies were performed to determine the most suitable anion-exchange membrane (AEM), the ideal conducting salt concentration and the optimal flow rate. The resulting battery reveals a stable charge/discharge performance over 100 consecutive cycles with coulombic efficiencies of up to 95%, a high energy efficiency of 85% and an overall energy density of the electrolyte system of 3.8 W h L-1.

  16. Aqueous electrolytes for redox flow battery systems

    Science.gov (United States)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  17. Fe-V redox flow batteries

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  18. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

    Science.gov (United States)

    Cao, Jianyu; Tao, Meng; Chen, Hongping; Xu, Juan; Chen, Zhidong

    2018-05-01

    The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open-circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm-2 at 100% SOC and 45 °C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.

  19. Distribution of electrolytes in a flow battery

    Science.gov (United States)

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  20. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  1. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    Science.gov (United States)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  2. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli

    2018-01-11

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact electrochemical performance. However, ion transport between the chambers will also impact performance, which is a factor not included in those calculations. To separate the impacts of pH and ion transport on MEC performance, a high molecular weight polymer buffer (PoB), which was retained in the catholyte due to its low AEM transport and cationic charge, was compared to PBS in MECs and abiotic electrochemical half cells (EHCs). In MECs, catholyte pH control was less important than ion transport. MEC tests using the PoB catholyte, which had a higher buffer capacity and thus maintained a lower catholye pH (<8), resulted in a 50% lower hydrogen production rate (HPR) than that obtained using PBS (HPR = 0.7 m3-H2 m−3 d−1) where the catholyte rapidly increased to pH = 12. The main reason for the decreased performance using PoB was a lack of hydroxide ion transfer into the anolyte to balance pH. The anolyte pH in MECs rapidly decreased to 5.8 due to a lack of hydroxide ion transport, which inhibited current generation by the anode, whereas the pH was maintained at 6.8 using PBS. In abiotic tests in ECHs, where the cathode potential was set at −1.2 V, the HPR was 133% higher using PoB than PBS due to catholyte pH control, as the anolyte pH was not a factor in the performance. These results show that maintaining charge transfer to control anolyte pH is more important than obtaining a more neutral pH catholyte.

  3. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries.

    Science.gov (United States)

    Luo, Jian; Hu, Bo; Debruler, Camden; Liu, Tianbiao Leo

    2018-01-02

    Extending the conjugation of viologen by a planar thiazolo[5,4-d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water-soluble π-conjugation extended viologen, 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3-(trimethylammonio)propyl)pyridin-1-ium) tetrachloride, [(NPr) 2 TTz]Cl 4  , as a novel two-electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4-trimethylammonium-TEMPO (N Me -TEMPO) as catholyte, [(NPr) 2 TTz]Cl 4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L -1 . A demonstrated [(NPr) 2 TTz]Cl 4 /N Me -TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  5. Electricity and catholyte production from ceramic MFCs treating urine.

    Science.gov (United States)

    Merino Jimenez, Irene; Greenman, John; Ieropoulos, Ioannis

    2017-01-19

    The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic MFCs can be attributed to a combination of water or hydrogen peroxide formation from the oxygen reduction reaction in the cathode, water diffusion and electroosmotic drag through the ion exchange membrane. This study aims to evaluate, for the first time, the effect of ceramic wall/membrane thickness, in terms of power, as well as catholyte production from MFCs using urine as a feedstock. Cylindrical MFCs were assembled with fine fire clay of different thicknesses (2.5, 5 and 10 mm) as structural and membrane materials. The power generated increased when the membrane thickness decreased, reaching 2.1 ± 0.19 mW per single MFC (2.5 mm), which was 50% higher than that from the MFCs with the thickest membrane (10 mm). The amount of catholyte collected also decreased with the wall thickness, whereas the pH increased. Evidence shows that the catholyte composition varies with the wall thickness of the ceramic membrane. The possibility of producing different quality of catholyte from urine opens a new field of study in water reuse and resource recovery for practical implementation.

  6. Water SA - Vol 32, No 2 (2006)

    African Journals Online (AJOL)

    The effect of sodium chloride and sodium bicarbonate derived anolytes, and anolyte-catholyte combination on biofilms · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MS Thantsha, TE Cloete, 237-242. http://dx.doi.org/10.4314/wsa.v32i2.5248 ...

  7. Effect of selected factors on the current flow and voltage loss at ...

    African Journals Online (AJOL)

    In this paper, laboratory scale study was conducted to investigate the current flow and voltage loss at the electrodes in the electrochemical treatment of a tropical laterite. Three different tests using calcium chloride (CC) as anolyte and sodium chloride (SC) as catholyte (NC); SC as anolyte and Phosphoric acid (PA) as ...

  8. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    Science.gov (United States)

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.

    Science.gov (United States)

    Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua

    2017-11-01

    Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A comparison of the influence of catholyte vs phosphate detergent ...

    African Journals Online (AJOL)

    The electro-chemical activation of aqueous media is a relatively new technology. The alkaline part of the activated media (catholyte) has outstanding detergency properties. Catholyte provides an environmentally friendly alternative to conventional phosphate based detergents. Little is, however, known about the effect of ...

  11. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav

    2010-02-13

    Geochemical effects of electro-osmosis in bentonite clay are studied in the laboratory, where a 6 mm thick bentonite layer is subjected to direct current. Acidification and alkalization near anode and cathode are expected, possibly causing mineral deterioration, ion mobilization and precipitation of new solids. Afterwards the clay is analysed by XRF and anolyte and catholyte are analysed by ICP-MS. In addition, as a preliminary experiment treated bentonite is analysed by high resolution μ-XRF. Electro-osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a small fraction of the element-loss from the clay. The rest will have precipitated in undetected solid phases. μ-XRF indicates the loss of Ca-content throughout the bentonite layer. © The Author(s) 2010.

  12. Redox flow batteries based on supporting solutions containing chloride

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  13. Redox flow batteries based on supporting solutions containing chloride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  14. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Science.gov (United States)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  15. Performance comparison of protonic and sodium phosphomolybdovanadate polyoxoanion catholytes within a chemically regenerative redox cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.

    2018-01-01

    The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.

  16. A floating water bridge produces water with excess charge

    Science.gov (United States)

    Fuchs, Elmar C.; Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Woisetschläger, Jakob

    2016-03-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ἄ'τɛρ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (~kV cm-1) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum.

  17. anolyte as an alternative bleach for stained cotton fabrics

    African Journals Online (AJOL)

    user

    ISSN 0378-5254 Journal of Consumer Sciences, Special Edition. Diversifying .... detergent effect, while Anolyte is antimicrobial. Steponavičius and ..... set and the longer exposure and higher temperature are .... Mere washing with detergent ...

  18. A floating water bridge produces water with excess charge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Sammer, Martina; Wexler, Adam D; Kuntke, Philipp; Woisetschläger, Jakob

    2016-01-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ατερ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (∼kV cm −1 ) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum. (paper)

  19. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    Science.gov (United States)

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  20. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  1. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  2. On performance capabilities of alkaline anolyte in wastewater management

    International Nuclear Information System (INIS)

    Shimkevich, Alexander

    2014-01-01

    A concept for electric converting a saline wastewater into basic solution (pH > 7) with a positive RedOx potential (alkaline anolyte) is considered. Such the medium can be obtained in situ at flowing wastewater via a special electrochemical cell with strongly polarized cathode (generating hydroxide anions) and quasi-equilibrium anode which intensively discharges hydroxide ions to hydroxyl radicals into the wastewater. The radicals will oxidize anions of strong acid and convert them into weak-acid micro precipitates in the flowing basic solution. These renewable nano-sorbents will uninterruptedly co-precipitate radioactive contamination from wastewater and be agglomerated as corrosion by-products in the felt-like anode. The consideration of liquid water as a chemical compound with a wide band gap shows that the anolyte (as a hyper-stoichiometric water, H 2 O 1+|x| ) is a simple and effective tool for varying physical and chemical properties of the aqueous solution due to forced changing its RedOx potential as one needs. This potential as Fermi level in the band gap of liquid water is the most convenient parameter for monitoring and managing the electrochemical potential of the aqueous medium. Its hyper-stoichiometric state is realized when Fermi level is shifted to the top of a valence band. This electro-oxidized state as the alkaline anolyte is characterized by an acceptor level, OH/OH - , partially occupied by electrons. Then, the hydroxyl radical (OH • ) as the strongest oxidizer will oxidize intensively the metal anode and renew its surface for great removal of radio-nuclides from the wastewater due to their large specific area of renewable surface of hydroxide absorber on the felt-like anode. (author)

  3. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.

    Science.gov (United States)

    Ren, Yueping; Chen, Jinli; Li, Xiufen; Yang, Na; Wang, Xinhua

    2018-04-01

    Short-term initial anolyte pH adjustment can relieve the performance deterioration of the single-chamber air-cathode buffer-free microbial fuel cell (BFMFC) caused by anolyte acidification. Adjusting the initial anolyte pH to 9 in 5 running cycles is the optimum strategy. The relative abundance of the electrochemically active Geobacter in the KCl-pH9-MFC anode biofilm increased from 59.01% to 75.13% after the short-term adjustment. The maximum power density (P max ) of the KCl-pH9-MFC was elevated from 316.4mW·m -2 to 511.6mW·m -2 , which was comparable with that of the PBS-MFC. And, after the short-term adjusting, new equilibrium between the anolyte pH and the anode biofilm electrochemical activity has been established in the BFMFC, which ensured the sustainability of the improved bioelectricity generation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  5. Elimination of biofilm and microbial contamination reservoirs in hospital washbasin U-bends by automated cleaning and disinfection with electrochemically activated solutions.

    Science.gov (United States)

    Swan, J S; Deasy, E C; Boyle, M A; Russell, R J; O'Donnell, M J; Coleman, D C

    2016-10-01

    Washbasin U-bends are reservoirs of microbial contamination in healthcare environments. U-Bends are constantly full of water and harbour microbial biofilm. To develop an effective automated cleaning and disinfection system for U-bends using two solutions generated by electrochemical activation of brine including the disinfectant anolyte (predominantly hypochlorous acid) and catholyte (predominantly sodium hydroxide) with detergent properties. Initially three washbasin U-bends were manually filled with catholyte followed by anolyte for 5min each once weekly for five weeks. A programmable system was then developed with one washbasin that automated this process. This U-bend had three cycles of 5min catholyte followed by 5min anolyte treatment per week for three months. Quantitative bacterial counts from treated and control U-bends were determined on blood agar (CBA), R2A, PAS, and PA agars following automated treatment and on CBA and R2A following manual treatment. The average bacterial density from untreated U-bends throughout the study was >1×10(5) cfu/swab on all media with Pseudomonas aeruginosa accounting for ∼50% of counts. Manual U-bend electrochemically activated (ECA) solution treatment reduced counts significantly (<100cfu/swab) (P<0.01 for CBA; P<0.005 for R2A). Similarly, counts from the automated ECA-treatment U-bend were significantly reduced with average counts for 35 cycles on CBA, R2A, PAS, and PA of 2.1±4.5 (P<0.0001), 13.1±30.1 (P<0.05), 0.7±2.8 (P<0.001), and 0 (P<0.05) cfu/swab, respectively. P. aeruginosa was eliminated from all treated U-bends. Automated ECA treatment of washbasin U-bends consistently minimizes microbial contamination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Effect of electrolytes concentration on recovery of cesium from AMP-PAN by Electrodialysis-Ion Exchange (EDIX)

    International Nuclear Information System (INIS)

    Mahendra, Ch.; Rajan, K.K.; SatyaSai, P.M.; Anand Babu, C.

    2014-01-01

    Cesium from the simulated acidic waste solution was separated using Ammonium Molybdophosphate (AMP) - Polyacrylonitrile (PAN) ion exchange resin in column operations. Electrodialysis - Ion exchange (EDIX) has been tried for the recovery of cesium from the AMP-PAN which was saturated with cesium. The electrodialysis setup consists of three compartments; cesium loaded AMP-PAN is placed in the middle compartment and is separated from the anode and cathode compartments by cation exchange membranes. Ammonium sulphate was used as anolyte and HNO 3 as catholyte. 0.1N HNO 3 was circulated in the middle compartment containing AMP-PAN to keep the resin in acidic form. On application of potential, the ammonium ions from the anode compartment migrate towards cathode through the middle compartment where they exchange with cesium ions on the resin and the exchanged cesium ions migrate towards cathode to get concentrated. Some part of cesium is recovered in the middle compartment due to convection. Cesium recovery from the AMP-PAN in the electrodialysis setup was studied at different anolyte and catholyte concentrations. All the experiments were carried out at constant current density of 40 mA/cm 2 for 15h. It was found that more than 50% of cesium recovery was observed for all the experiments studied and recovery percentage increased with increasing the anolyte concentration. It was observed that the electrolytes concentration affects the voltage drop across the cell

  7. [Study of cytogenetic and cytotoxic effect of non-contact electrochemically-activated waters in the five organs of rats].

    Science.gov (United States)

    Sycheva, L P; Mikhaĭlova, R I; Beliaeva, N N; Zhurkov, V S; Iurchenko, V V; Savostikova, O N; Alekseeva, A V; Kribtsova, E K; Kovalenko, M A; Akhal'tseva, L V; Sheremet'eva, S M; Iurtseva, N A; Murav'eva, L V; Kamenetskaia, D B

    2014-01-01

    For the first time the multiorgan karyological analysis of five organs of rats was applied for the study of the cytogenetic and cytotoxic action of the four types of non-contact electrochemically activated water in the 30-days in vivo experiment. The effects of investigated waters were not detected in bone marrow polychromatic erythrocytes. "Anolyte" (ORP = -362 mV) did not have a negative effect on rats. "Catholyte-5" (ORP = +22 mV) and "Catholyte-25" (ORP = -60 mV) induced cytogenetic abnormalities in the bladder and fore stomach. The same catholytes and "Catholyte-40" (ORP = -10 mV) changed the proliferation indices: increased the mitotic index in the fore stomach epithelium and reduced the frequency of binucleated cells in the fore stomach, bladder and lungs. The increase in the rate of cells with cytogenetic abnormalities on the background of the promotion of mitotic activity can be considered as a manifestation of the negative effect, typical for catolytes, but the effect of each out of them has its own features.

  8. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  9. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2011-01-01

    sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near

  10. Simultaneous Extraction of Lithium and Hydrogen from Seawater

    Science.gov (United States)

    2011-01-26

    P2S5 glass ceramic membrane . The potential was scanned to 4V at the rate of 50mV/sec. Operating Conditions: Anode: carbon felt (0.5mm) Anolyte...significantly. Further, the ceramic membrane only allows diffusion of ions but prevents transport of bulk solution. Figure 8 shows the IC chromatogram...electrochemical process employing solid electrolytes. Li ion conducting ceramic membrane produces high selectivity to lithium ion in the catholyte. Cell

  11. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  13. Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

    KAUST Repository

    Herná ndez Pé rez, Francisco E.; Mukhadiyev, Nurzhan; Xu, Xiao; Sow, Aliou; Lee, Bok Jik; Sankaran, Ramanan; Im, Hong G.

    2018-01-01

    A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.

  14. Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

    KAUST Repository

    Hernández Pérez, Francisco E.

    2018-03-29

    A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.

  15. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  16. Simultaneous Recovery of Hydrogen and Chlorine from Industrial Waste Dilute Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    N. Paidimarri

    2016-01-01

    Full Text Available Recovery of chlorine from byproduct HCl has inevitable commercial importance in industries lately because of insufficient purity or too low concentration to recycle it. Instead it is being neutralized in industries before disposing to meet stringent environmental conditions. Although recovery through catalytic oxidation processes is studied since the 19th century, their high operating conditions combined with sluggish reaction kinetics and low single pass conversions make electrolysis a better alternative. The present motive of this work is to develop a novel electrolysis process which in contrast to traditional processes effectively recovers both hydrogen and chlorine from dilute HCl. For this, an electrolytic cell with an Anionic Exchange Membrane has been designed which only allows the passage of chlorine anions from catholyte to anolyte separating the gasses in a single step. The catholyte can be as low as 3.59 wt% because of fixed anolyte concentration of 1.99 wt% which minimizes oxygen formation. Preliminary results show that the simultaneous recovery of hydrogen and chlorine is possible with high conversion up to 98%. The maximum current density value for 4.96 cm2 membrane surface area (70% active surface area is 2.54 kAm−2, which is comparable with reported commercial processes. This study is expected to be useful for process intensification of the same in a continuous process environment.

  17. Use of electrochemically activated aqueous solutions in the manufacture of fur materials.

    Science.gov (United States)

    Danylkovych, Anatoliy G; Lishchuk, Viktor I; Romaniuk, Oksana O

    2016-01-01

    The influence of characteristics of electrochemically activated aqueous processing mediums in the treatment of fur skins with different contents of fatty substances was investigated. The use of electroactive water, namely anolytes and catholytes, forgoing antiseptics or surface-active materials, helped to restore the hydration of fur skins and to remove from them soluble proteins, carbohydrates and fatty substances. The activating effect of anolyte and catholyte in solutions of water on the processes of treating raw furs is explained by their special physical and chemical properties, namely the presence of free radicals, ions and molecules of water which easily penetrate cells' membranes and into the structure of non-collagen components and microfiber structure of dermic collagen. The stage of lengthy acid and salt treatment is excluded from the technical treatment as a result of using electroactivated water with high oxidizing power. A low-cost technology of processing different kinds of fur with the use of electroactivated water provides for substantial economy of water and chemical reagents, a two to threefold acceleration of the soaking and tanning processes and creation of highly elastic fur materials with a specified set of physical and chemical properties. At the same time the technology of preparatory processes of fur treatment excludes the use of such toxic antiseptics as formalin and sodium silicofluoride, which gives grounds to regard it as ecologically safe.

  18. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Science.gov (United States)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  19. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Technology Div., Wilson Greatbatch Ltd., Clarence, NY (United States); Shui Xiaoping [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States); Chung, D.D.L. [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States)

    1996-01-01

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm{sup 3} of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon{sup TM} binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 40% less volume electrical resistivity than the carbon black electrode, both without a binder. (orig.)

  20. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.

    2017-01-01

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5, 8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.

  1. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  2. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2016-01-01

    was suspended in water in the anolyte, which was separated from the catholyte by a cation exchange membrane. Electrolysis at the anode acidified the SSA suspension, and hereby P, Cu, Pb, Cd and Zn were extracted. The heavy metal ions electromigrated into the catholyte and were thus separated from the filtrate......Phosphorus (P) is indispensable for all forms of life on Earth and as P is a finite resource, it is highly important to increase recovery of P from secondary resources. This investigation is focused on P recovery from sewage sludge ash (SSA) by a two-compartment electrodialytic separation (EDS......) technique. Two SSAs are included in the investigation and they contained slightly less P than phosphate rock used in commercial fertilizer production and more heavy metals. The two-compartment electrodialytic technique enabled simultaneous recovery of P and separation of heavy metals. During EDS the SSA...

  3. The effect of soil type on the electrodialytic remediation of lead-contaminated soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Harmon, Thomas C.

    2007-01-01

    experiments with ten representative industrially Pb-contaminated surface soils. Results indicate that Pb-speciation is of primary importance. Specifically, organic matter and stable compounds like PbCrO4 can impede and possibly even preclude soil remediation. In soils rich in carbonate, where the acidic front...... to the catholyte. Thus, the presence of carbonate negatively influences the remediation time. Pb bound to soluble organic matter is also transported towards the anolyte during EDR. The primary effect of the mainly insoluble organic matter commonly present in surface soil is however to immobilize Pb and impede...

  4. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  5. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  6. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  8. Control of electrode processes in electrokinetic soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Marb, C. [Bavarian State Office for Environmental Protection, Waste Technology Centre, Augsburg (Germany)

    2001-07-01

    Technical control of electrode processes induced by water electrolysis is crucial for the effectiveness of electrokinetic soil remediation. A calculation method for the quantification of electrolysis products is derived and its validity by the consumption of neutralizing agents verified. Steel rods used as sacrificial anodes instead of inert materials cannot counteract the acidification of the anolyte due to the acidic property of Fe-cations released as oxidation products. An an alternative to ordinary porous well materials a tubular cation exchange membrane was used as a cathode well. Thereby the migration of anions stemming from the catholyte neutralisation was hampered and no loss in the electric field strength occured. (orig.)

  9. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    Science.gov (United States)

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  10. Direct numerical simulation of turbulent, chemically reacting flows

    Science.gov (United States)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke

  11. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  12. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries

    Science.gov (United States)

    Hollas, Aaron; Wei, Xiaoliang; Murugesan, Vijayakumar; Nie, Zimin; Li, Bin; Reed, David; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2018-06-01

    Aqueous soluble organic (ASO) redox-active materials have recently attracted significant attention as alternatives to traditional transition metal ions in redox flow batteries (RFB). However, reported reversible capacities of ASO are often substantially lower than their theoretical values based on the reported maximum solubilities. Here, we describe a phenazine-based ASO compound with an exceptionally high reversible capacity that exceeds 90% of its theoretical value. By strategically modifying the phenazine molecular structure, we demonstrate an increased solubility from near-zero with pristine phenazine to as much as 1.8 M while also shifting its redox potential by more than 400 mV. An RFB based on a phenazine derivative (7,8-dihydroxyphenazine-2-sulfonic acid) at its near-saturation concentration exhibits an operating voltage of 1.4 V with a reversible anolyte capacity of 67 Ah l-1 and a capacity retention of 99.98% per cycle over 500 cycles.

  13. Thermodynamics and Efficiency of a CuCl(aq)/HCl(aq) Electrolyzer

    International Nuclear Information System (INIS)

    Hall, Derek M.; Akinfiev, Nikolay N.; LaRow, Eric G.; Schatz, Richard S.; Lvov, Serguei N.

    2014-01-01

    The high ionic strength and complex speciation of the anolyte solution within the CuCl(aq)/HCl(aq) electrolytic cell have impeded predictions of the energy requirements for the cell's electrolytic reaction at 25 °C and 1 bar. After collecting experimental open circuit potential (OCP) data and comparing the values obtained with predictions from prospective thermodynamic models, an approach to predict thermodynamic values and the overall efficiency was formulated. The compositions of the experimental measurements ranged from 2-2.5 mol of CuCl(aq) with 8-9 mol of HCl(aq) per kilogram of water in anolyte solution and 8-9 mol of HCl(aq) per kilogram of water in catholyte solution. From the OCP data, it was found that activity coefficient and speciation effects were critical in predicting the Gibbs energy, entropy and thermodynamic (intrinsic maximum) efficiency of the electrolytic cell. At equilibrium, all thermodynamic functions of the anolyte redox reactions were the same after activity coefficients and speciation effects were taken into account. The electrochemical reactions’ Gibbs energy and entropy were found to be 9700 J/mol and 2.18 J/(mol K) at 25 °C and 1 bar, which indicated that the reactions required a small amount of electrical and thermal energy to proceed. With thermodynamic values for the electrolytic reaction and experimental data from a CuCl(aq)/HCl(aq) electrolytic cell, the voltage, current, thermodynamic and overall efficiency were calculated. The overall efficiency ranged from 15 to 95% depending on the current density

  14. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins.

    Science.gov (United States)

    Xie, Song-Fang; Gao, Han; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Wu, Zhi-Yong; Yang, Fu-Quan

    2018-01-25

    Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte-free isoelectric focusing on paper-based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. This paper-based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost-effective protein sample clean-up method for target protein analysis with mass spectrometry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  16. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane.

    Science.gov (United States)

    Chang, Zhenjun; Henkensmeier, Dirk; Chen, Ruiyong

    2017-08-24

    By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA + ), we synthesized a cation-grafted TEMPO (g + -TEMPO) and studied its electrochemical performance against a Zn 2+ /Zn anode in a hybrid redox flow battery. To conduct Cl - counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g + - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g + -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct Numerical Simulation of a Compressible Reacting Boundary Layer using a Temporal Slow Growth Homogenization

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert

    2013-11-01

    A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  18. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    Science.gov (United States)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  19. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Qingyun [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Abu-Reesh, Ibrahim M. [Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); He, Zhen, E-mail: zhenhe@vt.edu [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level < 2 mg L{sup −} {sup 1}. The ratio between the anolyte and the catholyte flow rates should be kept > 22.2 in order to avoid boron accumulation in the anolyte effluent. - Highlights: • Mathematical models are developed to understand boron removal in BES. • Boron removal can be driven by electromigration induced by current generation. • Diffusion induced by a salt concentration gradient also contributes to boron removal. • Osmosis and current driven convection transport play diverse roles in different BES.

  20. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  1. Combining discrete equations method and upwind downwind-controlled splitting for non-reacting and reacting two-fluid computations

    International Nuclear Information System (INIS)

    Tang, K.

    2012-01-01

    When numerically investigating multiphase phenomena during severe accidents in a reactor system, characteristic lengths of the multi-fluid zone (non-reactive and reactive) are found to be much smaller than the volume of the reactor containment, which makes the direct modeling of the configuration hardly achievable. Alternatively, we propose to consider the physical multiphase mixture zone as an infinitely thin interface. Then, the reactive Riemann solver is inserted into the Reactive Discrete Equations Method (RDEM) to compute high speed combustion waves represented by discontinuous interfaces. An anti-diffusive approach is also coupled with RDEM to accurately simulate reactive interfaces. Increased robustness and efficiency when computing both multiphase interfaces and reacting flows are achieved thanks to an original upwind downwind-controlled splitting method (UDCS). UDCS is capable of accurately solving interfaces on multi-dimensional unstructured meshes, including reacting fronts for both deflagration and detonation configurations. (author)

  2. Direct numerical simulation of an isothermal reacting turbulent wall-jet

    Science.gov (United States)

    Pouransari, Zeinab; Brethouwer, Geert; Johansson, Arne V.

    2011-08-01

    In the present investigation, Direct Numerical Simulation (DNS) is used to study a binary irreversible and isothermal reaction in a plane turbulent wall-jet. The flow is compressible and a single-step global reaction between an oxidizer and a fuel species is solved. The inlet based Reynolds, Schmidt, and Mach numbers of the wall-jet are Re = 2000, Sc = 0.72, and M = 0.5, respectively, and a constant coflow velocity is applied above the jet. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The turbulent structures of the velocity field show the common streaky patterns near the wall, while a somewhat patchy or spotty pattern is observed for the scalars and the reaction rate fluctuations in the near-wall region. The reaction mainly occurs in the upper shear layer in thin highly convoluted reaction zones, but it also takes place close to the wall. Analysis of turbulence and reaction statistics confirms the observations in the instantaneous snapshots, regarding the intermittent character of the reaction rate near the wall. A detailed study of the probability density functions of the reacting scalars and comparison to that of the passive scalar throughout the domain reveals the significance of the reaction influence as well as the wall effects on the scalar distributions. The higher order moments of both the velocities and the scalar concentrations are analyzed and show a satisfactory agreement with experiments. The simulations show that the reaction can both enhance and reduce the dissipation of fuel scalar, since there are two competing effects; on the one hand, the reaction causes sharper scalar gradients and thus a higher dissipation rate, on the other hand, the reaction consumes the fuel scalar thereby reducing the scalar dissipation.

  3. Proton production, neutralisation and reduction in a floating water bridge

    International Nuclear Information System (INIS)

    Sammer, Martina; Wexler, Adam D; Kuntke, Philipp; Stanulewicz, Natalia; Lankmayr, Ernst; Woisetschläger, Jakob; Fuchs, Elmar C; Wiltsche, Helmar

    2015-01-01

    This work reports on proton production, transport, reduction and neutralization in floating aqueous bridges under the application of a high dc voltage (‘floating water bridge’). Recently possible mechanisms for proton transfer through the bridge were suggested. In this work we visualize and describe the production of protons in the anolyte and their neutralization in the catholyte. Apart from that, protons are reduced to hydrogen due to electrolysis. Microbubbles are detached instantly, due to the electrohydrodynamic flow at the electrode surface. No larger, visible bubbles are formed and the system degasses through the bridge due to its higher local temperature. A detailed analysis of trace elements originating from beaker material, anode or the atmosphere is presented, showing that their influence on the overall conduction compared to the contribution of protons is negligible. Finally, an electrochemical rationale of high voltage electrolysis of low ionic strength solutions is presented. (paper)

  4. Proton production, neutralisation and reduction in a floating water bridge

    Science.gov (United States)

    Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Wiltsche, Helmar; Stanulewicz, Natalia; Lankmayr, Ernst; Woisetschläger, Jakob; Fuchs, Elmar C.

    2015-10-01

    This work reports on proton production, transport, reduction and neutralization in floating aqueous bridges under the application of a high dc voltage (‘floating water bridge’). Recently possible mechanisms for proton transfer through the bridge were suggested. In this work we visualize and describe the production of protons in the anolyte and their neutralization in the catholyte. Apart from that, protons are reduced to hydrogen due to electrolysis. Microbubbles are detached instantly, due to the electrohydrodynamic flow at the electrode surface. No larger, visible bubbles are formed and the system degasses through the bridge due to its higher local temperature. A detailed analysis of trace elements originating from beaker material, anode or the atmosphere is presented, showing that their influence on the overall conduction compared to the contribution of protons is negligible. Finally, an electrochemical rationale of high voltage electrolysis of low ionic strength solutions is presented.

  5. “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Jinhua [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Jeffrey A. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shkrob, Ilya A. [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Vijayakumar, M. [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Baofei [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Zheng [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Milshtein, Jarrod D. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liao, Chen [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Zhengcheng [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jun [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, Jeffery S. [Joint Center for Energy Storage Research, Argonne, IL (United States); Univ. of Illinois Urbana-Champaign, Urbana, IL (United States); Brushett, Fikile R. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Zhang, Lu [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Xiaoliang [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-24

    Redox-active organic materials (ROMs) have shown great promise for redox flow battery applications but generally encounter limited cycling efficiency and stability at relevant redox material concentrations in nonaqueous systems. Here we report a new heterocyclic organic anolyte molecule, 2,1,3-benzothiadiazole, that has high solubility, a low redox potential, and fast electrochemical kinetics. Coupling it with a benchmark catholyte ROM, the nonaqueous organic flow battery demonstrated significant improvement in cyclable redox material concentrations and cell efficiencies compared to the state-of-the-art nonaqueous systems. Especially, this system produced exceeding cyclability with relatively stable efficiencies and capacities at high ROM concentrations (>0.5 M), which is ascribed to the highly delocalized charge densities in the radical anions of 2,1,3-benzothiadiazole, leading to good chemical stability. As a result, this material development represents significant progress toward promising next-generation energy storage.

  6. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  7. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  8. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  9. Enhancing power density of biophotovoltaics by decoupling storage and power delivery

    Science.gov (United States)

    Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.

    2018-01-01

    Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.

  10. Some laws governing the electrosynthesis of organic compounds with a solid polymetric electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, N.A.; Avrutskaya, I.A.; Fioshin, M. Ya.; Khrizolitova, M.A.

    1986-01-01

    The electrosynthesis of organic compounds with a solid polymetric electrolyte (SPE) makes it possible to carry out the process in the absence of a supporting electrolyte. This facilitates the recovery of the desired product, eliminates the inorganic waste products, and allows a small interelectrode distance, and the absence of the accumulation of gases lowers the voltage in the cell. Some laws governing syntheses of SPE were studied in the example cases of the electrochemical reduction of 2,2,6,6-tetramethyl-4-oxopiperidine to 2,2,6,6-tetramethyl-4-hydroxy-piperidine, the reduction of triacetonamine oxime and triacetonamine azine to 2,2,6,6-tetramethyl-4- aminopiperidine and the oxidation of isobutanol to isobutyric acid. The electrolysis with an SPE was carried out under galvanostatic conditions in an electrolyzer of the filter-press type with forced circulation of the catholyte and anolyte. Low reaction rates are found to be characteristic of all the compounds investigated when the electrolysis is carried out with an SPE.

  11. Development of a membraneless ethanol/oxygen biofuel cell

    International Nuclear Information System (INIS)

    Topcagic, Sabina; Minteer, Shelley D.

    2006-01-01

    Biofuel cells are similar to traditional fuel cells, except the metallic electrocatalyst is replaced with a biological electrocatalyst. This paper details the development of an enzymatic biofuel cell, which employs alcohol dehydrogenase to oxidize ethanol at the anode and bilirubin oxidase to reduce oxygen at the cathode. This ethanol/oxygen biofuel cell has an active lifetime of about 30 days and shows power densities of up to 0.46 mW/cm 2 . The biocathode described in this paper is unique in that bilirubin oxidase is immobilized within a modified Nafion polymer that acts both to entrap and stabilize the enzyme, while also containing the redox mediator in concentrations large enough for self-exchange based conduction of electrons between the enzyme and the electrode. This biocathode is fuel tolerant, which leads to a unique fuel cell that employs both renewable catalysts and fuel, but does not require a separator membrane to separate anolyte from catholyte

  12. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  13. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    Science.gov (United States)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  14. Reaction Ensemble Molecular Dynamics: Direct Simulation of the Dynamic Equilibrium Properties of Chemically Reacting Mixtures

    Czech Academy of Sciences Publication Activity Database

    Brennan, J.K.; Lísal, Martin; Gubbins, K.E.; Rice, B.M.

    2004-01-01

    Roč. 70, č. 6 (2004), 0611031-0611034 ISSN 1063-651X R&D Projects: GA ČR GA203/03/1588 Grant - others:NSF(US) CTS-0211792 Institutional research plan: CEZ:AV0Z4072921 Keywords : reacting systems * simulation * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.352, year: 2004

  15. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  16. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications.

    Science.gov (United States)

    Stauber, Julia M; Zhang, Shiyu; Gvozdik, Nataliya; Jiang, Yanfeng; Avena, Laura; Stevenson, Keith J; Cummins, Christopher C

    2018-01-17

    An electrochemical cell consisting of cobalt ([Co II/III (P 3 O 9 ) 2 ] 4-/3- ) and vanadium ([V III/II (P 3 O 9 ) 2 ] 3-/4- ) bistrimetaphosphate complexes as catholyte and anolyte species, respectively, was constructed with a cell voltage of 2.4 V and Coulombic efficiencies >90% for up to 100 total cycles. The [Co(P 3 O 9 ) 2 ] 4- (1) and [V(P 3 O 9 ) 2 ] 3- (2) complexes have favorable properties for flow-battery applications, including reversible redox chemistry, high stability toward electrochemical cycling, and high solubility in MeCN (1.09 ± 0.02 M, [PPN] 4 [1]·2MeCN; 0.77 ± 0.06 M, [PPN] 3 [2]·DME). The [PPN] 4 [1]·2MeCN and [PPN] 3 [2]·DME salts were isolated as crystalline solids in 82 and 68% yields, respectively, and characterized by 31 P NMR, UV/vis, ESI-MS(-), and IR spectroscopy. The [PPN] 4 [1]·2MeCN salt was also structurally characterized, crystallizing in the monoclinic P2 1 /c space group. Treatment of 1 with [(p-BrC 6 H 4 ) 3 N] + allowed for isolation of the one-electron-oxidized spin-crossover (SCO) complex, [Co(P 3 O 9 ) 2 ] 3- (3), which is the active catholyte species generated during cell charging. The success of the 1-2 cell provides a promising entry point to a potential future class of transition-metal metaphosphate-based all-inorganic non-aqueous redox-flow battery electrolytes.

  17. PENGARUH JENIS ANODA PADA PROSES PEMULIHAN LOGAM NIKEL DARI TIRUAN AIR LIMBAH ELECTROPLATING MENGGUNAKAN SEL ELEKTRODEPOSISI

    Directory of Open Access Journals (Sweden)

    Djaenudin Dhaenudin

    2013-11-01

    Full Text Available EFFECT OF ANODES TYPES ON NICKEL RECOVERY FROM SYNTHETIC ELECTROPLATING WASTE ELECTRODEPOSITION CELLS. A study concerning the recovery of nickel from electroplating wastewater artificial solution. The study was conducted with a batch system using electrodeposition cell consisting of two spaces separated by water hyacinth leaf, copper cathode plate, H2SO4 solution anolyte, catholyte solution of NiSO4 plus NaCl supporting electrolyte and anode varied. Electrodeposition performed at the direct current of 5V power for 4 hours each run. The research objective was to obtain the best anode in nickel electrodeposition process of electroplating waste artificial solution. Graphite, stainless steel type AISI 316 and the lead were used as a variation of the anode. Concentration of nickel in the catholyte at baseline 2200 mg/L. The results showed that the anode was a graphite anode with best value decreased by 72.44% nickel concentration, deposition of nickel on the cathode of 0.188 grams and specific energy values ​​of 6.1625 kWh/kg.nickel.   Telah dilakukan penelitian tentang pemulihan logam nikel dari larutan tiruan air limbah electroplating. Penelitian dilakukan dengan sistem batch menggunakan sel elektrodeposisi yang terdiri dari dua ruang yang dipisahkan dengan daun eceng gondok, katoda pelat tembaga, anolit larutan H2SO4, katolit larutan NiSO4 ditambah elektrolit pendukung larutan NaCl dan anoda divariasikan. Elektrodeposisi dilakukan pada listrik searah sebesar 5V selama 4 jam setiap tempuhan. Tujuan penelitian adalah memperoleh anoda terbaik pada proses elektrodeposisi nikel dari larutan tiruan limbah electroplating. Grafit, Stainless Steel  tipe AISI 316 dan timbal digunakan sebagai variasi jenis anoda. Konsentrasi nikel dalam katolit pada awal penelitian 2200 mg/L. Hasil penelitian menunjukkan bahwa anoda grafit merupakan anoda yang paling baik dengan nilai penurunan konsentrasi nikel sebesar 72,44%, deposisi nikel di katoda sebesar 0

  18. Mechanism for Self-Reacted Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  19. Molecular Simulation of Reacting Systems; TOPICAL

    International Nuclear Information System (INIS)

    THOMPSON, AIDAN P.

    2002-01-01

    The final report for a Laboratory Directed Research and Development project entitled, Molecular Simulation of Reacting Systems is presented. It describes efforts to incorporate chemical reaction events into the LAMMPS massively parallel molecular dynamics code. This was accomplished using a scheme in which several classes of reactions are allowed to occur in a probabilistic fashion at specified times during the MD simulation. Three classes of reaction were implemented: addition, chain transfer and scission. A fully parallel implementation was achieved using a checkerboarding scheme, which avoids conflicts due to reactions occurring on neighboring processors. The observed chemical evolution is independent of the number of processors used. The code was applied to two test applications: irreversible linear polymerization and thermal degradation chemistry

  20. Study of subgrid-scale velocity models for reacting and nonreacting flows

    Science.gov (United States)

    Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.

    2018-05-01

    A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.

  1. Calorimetry of non-reacting systems

    CERN Document Server

    McCullough, John P

    2013-01-01

    Experimental Thermodynamics, Volume 1: Calorimetry of Non-Reacting Systems covers the heat capacity determinations for chemical substances in the solid, liquid, solution, and vapor states, at temperatures ranging from near the absolute zero to the highest at which calorimetry is feasible.This book is divided into 14 chapters. The first four chapters provide background information and general principles applicable to all types of calorimetry of non-reacting systems. The remaining 10 chapters deal with specific types of calorimetry. Most of the types of calorimetry treated are developed over a c

  2. REAC/TS radiation accident registry. Update of accidents in the United States

    International Nuclear Information System (INIS)

    Ricks, R.C.; Berger, M.E.; Holloway, E.C.; Goans, R.E.

    2000-01-01

    Serious injury due to ionizing radiation is a rare occurrence. From 1944 to the present, 243 US accidents meeting dose criteria for classification as serious are documented in the REAC/TS Registry. Thirty individuals have lost their lives in radiation accidents in the United States. The Registry is part of the overall REAC/TS program providing 24-hour direct or consultative assistance regarding medical and heath physics problems associated with radiation accidents in local, national, and international incidents. The REAC/TS Registry serves as a repository of medically important information documenting the consequences of these accidents. Registry data are gathered from various sources. These include reports from the World Heath Organization (WHO), International Atomic Energy Agency (IAEA), US Nuclear Regulatory Commission (US NRC), state radiological health departments, medical/health physics literature, personal communication, the Internet, and most frequently, from calls for medical assistance to REAC/TS, as part of our 24-hour medical assistance program. The REAC/TS Registry for documentation of radiation accidents serves several useful purposes: 1) weaknesses in design, safety practices, training or control can be identified, and trends noted; 2) information regarding the medical consequences of injuries and the efficacy of treatment protocols is available to the treating physician; and 3) Registry case studies serve as valuable teaching tools. This presentation will review and summarize data on the US radiation accidents including their classification by device, accident circumstances, and frequency by respective states. Data regarding accidents with fatal outcomes will be reviewed. The inclusion of Registry data in the IAEA's International Reporting System of Radiation Events (RADEV) will also be discussed. (author)

  3. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Nikolaou, Aris; Pentari, Despina; Gidarakos, Evangelos

    2009-01-01

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  4. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  5. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.

    Science.gov (United States)

    Choi, Chansoo; Hu, Naixu

    2013-04-01

    In this study, tetrachloroaurate as an electron acceptor of a microbial fuel cell (MFC) has been studied to discover the parameters that affect the cost-effective recovery of gold. The modeling and equations for calculating the maximum actual efficiency and electrochemical impedance spectroscopic internal resistance of the MFC were also developed. The maximum power density (Pmax) of 6.58 W/m(2) with a fill factor of 0.717 was achieved for 60 mL volumes of 2000 ppm Au(III) catholyte and 12.2 mM acetate anolyte, respectively. The Pmax can also be predicted simply by measuring Rint by EIS. Additionally, the maximum actual MFC efficiency of about 57% was achieved, and the recovery efficiency of Au and the remaining concentration reached 99.89±0.00% and 0.22±0.00 ppm, respectively, for an Au(III) concentration of 200 ppm. The anodic concentration polarization quenching of the MFC strongly supports a mediator mechanism for the electron transfer from the microorganism to the anode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Large-Eddy Simulations of Reacting Liquid Spray

    Science.gov (United States)

    Lederlin, Thomas; Sanjose, Marlene; Gicquel, Laurent; Cuenot, Benedicte; Pitsch, Heinz; Poinsot, Thierry

    2008-11-01

    Numerical simulation, which is commonly used in many stages of aero-engine design, still has to demonstrate its predictive capability for two-phase reacting flows. This study is a collaboration between Stanford University and CERFACS to perform LES of a realistic spray combustor installed at ONERA, Toulouse. The experimental configuration is computed on the same unstructured mesh with two different solvers: Stanford's CDP code and CERFACS's AVBP code. CDP uses a low-Mach, variable-density solver with implicit time advancement. Droplets are tracked in a Lagrangian point-particle framework. The combustion model uses a flamelet approach, based on two transported scalars, mixture fraction and reaction progress variable. AVBP is a fully compressible solver with explicit time advancement. The liquid phase is described with an Eulerian method. The flame-turbulence interaction is modeled using a dynamically-thickened flame. Results are compared with experimental data for three regimes: purely gaseous non-reacting flow, non-reacting flow with evaporating droplets, reacting flow with droplets. Both simulations show a good agreement with experimental data and also stress the difference and relative advantages of the numerical methods.

  7. A Hybrid Mineral Battery: Energy Storage and Dissolution Behavior of CuFeS2 in a Fixed Bed Flow Cell.

    Science.gov (United States)

    Deen, Kashif Mairaj; Asselin, Edouard

    2018-05-09

    The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS 2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H 2 SO 4 ) and catholyte (0.5 m Fe 2+ in 0.2 m H 2 SO 4 with or without 0.1 m Cu 2+ ) were circulated in the cell. The electrochemical activity of the Fe 2+ /Fe 3+ redox couple over graphite felt significantly improved after the addition of Cu 2+ in the catholyte. Ultimately, in the CuFeS 2 ∥Fe 2+ /Cu 2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g -1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS 2 ∥Fe 2+ (CFe) system (13.9 mAh g -1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg -1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg -1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  9. Study of transport and micro-structural properties of magnesium di-boride strand under react and bend mode and bend and react mode

    International Nuclear Information System (INIS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Pradhan, Subrata

    2015-01-01

    I-V characterization of commercial multi-filamentary Magnesium Di-Boride (MgB 2 ) wire of diameter 0.83 mm were studied in cryocooler based self-field characterization system under both react and bent mode and bent and react mode for a range of temperature 6 K - 25 K. This study is of practical technical relevance where the heat treatment of the superconducting wire makes the sample less flexible for winding in magnet and in other applications. There are limited reported data, available on degradation of MgB 2 wire with bending induced strain in react and wind and wind and react method. In the present work the bending diameter were varied from 80 mm to 20 mm in the interval of 10 mm change of bending diameter and for each case critical current (Ic) of the strand is measured for the above range of temperature. An ETP copper made customized sample holder for mounting the MgB 2 strand was fabricated and is thermally anchored to the cooling stage of the cryocooler. It is seen from the experimental data that in react and bent mode the critical current degrades from 105 A to 87 A corresponding to bending diameter of 80 mm and 20 mm respectively. The corresponding bending strain was analytically estimated and compared with the simulation result. It is also observed that in react and bent mode, the degradation of the transport property of the strand is less as compared to react and bent mode. For bent and react mode in the same sample, the critical current (Ic) was measured to be ∼145 A at 15 K for bending diameter of 20 mm. Apart from studying the bending induced strain on MgB 2 strand, the tensile test of the strand at RT was carried out. The electrical characterizations of the samples were accompanied by the microstructure analyses of the bent strand to examine the bending induced degradation in the grain structure of the strand. All these experimental findings are expected to be used as input to fabricate prototype MgB 2 based magnet. (author)

  10. Reacting plasma project at IPP Japan

    International Nuclear Information System (INIS)

    Miyahara, A.; Momota, H.; Hamada, Y.; Kawamura, K.; Akimune, H.

    1981-01-01

    Contributed papers of the seminar on burning plasma held at UCLA are collected. Paper on ''overview of reacting plasma project'' described aim and philosophy of R-Project in Japan. Paper on ''Burning plasma and requirements for design'' gave theoretical aspect of reacting plasma physics while paper on ''plasma container, heating and diagnostics'' treated experimental aspect. Tritium handling is essential for the next step experiment; therefore, paper on ''Tritium problems in burning plasma experiments'' took an important part of this seminar. As appendix, paper on ''a new type of D - ion source using Si-semiconductor'' was added because such an advanced R and D work is essential for R-Project. (author)

  11. Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Paul Charles; Rodriguez, Mark Andrew; Segall, Judith M.; Malizia, Louis A., Jr.; Cherry, Brian Ray; Andrews, Nicholas L.; Clark, Nancy H.; Alam, Todd Michael; Ingersoll, David T.; Tallant, David Robert; Simpson, Regina Lynn; Boyle, Timothy J.; Garcia, Manuel Joseph

    2004-05-01

    Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2

  12. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    Science.gov (United States)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  13. LES-ODT Simulations of Turbulent Reacting Shear Layers

    Science.gov (United States)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  14. Cross-reacting and heterospecific monoclonal antibodies produced against arabis mosaic nepovirus.

    Science.gov (United States)

    Frison, E A; Stace-Smith, R

    1992-10-01

    Monoclonal antibodies (MAbs) were produced against arabis mosaic nepovirus (AMV). A hybridoma screening procedure was applied which involved the testing of culture supernatants, before the hybridomas were cloned to single cell lines, for their reaction with eight nepoviruses [AMV, cherry leafroll virus (CLRV), grapevine fanleaf virus (GFLV), peach rosette mosaic virus, raspberry ringspot virus (RRSV), tobacco ringspot virus, tomato black ring virus (TBRV) and tomato ringspot virus]. In addition to AMV-specific MAbs, this screening technique has allowed the selection of two cross-reacting MAbs: one reacting with AMV and GFLV, and one reacting with AMV and RRSV. This is the first report of MAbs cross-reacting with these nepoviruses. In addition, five heterospecific MAbs (HS-MAbs) could be selected: two reacting with RRSV, two with CLRV and one with TBRV. The usefulness of the screening technique that was applied for the selection of cross-reacting MAbs and HS-MAbs, and the potential use of such antibodies are discussed.

  15. Fungal decay resistance of wood reacted with phosphorus pentoxide-amine system

    Science.gov (United States)

    Hong-Lin Lee; George C. Chen; Roger M. Rowell

    2004-01-01

    Resistance of wood reacted in situ with phosphorus pentoxide-amine to the brown-rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolor was examined. Wood reacted with either octyl, tribromo, or nitro derivatives were more resistant to both fungi. Threshold retention values of phosphoramide-reacted wood to white-rot fungus T. versicolor ranged from 2.9...

  16. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  17. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi, E-mail: haryadi@polban.ac.id [Department of Chemical Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Gunawan, Y. B.; Harjogi, D. [Department of Electronic Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Mursid, S. P. [Department of Energy Engineering, PoliteknikNegeri Bandung. Jl. GegerkalongHilir, Ds, Ciwaruga, Bandung, West Java Indonesia (Indonesia)

    2016-04-19

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  18. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    International Nuclear Information System (INIS)

    Haryadi; Gunawan, Y. B.; Harjogi, D.; Mursid, S. P.

    2016-01-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  19. The REACT Project

    DEFF Research Database (Denmark)

    Bloch, Paul; Blystad, Astrid; Byskov, Jens

    decisions; and the provision of leadership and the enforcement of conditions. REACT - "REsponse to ACcountable priority setting for Trust in health systems" is an EU-funded five-year intervention study, which started in 2006 testing the application and effects of the AFR approach in one district each...... selected disease and programme interventions and services, within general care and on health systems management. Efforts to improve health sector performance have not yet been satisfactory, and adequate and sustainable improvements in health outcomes have not been shown. Priority setting in health systems...... improvements to health systems performance discussed....

  20. A constitutive theory of reacting electrolyte mixtures

    Science.gov (United States)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  1. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  2. Characterization of forced response of density stratified reacting wake

    Science.gov (United States)

    Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim

    2018-02-01

    The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.

  3. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  4. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1983-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms were centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure was 1/3 kbar. All prisms showed large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration reacted readily to clays at all temperatures. The first four prisms were coated with a calcium smectite, and the last two prisms were covered with discrete patches of potassium-rich phengite and alkali feldspar. The results indicated that clays may act as adsorbers of various ions

  5. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1982-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms are centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure is 1/3 kbar. All prisms show large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration readily reacts to clays at all temperatures. The first four prisms are coated with a Ca-smectite while the last two prisms are covered with discrete patches of K rich phengite and alkali feldspar. The clays may act as adsorbers of various ions

  6. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  7. An experimental and numerical study of confined non-reacting and reacting turbulent jets to facilitate homogeneous combustion in industrial furnaces

    Science.gov (United States)

    Lee, Insu

    Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle

  8. ReACT!: An Interactive Educational Tool for AI Planning for Robotics

    Science.gov (United States)

    Dogmus, Zeynep; Erdem, Esra; Patogulu, Volkan

    2015-01-01

    This paper presents ReAct!, an interactive educational tool for artificial intelligence (AI) planning for robotics. ReAct! enables students to describe robots' actions and change in dynamic domains without first having to know about the syntactic and semantic details of the underlying formalism, and to solve planning problems using…

  9. Three-dimensional anode engineering for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, A.; Oloman, C.W.; Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2009-09-05

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 {mu}m, while a novel flow-by anode showed the best performance with a thickness of 200-300 {mu}m. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2{sup 3} + 1) factorial experiments on a cell with anode area of 5 cm{sup 2} and excess oxidant O{sub 2} at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm{sup 3} min{sup -1} and 353 K the peak power density was 2380 W m{sup -2} with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m{sup -2} under the same conditions. (author)

  10. Three-dimensional anode engineering for the direct methanol fuel cell

    Science.gov (United States)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  11. Continuum-Kinetic Hybrid Framework for Chemically Reacting Flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Predictive modeling of chemically reacting flows is essential for the design and optimization of future hypersonic vehicles. During atmospheric re-entry, complex...

  12. Study of Transport and Micro-structural properties of Magnesium Di-Boride Strand under react and bend mode and bend and react mode

    International Nuclear Information System (INIS)

    Kundu, Ananya; Kumar Das, Subrat; Bano, Anees; Pradhan, Subrata

    2017-01-01

    I-V characterization of commercial multi-filamentary Magnesium Di-Boride (MgB 2 ) wire of diameter 0.83 mm were studied in Cryocooler at self-field I-V characterization system under both react and bend mode and bend and react mode for a range of temperature 6 K - 25 K. This study is of practical technical relevance where the heat treatment of the superconducting wire makes the wire less flexible for winding in magnet and in other applications. In the present work the bending diameter was varied from 40 mm to 20 mm and for each case critical current (I c ) of the strand is measured for above range of temperature. A customized sample holder is fabricated and thermally anchored with the 2 nd cold stage of Cryocooler. It is observed from the measurement that the strand is more susceptible to degradation for react and bend cases. The transport measurement of the strand was accompanied by SEM analyses of bend samples. Also the tensile strength of the raw strands and the heat treated strands were carried out at room temperature in Universal Testing Machine (UTM) to have an estimate about the limiting winding tension value during magnet fabrication. (paper)

  13. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    Science.gov (United States)

    2018-02-09

    AFRL-RV-PS- TR-2018-0056 AFRL-RV-PS- TR-2018-0056 DEMONSTRATION OF HYBRID DSMC-CFD CAPABILITY FOR NONEQUILIBRIUM REACTING FLOW Thomas E...4. TITLE AND SUBTITLE Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9453-17-1...simulation codes. The models are based on new ab-intio rate data obtained using state -of-the-art potential energy surfaces for air species. A probability

  14. An experimental study on downstream of the transition of the chemically reacting liquid round free jet

    International Nuclear Information System (INIS)

    Hong, S.D.; Sugii, Y.; Okamoto, K.; Madarame, H.

    2002-01-01

    An experimental study was conducted on the chemically reacting liquid round free jet, Laser Induced Fluorescence (LIF) technique was adopted to evaluate the diffusion width of the jet into liquid streams. In the fluid engineering, it is very important to evaluate the characteristics of reacting jet for the safety of the nuclear reactor. In this study, the jet profile of downstream region far away from the transition point was evaluated, providing comparisons between reacting and non-reacting jet case. The concentration of the jet solution was varied from 0.01 mol/L to 0.5 mol/L in reacting cases. In the downstream far away from the transition point, the jet profiles between reacting cases and non-reacting cases were visualized quite different. It was concluded that the chemical reaction affects the momentum diffusion of the jet in the downstream region. (author)

  15. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    Science.gov (United States)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky

  16. Extension of a semi-implicit shock-capturing algorithm for 3-D fully coupled, chemically reacting flows in generalized coordinates

    International Nuclear Information System (INIS)

    Shinn, J.L.; Yee, H.C.; Uenishi, K.; NASA, Ames Research Center, Moffett Field, CA; Vigyan Research Associates, Inc., Hampton, VA)

    1987-01-01

    A semiimplicit high-resolution shock-capturing method for multidimensional systems of hyperbolic conservation laws with stiff source terms has been developed by Yee and Shinn (1987). The goal of this work is to extend this method to solve the three-dimensional fully coupled Navier-Stokes equations for a hypersonic chemically reacting flow in generalized coordinates. In this formulation, the global continuity equation was replaced by all the species continuity equations. The shock-capturing technique is a second-order-accurate, symmetric total-variation-diminishing method which accounts fully and directly for the coupling among the fluid and all the species. To verify the current approach, it was implemented into an existing computer code which contained the MacCormack method. Test results for a five-species reacting flow are shown to be oscillation-free around the shock, and the time spent per iteration only doubles when compared to the result using classical way of supplying numerical dissipation. The extra computation is more than justified by the elimination of spurious oscillation and nonlinear instability associated with the classical shock-capturing schemes in computing hypersonic reacting flows. 27 references

  17. Improving Resilience to Emergencies through Advanced Cyber Technologies: the I-REACT project

    Directory of Open Access Journals (Sweden)

    Claudia Maltoni

    2017-08-01

    be equipped with essential tools for early warning and response. At the same time, private companies could leverage specific set of I-REACT components to improve their business, when linked to disaster management. Overall, I-REACT aims to be a European-wide contribution to build more secure and resilient societies to disasters.

  18. KEEFEKTIFAN STRATEGI REACT DITINJAU DARI PRESTASI BELAJAR, KEMAMPUAN PENYELESAIAN MASALAH, KONEKSI MATEMATIS, SELF EFFICACY

    Directory of Open Access Journals (Sweden)

    Runtyani Irjayanti Putri

    2015-11-01

    Full Text Available Penelitian ini bertujuan untuk: (1 mendeskripsikan keefektifan strategi pembelajaran REACT pada pembelajaran turunan fungsi ditinjau dari prestasi belajar matematika, kemampuan penyelesaian masalah matematis, kemampuan koneksi matematis, dan Self efficacy siswa SMA Negeri 4 Magelang, (2 menentukan strategi pembelajaran yang lebih efektif diantara strategi REACT dan pembelajaran konvensional pada pembelajaran turunan fungsi ditinjau dari aspek prestasi belajar matematika, kemampuan penyelesaian masalah matematis, kemampuan koneksi matematis, dan Self efficacy siswa SMA Negeri 4 Magelang. Penelitian ini adalah penelitian quasi experiment. Teknik pengumpulan data yang digunakan adalah teknik tes dan nontes. Teknik analisis data yang digunakan adalah uji one sample t-test, uji T2 Hotelling’s, dan uji t-Bonferroni. Hasil penelitian menunjukkan bahwa: (1 strategi pembelajaran REACT efektif pada pembelajaran turunan fungsi ditinjau dari prestasi belajar matematika, kemampuan penyelesaian masalah matematis, kemampuan koneksi matematis, dan Self efficacy siswa SMA Negeri 4 Magelang, dan (2 strategi pembelajaran REACT lebih efektif daripada pembelajaran konvensional pada pembelajaran turunan fungsi ditinjau dari aspek prestasi belajar matematika, kemampuan penyelesaian masalah matematis, kemampuan koneksi matematis, dan Self efficacy siswa SMA Negeri 4 Magelang. Kata Kunci: strategi REACT, prestasi belajar, kemampuan penyelesaian masalah matematis, kemampuan koneksi matematis, dan Self efficacy siswa SMA   THE EFFECTIVENESS OF REACT STRATEGY VIEWED FROM LEARNING ACHIEVEMENT, PROBLEM SOLVING ABILITY, MATHEMATICAL CONNECTION, SELF EFFICACY Abstract The aims of this study are to: (1 to describe the effectiveness of the REACT strategy viewed from Mathematics Learning Achievement, Mathematics Problem Solving Ability, Mathematics Connection Ability, and Student Self efficacy of State Senior High School 4 Magelang Students, and (2 determine a more effective

  19. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  20. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics.

    Science.gov (United States)

    Rudik, Anastasia V; Dmitriev, Alexander V; Lagunin, Alexey A; Filimonov, Dmitry A; Poroikov, Vladimir V

    2016-01-01

    The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with the term "reacting atom", corresponding to a single atom in the substrate that is modified during the biotransformation reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions is necessary to generate drug metabolites. Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure-activity relationships. The average invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human isoforms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average). We report that reacting atoms may be predicted with reasonable accuracy for the major classes of metabolic reactions

  1. Numerical simulation of reacting and non-reacting flow in a combustion chamber; Numerisk simulering av reagerande och icke-reagerande stroemning i en braennkammare

    Energy Technology Data Exchange (ETDEWEB)

    Borg, A.; Revstedt, J.

    1996-04-01

    The purpose of this work has been to do a preliminary study of how well numerical calculations with different turbulence models can predict the flow and temperature fields of a strongly swirling and combusting flow in an experimental combustion chamber and to see which parameters in the mathematical model are the most important. The combustion chamber on which we have done the calculations is called Validation Rig II and was designed by Volvo Aero Corporation. The main part of the study has been carried out on a non-reacting flow but some work has also been done on reacting flow. In most cases it has not been meaningful to compare the calculations with the measurements because they differ quite a lot from each other. For the non-reacting case the following investigations have been made: * How the solution differs for different turbulence models, * The solutions sensitivity to inlet boundary conditions, * How different types of leakage disturb the flow, and * The difference in results between two different CFD-codes, the commercial code CFDS-Flow3D and a code developed at the department of fluid mechanics. For the reacting cases we have studied the influence of: * one or two reaction steps, * the effects of a change in reaction rate, * the influence of thermal radiation, and * the effects of changing the boundary conditions for temperature on the walls. The results from these calculations show that the inlet turbulence intensity has very little effect on the values of the turbulent quantities as well as the velocity profiles at the outlet. Changing the turbulence model or the outlet boundary conditions gives some change in velocity profiles at the outlet but only marginal effects on the swirl number. 21 refs, 54 figs, 19 tabs

  2. High Efficiency Semi-Fuel Cell Incorporating an Ion Exchange Membrane

    National Research Council Canada - National Science Library

    Medeiros, Maria G; Dow, Eric G; Bessette, Russell R; Yan, Susan G; Dischert, Dwayne W

    2004-01-01

    It is a general purpose and object of the present invention to eliminate the parasitic direct reaction of the catholyte with the metal anode in a semi-fuel cell, thereby improving the overall energy...

  3. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav; Lima, Ana Teresa; Kleingeld, Pieter J.

    2010-01-01

    -osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a

  4. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows

    International Nuclear Information System (INIS)

    Zhao, S.; Lardjane, N.; Fedioun, I.

    2014-01-01

    Improved WENO schemes, Z, M, and their combination MZ, originally designed to capture sharper discontinuities than the classical fifth order Jiang-Shu scheme does, are evaluated for the purpose of implicit large eddy simulation of free shear flows. 1D Fourier analysis of errors reveals the built-in filter and dissipative properties of the schemes, which are subsequently applied to the canonical Rayleigh-Taylor and Taylor-Green flows. Large eddy simulations of a transonic non-reacting and a supersonic reacting air/H2 jets are then performed at resolution 128 * 128 * 512, showing no significant difference in the flow statistics. However, the computational time varies from one scheme to the other, the Z scheme providing the smaller wall-time due to larger allowed time steps. (authors)

  5. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    Science.gov (United States)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  6. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    Science.gov (United States)

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  7. Nb3Sn dipole magnet reacted after winding

    International Nuclear Information System (INIS)

    Taylor, C.; Scanlan, R.; Peters, C.; Wolgast, R.; Gilbert, W.; Hassenzahl, W.; Meuser, R.; Rechen, J.

    1984-09-01

    A 5 cm bore dia., 1-m-long dipole model magnet was constructed by winding un-reacted cable, followed by reaction and epoxy-impregnation. Experience and test results are described on the 1.7 mm dia. internal-tin wire, the eleven-strand flattened cable, fiberglass insulation, and construction of the magnet. Each half of the magnet has two double-pancake-type windings that were reacted in a single operation. The two double-pancakes were then separately vacuum impregnated after soldering the flexible Nb-Ti leads to the Nb 3 Sn conductors. No iron flux return yoke was used. In initial tests a central field of 8.0 T was reached at 4.4 K. However, evidence from training behavior, and 1.8 K tests indicate that premature quenching, rather than critical current of the cable, limited the field intensity. The magnet was reassembled and more rigidly clamped; additional test results are reported

  8. Possible effects of small-scale intermittency in turbulent reacting flows

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.

    2006-12-01

    It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale 'intermittency' on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here. (author)

  9. A stochastic model of particle dispersion in turbulent reacting gaseous environments

    Science.gov (United States)

    Sun, Guangyuan; Lignell, David; Hewson, John

    2012-11-01

    We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.

  10. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor.

    Science.gov (United States)

    Zhang, Hui-Min; Fan, Zheng; Xu, Wei; Feng, Xiao; Wu, Zu-Cheng

    2017-09-15

    The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered. Taking an example of removal of 100mgL -1 gold in 0.5M HAc-NaAc buffer solution as the catholyte, 2.0M ethanol in 1.0M alkaline solution as the anolyte, an open circuit voltage of 1.4V, more than 96% of gold removal efficiency in 20h, and equivalent energy production of 2.0kWhkg -1 of gold can be readily achieved in this system. When gold and copper ions coexist, it was confirmed that metallic Cu is formed on the cathodic electrode later than metallic Au formation by XPS analysis. Thus, this system can achieve step by step electrodeposition of gold and copper while the two metal ions coexisting. This work develops a new approach to retrieve valuable metals from aqueous solution or e-wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electrochemical migration technique to accelerate ageing of cementitious materials

    Directory of Open Access Journals (Sweden)

    Abbas Z.

    2013-07-01

    Full Text Available Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen’s micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  12. Electrochemical migration technique to accelerate ageing of cementitious materials

    Science.gov (United States)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  13. Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip

    Science.gov (United States)

    González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus

    2016-09-01

    This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.

  14. Keefektifan Strategi Pembelajaran React Pada Kemampuan Siswa Kelas VII Aspek Komunikasi Matematis

    Directory of Open Access Journals (Sweden)

    A.T. Arifin

    2014-06-01

    Full Text Available AbstrakTujuan penelitian ini adalah mengetahui pembelajaran dengan strategi REACT efektif ter-hadap kemampuan komunikasi matematis siswa. Metode pengumpulan data dilakukan de-ngan metode dokumentasi, tes, dan observasi. Hasil uji proporsi menunjukkan bahwa hasil belajar siswa kelas eksperimen pada aspek kemampuan komunikasi matematis telah men-capai ketuntasan klasikal, mencapai lebih dari 80 % yaitu sebesar 96,7%. Dilihat dari nilai rata-rata tes kemampuan komunikasi matematis kelas eksperimen  adalah 83,61 sedangkan kelas kontrol adalah 73,79 dapat disimpulkan bahwa kemampuan komunikasi matematis siswa kelas eksperimen lebih baik daripada kemampuan komunikasi matematis siswa kon-trol. Hasil penelitian menunjukkan bahwa penerapan strategi pembelajaran REACT efektif terhadap kemampuan komunikasi matematis siswa materi segiempat kelas VII SMP Negeri 1 Gembong. Kata kunci:      keefektifan, kemampuan komunikasi matematis, Relating Experiencing Applying Cooperating Transferring (REACT  AbstractThe purpose of this study was to determine the effectiveness of the application of REACT learning strategy approach to mathematic communication ability of students. Methods of data collection is done by the method of documentation, testing, and observation. The test results showed that the proportion of student learning outcomes in the experimental class with the aspects of mathematic communication ability has reached the classical completeness, reached more than 80% is equal to 96.7%. Judging from the value of the average test learners' ability to mathematic communication experimental class was 83.61 while the control class is 73.79 it can be concluded that the mathematic communication skills of learners experimental classes are better than mathematic communication abilities of learners control class. The results showed that the application of REACT learning strategy approach effective to mathematic communication abilities of students of class VII

  15. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  16. Developing Dynamic Single Page Web Applications Using Meteor : Comparing JavaScript Frameworks: Blaze and React

    OpenAIRE

    Yetayeh, Asabeneh

    2017-01-01

    This paper studies Meteor which is a JavaScript full-stack framework to develop interactive single page web applications. Meteor allows building web applications entirely in JavaScript. Meteor uses Blaze, React or AngularJS as a view layer and Node.js and MongoDB as a back-end. The main purpose of this study is to compare the performance of Blaze and React. A multi-user Blaze and React web applications with similar HTML and CSS were developed. Both applications were deployed on Heroku’s w...

  17. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells

    KAUST Repository

    Ribot-Llobet, Edgar; Nam, Joo-Youn; Tokash, Justin C.; Guisasola, Albert; Logan, Bruce E.

    2013-01-01

    Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS 2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using two-chamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m3 H2/m 3·d, which was only slightly less than that using Pt (1.4 m3 H2/m3·d), but larger than that obtained with SSW (0.52 m3 H2/m3·d) or MoS2 (0.67 m3 H2/m3·d). Overall hydrogen gas recoveries with SSW (29.7 ± 0.5 mL), MoS2 (28.6 ± 1.3 mL) and NF (32.4 ± 2 mL) were only slightly less than that of Pt (37.9 ± 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 ± 0.02 for Pt, to 0.55 ± 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than -0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt.

  18. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells

    KAUST Repository

    Ribot-Llobet, Edgar

    2013-03-01

    Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS 2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using two-chamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m3 H2/m 3·d, which was only slightly less than that using Pt (1.4 m3 H2/m3·d), but larger than that obtained with SSW (0.52 m3 H2/m3·d) or MoS2 (0.67 m3 H2/m3·d). Overall hydrogen gas recoveries with SSW (29.7 ± 0.5 mL), MoS2 (28.6 ± 1.3 mL) and NF (32.4 ± 2 mL) were only slightly less than that of Pt (37.9 ± 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 ± 0.02 for Pt, to 0.55 ± 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than -0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt.

  19. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  20. Capillary Isoelectric Focusing-Mass Spectrometry Method for the Separation and Online Characterization of Intact Monoclonal Antibody Charge Variants.

    Science.gov (United States)

    Dai, Jun; Lamp, Jared; Xia, Qiangwei; Zhang, Yingru

    2018-02-06

    We report a new online capillary isoelectric focusing-mass spectrometry (CIEF-MS) method for monoclonal antibody (mAb) charge variant analysis using an electrokinetically pumped sheath-flow nanospray ion source and a time-of-flight MS with pressure-assisted chemical mobilization. To develop a successful, reliable CIEF-MS method for mAb, we have selected and optimized many critical, interrelating reagents and parameters that include (1) MS-friendly anolyte and catholyte; (2) a glycerol enhanced sample mixture that reduced non-CIEF electrophoretic mobility and band broadening; (3) ampholyte selected for balancing resolution and MS sensitivity; (4) sheath liquid composition optimized for efficient focusing, mobilization, and electrospray ionization; (5) judiciously selected CIEF running parameters including injection amount, field strength, and applied pressure. The fundamental premise of CIEF was well maintained as verified by the linear correlation (R 2 = 0.99) between pI values and migration time using a mixture of pI markers. In addition, the charge variant profiles of trastuzumab, bevacizumab, infliximab, and cetuximab, obtained using this CIEF-MS method, were corroborated by imaged CIEF-UV (iCIEF-UV) analyses. The relative standard deviations (RSD) of absolute migration time of pI markers were all less than 5% (n = 4). Triplicate analyses of bevacizumab showed RSD less than 1% for relative migration time to an internal standard and RSD of 7% for absolute MS peak area. Moreover, the antibody charge variants were characterized using the online intact MS data. To the best of our knowledge, this is the first time that direct online MS detection and characterization were achieved for mAb charge variants resolved by CIEF as indicated by a well-established linear pH gradient and correlated CIEF-UV charge variant profiles.

  1. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  2. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  3. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection.

    Science.gov (United States)

    Gianaroli, Luca; Magli, M Cristina; Ferraretti, Anna P; Crippa, Andor; Lappi, Michela; Capitani, Serena; Baccetti, Baccio

    2010-02-01

    To verify clinical outcome after injection of spermatozoa that have undergone the acrosome reaction (reacted spermatozoa) vs. those still having an intact acrosome (nonreacted spermatozoa). Prospective, randomized study. Reproductive Medicine Unit, Italian Society for the Study of Reproductive Medicine, Bologna, Italy. According to a prospective randomization including 71 couples with severe male factor infertility, intracytoplasmic sperm injection (ICSI) was performed under polarized light that permitted analysis of the pattern of birefringence in the sperm head. Twenty-three patients had their oocytes injected with reacted spermatozoa, 26 patient's oocytes were injected with nonreacted spermatozoa, and in 22 patients both reacted and nonreacted spermatozoa were injected. Intracytoplasmic sperm injection was performed under polarized light to selectively inject acrosome-reacted and acrosome-nonreacted spermatozoa. Rates of fertilization, cleavage, pregnancy, implantation, and ongoing implantation. There was no effect on the fertilizing capacity and embryo development of either type of sperm, whereas the implantation rate was higher in oocytes injected with reacted spermatozoa (39.0%) vs. those injected with nonreacted spermatozoa (8.6%). The implantation rate was 24.4% in the group injected with both reacted and nonreacted spermatozoa. The delivery rate per cycle followed the same trend. Spermatozoa that have undergone the acrosome reaction seem to be more prone to supporting the development of viable ICSI embryos. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  5. Differing Event-Related Patterns of Gamma-Band Power in Brain Waves of Fast- and Slow-Reacting Subjects

    Science.gov (United States)

    1994-05-01

    Wilhelm Wundt proposed that there are two types of subjects in sim- ple RT experiments: fast-reacting subjects, who respond before they fully...quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects...accord with the hypothesis of Wundt and others that slower ("sensorial") responders wait to fully perceive a stimulus and then react to their perception

  6. Direct synthesis of some significant metal alkoxides

    International Nuclear Information System (INIS)

    Emilio, Gule Buyu

    1998-11-01

    Investigations were carried out with an attempt to study direct synthesis of metal alkoxides from elemental metals and appropriate alcohols. These were done by reacting representative metals of group I, II, III 7 IV (which are Na, Mg, Al and Sn respectively) directly with dry ethanol and dry isopropanol. The products were then analysed by infrared spectrophotometer to meter to identify metal alkoxides formed. Ethanol was found to have more acidic character in reactions with these metals than isopropanol, thus its reactions with the metals were faster. Reduction in the acidic character of isopropanol, a secondary alcohol, could be due to the existence off more alkyl groups in the molecule which displays +1 inductive effect. For the same alcohol the metals reactions were found to decrease with increase in electronegativity of the metals. Sodium being the least electronegative metal reacted fasted while tin the more electronegative metal reacted slowest. Mg, Al and Sn required a catalyst,, mercury (II) chloride and heat in order to initiate and drive the reactions completion. The alkoxides formed were found to be soluble to a certain extent in the tow alcohols and the order of solubility is such that Sn≥ Al ≥ Mg ≥ Na.(Author)

  7. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  8. Study on flow characteristics of chemically reacting liquid jet

    International Nuclear Information System (INIS)

    Hong Seon Dae; Okamoto, Koji; Takata, Takashi; Yamaguchi, Akira

    2004-07-01

    Tube rupture accidents in steam generators of sodium-cooled fast breeder reactors are important for safety because the rupture may propagates to neighboring tubes due to sodium-water reaction. In order to clarify the thermal-hydraulic phenomena in the accidents, the flow pattern and the interface in multi-phase flow must be investigated. The JNC cooperative research scheme on the nuclear fuel cycle with the University of Tokyo has been carried to develop a simultaneous measurement system of concentration and velocity profiles and to evaluate influence of chemical reaction on mixing phenomena. In the experiments, aqueous liquor of acetic acid and ammonium hydroxide are selected as a simulant fluid instead of liquid sodium and water vapor. The following conclusions are obtained in this research. Laser Induced Fluorescence (LIF) technique was adopted to measure reacting zone and pH distribution in chemically reacting liquid round free jet. As a result, it was found that the chemical reaction, which took place at the interface between the jet and outer flow, suppressed the mixing phenomenon (in 2001 research). Dynamic Particle Image Velocimetry (PIV) method was developed to measure instantaneous velocity profile with high temporal resolution. In the Dynamic PIV, a high-speed video camera coupled with a high-speed laser pulse generator was implemented. A time-line trend of interfacial area in the free jet was investigated with the Dynamic PIV. This technique was also applied to a complicated geometry (in 2002 research). A new algorithms for image analysis was developed to evaluated the Dynamic PIV data in detail. The characteristics of the mixing phenomenon with reacting jet such as the turbulent kinetic energy and the Reynolds stress were estimated in a spatial and temporal spectrum (in 2003 research). (author)

  9. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    Science.gov (United States)

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found

  10. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  11. Does the StartReact Effect Apply to First-Trial Reactive Movements?

    Directory of Open Access Journals (Sweden)

    Katrin Sutter

    Full Text Available StartReact is the acceleration of reaction time by a startling acoustic stimulus (SAS. The SAS is thought to release a pre-prepared motor program. Here, we investigated whether the StartReact effect is applicable to the very first trial in a series of repeated unpractised single-joint movements.Twenty healthy young subjects were instructed to perform a rapid ankle dorsiflexion movement in response to an imperative stimulus. Participants were divided in two groups of ten. Both groups performed 17 trials. In one group a SAS (116 dB was given in the first trial, whereas the other group received a non-startling sound (70 dB as the first imperative stimulus. In the remaining 16 trials, the SAS was given as the imperative stimulus in 25% of the trials in both groups. The same measurement was repeated one week later, but with the first-trial stimuli counterbalanced between groups.When a SAS was given in the very first trial, participants had significantly shorter onset latencies compared to first-trial responses to a non-startling stimulus. Succeeding trials were significantly faster compared to the first trial, both for trials with and without a SAS. However, the difference between the first and succeeding trials was significantly larger for responses to a non-startling stimulus compared to responses triggered by a SAS. SAS-induced acceleration in the first trial of the second session was similar to that in succeeding trials of session 1.The present results confirm that the StartReact phenomenon also applies to movements that have not yet been practiced in the experimental context. The excessive SAS-induced acceleration in the very first trial may be due to the absence of integration of novel context-specific information with the existing motor memory for movement execution. Our findings demonstrate that StartReact enables a rapid release of motor programs in the very first trial also without previous practice, which might provide a behavioural

  12. Low Mach number asymptotics for reacting compressible fluid flows

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Petzeltová, Hana

    2010-01-01

    Roč. 26, č. 2 (2010), s. 455-480 ISSN 1078-0947 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : low Mach number * Navier-Stokes-Fourier system * reacting fluids Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4660

  13. Rule-Based Multidisciplinary Tool for Unsteady Reacting Real-Fluid Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A design and analysis computational tool is proposed for simulating unsteady reacting flows in combustor devices used in reusable launch vehicles. Key aspects...

  14. Double shock experiments and reactive flow modeling on LX-17 to understand the reacted equation of state

    International Nuclear Information System (INIS)

    Vandersall, Kevin S; Garcia, Frank; Fried, Laurence E; Tarver, Craig M

    2014-01-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.

  15. Numerical simulation of low Mach number reacting flows

    International Nuclear Information System (INIS)

    Bell, J B; Aspden, A J; Day, M S; Lijewski, M J

    2007-01-01

    Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures

  16. REAC/TS Radiation Accident Registry: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Doran M. Christensen, DO, REAC/TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

    2012-12-12

    Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an “accident” and be included in the registry. Although the greatest numbers of “accidents” in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

  17. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  18. Characterizing G-Loading, Swirl Direction, and Rayleigh Losses in an Ultra Compact Combustor

    Science.gov (United States)

    2013-07-01

    low Mach numbers to avoid these pressure losses while burning. Radtke [25] used a modified version of the Anthenien et al. [9] rig to study pressure...losses in the combustor due to Rayleigh effects. Radtke saw this increase in Mach number when comparing reacting and non-reacting cases, seen in...Anderson, W., Radtke , J., King, P., Thornburg, H., Zelina, J., Sekar, B., “Effects of Main Swirl Direction on High-g Combustion,” 44th AIAA/ASME/SAE

  19. The chilling effect: how do researchers react to controversy?

    Directory of Open Access Journals (Sweden)

    Joanna Kempner

    2008-11-01

    Full Text Available BACKGROUND: Can political controversy have a "chilling effect" on the production of new science? This is a timely concern, given how often American politicians are accused of undermining science for political purposes. Yet little is known about how scientists react to these kinds of controversies. METHODS AND FINDINGS: Drawing on interview (n = 30 and survey data (n = 82, this study examines the reactions of scientists whose National Institutes of Health (NIH-funded grants were implicated in a highly publicized political controversy. Critics charged that these grants were "a waste of taxpayer money." The NIH defended each grant and no funding was rescinded. Nevertheless, this study finds that many of the scientists whose grants were criticized now engage in self-censorship. About half of the sample said that they now remove potentially controversial words from their grant and a quarter reported eliminating entire topics from their research agendas. Four researchers reportedly chose to move into more secure positions entirely, either outside academia or in jobs that guaranteed salaries. About 10% of the group reported that this controversy strengthened their commitment to complete their research and disseminate it widely. CONCLUSIONS: These findings provide evidence that political controversies can shape what scientists choose to study. Debates about the politics of science usually focus on the direct suppression, distortion, and manipulation of scientific results. This study suggests that scholars must also examine how scientists may self-censor in response to political events.

  20. The Chilling Effect: How Do Researchers React to Controversy?

    Science.gov (United States)

    Kempner, Joanna

    2008-01-01

    Background Can political controversy have a “chilling effect” on the production of new science? This is a timely concern, given how often American politicians are accused of undermining science for political purposes. Yet little is known about how scientists react to these kinds of controversies. Methods and Findings Drawing on interview (n = 30) and survey data (n = 82), this study examines the reactions of scientists whose National Institutes of Health (NIH)-funded grants were implicated in a highly publicized political controversy. Critics charged that these grants were “a waste of taxpayer money.” The NIH defended each grant and no funding was rescinded. Nevertheless, this study finds that many of the scientists whose grants were criticized now engage in self-censorship. About half of the sample said that they now remove potentially controversial words from their grant and a quarter reported eliminating entire topics from their research agendas. Four researchers reportedly chose to move into more secure positions entirely, either outside academia or in jobs that guaranteed salaries. About 10% of the group reported that this controversy strengthened their commitment to complete their research and disseminate it widely. Conclusions These findings provide evidence that political controversies can shape what scientists choose to study. Debates about the politics of science usually focus on the direct suppression, distortion, and manipulation of scientific results. This study suggests that scholars must also examine how scientists may self-censor in response to political events. PMID:19018657

  1. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  2. 'REACTS'. A pragmatic approach for providing medical care and physician education for radiation emergencies

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Andrews, G.A.; Huebner, K.F.; Cloutier, R.J.; Beck, W.L.; Berger, J.D.

    1976-01-01

    Because serious radiation incidents have been rare, few medical personnel (notably only some in France, Russia, Belgium, Canada, Yugoslavia, Japan, Great Britain and the United States) have first-hand experience in radiation-accident management. The generation of physicians who participated in those accidents now needs to pass on the bits of knowledge that were gleaned from them. These case histories are difficult for the local, non-radiology physician to obtain when he is called upon to help formulate the medical-emergency response plan required everywhere for licensing power reactors. The Radiation Emergency Assistance Center and Training Site (REACTS) in Oak Ridge, Tennessee, supported by the US Energy Research and Development Administration, is designed to meet these medical and educational needs. REACTS, located in the Oak Ridge Hospital of the Methodist Church, is not involved in the hospital's daily community functions except insofar as REACTS is the radiation emergency arm of the area's major disaster plan. Its dual mission is training physicians, nurses, and paramedical emergency personnel in radiation-accident management, and treating irradiated and contaminated persons. Its training activities are carried out by the Special Training Division of Oak Ridge Associated Universities. Formal courses in radiation medicine and health physics and practical laboratory experience are now conducted twice a year for physicians. They will be expanded in the future to include training of paramedical personnel. Follow-up studies of radiation-accident survivors are carried out in REACTS to ensure the preservation of valuable human data and radiation-accident experiences. This unique facility and its staff are dedicated to meet the needs of the far-flung public and private medical domains in the United States for nuclear-production energy

  3. Tax havens under international pressure: How do they react?

    OpenAIRE

    Patrice Pieretti; Giuseppe Pulina

    2015-01-01

    This paper contributes to the literature about tax havens by providing a more comprehensive analysis of their role. The aim is to analyze how low-tax jurisdictions can react to growing international pressure exerted, by high-tax countries, to enforce compliance with anti aggressive tax planning standards. To this end, we model how a small tax haven tries to be attractive to multinationals located in a high-tax region by providing aggressive tax planning services and/or a favorable environment...

  4. Stereodynamics of Ne(3P2) reacting with Ar, Kr, Xe, and N2

    Science.gov (United States)

    Zou, Junwen; Gordon, Sean D. S.; Tanteri, Silvia; Osterwalder, Andreas

    2018-04-01

    Stereodynamics experiments of Ne(3P2) reacting with Ar, Kr, Xe, and N2 leading to Penning and associative ionization have been performed in a crossed molecular beam apparatus. A curved magnetic hexapole was used to state-select and polarize Ne(3P2) atoms which were then oriented in a rotatable magnetic field and crossed with a beam of Ar, Kr, Xe, or N2. The ratio of associative to Penning ionization was recorded as a function of the magnetic field direction for collision energies between 320 cm-1 and 500 cm-1. Reactivities are obtained for individual states that differ only in Ω, the projection of the neon total angular momentum vector on the inter-particle axis. The results are rationalized on the basis of a model involving a long-range and a short-range reaction mechanism. Substantially lower probability for associative ionization was observed for N2, suggesting that predissociation plays a critical role in the overall reaction pathway.

  5. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  6. Responding to excessive alcohol consumption in third-level (REACT): a study protocol.

    Science.gov (United States)

    Davoren, Martin P; Calnan, Susan; Mulcahy, Judith; Lynch, Emily; Perry, Ivan J; Byrne, Michael

    2018-05-11

    Problem alcohol use is an ongoing, worldwide phenomenon of considerable concern. Throughout the past 20 years, national policies have noted the importance of students when tackling alcohol consumption. Considering alcohol is a multifaceted issue, a multi-component response is required to combat its excessive use. This protocol sets out the approach used for developing, implementing and evaluating the REACT (Responding to Excessive Alcohol Consumption in Third-level) Programme. This evaluation will provide the evidence base for programme development, implementation and improvement. Stage one involved defining the multi-component intervention. This was developed following a systematic review of existing literature and a Delphi-consensus workshop involving university students, staff and relevant stakeholders. Following this, the programme is being implemented across the Higher Education sector in Ireland. A number of Higher Education Institutes have declined the invitation to participate in the programme. These institutions will act as control sites. Each intervention site will have a steering committee whose membership will include a mix of students and academic and student service staff. This steering committee will report to the REACT research team on the implementation of mandatory and optional action points at local sites. An online cross-sectional study at baseline and two-years post intervention will be utilised to determine the impact of the REACT programme. The impact assessment will focus on (1) whether the intervention has reduced alcohol consumption among third-level students (2); whether the programme altered students attitudes toward alcohol and (3) whether the programme has decreased the second-hand effects associated with excessive consumption. Finally, qualitative research will focus on factors influencing the take-up and implementation of this programme as well as students' views on the initiative. Alcohol consumption has remained on the policy

  7. THE STABILITY OF OPTICALLY THIN REACTING PLASMAS: EFFECTS OF THE BULK VISCOSITY

    International Nuclear Information System (INIS)

    Ibanez S, Miguel H.

    2009-01-01

    The thermochemical stability of reacting plasmas is analyzed by taking into account the change in the thermodynamical equilibrium values during the fluctuation. This shift in the equilibrium produces two main effects: a change in the four instability criteria for reacting gases resulting when the above effect is neglected and adds a fifth instability criterion due to the fact that the corresponding secular equation becomes a fifth-order polynomial. The above results are applied to several plasma models, in particular, to a photoionized hydrogen plasma for which the bulk viscosity can be more important than the dynamic viscosity and the thermometric conductivity. Therefore, the bulk viscosity may quench thermochemical instabilities were the thermal conduction is unable of stabilizing. This occurs for low values of the photoionizing energy E. The implications of the above results in explaining the formation of clump structures in different regions of the interstellar medium are outlined.

  8. Materials study for reacting plasma machine

    International Nuclear Information System (INIS)

    Kamada, Kohji; Hamada, Yasuji

    1982-01-01

    A new reacting plasma machine is designed, and will be constructed at the Institute of Plasma Physics, Nagoya University. It is important to avoid the activation of the materials for the machine, accordingly, aluminum alloy has been considered as the material since the induced activity of aluminum due to 14 MeV neutrons is small. The vacuum chamber of the new machine consists of four modules, and the remote control of each module is considered. However, the cost of the remote control of modules is expensive. To minimize the dependence on the remote control, the use of aluminum alloy is considered as the first step. The low electrical resistivity, over-ageing, weak mechanical strength and eddy current characteristics of aluminum alloy must be improved. The physical and electrical properties of various aluminum alloys have been investigated. Permeability of hydrogen through aluminum, the recycling characteristics and surface coating materials have been also studied. (Kato, T.)

  9. Thermal properties of wood reacted with a phosphorus pentoxide–amine system

    Science.gov (United States)

    Hong-Lin Lee; George C. Chen; Roger M. Rowell

    2004-01-01

    The objective of this research was to improve the fire-retardant properties of wood in one treatment using a phosphorus pentoxide–amine system. Phosphorus pentoxide and 16 amines including alkyl, halophenyl, and phenyl amines were compounded in N,N-dimethylformamide and the resulting solutions containing phosphoramides were reacted with wood. The characteristics of...

  10. ReACT Methodology Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston; Sarah Freeman

    2014-03-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) funded INL Researchers to evaluate a novel process for assessing and mitigating cyber security risks. The proof of concept level of the method was tested in an industry environment. This case study, plus additional case studies will support the further development of the method into a tool to assist industry in securing their critical networks. This report provides an understanding of the process developed in the Response Analysis and Characterization Tool (ReACT) project. This report concludes with lessons learned and a roadmap for final development of these tools for use by industry.

  11. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  12. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  13. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  15. IgE antibodies of fish allergic patients cross-react with frog parvalbumin.

    Science.gov (United States)

    Hilger, C; Thill, L; Grigioni, F; Lehners, C; Falagiani, P; Ferrara, A; Romano, C; Stevens, W; Hentges, F

    2004-06-01

    The major allergens in fish are parvalbumins. Important immunoglobulin (Ig)E cross-recognition of parvalbumins from different fish species has been shown. Recently frog parvalbumin alpha has been found to be responsible for a case of IgE-mediated anaphylaxis triggered by the ingestion of frog meat. The aim of this study was to investigate whether IgE antibodies of fish allergic persons cross-react with frog parvalbumin and to appreciate its clinical relevance. The sera of 15 fish allergic patients and one fish and frog allergic patient were tested by IgE-immunoblotting against frog muscle extract. Sera were tested against recombinant parvalbumin alpha and beta from Rana esculenta. Skin prick tests were performed in selected patients with recombinant frog parvalbumin. Ca(2+) depletion experiments and inhibition studies with purified cod and frog recombinant parvalbumin were done to characterize the cross-reactive pattern. Fourteen of the sera tested had IgE antibodies recognizing low molecular weight components in frog muscle extract. Calcium depletion experiments or inhibition of patient sera with purified cod parvalbumin led to a significant or complete decrease in IgE binding. When tested against recombinant parvalbumins, three of 13 sera reacted with alpha parvalbumin and 11 of 12 reacted with beta parvalbumin from R. esculenta. Skin prick tests performed with recombinant frog parvalbumin were positive in fish allergic patients. Inhibition studies showed that a fish and frog allergic patient was primarily sensitized to fish parvalbumin. Cod parvalbumin, a major cross-reactive allergen among different fish species, shares IgE binding epitopes with frog parvalbumin. This in vitro cross-reactivity seems to be also clinically relevant. Parvalbumins probably represent a new family of cross-reactive allergens.

  16. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas-Turbine Combustion

    Science.gov (United States)

    Heath, Christopher M.

    2013-01-01

    Injector geometry, physical mixing, chemical processes, and engine cycle conditions together govern performance, operability and emission characteristics of aviation gas-turbine combustion systems. The present investigation explores swirl-venturi lean direct injection combustor fundamentals, characterizing the influence of key geometric injector parameters on reacting flow physics and emission production trends. In this computational study, a design space exploration was performed using a parameterized swirl-venturi lean direct injector model. From the parametric geometry, 20 three-element lean direct injection combustor sectors were produced and simulated using steady-state, Reynolds-averaged Navier-Stokes reacting computations. Species concentrations were solved directly using a reduced 18-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear ?-e model. Results demonstrate sensitivities of the geometric perturbations on axially averaged flow field responses. Output variables include axial velocity, turbulent kinetic energy, static temperature, fuel patternation and minor species mass fractions. Significant trends have been reduced to surrogate model approximations, intended to guide future injector design trade studies and advance aviation gas-turbine combustion research.

  17. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Dwayne [Florida International Univ., Miami, FL (United States); Dulikravich, George [Florida International Univ., Miami, FL (United States); Cizmas, Paul [Florida International Univ., Miami, FL (United States)

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.

  18. MHD flow and heat transfer of a viscous reacting fluid over a ...

    African Journals Online (AJOL)

    This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...

  19. Propel: A Discontinuous-Galerkin Finite Element Code for Solving the Reacting Navier-Stokes Equations

    Science.gov (United States)

    Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra

    2017-11-01

    This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.

  20. Why Targets of Economic Sanctions React Differently: Reference Point Effects on North Korea and Libya

    Directory of Open Access Journals (Sweden)

    Jiyoun Park

    2017-06-01

    Full Text Available The international community has frequently introduced economic sanctions to curb the proliferation of weapons of mass destruction, to which each target nation has reacted differently. This paper explores the reasons why each target of economic sanctions reacts differently by specif- ically building a model based on reference point effects, and by analyzing the cases of North Korea and Libya. According to the results, when the reference point level increases, as in the case of North Korea, the target resists more firmly; on the other hand, when the reference point decreases, like in the case of Libya, the target resists more subtly.

  1. Modeling study of rarefied gas effects on hypersonic reacting stagnation flows

    Science.gov (United States)

    Wang, Zhihui; Bao, Lin

    2014-12-01

    Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.

  2. The Responsive Environmental Assessment for Classroom Teaching (REACT): the dimensionality of student perceptions of the instructional environment.

    Science.gov (United States)

    Nelson, Peter M; Demers, Joseph A; Christ, Theodore J

    2014-06-01

    This study details the initial development of the Responsive Environmental Assessment for Classroom Teachers (REACT). REACT was developed as a questionnaire to evaluate student perceptions of the classroom teaching environment. Researchers engaged in an iterative process to develop, field test, and analyze student responses on 100 rating-scale items. Participants included 1,465 middle school students across 48 classrooms in the Midwest. Item analysis, including exploratory and confirmatory factor analysis, was used to refine a 27-item scale with a second-order factor structure. Results support the interpretation of a single general dimension of the Classroom Teaching Environment with 6 subscale dimensions: Positive Reinforcement, Instructional Presentation, Goal Setting, Differentiated Instruction, Formative Feedback, and Instructional Enjoyment. Applications of REACT in research and practice are discussed along with implications for future research and the development of classroom environment measures. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Sticky tunes: how do people react to involuntary musical imagery?

    Directory of Open Access Journals (Sweden)

    Victoria J Williamson

    Full Text Available The vast majority of people experience involuntary musical imagery (INMI or 'earworms'; perceptions of spontaneous, repetitive musical sound in the absence of an external source. The majority of INMI episodes are not bothersome, while some cause disruption ranging from distraction to anxiety and distress. To date, little is known about how the majority of people react to INMI, in particular whether evaluation of the experience impacts on chosen response behaviours or if attempts at controlling INMI are successful or not. The present study classified 1046 reports of how people react to INMI episodes. Two laboratories in Finland and the UK conducted an identical qualitative analysis protocol on reports of INMI reactions and derived visual descriptive models of the outcomes using grounded theory techniques. Combined analysis carried out across the two studies confirmed that many INMI episodes were considered neutral or pleasant, with passive acceptance and enjoyment being among the most popular response behaviours. A significant number of people, however, reported on attempts to cope with unwanted INMI. The most popular and effective behaviours in response to INMI were seeking out the tune in question, and musical or verbal distraction. The outcomes of this study contribute to our understanding of the aetiology of INMI, in particular within the framework of memory theory, and present testable hypotheses for future research on successful INMI coping strategies.

  4. Sticky Tunes: How Do People React to Involuntary Musical Imagery?

    Science.gov (United States)

    Williamson, Victoria J.; Liikkanen, Lassi A.; Jakubowski, Kelly; Stewart, Lauren

    2014-01-01

    The vast majority of people experience involuntary musical imagery (INMI) or ‘earworms’; perceptions of spontaneous, repetitive musical sound in the absence of an external source. The majority of INMI episodes are not bothersome, while some cause disruption ranging from distraction to anxiety and distress. To date, little is known about how the majority of people react to INMI, in particular whether evaluation of the experience impacts on chosen response behaviours or if attempts at controlling INMI are successful or not. The present study classified 1046 reports of how people react to INMI episodes. Two laboratories in Finland and the UK conducted an identical qualitative analysis protocol on reports of INMI reactions and derived visual descriptive models of the outcomes using grounded theory techniques. Combined analysis carried out across the two studies confirmed that many INMI episodes were considered neutral or pleasant, with passive acceptance and enjoyment being among the most popular response behaviours. A significant number of people, however, reported on attempts to cope with unwanted INMI. The most popular and effective behaviours in response to INMI were seeking out the tune in question, and musical or verbal distraction. The outcomes of this study contribute to our understanding of the aetiology of INMI, in particular within the framework of memory theory, and present testable hypotheses for future research on successful INMI coping strategies. PMID:24497938

  5. SQL Triggers Reacting on Time Events: An Extension Proposal

    Science.gov (United States)

    Behrend, Andreas; Dorau, Christian; Manthey, Rainer

    Being able to activate triggers at timepoints reached or after time intervals elapsed has been acknowledged by many authors as a valuable functionality of a DBMS. Recently, the interest in time-based triggers has been renewed in the context of data stream monitoring. However, up till now SQL triggers react to data changes only, even though research proposals and prototypes have been supporting several other event types, in particular time-based ones, since long. We therefore propose a seamless extension of the SQL trigger concept by time-based triggers, focussing on semantic issues arising from such an extension.

  6. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao; Abou-Hamad, Edy; Rossini, Aaron J.; Zhang, Jizhe; Lesage, Anne; Zhu, Haibo; Pelletier, Jeremie; Emsley, Lyndon; Caps, Valerie; Basset, Jean-Marie

    2013-01-01

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft

  7. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao

    2013-01-16

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H 4SiW12O40, H3PW12O 40, H4SiMo12O40, and H 3PMo12O40 activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane. © 2012 American Chemical Society.

  8. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames

    Science.gov (United States)

    Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh

    2017-10-01

    Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic

  9. Electrodialysis separation of rhenium from silicon

    International Nuclear Information System (INIS)

    Prasolova, O.D.; Borisova, L.V.; Ermakov, A.N.

    1989-01-01

    A method of separation of ruthenium from silicon by electrodialysis with heterogenuos ion-exchange membranes is developed. The effeciency of purification of rhenium from silicon depending on the number of dialyzer chambers, temperature and pH value of the dialyzate is studed. It is found that an addditional fourth chamber between the middle and anolytic ones causes the purification coefficient increase 50 times. It is necessary to cool the dialyzate in order to reduce silicon migration into the anolyte and reverse diffusion of perrhenate-ion from the anolyte into the dialyzate. The optimal pH value of diaizate is 5.5-6. The method developed has been used for separating rhenium from industrial solution of lead production with complex composition

  10. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  11. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  12. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    Science.gov (United States)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection

  13. Detecting and Reacting to Change: The Effect of Exposure to Narrow Categorizations

    Science.gov (United States)

    Chakravarti, Amitav; Fang, Christina; Shapira, Zur

    2011-01-01

    The ability to detect a change, to accurately assess the magnitude of the change, and to react to that change in a commensurate fashion are of critical importance in many decision domains. Thus, it is important to understand the factors that systematically affect people's reactions to change. In this article we document a novel effect: Decision…

  14. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    Science.gov (United States)

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  15. Preparation of directly iodinated steroid hormones and related directly halogenated compounds

    International Nuclear Information System (INIS)

    Sahadevan, V.

    1981-01-01

    The preparation of directly iodinated radioactive steroid hormones is described for use in radioimmunoassays or radiolocalization and treatment of human breast tumours. The radioactive iodinated steroid hormone is prepared by reacting a parent steroid hormone with an alkali metal iodide containing radioactive 123 I, 125 I, 130 I or 131 I in the presence of hydrogen peroxide or chloramine-T. The parent steroid hormones include the adrenal corticosteroids, the estrogens, the progestogens, the progestins and the diuretic and antidiuretic agents. The radioactive iodinated steroid hormone is prepared by iodinating the parent steroid hormone directly on the cyclopentanophenanthrene nucleus. The radioactive iodinated steroid hormones have the same antigenicity and receptor site specificity as the parent steroid hormone. The invention is illustrated by 1) the method of iodination of estradiol-17β, 2) results for the percentage labelling of several steroids and steroid hormones, 3) results for the radioimmunoassay of 125 I-estradiol and 4) results for the binding of directly iodinated estradiol-17β in an estrogen receptor assay of human breast cancer. (U.K.)

  16. Electrochemical reduction of phthalide at carbon cathodes in dimethylformamide: Effects of supporting electrolyte and gas chromatographic injector-port chemistry on the product distribution

    International Nuclear Information System (INIS)

    Pasciak, Erick M.; Hochstetler, Spencer E.; Mubarak, Mohammad S.; Evans, Dennis H.; Peters, Dennis G.

    2013-01-01

    Highlights: • Reduction of phthalide gives a radical-anion that undergoes ring-opening in 3.5 s. • Phthalide reduction gives 2-methylbenzoate esters with electrolyte-derived moieties. • Electrolysis of phthalide affords products that depend on the method of analysis. • Upon reduction, phthalide undergoes deuteration in the presence of deuterium oxide. -- Abstract: Cyclic voltammetry and controlled-potential (bulk) electrolysis have been used to investigate the direct reduction of phthalide at carbon electrodes in dimethylformamide (DMF) containing 0.10 M tetramethylammonium perchlorate (TMAP) or tetra-n-butylammonium perchlorate (TBAP). Cyclic voltammograms recorded with a glassy carbon electrode exhibit a single cathodic peak and a corresponding anodic peak that arise, respectively, from one-electron reduction of phthalide to generate a radical-anion intermediate and from reoxidation of the intermediate. At a scan rate of 100 mV s −1 , quasi-reversible behavior is observed (due to ring-opening of the radical-anion), whereas fully reversible behavior is seen at 5 V s −1 or higher. Digital simulation of cyclic voltammograms indicates that the lifetime of the radical-anion is 3.5 s. Bulk electrolysis of phthalide at a reticulated vitreous carbon cathode affords products that depend on the procedure used to analyze the catholyte. Direct injection of catholyte into a gas chromatograph shows phthalide and a 2-methylbenzoate ester bearing an alkyl moiety from the supporting-electrolyte cation. However, if the catholyte is partitioned between diethyl ether and aqueous hydrochloric acid before gas chromatographic analysis, phthalide and 2-methylbenzoic acid are observed. Thermally induced reactions that occur in the injector port of the gas chromatograph are responsible for the formation of the 2-methylbenzoate ester as well as for the phthalide found in all electrolyzed solutions

  17. Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2011-01-01

    Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.

  18. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.

    2011-01-01

    Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it......, some of the design issues related to improved reaction operation are analyzed. Since the solubility of the different forms of the PTC in the organic solvent affects ultimately the catalyst partition coefficients, therefore, the organic solvent plays an important role in the design of PTC-based reacting...

  19. Mathematical aspects of reacting and diffusing systems

    CERN Document Server

    Fife, Paul C

    1979-01-01

    Modeling and analyzing the dynamics of chemical mixtures by means of differ- tial equations is one of the prime concerns of chemical engineering theorists. These equations often take the form of systems of nonlinear parabolic partial d- ferential equations, or reaction-diffusion equations, when there is diffusion of chemical substances involved. A good overview of this endeavor can be had by re- ing the two volumes by R. Aris (1975), who himself was one of the main contributors to the theory. Enthusiasm for the models developed has been shared by parts of the mathematical community, and these models have, in fact, provided motivation for some beautiful mathematical results. There are analogies between chemical reactors and certain biological systems. One such analogy is rather obvious: a single living organism is a dynamic structure built of molecules and ions, many of which react and diffuse. Other analogies are less obvious; for example, the electric potential of a membrane can diffuse like a chemical, and ...

  20. Reacting to different types of concept drift: the Accuracy Updated Ensemble algorithm.

    Science.gov (United States)

    Brzezinski, Dariusz; Stefanowski, Jerzy

    2014-01-01

    Data stream mining has been receiving increased attention due to its presence in a wide range of applications, such as sensor networks, banking, and telecommunication. One of the most important challenges in learning from data streams is reacting to concept drift, i.e., unforeseen changes of the stream's underlying data distribution. Several classification algorithms that cope with concept drift have been put forward, however, most of them specialize in one type of change. In this paper, we propose a new data stream classifier, called the Accuracy Updated Ensemble (AUE2), which aims at reacting equally well to different types of drift. AUE2 combines accuracy-based weighting mechanisms known from block-based ensembles with the incremental nature of Hoeffding Trees. The proposed algorithm is experimentally compared with 11 state-of-the-art stream methods, including single classifiers, block-based and online ensembles, and hybrid approaches in different drift scenarios. Out of all the compared algorithms, AUE2 provided best average classification accuracy while proving to be less memory consuming than other ensemble approaches. Experimental results show that AUE2 can be considered suitable for scenarios, involving many types of drift as well as static environments.

  1. BETWEEN THE RIGHT AND THE COMMON. HOW GROUPS REACT TO SOCIALLY UNDESIRABLE BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Komendant-Brodowska Agata

    2017-06-01

    Full Text Available The aim of the paper is to analyse the relationship between group characteristics and the scope of reaction of the group to socially undesirable behaviour. Sometimes small groups or communities fail to react to undesirable or violent behaviour and their apathy can have devastating consequences. Such a situation can occur among co-workers witnessing workplace mobbing, or neighbours who do not react to a suspicion of domestic violence. Reasons for their inaction are diverse and can include fear, doubts concerning the necessity of such a reaction, and also conformity. In the paper I examine a seemingly favourable situation: I assume that reaction is costless and all the members of the group would like to react (internalised norm, but they also want to conform. In order to analyse the factors that can influence the scope of group reaction, a structurally embedded sequential coordination game was played for different initial conditions. Computer simulations were conducted for networks of a specific type (Erd¨os-R´enyi random graph. The main aim of the analysis was to identify non-structural and structural features of the group that can impede or even block the intervention of the group. There is a positive relationship between the scope of group reaction and the strength of the internalized norm, whereas the level of conformity affects the chances of group intervention in a negative way. Heterogeneity of the group is an important factor - the scope of reaction is higher when members of the group have different levels of norm internalisation and conformity. There is a non-linear relationship between network density and the scope of reaction. Both low and high density can make it harder for people to act.

  2. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  3. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR

    International Nuclear Information System (INIS)

    SMITH, B.A.; MICHAEL, P.C.; MINERVINI, J.V.; TAKAYASU, M.; SCHULTZ, J.H.; GREGORY, E.; PYON, T.; SAMPSON, W.B.; GHOSH, A.; SCANLAN, R.

    2000-01-01

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb 3 Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb 3 Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb 3 Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current

  4. Realistic Creativity Training for Innovation Practitioners: The Know-Recognize-React Model

    DEFF Research Database (Denmark)

    Valgeirsdóttir, Dagný; Onarheim, Balder

    2017-01-01

    As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program...... the transdisciplinary study described in this paper. Co-creation was employed as a method to ensure the three layers of focus would be taken into consideration. The result is a program called Creative Awareness Training which is based on the new Know-Recognize-React model....

  5. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    Science.gov (United States)

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  6. A framework for the design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Shaw, Andrew; Hodges, George

    2012-01-01

    A generic modelling framework for phase transition catalyst based reacting systems has been developed and converted into a software tool. The modelling framework accommodates models of different types representing different sub-systems of the PTCbased reactive system; databases of model parameters...... and carefully collected and checked (for thermodynamic consistency) experimentally measured data. The models, data and software have been tested on various PTC-based reactive systems. Illustrative examples are provided....

  7. Photosynthetic microbial fuel cell with polybenzimidazole membrane: synergy between bacteria and algae for wastewater removal and biorefinery

    Directory of Open Access Journals (Sweden)

    S. Angioni

    2018-03-01

    Full Text Available Here, we demonstrate a very efficient simultaneous approach of bioenergy generation from wastewater and added-value compounds production by using a photosynthetic microalgae microbial fuel cells (PMFC, based on polybenzimidazole (PBI composite membrane as separator. The use of PBI was proved to be very promising, even more convenient than Nafion™ in terms of energy performances as well as cost and sustainability. This polymer is also easily autoclavable, so allowing a re-use of the separator with a consequent beneficial cost effect. Two PMFCs were investigated: 1 Pt electrocatalysed and 2 Pt-free. They were operated as microbial carbon capture (MCC device under continuous illumination, by using a domestic wastewater as anolyte and Scenedesmus acutus strain in the catholyte. The Pt-based cell allowed to generate higher volumetric power density (∼400 mW m−3 after more than 100 operating days. This resulted in an improved wastewater treatment efficiency, determined in terms of normalised energy recovery (NER > 0.19 kWh kgCOD−1 in case of Pt. The CO2 fixation of the PMFC-grown microalgae leaded to a high accumulation of added-value products, namely pigments and fatty acids. A significant quantity of lutein was observed as well as a relevant amount of other valuable carotenoids, as violaxanthin, astaxanthin and cantaxanthin. The lipids were even excellently accumulated (49%dw. Their profile was mainly composed by fatty acids in the range C16-18, which are particularly indicated for the biofuel production. These results demonstrate the feasibility and the implemented sustainability of such PMFCs as a great potential technology for the wastewater treatment and the simultaneous production of valuable products. Keyword: Energy

  8. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-01-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case

  9. Identification of streptococcal proteins reacting with sera from Behçet's disease and rheumatic disorders.

    Science.gov (United States)

    Cho, Sung Bin; Lee, Ju Hee; Ahn, Keun Jae; Cho, Suhyun; Park, Yong-Beom; Lee, Soo-Kon; Bang, Dongsik; Lee, Kwang Hoon

    2010-01-01

    We evaluated the reactivity of sera from Behçet's disease (BD), systemic lupus erythematosus (SLE), dermatomyositis (DM), rheumatoid arthritis (RA), and Takayasu's arteritis (TA) patients against human α-enolase and streptococcal α-enolase, and identified additional streptococcal antigens. Enzyme-linked immunosorbent assay (ELISA) and immunoblotting were performed using sera from patients with BD, SLE, DM, RA, and TA and healthy volunteers (control) against human α-enolase and streptococcal α-enolase. Immunoblot analysis and matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry were used to identify and recombine other streptococcal antigens. Specific positive signals against recombinant human α-enolase were detected by IgM ELISA of serum samples from 50% of BD, 14.3% of SLE, 57.1% of DM, 42.9% of RA, and 57.1% of TA patients. Specific positive signals against streptococcal α-enolase were detected from 42.9% of BD, 14.3% of DM, and 14.3% of TA patients. No SLE and RA sera reacted against streptococcal α-enolase antigen. Streptococcal proteins reacting with sera were identified as hypothetical protein (HP) for SLE and DM patients, acid phosphatase (AP) for RA patients, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for TA patients. We observed that RA patients did not present serum reactivity against either HP or GAPDH though BD, SLE, DM, and TA patients did. Also, AP reacted with sera from BD, SLE, DM, RA, and TA patients.

  10. A mathematical model for chemical reactions with actinide elements in the aqueous nitric acid solution: REACT

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    1990-02-01

    A mathematical model of chemical reactions with actinide elements: REACT code, was developed to simulate change of valency states of U, Pu and Np in the aqueous nitric acid solution. Twenty seven rate equations for the redox reactions involving some reductants, disproportionation reactions, and radiolytic growth and decay reaction of nitrous acid were programmed in the code . Eight numerical solution methods such as Porsing method to solve the rate equations were incorporated parallel as options depending on the characteristics of the reaction systems. The present report gives a description of the REACT code, e.g., chemical reactions and their rate equations, numerical solution methods, and some examples of the calculation results. A manual and a source file of the program was attached to the appendix. (author)

  11. PENGARUH MODEL PEMBELAJARAN INKUIRI BERSTRATEGI REACT TERHADAP HASIL BELAJAR KIMIA SISWA SMA KELAS XI

    Directory of Open Access Journals (Sweden)

    Riva Ismawati

    2015-11-01

    Full Text Available This study aimed to determine the effect of inquiry learning model with REACT strategy on learning outcomes and to determine the contribution to the learning outcomes. The expected benefits are improvements in learning chemistry subjects in class XI of high school through constructivism learning activities. The population in this study were students of class XI of high school in Semarang. The analysis showed the early stages of the population have the same degree of homogeneity and normal distribution. Average learning outcomes after experimental class treated were better than the control class, which amounted to 75.52 and 67.14. Test the difference between two average results obtained t from calculation (4.85> t from table (1.66, so we can conclude the experimental class learning results are better than the control class. Correlation test resulted biserial correlation coefficient (rb of 0.58 and t from calculation (5.68> t from table (1.99, so the influence was significant. Effect of application of inquiry learning model with REACT strategy shown by the coefficient of determination of 33.64%.The cognitive learning outcomes of experimental class had reached mastery learning classical while control class not yet. The average value of affective and psychomotor experimental classes are better than the control class. Based on these results, it can be concluded that the inquiry learning with REACT strategy have positive effect on learning outcomes chemistry in student class XI of high school in Semarang.

  12. Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lianqin; Fang, Xiang; Shen, Pei Kang [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, The State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Bambagioni, Valentina; Bevilacqua, Manuela; Bianchini, Claudio; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Vizza, Francesco [Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)

    2010-12-15

    The effect of adding small quantities (0.1-1 wt.%) of sodium borohydride (NaBH{sub 4}) to the anolyte solution of direct ethanol fuel cells (DEFCs) with membrane-electrode assemblies constituted by nanosized Pd/C anode, Fe-Co cathode and anion-exchange membrane (Tokuyama A006) was investigated by means of various techniques. These include cyclic voltammetry, in situ FTIR spectroelectrochemistry, a study of the performance of monoplanar fuel cells and an analysis of the ethanol oxidation products. A comparison with fuel cells fed with aqueous solutions of ethanol proved unambiguously the existence of a promoting effect of NaBH{sub 4} on the ethanol oxidation. Indeed, the potentiodynamic curves of the ethanol-NaBH{sub 4} mixtures showed higher power and current densities, accompanied by a remarkable increase in the fuel consumption at comparable working time of the cell. A {sup 13}C and {sup 11}B {l_brace}{sup 1}H{r_brace}NMR analysis of the cell exhausts and an in situ FTIR spectroelectrochemical study showed that ethanol is converted selectively to acetate while the oxidation product of NaBH{sub 4} is sodium metaborate (NaBO{sub 2}). The enhancement of the overall cell performance has been explained in terms of the ability of NaBH{sub 4} to reduce the PdO layer on the catalyst surface. (author)

  13. Errors of Students Learning With React Strategy in Solving the Problems of Mathematical Representation Ability

    Directory of Open Access Journals (Sweden)

    Delsika Pramata Sari

    2017-06-01

    Full Text Available The purpose of this study was to investigate the errors experienced by students learning with REACT strategy and traditional learning in solving problems of mathematical representation ability. This study used quasi experimental pattern with static-group comparison design. The subjects of this study were 47 eighth grade students of junior high school in Bandung consisting of two samples. The instrument used was a test to measure students' mathematical representation ability. The reliability coefficient about the mathematical representation ability was 0.56. The most prominent errors of mathematical representation ability of students learning with REACT strategy and traditional learning, was on indicator that solving problem involving arithmetic symbols (symbolic representation. In addition, errors were also experienced by many students with traditional learning on the indicator of making the image of a real world situation to clarify the problem and facilitate its completion (visual representation.

  14. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    International Nuclear Information System (INIS)

    Balazs, G.B.; Lewis, P.R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs

  15. Acute hepatitis due to Epstein–Barr virus with cross-reacting antibodies to cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Asli Karadeniz

    2018-01-01

    Full Text Available Epstein–Barr virus (EBV is the cause of systemic infection known as infectious mononucleosis with classic presentation of fever, oropharyngitis and lymphadenitis. EBV rarely causes acute hepatitis. In this report, we present a 19-year-old patient presented with nausea, fatigue and jaundice. Her physical examination and laboratory tests revealed the diagnosis as acute hepatitis due to EBV with cross-reacting antibodies to cytomegalovirus.

  16. Investigation of the properties of fully reacted unstoichiometric polydimethylsiloxane networks and their extracted network fractions

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl; Jensen, Mette Krog; Bejenariu, Anca Gabriela

    2012-01-01

    We investigated the linear dynamic response of a series of fully reacted unstoichiometric polydimethylsiloxane (PDMS) networks and of the two corresponding network fractions namely the sol and the washed network. The sol and the washed network were separated by a simple extraction process. This way...

  17. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    Science.gov (United States)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  18. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  19. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    Science.gov (United States)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  20. A quasi-linear formulation for chemically reacting compressible mixtures of imperfect gases

    Science.gov (United States)

    Lentini, D.

    2008-01-01

    A quasi-linear formulation is proposed for high-speed finite-rate chemically reacting mixtures of imperfect gases, i.e., thermally perfect gases with specific heat varying with temperature. It retains the same formalism of a well-tried counterpart formulation for perfect gases, which has been proven to be suited for application of accurate and fast algorithms. Equations for both quasi-monodimensional flows, and for axisymmetric viscous flows are presented. The approach is based on the definition of an appropriate function F of temperature and concentration, which allows to identify Riemann variables for the flow under consideration; the formulation also includes equations for the entropy and the mass fractions of the N chemical species present in the reacting mixture. The key function F must be computed by numerical quadrature, together with its derivatives with respect to the individual species mass fractions. An example of computation of these quantities is reported, with reference to conditions in the combustion chamber of the Vulcain engine powering the first stage of the Ariane 5 launcher. Such a computation is demonstrated to be both economic and accurate, thus proving the workability of the proposed approach. Further, an estimate of the variation of the mixture specific heat ratio with temperature is given, in order to underline the importance of the effect under consideration.

  1. Evaluation of a porcine internal mammary artery (No-React II) as a small-diameter conduit

    NARCIS (Netherlands)

    Ostapczuk, S; Poniewierski, J; Thiel, A; Knieriem, HJ; Orlowski, T; Rakhorst, G; Krian, A

    1998-01-01

    Background. The patency of biologic small-diameter vascular grafts in the aortocoronary position is still unsatisfactory. Most of the studies suggest that xeno-grafts are to be avoided as an aortocoronary bypass. Methods. The porcine internal mammary artery treated by the No-React II procedure was

  2. Cross-reacting antibacterial auto-antibodies are produced within coronary atherosclerotic plaques of acute coronary syndrome patients.

    Directory of Open Access Journals (Sweden)

    Filippo Canducci

    Full Text Available Coronary atherosclerosis, the main condition predisposing to acute myocardial infarction, has an inflammatory component caused by stimuli that are yet unknown. We molecularly investigated the nature of the immune response within human coronary lesion in four coronary plaques obtained by endoluminal atherectomy from four patients. We constructed phage-display libraries containing the IgG1/kappa antibody fragments produced by B-lymphocytes present in each plaque. By immunoaffinity, we selected from these libraries a monoclonal antibody, arbitrarily named Fab7816, able to react both with coronary and carotid atherosclerotic tissue samples. We also demonstrated by confocal microscopy that this monoclonal antibody recognized human transgelin type 1, a cytoskeleton protein involved in atherogenesis, and that it co-localized with fibrocyte-like cells transgelin+, CD68+, CD45+ in human sections of coronary and carotid plaques. In vitro fibrocytes obtained by differentiating CD14+ cells isolated from peripheral blood mononuclear cells also interacted with Fab7816, thus supporting the hypothesis of a specific recognition of fibrocytes into the atherosclerotic lesions. Interestingly, the same antibody, cross-reacted with the outer membrane proteins of Proteus mirabilis and Klebsiella pneumoniae (and possibly with homologous proteins of other enterobacteriaceae present in the microbiota. From all the other three libraries, we were able to clone, by immunoaffinity selection, human monoclonal antibodies cross-reacting with bacterial outer membrane proteins and with transgelin. These findings demonstrated that in human atherosclerotic plaques a local cross-reactive immune response takes place.

  3. Competitor's marketing : How banks acquire and react to knowledge about their competitor's marketing.

    OpenAIRE

    Puelma, Rodrigo; Persson, Annika

    2008-01-01

    Abstract   Introduction The way banks compete has changed dramatically during recent years, mostly because of international trends such as advances in information technology, globalisation and deregulations. This has made competition harsher meaning that survival and success requires knowledge about the competitors and understanding about the way they act and react. Within marketing there is a need to identify suitable strategies to acquire knowledge about competitor’s marketing and methods t...

  4. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  5. Characterization of monoclonal antibodies directed against human thyroid stimulating hormone

    International Nuclear Information System (INIS)

    Soos, M.; Siddle, K.

    1982-01-01

    Monoclonal antibodies directed against human thyroid stimulating hormone (TSH) were obtained from hybrid myelomas, following fusion of mouse NSI myeloma cells with mouse spleen cells. Ten different antibodies were obtained from 4 separate fusions. Eight antibodies were of the IgG 1 subclass. Affinities of antibodies for TSH were in the range 2 x 10 8 -5 x 10 10 M -1 . Five of the antibodies were specific for TSH and did not react with LH, FSH or hCG. The remaining antibodies reacted with all these hormones and were assumed to recognise their common (α) subunit. The 5 specific antibodies fell into 3 subgroups recognising distinct antigenic determinants, whereas the 5 non-specific antibodies recognised a single determinant or closely related set of sites. It is concluded that these antibodies should be valuable reagents for use in sensitive and specific two-site immunoradiometric assays. (Auth.)

  6. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    Science.gov (United States)

    Iannetti, Anthony C.; Moder, Jeffery P.

    2010-01-01

    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  7. 'Reacting to the unknown': experiencing the first birth at home or in hospital in Australia.

    Science.gov (United States)

    Dahlen, Hannah G; Barclay, Lesley; Homer, Caroline S E

    2010-08-01

    to explore the experiences of a small group of first-time mothers giving birth at home or in hospital. a grounded theory methodology was used. Data were generated from in-depth interviews with women in their own homes. Sydney, Australia. 19 women were interviewed. Seven women who gave birth for the first time in a public hospital and seven women who gave birth for the first time at home were interviewed, and their experiences were contrasted with two mothers who gave birth for the first time in a birth centre, one mother who gave birth for the first time in a private hospital and two women who had given birth more than once. these women shared common experiences of giving birth as 'novices'. Regardless of birth setting, they were all 'reacting to the unknown'. As they entered labour, the women chose different levels of responsibility for their birth. They also readjusted their expectations when the reality of labour occurred, reacted to the 'force' of labour, and connected or disconnected from the labour and eventually the baby. knowing that first-time mothers, irrespective of birth setting, are essentially 'reacting to the unknown' as they negotiate the experience of birth, could alter the way in which care is provided and increase the sensitivity of midwives to women's needs. Most importantly, midwives need to be aware of the need to help women adjust their expectations during labour and birth. Identifying the 'novice' status of first-time mothers also better explains previous research that reports unrealistic expectations and fear that may be associated with first-time birthing. Crown Copyright 2008. Published by Elsevier Ltd. All rights reserved.

  8. A Parallel Multiblock Structured Grid Method with Automated Interblocked Unstructured Grids for Chemically Reacting Flows

    Science.gov (United States)

    Spiegel, Seth Christian

    An automated method for using unstructured grids to patch non- C0 interfaces between structured blocks has been developed in conjunction with a finite-volume method for solving chemically reacting flows on unstructured grids. Although the standalone unstructured solver, FVFLO-NCSU, is capable of resolving flows for high-speed aeropropulsion devices with complex geometries, unstructured-mesh algorithms are inherently inefficient when compared to their structured counterparts. However, the advantages of structured algorithms in developing a flow solution in a timely manner can be negated by the amount of time required to develop a mesh for complex geometries. The global domain can be split up into numerous smaller blocks during the grid-generation process to alleviate some of the difficulties in creating these complex meshes. An even greater abatement can be found by allowing the nodes on abutting block interfaces to be nonmatching or non-C 0 continuous. One code capable of solving chemically reacting flows on these multiblock grids is VULCAN, which uses a nonconservative approach for patching non-C0 block interfaces. The developed automated unstructured-grid patching algorithm has been installed within VULCAN to provide it the capability of a fully conservative approach for patching non-C0 block interfaces. Additionally, the FVFLO-NCSU solver algorithms have been deeply intertwined with the VULCAN source code to solve chemically reacting flows on these unstructured patches. Finally, the CGNS software library was added to the VULCAN postprocessor so structured and unstructured data can be stored in a single compact file. This final upgrade to VULCAN has been successfully installed and verified using test cases with particular interest towards those involving grids with non- C0 block interfaces.

  9. "Reacting to the Past" to Be Proactive in the Present: Feminist Roots of High-Impact Practices

    Science.gov (United States)

    Lidinsky, April

    2014-01-01

    In this article, the author explains a high-impact role-playing pedagogy developed at Barnard College called "Reacting to the Past," which she uses to introduce first-year and general education students to feminist history, current feminist issues, and feminist pedagogy.

  10. Desarrollo de una aplicación móvil mediante React-Native

    OpenAIRE

    Raja Lentijo, David

    2018-01-01

    In this document has been developed an application to share food recipes with social format where the users can interact between them. The goal of this applications is to create a global platform when users wants to find something related with cooking, know where have to go and don't have to use a web browser. All has developed with React-Native that allows to develop native applications for Android and IOS platforms, and reduce the processing time respect to hybrid applications. Also, the co...

  11. Errors of Students Learning with React Strategy in Solving the Problems of Mathematical Representation Ability

    Science.gov (United States)

    Sari, Delsika Pramata; Darhim; Rosjanuardi, Rizky

    2018-01-01

    The purpose of this study was to investigate the errors experienced by students learning with REACT strategy and traditional learning in solving problems of mathematical representation ability. This study used quasi experimental pattern with static-group comparison design. The subjects of this study were 47 eighth grade students of junior high…

  12. Simulation and resolution of voltage reversal in microbial fuel cell stack.

    Science.gov (United States)

    Sugnaux, Marc; Savy, Cyrille; Cachelin, Christian Pierre; Hugenin, Gérald; Fischer, Fabian

    2017-08-01

    To understand the biotic and non-biotic contributions of voltage reversals in microbial fuel cell stacks (MFC) they were simulated with an electronic MFC-Stack mimic. The simulation was then compared with results from a real 3L triple MFC-Stack with shared anolyte. It showed that voltage reversals originate from the variability of biofilms, but also the external load plays a role. When similar biofilm properties were created on all anodes the likelihood of voltage reversals was largely reduced. Homogenous biofilms on all anodes were created by electrical circuit alternation and electrostimulation. Conversely, anolyte recirculation, or increased nutriment supply, postponed reversals and unfavourable voltage asymmetries on anodes persisted. In conclusion, voltage reversals are often a negative event but occur also in close to best MFC-Stack performance. They were manageable and this with a simplified MFC architecture in which multiple anodes share the same anolyte. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-12-01

    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  14. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    Science.gov (United States)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  15. Membrane Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-30

    The Electrosynthesis Co. Inc. (ESC) was contracted by the Westinghouse Savannah River Company to investigate the long term performance and durability of cell components (anode, membrane, cathode) in an electrochemical caustic recovery process using a simulated SRC liquid waste as anolyte solution. This report details the results of two long-term studies conducted using an ICI FM01 flow cell. This cell is designed and has previously been demonstrated to scale up directly into the commercial scale ICI FM21 cell.

  16. Therapeutic preparations of IVIg contain naturally occurring anti-HLA-E antibodies that react with HLA-Ia (HLA-A/-B/-Cw) alleles.

    Science.gov (United States)

    Ravindranath, Mepur H; Terasaki, Paul I; Pham, Tho; Jucaud, Vadim; Kawakita, Satoru

    2013-03-14

    The US Food and Drug Administration approved intravenous immunoglobulin (IVIg), extracted from the plasma of thousands of blood donors, for removing HLA antibodies (Abs) in highly sensitized patients awaiting organ transplants. Since the blood of healthy individuals has HLA Abs, we tested different IVIg preparations for reactivity to HLA single antigen Luminex beads. All preparations showed high levels of HLA-Ia and -Ib reactivity. Since normal nonalloimmunized males have natural antibodies to the heavy chains (HCs) of HLA antigens, the preparations were then tested against iBeads coated only with intact HLA antigens. All IVIg preparations varied in level of antibody reactivity to intact HLA antigens. We raised monoclonal Abs against HLA-E that mimicked IVIg's HLA-Ia and HLA-Ib reactivity but reacted only to HLA-I HCs. Inhibition experiments with synthetic peptides showed that HLA-E shares epitopes with HLA-Ia alleles. Importantly, depleting anti-HLA-E Abs from IVIg totally eliminated the HLA-Ia reactivity of IVIg. Since anti-HLA-E mAbs react with HLA-Ia, they might be useful in suppressing HLA antibody production, similar to the way anti-RhD Abs suppress production. At the same time, anti-HLA-E mAb, which reacts only to HLA-I HCs, is unlikely to produce transfusion-related acute lung injury, in contrast to antibodies reacting to intact-HLA.

  17. Lean premixed reacting flows with swirl and wall-separation zones in a contracting chamber

    Science.gov (United States)

    Zhang, Yuxin; Rusak, Zvi; Wang, Shixiao

    2017-11-01

    Low Mach number lean premixed reacting swirling flows with wall-separation zones in a contracting circular finite-length open chamber are studied. Assuming a complete reaction with high activation energy and chemical equilibrium behind the reaction zone, a nonlinear partial differential equation is derived for the solution of the flow stream function behind the reaction zone in terms of the inlet total enthalpy for a reacting flow, specific entropy and the circulation functions. Bifurcation diagrams of steady flows are described as the inlet swirl level is increased at fixed chamber contraction and reaction heat release. The approach is applied to an inlet solid-body rotation flow with constant profiles of the axial velocity, temperature and mixture reactant mass fraction. The computed results provide predictions of the critical inlet swirl levels for the first appearance of wall-separation states and for the size of the separation zone as a function of the inlet swirl ratio, Mach number, chamber contraction and heat release of the reaction. The methodology developed in this paper provides a theoretical feasibility for the development of the technology of swirl-assisted combustion where the reaction zone is supported and stabilized by a wall-separation zone.

  18. Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone

    International Nuclear Information System (INIS)

    Mikulčić, Hrvoje; Vujanović, Milan; Ashhab, Moh'd Sami; Duić, Neven

    2014-01-01

    This work presents a numerical study of the highly swirled gas–solid flow inside a cement cyclone. The computational fluid dynamics – CFD simulation for continuum fluid flow and heat exchange was used for the investigation. The Eulearian–Lagrangian approach was used to describe the two-phase flow, and the large eddy simulation – LES method was used for correctly obtaining the turbulent fluctuations of the gas phase. A model describing the reaction of the solid phase, e.g. the calcination process, has been developed and implemented within the commercial finite volume CFD code FIRE. Due to the fact that the calcination process has a direct influence on the overall energy efficiency of the cement production, it is of great importance to have a certain degree of limestone degradation at the cyclone's outlet. The heat exchange between the gas and solid phase is of particular importance when studying cement cyclones, as it has a direct effect on the calcination process. In order to study the heat exchange phenomena and the flow characteristics, a three dimensional geometry of a real industrial scroll type cyclone was used for the CFD simulation. The gained numerical results, characteristic for cyclones, such as the pressure drop, and concentration of particles can thus be used for better understanding of the complex swirled two-phase flow inside the cement cyclone and also for improving the heat exchange phenomena. - Highlights: • CFD (computational fluid dynamics) is being increasingly used to enhance efficiency of reacting multi-phase flows. • Numerical model of calcination process was presented. • A detailed industrial geometry was used for the CFD simulation. • Presented model and measurement data are in good agreement

  19. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    Science.gov (United States)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  20. Approximate solution to the Kolmogorov equation for a fission chain-reacting system

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1986-01-01

    An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution

  1. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    Science.gov (United States)

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH - ) and neutralize the H + ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (P max ) of the KCl-AER-MFC increased from 307.5mW·m -2 to 542.8mW·m -2 , slightly lower than that of the PBS-MFC (640.7mW·m -2 ). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  3. Development and testing of bumper limiter of aluminum alloy vacuum vessel for reacting plasma experiment

    International Nuclear Information System (INIS)

    Uchikawa, T.; Fujiwara, M.; Ioki, K.; Irie, T.; Nayama, R.; Nishikawa, M.; Onozuka, M.; Tomita, M.

    1985-01-01

    Two types of graphite bumper limiters were designed and trially fabricated for a reacting plasma device, R-tokamak. High heat load tests were conducted to examine thermal behavior and thermal shock resistance of the limiters by using a 100kW electron beam facility. The experimental data were compared with the results of 3-D thermal analysis

  4. Development and testing of bumper limiter of aluminum alloy vacuum vessel for reacting plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Uchikawa, T.; Fujiwara, M.; Ioki, K.; Irie, T.; Nayama, R.; Nishikawa, M.; Onozuka, M.; Tomita, M.

    1985-07-01

    Two types of graphite bumper limiters were designed and trially fabricated for a reacting plasma device, R-tokamak. High heat load tests were conducted to examine thermal behavior and thermal shock resistance of the limiters by using a 100kW electron beam facility. The experimental data were compared with the results of 3-D thermal analysis.

  5. Development of uranium milling and conversion

    International Nuclear Information System (INIS)

    Takada, Shingo; Hirono, Shuichiro.

    1983-11-01

    The development and improvement of uranium milling and refining producing uranium tetrafluoride from ores by the wet process, without producing yellowcake as an intermediate product, have been carried out for over ten years with a small pilot plant (50 t-ore/day). In the past several years, a process for converting uranium tetrafluoride into hexafluoride has been developed successfully. To develop the process further, the construction of an integrated milling and conversion pilot plant (200 t-U/year) started in 1979 and was completed in 1981. This new plant has two systems of solvent extraction using tri-noctylamine: one of the systems treats the pregnant solution (uranyl sulphate) by heap-leaching followed by ion exchange, and the other treats the uranyl sulphate solution by dissolving imported yellowcake. The uranium loading solvents from the two systems are stripped with hydrochloric acid solution to obtain the concentrated uranium solution containing 100 g-U/1. Uranyl sulphate solution from the stripping circuit is reduced to a uranous sulphate solution by the electrolytic method. In a reduction cell, uranyl sulphate solution and dilute sulphuric acid are used respectively as catholyte and anolyte, and a cation exchange membrane is used to prevent re-oxidation of the uranous sulphate. In the following hydrofluorination step, uranium tetrafluoride, UF 4 .1-1.2H 2 O (particle size: 50-100μ), is produced continuously as the precipitate in an improved reaction vessel, and this makes it possible to simplify the procedures of liquid-solid separation, drying and granulation. The uranium tetrafluoride is dehydrated by heating to 350 0 C in an inert gas flow. The complete conversion from UF 4 into UF 6 is achieved by a fluidized-bed reactor and a high value of utilization efficiency of fluorine, over 99.9 percent, is attained at about 400 0 C. (author)

  6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  7. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets

    Science.gov (United States)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2015-11-01

    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  8. Preparation of Uranium Dioxide by Electrochemical Reduction in Ammonium Carbonate Solutions and Subsequent Precipitation; Preparation de bioxyde d'uranium par reduction electrochimique dans des solutions de carbonate d'ammonium et precipitation; Prigotovlenie dvuokisi urana metodom ehlektrokhimicheskogo vosstanovleniya v rastvore karbonata ammoniya s posleduyushchim osazhdeniem; Preparacion de dioxido de uranio por reduccion electroquimica en soluciones de carbonato amonico u precipitacion subsiguiente

    Energy Technology Data Exchange (ETDEWEB)

    Pravdic, V.; Branica, M.; Pucar, Z. [Department of Physical Chemistry, Rudjer Boskovic Institute, Zagreb, Yugoslavia (Serbia)

    1963-11-15

    Experiments in a small scale electrolysis cell on cathodic reduction of uranium (VI) to uranium (IV) show the possibility of an efficient way to obtain uranium (IV) in carbonate solutions. From this solution uranium (IV) hydrous oxide precipitates by merely raising the temperature. To obtain larger quantities of material needed for technological testing, a scale-up of the process was attempted. An electrolysis cell of hard PVC (polyvinylchloride) was constructed with a mercury pool cathode of approximately 2.5 dm{sup 2} and platinum anodes. The catholyte was separated from the anolyte by cationexchange membranes. The catholyte was circulated between two 50-1 reservoirs and streamed toward the vigorously stirred mercury cathode. The working potential of mercury was controlled against an Ag/AgCl/KC1 (sat.) reference electrode, the potential being held constant at -1.5 V. The current efficiency is approximately 90%; the power consumed for the reduction process is about 0.8 kWh/kg of uranium dioxide. After the electrolysis was completed the precipitation was initiated only by heating the deeply green clear solution up to 70 deg. C in a separate all-glass vessel of 60-1 volume. From 50, 1 of the catholyte solution 1 kg of a centrifuged product (containing about 20% of water) was obtained. The coulometric analysis of the oxygen-uranium ratio always gave results in the range of 2.04 to 2.09. By the procedure described uranium (IV) hydrous oxide is selectively precipitated, and the oxygen-uranium ratio in the precipitate was found to be independent of the degree of completion of the reduction. The product was identified as the alpha phase of uranium dioxide by the X-ray powder diffraction. Experiments in sintering and characterization of uranium dioxide thus obtained for the ceramic nuclear fuel requirements are under way. (author) [French] Des experiences faites dans une petite cellule d'electrolyse sur la reduction cathodique d'uranium (VI) en uranium (IV) montrent qu

  9. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  10. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  11. Outcomes in Patients With Metastatic Renal Cell Carcinoma Who Develop Everolimus-Related Hyperglycemia and Hypercholesterolemia: Combined Subgroup Analyses of the RECORD-1 and REACT Trials.

    Science.gov (United States)

    Bono, Petri; Oudard, Stephane; Bodrogi, Istvan; Hutson, Thomas E; Escudier, Bernard; Machiels, Jean-Pascal; Thompson, John A; Figlin, Robert A; Ravaud, Alain; Basaran, Mert; Porta, Camillo; Bracarda, Sergio; Brechenmacher, Thomas; Lin, Chinjune; Voi, Maurizio; Grunwald, Viktor; Motzer, Robert J

    2016-10-01

    Hyperglycemia and hypercholesterolemia are class effects of mammalian target of rapamycin inhibitors. The purpose of this study was to characterize safety and efficacy of patients with metastatic renal cell carcinoma (mRCC) treated with everolimus in RECORD-1 (REnal Cell cancer treatment with Oral RAD001 given Daily) and REACT (RAD001 Expanded Access Clinical Trial in RCC) who developed these events. Adults with vascular endothelial growth factor-refractory mRCC received everolimus 10 mg/d in the randomized RECORD-1 (n = 277) and open-label REACT (n = 1367) studies. Outcomes included safety, treatment duration, overall response, and progression-free survival for patients who developed hypercholesterolemia or hyperglycemia. In RECORD-1, 12% (33 of 277) and 20% (55 of 277) of patients developed any grade hyperglycemia or hypercholesterolemia, respectively, with only 6% (78 of 1367) and 1% (14 of 1367) of the same events, respectively, in REACT. Median everolimus treatment duration was similar for patients with hyperglycemia or hypercholesterolemia (RECORD-1, 6.2 and 6.2 months, respectively; REACT, 4.4 and 4.5 months, respectively), but longer than the overall populations (RECORD-1, 4.6 months; REACT, 3.2 months). In RECORD-1/REACT, 82%/68% of patients with hyperglycemia and 75%/71% of patients with hypercholesterolemia achieved partial response or stable disease. The incidence of clinically notable Grade 3 or 4 adverse events, other than anemia and lymphopenia, appeared to be similar across trials and subgroups. Although there was a trend for improved progression-free survival with development of hyperglycemia or hypercholesterolemia, the association was not statistically significant. Hyperglycemia and hypercholesterolemia were observed in low numbers of patients, and although these events might be associated with improved response to everolimus, the differences were not significant. These findings should be validated with prospective biomarker studies. Copyright

  12. Enzyme Kinetics By Directly Imaging A Porous Silicon Microfluidic Reactor Using Desorption/Ionization on Silicon Mass Spectrometry

    NARCIS (Netherlands)

    Nichols, K.P.F.; Azoz, Seyla; Gardeniers, Johannes G.E.

    2008-01-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser

  13. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  14. How preschoolers react to norm violations is associated with culture.

    Science.gov (United States)

    Gampe, Anja; Daum, Moritz M

    2018-01-01

    Children from the age of 3years understand social norms as such and enforce these norms in interactions with others. Differences in parental and institutional education across cultures make it likely that children receive divergent information about how to act in cases of norm violations. In the current study, we investigated whether cultural values are associated with the ways in which children react to norm violations. We tested 80 bicultural 3-year-olds with a norm enforcement paradigm and analyzed their reactions to norm violations. The reactions were correlated to the children's parental cultural values using the Global Leadership and Organizational Behavior Effectiveness (GLOBE) scales, and these results show that parental culture was associated with children's reactions to norm violations. The three strongest correlations were found for institutional collectivism, performance orientation, and assertiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Diego, L.F. de; Garcia-Labiano, F. [Instituto de Carboquimica, Zaragoza (Spain). Dept. of Energy and Environment

    1999-04-01

    The calcination process of the calcium acetate (CA) and calcium magnesium acetate (CMA) was investigated as a previous step for coal gas desulfurisation during sorbent injection at high temperatures because the excellent results demonstrated by these sorbents as sulfur removal agents both in combustion and gasification processes. As pore structure developed during calcination is one of the most important characteristics of the sorbent related with the later reaction with the gaseous pollutants, several calcination tests were conducted in a drop tube reactor at temperatures from 700{degree}C to 1100{degree}C, and residence times from 0.8 to 2.4 s. Four different gas atmospheres were used for comparative purposes: inert, oxidising, reducing, and non-calcining (pure CO{sub 2}). Despite the advantage of the high porous cenospheric structure developed by these sorbents during their injection at high temperature, calcination of the CaCO{sub 3} was not complete even at the longest residence time, 2.4 s, and the highest temperature, 1100{degree}C, tested. An important effect of the reacting atmosphere on the calcination conversion and on the sorbent pore structure was detected. The CO{sub 2} concentration around the particle, both that fed in the reacting gases or that generated by organic material combustion, seems to be responsible for the final calcination conversions obtained in each case, also affecting the sintering suffered by the sorbents. 19 refs., 10 figs.

  16. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor.

    Science.gov (United States)

    Ng, Eng-Poh; Goh, Jia-Yi; Ling, Tau Chuan; Mukti, Rino R

    2013-03-04

    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.

  17. Realistic Creativity Training for Innovation Practitioners: The Know-Recognize-React Model

    DEFF Research Database (Denmark)

    Valgeirsdóttir, Dagný; Onarheim, Balder

    2017-01-01

    As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program sp...... the transdisciplinary study described in this paper. Co-creation was employed as a method to ensure the three layers of focus would be taken into consideration. The result is a program called Creative Awareness Training which is based on the new Know-Recognize-React model.......As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program...

  18. PERBEDAAN KEMAMPUAN KONEKSI MATEMATIS MELALUI MODEL PEMBELAJARAN REACT DENGAN MODEL PEMBELAJARAN LEARNING CYCLE 5E SISWA SMKN 39 JAKARTA

    Directory of Open Access Journals (Sweden)

    Aditya Prihandhika

    2017-03-01

    Full Text Available Hasil analisa TIMSS Tahun 2013 menempatkan Indonesia sebagai salah satu negara dengan peringkat terendah dalam perolehan nilai matematika. Model pembelajaran yang dapat digunakan untuk meningkatkan kemampuan koneksi matematis diantaranya adalah model pembelajaran REACT dan Learning Cycle 5E. Penelitian ini bertujuan untuk mengetahui terdapat atau tidaknya perbedaan kemampuan koneksi matematis peserta didik yang diajarkan dengan kedua model tersebut. Penelitian dilaksanakan di SMKN 39 Jakarta dengan populasi kelas X semester ganjil tahun pelajaran 2015-2016. Sampel yang diteliti sebanyak 61 orang dengan menggunakan design penelitian quasi experimental. Variabel bebas : model pembelajaran REACT dan model pembelajaran Learning Cycle 5E. Variabel terikat : kemampuan koneksi matematis. Uji instrumen dengan uji validitas dan uji reliabilitas. Uji validitas dengan rumus korelasi Product Moment didapat 7 soal yang valid. Uji reliabilitas dengan rumus Alpha menunjukan bahwa soal tersebut reliabel. Uji normalitas dengan uji Lilliefors menunjukan kedua sampel dari populasi yang berdistribusi normal. Uji homogenitas dengan uji Fisher menunjukan kedua sampel memiliki varians yang homogen. Uji hipotesis dengan uji-t  didapat  dengan alpha sebesar 0,05, maka  di tolak. Dengan demikian terdapat perbedaan kemampuan koneksi matematis peserta didik yang diajarkan dengan model pembelajaran REACT dan model pembelajaran Learning Cycle 5E di SMKN 39 Jakarta.   Kata Kunci: Kemampuan Koneksi Matematis, Model Pembelajaran REACT      Model Pembelajaran Learning Cycle 5E.

  19. Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liang, Xinxing; Peng, Sui; Lei, Ying; Gao, Chao; Wang, Nanfang; Liu, Suqin; Fang, Dong

    2013-01-01

    Highlights: ► Amino acid is used as additive for all-vanadium redox flow battery. ► The additive can significantly improve performance of positive electrolyte. ► Mechanism for the improvement is investigated. -- Abstract: L-Glutamic acid is used as an additive for the positive electrolyte of all-vanadium redox flow battery (VRFB), and its effect on the thermal stability and electrochemical activity is investigated. It is found that the addition of L-glutamic can significantly alleviate the precipitation of V 2 O 5 from positive electrolyte. The conservation rate of V(V) ion can be as high as 58% after 2 M V(V) solution being kept in 40 °C for 89 h. Besides, L-glutamic can also improve the mass transport and electrochemical performance of anolyte. A high coulombic efficiency of over 95% and energy efficiency of 74% are obtained. XPS spectra illustrate that L-glutamic can react with the surface of carbon felt electrode and introduce more oxygen-containing and nitrogen-containing groups, which should be responsible for the improvement of electrochemical performance

  20. Optimal stretching in the reacting wake of a bluff body.

    Science.gov (United States)

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  1. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive and the D......In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  2. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... by the EU Nickel Directive. Despite this, the EU Nickel Directive part 2 was expected to work as an operational limit that would sufficiently protect European consumers against nickel allergy and dermatitis. This review presents the accumulation of epidemiological studies that evaluated the possible effect...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  3. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    Science.gov (United States)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen

  4. Motivation, procedures and aims of reacting plasma experiments

    International Nuclear Information System (INIS)

    Miyahara, Akira

    1982-01-01

    A project of reacting plasma experiment (R-project) was proposed at the Institute of Plasma Physics (IPP), Nagoya University. It is necessary to bridge plasma physics and fusion engineering by means of a messenger wire like burning plasma experiment. This is a motivation of the R-project. The university linkage organization of Japan for fusion engineering category carried out a lot of contribution to R-tokamak design. The project consists of four items, namely, R-tokamak design, research and development (R and D), site and facilities, and international collaboration. The phase 1 experiment (R 1 - phase) corresponds to burning plasma experiment without D + T fuel, while the phase-2 experiment (R 2 -phase) with D + T fuel. One reference design was finished. Intensive efforts have been carried out by the R and D team on the following items, wall material, vacuum system, tritium system, neutronics, remote control system, pulsed superconducting magnet development, negative ion source, and alpha-particle diagnostics. The problems concerning site and major facilities are also important, because tritium handling, neutron and gamma-ray sky shines and the activation of devices cause impact to surrounding area. The aims of burning plasma experiment are to enter tritium into the fusion device, and to study burning plasma physics. (Kato, T.)

  5. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  6. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  7. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  8. Techniques in gas-phase thermolyses - Part 7. Direct surface participation in gas-phase Curie-point pyrolysis: The pyrolysis of phenyl azide

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1986-01-01

    The possible direct participation of the hot reactor surface in the formation of pyrolysis products was elucidated through the pyrolytic decomposition of phenyl azide. It is demonstrated that the intermediate phenyl nitrene generated reacts with elemental carbon at the filament surface, leading...

  9. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    International Nuclear Information System (INIS)

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-01-01

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium

  10. Monoclonal antibodies reactive with common tumor antigens on UV-induced tumors also react with hyperplastic UV-irradiated skin

    International Nuclear Information System (INIS)

    Spellman, C.W.; Beauchamp, D.A.

    1986-01-01

    Most murine skin tumors induced by ultraviolet light (UVB, 280-340 nm) can be successfully transplanted only into syngeneic hosts that have received subcarcinogenic doses of UVB. The tumor susceptible state is long-lived and mediated by T suppressor cells that control effector responses against common antigens on UV-induced tumors. Because antigen specific suppression arises prior to the appearance of a tumor, questions arise about the source of the original antigen. They have previously reported transplantation studies indicating that UV-irradiated skin is antigenically cross-reactive with UV-induced tumors. They now report on flow cytometry analyses showing that a series of MoAb reactive with common antigens expressed by UV-induced tumors are also reactive on cells from UV-irradiated skin. Various antigens appear at different times in the UV irradiation scheme, and some persist while others are transient. They speculate that the common antigens detected may be the ones to which functional suppression is directed. If true, these results suggest that successful tumors need not escape host defenses to emerge. Rather, tumors may arise and grow progressively if they express antigens that cross-react with specificities to which the host has previously mounted a suppressive response

  11. Wildfire simulation using a chemically-reacting plume in a crossflow

    Science.gov (United States)

    Breidenthal, Robert; Alvarado, Travis; Potter, Brian

    2010-11-01

    Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.

  12. CERN reacts to increased costs to completion of the LHC

    CERN Multimedia

    2002-01-01

    Aspects of LHC construction. The CERN Council, where the representatives of the 20 Member States of the Organization decide on scientific programmes and financial resources, held its 120th session on 14 December under the chairmanship of Prof. Maurice Bourquin (CH). CERN adjusts to the LHC Director-General, Luciano Maiani, stressed that CERN was now fully engaged in the LHC and outlined the first moves to react to the increased cost to completion of the LHC. The new accelerator is an extremely complex, high-tech project which CERN is building under very severe conditions. However, the technical challenges are solved and industrial production of accelerator elements, and installation are starting. Professor Maiani said that 2001 had been a very hard but decisive year for CERN. An important milestone had been passed during this meeting with the approval of the LHC dipole magnets contract, the last major contract for the accelerator. The new costs to completion of the LHC project are now clear. A first propos...

  13. Studies on the different forms of material reacting with antiinsulin antibodies in the fetal and adult rat

    International Nuclear Information System (INIS)

    Felix, J.M.; Sutter-Dub, M.T.; Legrele, C.; Reims Univ., 51

    1975-01-01

    The nature of peak B (MW = 10-12,000, proinsulin) and peak C (MW = 50-100,000, 'big big' insulin) materials detected by the double antibody (DA) procedure in elution profiles of rat sera after Sephadex G 50 or G 100 chromatography (cf. preceding companion paper) is further investigated. Peak B is converted by mild tryptic digestion in an immunoreactive material behaving in rechromatography exactly like insulin monomer. Peak C is less easily detected by the dextran coated charcoal (DCC) method; it resists 8 M urea 37 0 C for 1 hr, is not an artifact due to the complement system; its relative importance is very much reduced in pancreatic extracts or perifusates. Incubation of biologically active 125 I labelled insulin in rat sera results in appearance of labelled material behaving on chromatography like peak C natural material, having the electrophoretic mobility of rat α 1 globulins and albumin, and resisting 8 M urea, acidic pHs and 0.5 M NaCl. Similar incubation in buffer supplemented with bovine albumin results in appearance of a labelled material having the electrophoretic mobility of beef albumin; N-ethyl-maleimide provides against this binding, which might result from (S-S)-(SH) interchanges. Rat α globulins and albumin (but not beef albumin) cross-react with the DA procedure; they do not react with the DCC method. Insulin bound to plasma proteins react with both methods. It is suggested that peak C material, as detected by the DA method in rat serum, consists both of insulin covalently bound to plasma proteins and of certain plasma proteins; the DCC method detects only bound insulin. In streptozotocin treated rats, peak C material persists after the complete disappearance of insulin and proinsulin when detected by the (DA) procedure, but disappears when detected by the DCC procedure. (orig.) [de

  14. Studies on the different forms of material reacting with antiinsulin antibodies in the fetal and adult rat

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J M; Sutter-Dub, M T; Legrele, C [Reims Univ., 51 (France). Lab. de Physiologie Animale; Reims Univ., 51 (France). Centre de Biologie et de Biochimie du Developpement)

    1975-09-01

    The nature of peak B (MW = 10-12,000, proinsulin) and peak C (MW = 50-100,000, 'big big' insulin) materials detected by the double antibody (DA) procedure in elution profiles of rat sera after Sephadex G 50 or G 100 chromatography (cf. preceding companion paper) is further investigated. Peak B is converted by mild tryptic digestion in an immunoreactive material behaving in rechromatography exactly like insulin monomer. Peak C is less easily detected by the dextran coated charcoal (DCC) method; it resists 8 M urea 37/sup 0/C for 1 hr, is not an artifact due to the complement system; its relative importance is very much reduced in pancreatic extracts or perifusates. Incubation of biologically active /sup 125/I labelled insulin in rat sera results in appearance of labelled material behaving on chromatography like peak C natural material, having the electrophoretic mobility of rat ..cap alpha../sub 1/ globulins and albumin, and resisting 8 M urea, acidic pHs and 0.5 M NaCl. Similar incubation in buffer supplemented with bovine albumin results in appearance of a labelled material having the electrophoretic mobility of beef albumin; N-ethyl-maleimide provides against this binding, which might result from (S-S)-(SH) interchanges. Rat ..cap alpha.. globulins and albumin (but not beef albumin) cross-react with the DA procedure; they do not react with the DCC method. Insulin bound to plasma proteins react with both methods. It is suggested that peak C material, as detected by the DA method in rat serum, consists both of insulin covalently bound to plasma proteins and of certain plasma proteins; the DCC method detects only bound insulin. In streptozotocin treated rats, peak C material persists after the complete disappearance of insulin and proinsulin when detected by the (DA) procedure, but disappears when detected by the DCC procedure.

  15. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-10-01

    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  16. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  17. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].

    Science.gov (United States)

    Arakcheev, E N; Brunman, V E; Brunman, M V; Konyashin, A V; Dyachenko, V A; Petkova, A P

    Usage of complex automated electrolysis unit for drinking water disinfection and wastewater oxidation and coagulation is scoped, its ecological and energy efficiency is shown. Properties of technological process of anolyte production using membrane electrolysis of brine for water disinfection in municipal pipelines and potassium ferrate production using electrochemical dissolution of iron anode in NaOH solution for usage in purification plants are listed. Construction of modules of industrial prototype for anolyte and ferrate production and applied aspects of automation of complex electrolysis unit are proved. Results of approbation of electrolytic potassium ferrate for drinking water disinfection and wastewater, rain water and environmental water oxidation and coagulation are shown.

  18. How Did the Asian Stock Markets React to Bank Mergera after the 1997 Financial Crisis?

    OpenAIRE

    Meslier-Crouzille , Céline; Lepetit , Laetitia; Bautista , Carlos C.

    2008-01-01

    International audience; The objective of this paper is to empirically assess the stock market reaction to the announcement of bank mergers and acquisitions (M&As) in eight East Asian countries over the 1997-2003 period. M&As are classified according to the status of entity, the time period of the deal and the maturity of the banking system. A bivariate GARCH model is used to estimate abnormal returns taking beta conditional variability into account. We find that the market reacted negatively ...

  19. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  20. Design Modifications, Fabrication and Test of HFDB-03 Racetrack Magnet Wound with Pre-Reacted Nb3Sn Rutherford Cable

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bhashyam, S.; Carcagno, R.; Feher, S.; Imbasciati, L.; Lamm, M.; Pischalnikov, Y.; Tartaglia, M.; Tompkins, J.; Zlobin, A.V.

    2004-01-01

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb3Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78 % of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results

  1. Impact of small variations in LDR for late-reacting tissue in gyn brachytherapy

    International Nuclear Information System (INIS)

    Bourel, Victor J.; Torre, Marcela de la; Rodriguez, Isabel

    1996-01-01

    Introduction: The linear-quadratic model shows that while a slight variation in the LDR Brachytherapy dose rate affects just a little the tumoral tissue ERD (Extrapolated Response Dose), the effect can be very strong in the late reacting tissues. The LDR Brachytherapy in cervix cancer is done with a dose rate in point A that range between 0.5 Gy/h and 0.7 Gy/h. This small range is a very heavy variable to find equivalent schemes. Material and Methods: Whith the LC10 program (based in the linear-quadratic model developed in our centre) a radiobiological analysis of the GYN Brachytherapy considering the dosimetric distribution of the most usual applicators is done. Different studies show that the critical rectal and bladder point doses in reference to point A ranges between 60% and 80%. Bearing this in mind, and the typical variables (tissue parameters, number of fractions, dose per fraction, total dose, etc.) the effect of the LDR dose rate variation in particularly analysed while calculating the equivalent HDR scheme. Result and discussion: When equivalent schemes are calculated in practise it is found that the HDR number of fractions depends highly on the LDR dose rate, that's why for one specific LDR scheme is necessary even to duplicate the HDR number of fractions to find the unique equivalent scheme when varying the dose rate from 0.5 Gy/h to 0.7 Gy/h. This also shows that the same LDR scheme using 0.5 Gy/h or 0.7 Gy/h is radiobiologically different (up to 20% in the late reacting tissue ERD). Conclusion: It is very important to report with great detail the LDR dose rate with which the gynaecological treatments have been performed because this variable is decisive to compare the results with other LDR or HDR schemes

  2. Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Şefaatdin Yüksel

    2005-01-01

    Full Text Available Eigencharacteristics of a longitudinally vibrating elastic rod with locally and non-locally reacting damping are analyzed. The rod is considered as a continuous system and complex eigenfrequencies are determined as solution of a characteristic equation. The variation of the damping ratios with respect to damper locations and damping coefficients for the first four eigenfrequencies are obtained. It is shown that at any mode of locally or non-locally damped elastic rod, the variation of damping ratio with damper location is linearly proportional to absolute value of the mode shape of undamped system. It is seen that the increasing damping coefficient does not always increase the damping ratio and there are optimal values for the damping ratio. Optimal values for external damping coefficients of viscous dampers and locations of the dampers are presented.

  3. An efficient hybrid sulfur process using PEM electrolysis with a bayonet decomposition reactor - HTR2008-58207

    International Nuclear Information System (INIS)

    Gorensek, M. B.; Summers, W. A.; Lahoda, E. J.; Bolthrunis, C. O.; Greyvenstein, R.

    2008-01-01

    (which could be used for acid concentration) generation or electricity (which is needed in the SDE) production. A vacuum column operating at 0.09 bar pressure was originally used to concentrate the 50% H 2 SO 4 SDE product to 75% H 2 SO 4 . Steam ejectors provided the suction needed to maintain vacuum. Most of the heat needed for boil-up was recovered either by indirectly cooling the SDE (cooling the hot anolyte and catholyte product streams by interchange with vacuum column feed) or by cooling the bayonet reactor product. The heat exchanger network (HEN) design was not explicitly specified, but pinch analysis showed that the heating target for acid concentration was 75.5 kJ/mol H 2 . The original flowsheet ignored pressure drops in heat exchangers and other process units. It also assumed a maximum cooling water supply temperature (30 deg. C) that was thought to be too low for many climates. Consequently, a redesign was undertaken with the following objectives: - Increase all cooler and condenser outlet temperatures from 40 deg. C to 48 deg. C, consistent with a cooling water supply temperature of 38 deg. C and a 10 deg. C minimum temperature difference; - Increase the vacuum column condenser outlet temperature from 40 deg. C to 43 deg. C, consistent with a cooling water supply temperature of 38 deg. C and a 5 deg. C minimum temperature difference; - Impose realistic pressure drops in all heat exchangers and any process vessels where appropriate; and - Design and explicitly simulate the HEN, demonstrating a 10 deg. C minimum temperature difference in all inter-changers. The redesign prompted a number of changes. The most significant resulted from the effects of pressure drops on the vacuum column feed inter-changers. Pumps had to be added to provide the pressure differential needed to maintain flow. As a result, the two feed streams did not enter the inter-changers as saturated liquids. Their heating curves were no longer linear, but featured a rapid rise in temperature

  4. Serum and plasma fibronectin binds to complement reacted immune complexes primarily via Clq

    DEFF Research Database (Denmark)

    Baatrup, G; Svehag, S E

    1986-01-01

    The binding of fibronectin to human Clq, C3b, and complement-reacted immune complexes (IC) was investigated by enzyme-linked immunosorbent assays. Microplates were coated with BSA followed by incubation with rabbit-anti-BSA IgG or F(ab')2 fragments of rabbit anti-BSA. Incubation of the solid phase...... with serum at 37 degrees C caused attachment of Clq and C3b. Addition of EDTA to the serum inhibited the binding of C3b, but not Clq, whereas substitution of the anti-BSA IgG on the solid phase with the F(ab')2 fragments abrogated the Clq, but not the C3b binding. Fibronectin binding was observed after...

  5. [Patient's Autonomy and Information in Psycho-Oncology: Computer Based Distress Screening for an Interactive Treatment Planning (ePOS-react)].

    Science.gov (United States)

    Schäffeler, Norbert; Sedelmaier, Jana; Möhrer, Hannah; Ziser, Katrin; Ringwald, Johanna; Wickert, Martin; Brucker, Sara; Junne, Florian; Zipfel, Stephan; Teufel, Martin

    2017-07-01

    To identify distressed patients in oncology using screening questionnaires is quite challenging in clinical routine. Up to now there is no evidence based recommendation which instrument is most suitable and how to put a screening to practice. Using computer based screening tools offers the possibility to automatically analyse patient's data, inform psycho-oncological and medical staff about the results, and use reactive questionnaires. Studies on how to empower patients in decision making in psycho-oncology are rare.Methods Women with breast and gynaecological cancer have been consecutively included in this study (n=103) at time of inpatient surgical treatment in a gynaecological clinic. They answered the computer based screening questionnaire (ePOS-react) for routine distress screening at time of admission. At the end of the tool an individual recommendation concerning psycho-oncological treatment is given ( i) psycho-oncological counselling, ii) brief psycho-oncological contact, iii) no treatment suggestion). The informed patients could choose autonomously either the recommended treatment or an individually more favoured alternative possibility. Additionally, a clinical interview (approx. 30 min) based on the "Psychoonkologische Basisdiagnostik (PO-Bado)" has been carried out for a third-party assessment of patients' need for treatment.Results 68.9% followed the treatment recommendation. 22.3% asked for a more "intense" (e. g. counselling instead of recommended brief contact) and 8,7% for a "less intense" intervention than recommended. The accordance of third-party assessment (clinical interview "PO-Bado") and treatment recommendation is about 72.8%. The accordance of third-party assessment and patient's choice (ePOS-react) is about 58.3%. The latter is smaller because 29.1% asked for a brief psycho-oncological contact for whom from the third-party assessment's perspective no indication for treatment has been existent.Discussion A direct response of the

  6. Aerodynamic characteristics and thermal structure of nonpremixed reacting swirling wakes at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rong F. [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei (China); Yen, Shun C. [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung (China)

    2008-12-15

    The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width. (author)

  7. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    OpenAIRE

    Vincent Casseau; Rodrigo C. Palharini; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    A two-temperature CFD (computational fluid dynamics) solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrat...

  8. The need analysis of chemistry module based on REACT (relating, experiencing, applying, cooperating and transferring) to improve critical thinking ability

    Science.gov (United States)

    Tyffani, D. M.; Utomo, S. B.; Rahardjo, S. B.

    2018-05-01

    This research was aimed to find out how students’ need of chemistry module based REACT (Relating, Experiencing, Applying, Cooperating and Transferring) to improve students’ critical thinking ability. The subjects of this research was the studentsof XI grade in three school in even semester of academic year 2016-2017 that contained of 48 students of Senior High School 2 Bandar Lampung, 38 students of Senior High School 3 Bandar Lampung and 46 students of Senior High School 12 Bandar Lampung. The data was gathering used non-test method by using open questionnaire with 13 questions. The results showed that 84,84% of students stated that the development of chemistry module based REACT on colloid material is needed. The analysis of hand’s book was used aspects of critical thinking proposed by Facione (2011) are interpretation, analysis, evaluation, conclusion, and explanation. Based on the result of the analysis of hand’s book at Senior High School 12 Bandar Lampung for critical thinking in colloid material that indicate 50% indicator is appropriate, while for indicator of inference and explanation only 16,67% appropriate, then for indicator analysis and evaluation doesn’t have conformity. Based on the results of the analysis shows that the hand’s book used have not empowered critical thinking ability with maximum. The development of chemistry module on colloid material is needed to overcome the problem of hand’s book that hasn’t maximized critical thinking ability, then the development of module oriented to REACT learning model (Relating, Experiencing, Applying, Cooperating, and Transferring).

  9. Antiviral activity of Ecasol against feline calicivirus, a surrogate of human norovirus

    Directory of Open Access Journals (Sweden)

    Yogesh Chander

    2012-12-01

    Full Text Available Summary: Human norovirus (NoV is a major cause of acute gastroenteritis in closed settings such as hospitals, hotels and cruise ships. The virus survives on inanimate surfaces for extended periods of time, and environmental contamination has been implicated in its transmission. The disinfection of contaminated areas is important in controlling the spread of NoV infections. Neutral solutions of electrochemically activated (ECA-anolyte have been shown to be powerful disinfectants against a broad range of bacterial pathogens. The active chemical ingredient is hypochlorous acid (HOCl, which is registered as an approved food contact surface sanitizer in the United States by the Environmental Protection Agency, pursuant to 40 CFR 180.940. We evaluated the antiviral activity of Ecasol (an ECA-anolyte against feline calicivirus (FCV, a surrogate of NoV. FCV dried on plastic surfaces was exposed to Ecasol for 1, 2, or 5 min. After exposure to Ecasol, the virus titers were compared with untreated controls to determine the virus inactivation efficacy after different contact times. Ecasol was found to decrease the FCV titer by >5 log10 within 1 min of contact, indicating its suitability for inactivation of NoV on surfaces. Keywords: Ecasol, ECA-anolyte, Trustwater, Electrochemical activation, Norovirus, Feline calicivirus, Fomites

  10. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    Science.gov (United States)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  11. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    Science.gov (United States)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  12. Prevalence of Allergy to Natural Rubber Latex and Potential Cross Reacting Food in Operation Room Staff in Shiraz Hospitals -2006

    Directory of Open Access Journals (Sweden)

    H Nabavizade

    2007-07-01

    Full Text Available Introduction & Objective: Allergic reactions to natural rubber latex have increased during past 10 years especially among health care workers and patients with high exposure to latex allergens. Allergic reaction to latex is related to many diseases like occupational asthma. This study was performed to determine the prevalence of allergy to natural rubber latex and potential cross reacting food in operation room staff in Shiraz hospitals. Materials & Methods: In this cross-sectional descriptive study five hundred eighty operation room staff of ten private and state hospitals in Shiraz completed latex allergy questionnaire. They were questioned about personal history and previous history of latex sensitivity, symptoms of latex reactivity and about other allergies particularly to foods that may cross react with latex. Informed consent was obtained and skin prick testing was performed with natural rubber latex. Skin prick tests were done with three potentially cross reacting food (banana, Kiwi, and potato. The obtained data were analyzed with SPSS software and Chi-square test. Results: Among the 580 operation room workers 104 (17.9 % of participants were positive to latex skin test. We found a significant association between positive skin test to latex in operation room staff and atopy, urticaria and food allergy. Positive skin test to latex related to positive kiwi skin test (p<0.05. The prevalence did not vary by sex, age, education, surgical and non surgical glove users, history of contact dermatitis or smoking status. Conclusion: Latex allergy has a high prevalence in personnel of operation room. Evaluation of present symptom and prediction of future disease necessitate screening test in individuals at risk.

  13. Direct-to-consumer genetic testing: perceptions, problems, and policy responses.

    Science.gov (United States)

    Caulfield, Timothy; McGuire, Amy L

    2012-01-01

    Direct-to-consumer (DTC) genetic testing has attracted a great amount of attention from policy makers, the scientific community, professional groups, and the media. Although it is unclear what the public demand is for these services, there does appear to be public interest in personal genetic risk information. As a result, many commentators have raised a variety of social, ethical, and regulatory issues associated with this emerging industry, including privacy issues, ensuring that DTC companies provide accurate information about the risks and limitations of their services, the possible adverse impact of DTC genetic testing on healthcare systems, and concern about how individuals may interpret and react to genetic risk information.

  14. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  15. Electro-decontamination of cementitious materials

    International Nuclear Information System (INIS)

    Ben-Hadj-Hassine, S.

    2012-01-01

    The end of operations in nuclear facilities is followed by various decontamination and decommissioning operations. Similar to other electrochemical techniques such as re-alkalinisation and chloride extraction, an electrokinetic remediation process is being developed as a specific method for deeply contaminated concrete structures. Two cements, an ordinary Portland and a 30% slag cement, have been chosen for the conducted work.Mortars and concretes are contaminated by adding non-radioactive cesium in the batch water, cesium being a representative specie of deep encountered contaminants. The conducted experimental and numerical work have focused on three main aspects: characterizing and understanding the cesium transport mechanisms, assessing the electro-remediation process at lab-scale and evaluating the real scale constraints. Using existing knowledge of chloride transport mechanisms, experiments have been conducted to characterize the cesium interactions with cementitious phase and ionic transport in saturated materials. A numerical model have then been developed to describe the cesium transport, taking into account the ionic activity coefficients and interactions with solid phases. Indeed, lab-scale experiments have demonstrated that electro-remediation reduced to 20-50% the initially contained cesium after a three weeks treatment. Treated samples analysis confirmed that deeply diffused cesium is migrating to the surface. Moreover, conducted experiments showed the consistency between the different materials properties, applied currents and decontamination efficiency. A comparative analysis of experiments carried on samples with different shapes, formulations and contamination modes helped assessing and optimizing the process efficiency for various continuous and variable applied currents. Finally, electro-remediation experiments have also been carried on 1m 2 concrete slabs. Liquid catholyte and anolyte solutions are replaced by alumina gels and cellulose pastes

  16. Low-temperature deuteron irradiation of differently reacted Nb3Sn superconductors

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1978-01-01

    Irradiation measurements with 50 MeV deuterons at 18 K and subsequent annealing measurements were performed on Nb 3 Sn single and multifilamentary superconductors at the Helium-Bath Irradiation Facility of the Karlsruhe Cyclotron. The critical current densities jsub(c) of Nb 3 Sn bronze-reacted wire samples at various reaction temperatures (Tsub(R)=650,700,750,800 and 850 0 C) with equal layer thickness were measured for integral deuteron fluxes up to PHIsub(t)=0.7x10 18 cm -2 . After a decrease in jsub(c) of 85% at maximum dose a relatively small annealing effect (4 to 10%) was observed at ambient temperatures. The maximum value of the normalized critical current density, jsub(c)/jsub(c0), at PHIsub(t)approximately=10 17 cm -2 increases with increasing reaction temperature. The difference in volume pinning forces before and after irradiation increases less than linear (approximately√PHIsub(t)) with the irradiation dose. An almost linear dependence between the inverse grain diameter (dsub(K) -1 )) and volume pinning force is obtained both before and after irradiation. (Auth.)

  17. REACT-Mod: a mathematical model for transient calculation of chemical reactions with U-Pu-Np-Tc in the aqueous nitric acid solution

    International Nuclear Information System (INIS)

    Tachimori, Shoichi; Kitamura, Tatsuaki.

    1996-10-01

    A computer code REACT-Mod which simulates various chemical reactions in an aqueous nitric acid solution involving uranium, plutonium, neptunium, technetium etc. e.g., redox, radiolytic and disproportionation reactions of 68, was developed based on the kinetics model. The numerical solution method adopted in the code are two, a kinetics model totally based on the rate law of which differential equations are solved by the modified Porsing method, and a two-step model based on both the rate law and equilibrium law. Only the former treats 27 radiolytic reactions. The latter is beneficially used to have a quick and approximate result by economical computation. The present report aims not only to explain the concept, chemical reactions treated and characteristics of the model but also to provide details of the program for users of the REACT-Mod code. (author)

  18. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  19. Use of the nonsteady monotonic heating method for complex determination of thermophysical properties of chemically reacting mixture in the case of non-equilibrium proceeding of the chemical reaction

    International Nuclear Information System (INIS)

    Serebryanyj, G.Z.

    1984-01-01

    Theoretical analysis is made for the monotonic heating method as applied for complex determination of thermophysical properties of chemically reacting gases. The possibility is shown of simultaneous determination of frozen and equilibrium heat capacity, frozen and equilibrium heat conduction provided non-equilibrium occuring of the reaction in the wide range of temperatures and pressures. The monotonic heating method can be used for complex determination of thermophysical properties of chemically reacting systems in case of non-equilibrium proceeding of the chemical reaction

  20. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins.

    Science.gov (United States)

    Verhoeckx, Kitty C M; van Broekhoven, Sarah; den Hartog-Jager, Constance F; Gaspari, Marco; de Jong, Govardus A H; Wichers, Harry J; van Hoffen, Els; Houben, Geert F; Knulst, André C

    2014-03-01

    Due to the imminent growth of the world population, shortage of protein sources for human consumption will arise in the near future. Alternative and sustainable protein sources (e.g. insects) are being explored for the production of food and feed. In this project, the safety of Yellow mealworms (Tenebrio molitor L.) for human consumption was tested using approaches as advised by the European Food Safety Authority for allergenicity risk assessment. Different Yellow mealworm protein fractions were prepared, characterised, and tested for cross-reactivity using sera from patients with an inhalation or food allergy to biologically related species (House dust mite (HDM) and crustaceans) by immunoblotting and basophil activation. Furthermore, the stability was investigated using an in vitro pepsin digestion test. IgE from HDM- and crustacean allergic patients cross-reacted with Yellow mealworm proteins. This cross-reactivity was functional, as shown by the induction of basophil activation. The major cross-reactive proteins were identified as tropomyosin and arginine kinase, which are well known allergens in arthropods. These proteins were moderately stable in the pepsin stability test. Based on these cross-reactivity studies, there is a realistic possibility that HDM- and crustacean allergic patients may react to food containing Yellow mealworm proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    Science.gov (United States)

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients. Images PMID:1774262

  2. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kouta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Matsumura, Hirotoshi; Ishida, Takuya [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Yoshida, Makoto [Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Igarashi, Kiyohiko; Samejima, Masahiro [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Ohno, Hiroyuki [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Nakamura, Nobuhumi, E-mail: nobu1@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2016-08-26

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.

  3. Thermal-hydraulic characteristics of reacting zone for TWR bundles based on CFD method

    International Nuclear Information System (INIS)

    Lu Chuan; Yan Mingyu; Lu Jianchao

    2013-01-01

    Thermal-hydraulic characteristics of reacting zone for TWR (travelling wave reactor) bundles were analysed by CFD method. The calculation results of 7, 19 and 37 fuel pin bundles show the similar characteristics. The hot coolant seems to congregate into the centre as flowing to the downstream area. The high temperature coolant always distributes in the inner area while the temperature shows distinct gradation in the outer area. The temperature difference is more than 100 ℃ for the bundle whose diameter is about 26 cm. The major temperature gradations mainly locate in the outermost fuel rods of two circles while other circles show much smaller temperature gradients. This conclusion is estimated to be true for more fuel pin bundles such as 217 fuel pin bundles. The fuel assembly structure of the existing TWR design should be optimized in future. (authors)

  4. Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling.

    Science.gov (United States)

    Ye, L; Jia, Z; Jung, T; Maloney, P C

    2001-04-01

    The topology of OxlT, the oxalate:formate exchange protein of Oxalobacter formigenes, was established by site-directed fluorescence labeling, a simple strategy that generates topological information in the context of the intact protein. Accessibility of cysteine to the fluorescent thiol-directed probe Oregon green maleimide (OGM) was examined for a panel of 34 single-cysteine variants, each generated in a His(9)-tagged cysteine-less host. The reaction with OGM was readily scored by examining the fluorescence profile after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of material purified by Ni2+ linked affinity chromatography. A position was assigned an external location if its single-cysteine derivative reacted with OGM added to intact cells; a position was designated internal if OGM labeling required cell lysis. We also showed that labeling of external, but not internal, positions was blocked by prior exposure of cells to the impermeable and nonfluorescent thiol-specific agent ethyltrimethylammonium methanethiosulfonate. Of the 34 positions examined in this way, 29 were assigned unambiguously to either an internal or external location; 5 positions could not be assigned, since the target cysteine failed to react with OGM. There was no evidence of false-positive assignment. Our findings document a simple and rapid method for establishing the topology of a membrane protein and show that OxlT has 12 transmembrane segments, confirming inferences from hydropathy analysis.

  5. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others

    1996-10-01

    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  6. Radioimmunoassay of IgG and IgM rheumatoid factors reacting with human IgG

    International Nuclear Information System (INIS)

    Carson, D.A.; Lawrance, S.; Catalano, M.A.; Vaughan, J.H.; Abraham, G.

    1977-01-01

    Although IgG rheumatoid factor may play a central role in the pathogenesis of rheumatoid arthritis, previously there have been no precise methods for its specific measurement in serum and synovial fluid. This paper describes a solid phase radioimmunoassay for the independent quantification of IgM and IgG rheumatoid factor reacting with the Fc fragment of human IgG. As measured by this assay, serum IgG rheumatoid factor levels differed significantly between patients with seropositive and seronegative rheumatoid arthritis and normal control subjects. In addition, several sera and joint fluids from patients with seropositive rheumatoid arthritis, even without vasculitis, were shown by gel chromatography to have acid-dissociable complexes of IgG rheumatoid factor suggestive of IgG-IgG dimer or trimer formation

  7. Study on the onset of DC diaphragm glow discharge

    International Nuclear Information System (INIS)

    Jin, Xinglong; Wang, Xiaoyan; Zhang, Hongmei; Ren, Hongxia

    2013-01-01

    In this paper, the DC diaphragm glow discharge (DGD) occurred around the small hole on quartz tube between two submersed graphite electrodes and the onset of DGD was systematically investigated. It was found that critical voltage (V D ) decreased with the increasing conductivity, and then maintained at about 620 V. When the hole diameter increased from 1.0 mm to 2.5 mm, H 2 O 2 formation and AO discoloration in anolyte increased with the increase of the hole diameter. In addition, the effect of electrolyte constituents on H 2 O 2 formation and AO discoloration in anolyte induced by DGD was also studied. The concentration of H 2 O 2 and AO discoloration in anolyte was close in inert electrolyte such as Na 2 SO 4 and Na 2 HPO 4 solution. The concentration of H 2 O 2 and AO discoloration rate in Na 2 CO 3 and NaAc solution was lower than those in Na 2 SO 4 and Na 2 HPO 4 solution, due to their capture ability for ·OH. However, NaCl showed enhancing effect on AO discoloration, although it consumed a certain amount of H 2 O 2 . The energy efficiencies of AO discoloration and H 2 O 2 formation were also compared with those of other DGD reactor.

  8. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  9. Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study

    International Nuclear Information System (INIS)

    Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.

    2013-01-01

    Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large

  10. Evolution of a chemically reacting plume in a ventilated room

    Science.gov (United States)

    Conroy, D. T.; Smith, Stefan G. Llewellyn; Caulfield, C. P.

    2005-08-01

    The dynamics of a second-order chemical reaction in an enclosed space driven by the mixing produced by a turbulent buoyant plume are studied theoretically, numerically and experimentally. An isolated turbulent buoyant plume source is located in an enclosure with a single external opening. Both the source and the opening are located at the bottom of the enclosure. The enclosure is filled with a fluid of a given density with a fixed initial concentration of a chemical. The source supplies a constant volume flux of fluid of different density containing a different chemical of known and constant concentration. These two chemicals undergo a second-order non-reversible reaction, leading to the creation of a third product chemical. For simplicity, we restrict attention to the situation where the reaction process does not affect the density of the fluids involved. Because of the natural constraint of volume conservation, fluid from the enclosure is continually vented. We study the evolution of the various chemical species as they are advected by the developing ventilated filling box process within the room that is driven by the plume dynamics. In particular, we study both the mean and vertical distributions of the chemical species as a function of time within the room. We compare the results of analogue laboratory experiments with theoretical predictions derived from reduced numerical models, and find excellent agreement. Important parameters for the behaviour of the system are associated with the source volume flux and specific momentum flux relative to the source specific buoyancy flux, the ratio of the initial concentrations of the reacting chemical input in the plume and the reacting chemical in the enclosed space, the reaction rate of the chemicals and the aspect ratio of the room. Although the behaviour of the system depends on all these parameters in a non-trivial way, in general the concentration within the room of the chemical input at the isolated source passes

  11. Potentiometric Titration Method for Quantitative Determination of Hydrogen Peroxide

    National Research Council Canada - National Science Library

    Bessette, Russell R

    2005-01-01

    An electrochemical potentiometric titration method that entails titration of a known volume of a catholyte containing an unknown amount of hydrogen peroxide in a titration cell having two electrodes...

  12. Anti-N antibody reacting at 37°C: An unusual occurrence interfering with routine testing: Two interesting cases

    Directory of Open Access Journals (Sweden)

    Vijay Kumawat

    2015-01-01

    Full Text Available Most anti-N antibodies are naturally occurring, IgM antibodies, and not active above 25°C and are not clinically significant but IgG anti- N has also been described. Immune anti-N resulting from multiple transfusions does occur & has been implicated as the cause of hemolytic transfusion reactions and mild hemolytic disease of fetus and newborn. Anti- N reacting at room temperature can be a cause for ABO blood group discrepancy

  13. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  14. Direct Production of Silicones From Sand

    Energy Technology Data Exchange (ETDEWEB)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  15. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  16. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    OpenAIRE

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigment...

  17. Manufacturing and preliminary tests of a 12 T ''wind and react'' coil

    International Nuclear Information System (INIS)

    Corte, A. della; Pasotti, G.; Sacchetti, N.; Spadoni, M.; Oliva, A.B.; Penco, R.; Parodi, S.; Valle, N.; Specking, W.

    1994-01-01

    As already reported ENEA is engaged in the realization of a 12 T wind and react Nb 3 Sn coil, a subsize magnet designed to simulate many technological problems to be faced in NET-ITER magnets. EM-LMI and Ansaldo are the industrial partners in this project. A preliminary winding has been built and successfully tested. This winding has been cut in pieces and carefully inspected to be sure that the impregnation process after the heat treatment works well. No particular flaws have been detected. Then manufacturing of the 12 T magnet has been started and completed in about three months. Heat treatment, impregnation and electrical tests at 300 K have been successfully performed and the magnet is now ready for final tests. In order to obtain the most significant scientific and technological information from this magnet, the original test program (insertion of the coil in the SULTAN facility) has been modified according to a decision of the Fusion Technology Steering Committee (FTSC) of EURATOM. Details of the new test programs are given in the paper

  18. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi; Nam, Joo-Youn; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2013-01-01

    to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased

  19. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  20. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56

    DEFF Research Database (Denmark)

    Baek Sørensen, Rikke; Faurschou, Mikkel; Troelsen, Lone

    2009-01-01

    A large proportion of melanoma patients host a spontaneous T-cell response specifically against ML-IAP-derived peptides. In this study, we describe that some ML-IAP-specific cytotoxic T cells isolated from melanoma patients cross react with an epitope from the auto-antigen SS56. SS56 is a recentl...

  1. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models

    International Nuclear Information System (INIS)

    Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H

    2005-01-01

    The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space

  2. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    Science.gov (United States)

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  3. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    Science.gov (United States)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  4. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.; Safta, Cosmin; Ray, Jaideep; Najm, Habib N.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  5. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  6. Monoclonal antibodies (MAb) made against insect-derived metacyclic trypomastigotes (IMT) of Trypanosoma cruzi (TC) cross-react with other parasite forms

    International Nuclear Information System (INIS)

    Kirchhoff, L.V.; Gilliam, F.C.

    1986-01-01

    Considerable information has been generated in recent years about stage-specific surface membrane antigens of a number of protozoa, and this phenomenon has been observed among several stages of TC as well. However, little is known about the surface antigens of IMT, the true infective stage of TC, because of the difficulty of obtaining sufficient numbers of these organisms for analysis. The Tulahuen strain of TC was maintained in the reduviid vector Dipetalogaster maximus by repeated feeding on mice with high parasitemias. IMT collected with insect urine were irradiated (150 krad) and used to immunize a BALB/c mouse for hybridoma production. Supernatants were screened by immunofluorescence assay for the presence of IgG MAb that react with methanol-fixed IMT, epimastogotes (EPI) and culture-derived metacyclic trypomastigoes (CMT). Of 41 MAb obtained, 40 reacted with IMT, 37 with EPI and 38 with CMT. Four MAb immunoprecipitated radioiodinated proteins or protein conjugates of M/sub r/ 80, 72, 45 and 45 from lysates of 125 I surface-labeled EPI. These results indicate that, at least at the epitopic level, there is considerable overlap among IMT, EPI and CMT surface antigens. This finding suggests that analysis of surface proteins of the latter 2 parasite forms may lead to identification of molecules useful for vaccine development

  7. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  8. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    Science.gov (United States)

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  9. Prevalence of Allergy to Natural Rubber Latex and Potential Cross Reacting Food in Operation Room Staff in Shiraz Hospitals -2006

    OpenAIRE

    H Nabavizade; R Amin

    2007-01-01

    Introduction & Objective: Allergic reactions to natural rubber latex have increased during past 10 years especially among health care workers and patients with high exposure to latex allergens. Allergic reaction to latex is related to many diseases like occupational asthma. This study was performed to determine the prevalence of allergy to natural rubber latex and potential cross reacting food in operation room staff in Shiraz hospitals. Materials & Methods: In this cross-sectional descr...

  10. Advantage of fast reacting adsorbents like humic acids for the recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Denzinger, H.; Schnell, C.; Heitkamp, D.; Wagener, K.

    1980-01-01

    This report is divided into two sections. The first part comprises experimental data of humic acid adsorbers; whereas, the second concerns design parameter and costs of a recovery plant using fast reacting adsorbents. Summarizing the experimental results, hydrogen-loaded humic acids on carriers show an exceptionally fast kinetics of uranium fixation in seawater which is practically temperature independent. This fast adsorption performance may be maintained in a technical recovery process if care is taken to minimize slow diffraction controlled steps preceding the uranium fixation reaction. When humic acid was used instead of titanium hydroxide in the recovery plant, there was a decrease of investment and production costs of about 50%. However, there was a higher percentage of energy costs, i.e., electric power consumption and investments for pumps

  11. Role of the reacting free radicals on the antioxidant mechanism of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Galano, Annia, E-mail: agalano@prodigy.net.mx [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico); Alvarez-Diduk, Ruslan; Ramirez-Silva, Maria Teresa; Alarcon-Angeles, Georgina; Rojas-Hernandez, Alberto [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico)

    2009-09-18

    Density functional theory is used to study the antioxidant mechanism of curcumin. Five different mechanisms are considered: single electron transfer (SET), radical adduct formation (RAF), H atom transfer from neutral curcumin (HAT), H atom transfer from deprotonated curcumin (HAT-D), and sequential proton loss electron transfer (SPLET). The influence of the environment is investigated for polar and non-polar surroundings. The apparent contradictions among previous experimental results are explained by the role of the nature of the reacting free radical on the relative importance of the above mentioned mechanism. It is proposed that the curcumin + DPPH reaction actually takes place mainly through the SPLET mechanism, while the reaction with {sup {center_dot}}OCH{sub 3}, and likely with other alkoxyl radicals, is governed by the HAT mechanism. Branching ratios for the {sup {center_dot}}OCH{sub 3} + curcumin reaction are reported for the first time. The calculated overall rate constants for this reaction are 1.16 x 10{sup 10} (benzene) and 5.52 x 10{sup 9} (water) L mol{sup -1} s{sup -1}. The role of phenolic groups on the antioxidant activity of curcumin has been experimentally confirmed.

  12. Dog-directed speech: why do we use it and do dogs pay attention to it?

    Science.gov (United States)

    Ben-Aderet, Tobey; Gallego-Abenza, Mario; Reby, David; Mathevon, Nicolas

    2017-01-11

    Pet-directed speech is strikingly similar to infant-directed speech, a peculiar speaking pattern with higher pitch and slower tempo known to engage infants' attention and promote language learning. Here, we report the first investigation of potential factors modulating the use of dog-directed speech, as well as its immediate impact on dogs' behaviour. We recorded adult participants speaking in front of pictures of puppies, adult and old dogs, and analysed the quality of their speech. We then performed playback experiments to assess dogs' reaction to dog-directed speech compared with normal speech. We found that human speakers used dog-directed speech with dogs of all ages and that the acoustic structure of dog-directed speech was mostly independent of dog age, except for sound pitch which was relatively higher when communicating with puppies. Playback demonstrated that, in the absence of other non-auditory cues, puppies were highly reactive to dog-directed speech, and that the pitch was a key factor modulating their behaviour, suggesting that this specific speech register has a functional value in young dogs. Conversely, older dogs did not react differentially to dog-directed speech compared with normal speech. The fact that speakers continue to use dog-directed with older dogs therefore suggests that this speech pattern may mainly be a spontaneous attempt to facilitate interactions with non-verbal listeners. © 2017 The Author(s).

  13. An archival study on the reacting plasma project (R-project) at the institute of plasma physics, Nagoya University. An interview with MATSUURA Kiyokata, professor emeritus at Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Nagoya Univ., Nagoya, Aichi (Japan); Obayashi, H; Fujita, J; Namba, C; Kimura, K; Matsuoka, K; Hanaoka, S [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2006-01-15

    An interview record with MATSUURA Kiyokata, Professor Emeritus at Nagoya University, is given on the Reacting Plasma Project (R-project), which was proposed and investigated in 1980's by the Institute of Plasma Physics, Nagoya University (IPP Nagoya). The project was planned to aim at producing a DT reacting plasma in tokamak to explore its physics and technology. But after intensive studies on design work, together with some R and D efforts and related investigations, the project could not be realized. The circumstances of the R-Project at its initiation and termination stages are the major topics of the present interview, held as a round-table talk with Prof. Matsuura, the project leader. (author)

  14. HOW DO WE REACT @socialmedia? #catchthemoment

    OpenAIRE

    COŞKUN, Mustafa; ÖZTURAN, Meltem

    2016-01-01

    The impact of social media on society has been growing fast, especially in the information era. While there are several studies in the literature that show the effect of social media on society, the least touched point is about the effect of social events on social media. Since the relation of social events and social media is not in one direction, this study aims to find the reaction behaviors of social media users for positive and negative events in society. Sentiments of approximately 5 mi...

  15. Development and test of a Nb3Sn racetrack magnet using the react and wind technology

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.; Carcagno, R.; Chichili, D.; Ewald, K.; Feher, S.; Imbasciati, L.; Kashikhin, V. V.; Limon, P.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Yadav, S.; Zlobin, A.V.

    2002-01-01

    Fermilab is involved in the development of a high field accelerator magnet for future hadron colliders using Nb 3 Sn superconductor and the react-and-wind technology. The magnet design is based on single-layer common coils wound simultaneously into a laminated mechanical structure and impregnated with epoxy. In order to develop and optimize the fabrication techniques and to study the conductor performance, a magnet with flat racetrack type coils in a common coil configuration was assembled and tested. The coils were wound in the mechanical structure and in situ impregnated following a procedure that will be used in the single-layer common coil. The magnetic and mechanical design of the racetrack magnet, the fabrication techniques and the test results are presented and discussed in this paper

  16. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli; Logan, Bruce

    2018-01-01

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact

  17. ENHANCING STUDENTS‟ MOTIVATION AND ACHIEVEMENT IN LEARNING GRAMMAR THROUGH CONTEXTUAL TEACHING AND LEARNING THROUGH RELATING, EXPERIENCING, APPLYING, COOPERATING AND TRANSFERRING (REACT STRATEGY

    Directory of Open Access Journals (Sweden)

    Mashlihatul Umami Umami

    2017-04-01

    Full Text Available This research addresses the issue of whether Contextual Teaching and Learning (CTL through REACT (Relating, Experiencing, Applying, Cooperating and Transferring strategy is able to enhance motivation and achievement of English Department students‘ in learning grammar. The researcher uses a classroom action research in which it was held for about two cycles. The instruments of collecting the data are observation, rubric, questionaire and test. The researcher analyzes the data using three steps, i.e. students‘ motivation to learn are analyzed by the sheet of observation, each of individuals is also analyzed by fulfilling the questionnaire of self assessment, the progress of students‘ motivation and achievement are all monitored by rubric assessment tool, seven components of REACT strategy in learning is also recorded by the sheets of observation and the statistical analysis using t-test measures the improvement occurred. In addition, the researcher prepares field note and questionnaire to monitor the process of learning. Based on the results of qualitative-quantitative analysis, it can be found that the use of CTL approach especially using project based and cooperative learning improves the students‘ motivation and achievement in learning grammar.

  18. Double Shock Experiments Performed at -55°C on LX-17 with Reactive Flow Modeling to Understand the Reacted Equation of State

    Science.gov (United States)

    Dehaven, Martin R.; Vandersall, Kevin S.; Strickland, Shawn L.; Fried, Laurence E.; Tarver, Craig M.

    2017-06-01

    Experiments were performed at -55°C to measure the reacted state of LX-17 (92.5% TATB and 7.5% Kel-F by weight) using a double shock technique using two flyer materials (with known properties) mounted on a projectile that send an initial shock through the material close to the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. Information on the reacted state is obtained by measuring the relative timing and magnitude of the first and second shock waves. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include a comparison to prior work at ambient temperature, the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Generation of Electricity from Abattoir Waste Water with the Aid of a ...

    African Journals Online (AJOL)

    Michael Horsfall

    Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap. Source of Catholyte ... in recent times is the microbial fuel cell technology. This technology ..... fuel cell in the presence and absence of a proton exchange.

  20. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    Science.gov (United States)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  1. How relay protection and automatic control systems react to the energizing of a 500 kV line

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V S; Kokovich, V E; Ovchinnikov, V V

    1966-04-01

    When the three phases of a 500 to 750 KV line are switched on to load by existing types of circuit breaker, a heavy aperiodic component of current appears in the secondaries of the neutral current transformers. The dc component, although damped, has a relatively long decay period. This effect is particularly evident in the case of high speed or nonsynchronized autoreclosure. The presence of such a large dc component can cause maloperation of the line earth fault protection unless special precautions are taken. Two complementary solutions are described, preventing the first stage earth fault protection from reacting to the aperiodic component, and reducing the time constant of the CT secondary circuits.

  2. [Effect of previous experience in reacting to a danger signal on "open field" behavior in the rat].

    Science.gov (United States)

    Poltyreva, T E; Petrov, E S

    1983-01-01

    Modification of rats behaviour in an "hopen field" test was investigated, induced by an acoustic stimulus, previously subjected to conditioning in a shuttle chamber in experiments with possibility and impossibility of avoidance from electrical shock. It has been established that presentation of a stimulus having the meaning of a danger signal, in a new situation, significantly suppresses investigating behaviour of rats, whereas the stimulus which had not been subjected to conditioning exerts no marked effect on behaviour. The greatest suppression was observed in rats with "learned helplessness". This fact suggests that the degree of suppression of the behaviour in an open field in response to a danger signal, depends on the animal's previous experience in reacting to this signal.

  3. "Wine-Dark Sea" in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.; Shkrob, Ilya A.; Vijayakumar, M.; Walter, Eric; Pan, Baofei; Yang, Zheng; Milshtein, Jarrod D.; Li, Bin; Liao, Chen; Zhang, Zhengcheng; Wang, Wei; Liu, Jun; Moore, Jeffery S.; Brushett, Fikile R.; Zhang, Lu; Wei, Xiaoliang

    2017-04-19

    A highly soluble, readily accessible, redox-active organic material, 2,1,3-benzothiadiazole, is demonstrated as a novel anolyte material to enable exceptional cyclability in a full-cell organic redox flow battery. This material discovery represents a significant progress toward promising next-generation energy storage.

  4. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen.

    Science.gov (United States)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.

  5. Multiphase integral reacting flow computer code (ICOMFLO): User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1997-11-01

    A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air

  6. Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide.

    Science.gov (United States)

    Pluta, Roman; Nikolaienko, Pavlo; Rueping, Magnus

    2014-02-03

    A new and safe method for the synthesis of N-(trifluoromethylthio)phthalimide, a convenient and shelf-stable reagent for the direct trifluoromethylthiolation, has been developed. N-(Trifluoromethylthio)phthalimide can be used as an electrophilic source of F3 CS(+) and reacts readily with boronic acids and alkynes under copper catalysis. The utility of CF3 S-containing molecules as biologically active agents, the mild reaction conditions employed, and the high tolerance of functional groups demonstrate the potential of this new methodology to be widely applied in organic synthesis as well as industrial pharmaceutical and agrochemical research and development. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Steam bubble growth in the bulk of overheated N2O4-NO chemically reacting solution

    International Nuclear Information System (INIS)

    Nemtsev, V.A.; Cherkashin, A.M.

    1989-01-01

    A mathematical model and numerical investigation of the vapour bubble growth that begins from the bubble critical size at the positive radius fluctuation during the initial moment in the bulk of the overheated N 2 O 4 -NO liquid solution are presented. The mathematical model has been stated under the following assumptions: the movement of a bubble wall and surrounding liquid is spherically symmetrical; thermal parameters in the bubble are distributed uniformly; the vapour phase follows the ideal gas law; heat transfer is not affected by the compressibility of liquid; if dissolution of light components is determined by Henry's law, then Hertz-Knudsen's equation determines the velocity of phase transition for a N 2 O 4 component. The mathematical model presented can be applied to another fluids, including chemically reacting ones

  8. Analysis of the trend to equilibrium of a chemically reacting system

    International Nuclear Information System (INIS)

    Kremer, Gilberto M; Bianchi, Miriam Pandolfi; Soares, Ana Jacinta

    2007-01-01

    In this present paper, a quaternary gaseous reactive mixture, for which the chemical reaction is close to its final stage and the elastic and reactive frequencies are comparable, is modelled within the Boltzmann equation extended to reacting gases. The main objective is a detailed analysis of the non-equilibrium effects arising in the reactive system A 1 + A 2 ↔ A 3 + A 4 , in a flow regime which is considered not far away from thermal, mechanical and chemical equilibrium. A first-order perturbation solution technique is applied to the macroscopic field equations for the spatially homogeneous gas system, and the trend to equilibrium is studied in detail. Adopting elastic hard-spheres and reactive line-of-centres cross sections and an appropriate choice of the input distribution functions-which allows us to distinguish the two cases where the constituents are either at same or different temperatures-explicit computations of the linearized production terms for mass, momentum and total energy are performed for each gas species. The departures from the equilibrium states of densities, temperatures and diffusion fluxes are characterized by small perturbations of their corresponding equilibrium values. For the hydrogen-chlorine system, the perturbations are plotted as functions of time for both cases where the species are either at the same or different temperatures. Moreover, the trend to equilibrium of the reaction rates is represented for the forward and backward reaction H 2 + Cl ↔ HCl + H

  9. IGHV1-69-Encoded Antibodies Expressed in Chronic Lymphocytic Leukemia React with Malondialdehyde-Acetaldehyde Adduct, an Immunodominant Oxidation-Specific Epitope

    DEFF Research Database (Denmark)

    Que, Xuchu; Widhopf Ii, George F; Amir, Shahzada

    2013-01-01

    The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed...... are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde-acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted...

  10. New sensitive direct radioimmunoassay for human plasma renin and its clinical application

    International Nuclear Information System (INIS)

    Higaki, J.; Ogihara, T.; Imai, N.; Kumahara, Y.; Hontani, S.; Nishiura, M.; Ogawa, H.; Hirose, S.; Murakami, K.

    1984-01-01

    A new sensitive direct radioimmunoassay for human plasma renin has been developed. Renin was purified from Haas' preparation utilizing a pepstatin-C 6 -Sepharose affinity chromatography. Antiserum, prepared by immunizing rabbits with the purified renin, was used for the direct radioimmunoassay at a final dilution of 1:30,000. The antibody was specific for human renal and plasma renin, but did not cross-react with cathepsin D, trypsin, or renins of mouse, dog, and rat. Radioimmunoassay was performed by the double antibody technique using the delayed tracer addition method. In this method, a standard curve was obtained over a range from 0.2 to 8.0 ng/ml. The values from this assay correlated well with total renin activity measured as the generation rate of angiotensin I after trypsin activation, but correlated weakly with active renin activity. This finding disclosed that both active and inactive renin were detected by this method. In normal participants, plasma renin concentration determined by direct radioimmunoassay was increased by standing and furosemide injection. The plasma renin concentration determined by direct radioimmunoassay of patients with essential hypertension was not significantly different from values in normal controls. The values were higher in patients with renovascular hypertension, malignant hypertension and Bartter's syndrome, but lower in patients with primary aldosteronism than in normal controls. 20 references, 7 figures

  11. Test Results of a Nb3Sn Wind/React ''Stress-Managed'' Block Dipole

    International Nuclear Information System (INIS)

    McInturff, A.; Bish, P.; Blackburn, R.; Diaczenko, N.; Elliott, T.; Hafalia Jr., R.; Henchel, W.; Jaisle, A.; Lau, W.; Lietzke, A.; McIntyre, P.; Noyes, P.; Nyman, M.; Sattarov, A.; Sattarov, A.

    2006-01-01

    A second phase of a highfield dipole technology development has been tested. A Nb3Sn block-coil model dipole was fabricated, using magnetic mirror geometry and wind/react coil technology. The primary objective of this phase was to make a first experimental test of the stress-management strategy pioneered at Texas A and M. In this strategy a high-strength support matrix is integrated with the windings to intercept Lorentz stress from the inner winding so that it does not accumulate in the outer winding. The magnet attained a field that was consistent with short sample limit on the first quench; there was no training. The decoupling of Lorentz stress between inner and outer windings was validated. In ramp rate studies the magnet exhibited a remarkable robustness in rapid ramping operation. It reached 85 percent of short sample(ss) current even while ramping 2-3 T/s. This robustness is attributed to the orientation of the Rutherford cables parallel to the field in the windings, instead of the transverse orientation that characterizes common dipole designs. Test results are presented and the next development phase plans are discussed

  12. ''A Parallel Adaptive Simulation Tool for Two Phase Steady State Reacting Flows in Industrial Boilers and Furnaces''; FINAL

    International Nuclear Information System (INIS)

    Michael J. Bockelie

    2002-01-01

    This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requires a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International

  13. Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples

    International Nuclear Information System (INIS)

    Bings, Nicolas H.; Stefanka, Zsolt; Mallada, Sergio Rodriguez

    2003-01-01

    A flow injection (FI) method was developed using electrochemical hydride generation (EcHG) as a sample introduction system, coupled to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of six elements forming hydrides (As, Bi, Ge, Hg, Sb and Se). A novel low volume electrolysis cell, especially suited for FI experiments was designed and the conditions for simultaneous electrochemical hydride generation (EcHG; electrolyte concentrations and flow rates, electrolysis voltage and current) as well as the ICP-TOFMS operational parameters (carrier gas flow rate, modulation pulse width (MPW)) for the simultaneous determination of 12 isotopes were optimized. The compromise operation parameters of the electrolysis were found to be 1.4 and 3 ml min -1 for the anolyte and catholyte flow rates, respectively, using 2 M sulphuric acid. An optimum electrolysis current of 0.7 A (16 V) and an argon carrier gas flow rate of 0.91 l min -1 were chosen. A modulation pulse width of 5 μs, which influences the sensitivity through the amount of ions being collected by the MS per single analytical cycle, provided optimum results for the detection of transient signals. The achieved detection limits were compared with those obtained by using FI in combination with conventional nebulization (FI-ICP-TOFMS); values for chemical hydride generation (FI-CHG-ICP-TOFMS) were taken from the literature. By using a 200 μl sample loop absolute detection limits (3σ) in the range of 10-160 pg for As, Bi, Ge, Hg, Sb and 1.1 ng for Se and a precision of 4-8% for seven replicate injections of 20-100 ng ml -1 multielemental sample solutions were achieved. The analysis of a standard reference material (SRM) 1643d (NIST, 'Trace Elements in Water') showed good agreement with the certified values for As and Sb. Se showed a drastic difference, which is probably due to the presence of hydride-inactive Se species in the sample. Recoveries better than

  14. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  15. AISI Direct Steelmaking Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.

    1994-08-01

    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  16. Selection of the Best Process Stream to Remove Ca2+ Ion Using Electrodialysis from Sugar Solution

    Directory of Open Access Journals (Sweden)

    Jogi Ganesh Dattatreya Tadimeti

    2014-01-01

    Full Text Available Electrodialytic removal of calcium chloride (CaCl2, 25–50 mol·m−3 from 5% sugar solution was executed in batch recirculation mode. Calcium ion removal rate was monitored with (i applied potential, (ii feed flow rate, (iii solution viscosity and conductivity, and (iv catholyte streams (NaOH or sodium salt of ethylene diamine tetraacetic acid-acetic acid, Na2EDTA-AA. Unsteady state model for ion concentration change was written for the ED cell used. Linearized Nernst-Planck equation instead of Ohm’s law was applied to closely obtain the current density and concentration change theoretically. The model developed could closely predict the experimental observation. Mass transfer coefficients and specific energy densities were estimated for each combination of catholyte stream used. NaOH showed better performance for a short duration over Na2EDTA-acetic acid combination.

  17. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  18. Silver-mediated direct trifluoromethoxylation of α-diazo esters via the (-)OCF3 anion.

    Science.gov (United States)

    Zha, Gao-Feng; Han, Jia-Bin; Hu, Xiao-Qian; Qin, Hua-Li; Fang, Wan-Yin; Zhang, Cheng-Pan

    2016-06-14

    Silver-mediated direct trifluoromethoxylation of α-diazo esters and ketosteroid was disclosed. The reactions of alkyl α-diazo arylacetates with AgOCF3 or CF3SO2OCF3/AgF at -30 to 10 °C under a N2 atmosphere provided α-trifluoromethoxyl arylacetates in up to 90% yield, while alkyl α-diazo vinylacetates reacting with CF3SO2OCF3/AgF or AgOCF3 afforded γ-trifluoromethoxyl α,β-unsaturated esters in up to 94% yield. The α-diazo ketosteroid was also trifluoromethoxylated under the standard reaction conditions. This protocol allows for an effective and convenient access to a large number of synthetic building blocks, which are promising in the development of new functional OCF3-molecules.

  19. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    Science.gov (United States)

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  20. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  1. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    International Nuclear Information System (INIS)

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  2. 40 CFR 421.146 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory... Mercury 2.344 0.937 (b) Fouled Anolyte. PSNS for the Primary Antimony Subcategory Pollutant or pollutant...

  3. Reporting and Reacting: Concurrent Responses to Reported Speech.

    Science.gov (United States)

    Holt, Elizabeth

    2000-01-01

    Uses conversation analysis to investigate reported speech in talk-in-interaction. Beginning with an examination of direct and indirect reported speech, the article highlights some of the design features of the former, and the sequential environments in which it occurs. (Author/VWL)

  4. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoying; Chen, Zhengxian [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Zhou, Rongbing [Institute of Environ Sci and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  5. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-01

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe 0 nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L −1 (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min

  6. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang; Liu, Jia; Yang, Wulin; Logan, Bruce E.

    2015-01-01

    addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized

  7. the efficacy of anolyte as an environmentally friendly disin

    African Journals Online (AJOL)

    user

    Jana F Vermaas*, Celia J Hugo, Hester JH Steyn & Robert Schall ... According to. Kerwick et al. (2005) electrochemical disinfection is one of the ..... BHAT, R, ALIAS, AK & PALIYATH, G. 2012. Progress in food preservation. Chichester. John.

  8. the efficacy of anolyte as an environmentally friendly disin

    African Journals Online (AJOL)

    user

    The organisms were grown in 10 ml nutrient broth (Oxoid ... was homogenized in a stomacher (Lab Blender. 400, ART ..... Published in New Medical Technologies ... meats. Meat Science 71:327-333. GAO, Y & CRANSTON, R. 2008. Recent.

  9. Direct numerical simulations of evaporating droplets in turbulence

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2015-11-01

    This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.

  10. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Subsoil Characteristics and Hydrogeology of the Export Processing Zone, Calabar-Southeastern Nigeria · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap Source of Catholyte · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  11. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza A virus strains in pigs

    DEFF Research Database (Denmark)

    Baratelli, Massimiliano; Pedersen, Lasse Eggers; Trebbien, Ramona

    2017-01-01

    Heterologous protection against swine influenza viruses (SwIVs) of different lineages is an important concern for the pig industry. Cross-protection between 'avian-like' H1N1 and 2009 pandemic H1N1 lineages has been observed previously, indicating the involvement of cross-reacting T-cells. Here...

  12. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    Science.gov (United States)

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Immunolocalization of Schistosoma mansoni and Schistosoma haematobium antigens reacting with their Egyptian snail vectors.

    Science.gov (United States)

    El-Dafrawy, Shadia M; Mohamed, Amira H; Hammam, Olfat A; Rabia, Ibrahim

    2007-12-01

    The reaction of the haemolymph and the tissue of infected intermediate hosts, Biomphalaria alexandrina and Bulinus truncatus to Schistosoma mansoni and S. haematobium antigens were investigated using the indirect immunoperoxidase technique. A new technique, Agarose cell block was used in collection of haemolymph which helped in collecting plenty of well formed cells in comparison to the ordinary one using the cytospin. Collected haemolymph and prepared tissues of uninfected and infected B. alexandria and B. truncatus were fixed and then reacted with anti-S. mansoni and anti-S. haematobium IgG polyclonal antibodies. The haemolymph and tissue of infected B. alexandrina and B. truncatus gave a positive peroxidase reaction represented by a brown colour. In haemolymph, the positive peroxidase reaction was detected mainly in the cytoplasm of the amoebocytes. In the tissue, it was detected in epithelial cells lining the tubules, male cells in the lumen of the tubules and in female oogonia cells along the periphery of the tubules. The similarity in the strength and distribution of positive reaction in B. alexandrina and B. truncates was observed as compared to control. Thus, the immunoperoxidase technique proved to be an effective indicator for the schistosome-antigen in the snails.

  14. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min{sup −1} and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment.

  15. Rapid analysis of fertilizers by the direct-reading thermometric method.

    Science.gov (United States)

    Sajó, I; Sipos, B

    1972-05-01

    The authors have developed rapid methods for the determination of the main components of fertilizers, namely phosphate, potassium and nitrogen fixed in various forms. In the absence of magnesium ions phosphate is precipitated with magnesia mixture; in the presence of magnesium ions ammonium phosphomolybdate is precipitated and the excess of molybdate is reacted with hydrogen peroxide. Potassium is determined by precipitation with silico-fluoride. For nitrogen fixed as ammonium salts the ammonium ions are condensed in a basic solution with formalin to hexamethylenetetramine; for nitrogen fixed as carbamide the latter is decomposed with sodium nitrite; for nitrogen fixed as nitrate the latter is reduced with titanium(III). In each case the temperature change of the test solution is measured. Practically all essential components of fertilizers may be determined by direct-reading thermometry; with this method and special apparatus the time of analysis is reduced to at most about 15 min for any determination.

  16. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  17. Dromosagnosia, or why some people lose their sense of direction while driving.

    Science.gov (United States)

    Tseng, Wei-Shih; Tzeng, Nian-Sheng

    2013-11-01

    We coined a new word, "dromosagnosia", from the Greek words, dromos ("way, road")+agnosia, to describe the loss of direction while driving, an orientation disorder similar to but different from pure topographic disorientation. Historically, human beings have moved more quickly, from using domesticated animals to high speed vehicles, and this may be beyond the brain's ability to react. Without the benefit of an automatic navigation system, automobiles are associated with more problems of dromosagnosia than are fast-moving aircraft or ships. Previous studies have noted that some areas of the brain are associated with spatial orientation, spatial memory, and even emotion, and abnormalities there could exacerbate the loss of sense of direction. We hypothesize that some people are especially disadvantaged from these brain differences and emotional disturbances when driving their cars. Functional magnetic resonance imaging (fMRI) and event-related potentials (ERP) studies combined with a virtual reality driving simulation might be used to find the areas of the brain related to dromosagnosia. Future applications: some people with dromosagnosia might benefit from special remedial training and a driving safety support system to avoid potential problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.

    1996-05-01

    The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

  19. Low energy electron irradiation induced carbon etching: Triggering carbon film reacting with oxygen from SiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Wang, Chao, E-mail: cwang367@szu.edu.cn, E-mail: dfdiao@szu.edu.cn; Diao, Dongfeng, E-mail: cwang367@szu.edu.cn, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-08-01

    We report low-energy (50–200 eV) electron irradiation induced etching of thin carbon films on a SiO{sub 2} substrate. The etching mechanism was interpreted that electron irradiation stimulated the dissociation of the carbon film and SiO{sub 2}, and then triggered the carbon film reacting with oxygen from the SiO{sub 2} substrate. A requirement for triggering the etching of the carbon film is that the incident electron penetrates through the whole carbon film, which is related to both irradiation energy and film thickness. This study provides a convenient electron-assisted etching with the precursor substrate, which sheds light on an efficient pathway to the fabrication of nanodevices and nanosurfaces.

  20. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  1. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  2. Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows

    Science.gov (United States)

    Norris, Andrew T.; Hsu, Andrew T.

    1994-01-01

    In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.

  3. Does Foreign Direct Investment Provide Desirable Development Finance? The Case of China

    Institute of Scientific and Technical Information of China (English)

    Yan Liang

    2007-01-01

    Foreign direct investment (FDI) is often considered as a cost-effective and risk-reducing source for development finance. This paper, however, shows that FDI finance often entails underestimated risks and costs. FDI might react sensitively to business cycles and might not be as "permanent" as conventionally believed. FDI might also accelerate other forms of capital flow in times of financial difficulties and, hence, destabilize financial order. In addition to the risks, compensations to FDI and the high import-dependency of FDI-related trade lead to a considerable drain on the balance of payments. Moreover, the reliance on foreign capital for development finance is equivalent to building a Ponzi financing scheme and,therefore, is unsustainable. Given the fact that FDI financing is risky and costly and China does not lack savings, it is suggested in the present paper that China's efforts in attracting FDI should not aim at external capital provisioning.

  4. Multiple finances, margins of foreign direct investment and aggregate industry productivity

    Directory of Open Access Journals (Sweden)

    Jiarui Zhang

    2012-03-01

    Full Text Available Based on a heterogeneous firm set-up, we model firms’ access to the internal capital market, bank finance as well as bond finance and investigate how firms’ adjustment among multiple sources of finance affects their performance in foreign direct investment and aggregate industry productivity. We find that when facing a bank credit shock (e.g. tighter bank lending, firms with different productivities react differently. Less productive firms exit from the foreign market due to a lack of funds while the more productive resort to bond finance to sustain their multinational status. The increased demand for bond finance as compensation for decreased bank finance by the surviving multinationals exacerbates the competition in the bond market and bids up the bond return rate, which triggers a Melitz-type selection effect through the bond market and brings aggregate industry gains.However, the divestment of those failing FDI firms and the consequently reduced bond financing demand mitigate this effect.

  5. Edaravone, a potent free radical scavenger, reacts with peroxynitrite to produce predominantly 4-NO-edaravone.

    Science.gov (United States)

    Fujisawa, Akio; Yamamoto, Yorihiro

    2016-05-01

    3-Methyl-1-phenyl-2-pyrazolin-5-one (edaravone) is used in clinical treatment of acute brain infarction to rescue the penumbra, based on its ability to prevent lipid peroxidation by scavenging lipid peroxyl radicals. Here, we show that edaravone also reacts with peroxynitrite to yield 4-NO-edaravone as the major product and 4-NO2-edaravone as a minor product. We observed little formation of 3-methyl-1-phenyl-2-pyrazolin-4,5-dione (4-oxoedaravone) and its hydrate, 2-oxo-3-(phenylhydrazono)butanoic acid, which are the major free radical-induced oxidation products of edaravone, suggesting that free radicals are not involved in the reaction with peroxynitrite. The reaction of peroxynitrite with edaravone is approximately 30-fold greater than with uric acid, a physiological peroxynitrite scavenger (reaction rate k = 1.5 × 10 (4)  M(-1) s(-1) vs. 480 M(-1) s(-1)). These results suggest that edaravone functions therapeutically as a scavenger of peroxynitrite as well as lipid peroxyl radicals, which is consistent with a report that edaravone treatment reduced levels of 3-nitrotyrosine in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis.

  6. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Fırat

    2018-05-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  7. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@phelma.grenoble-inp.fr; Molina-Concha, M.B. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); El-Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS/Grenoble-INP/UJF, 1301 rue de la piscine, 38041 Grenoble Cedex 9 (France); Parrour, G.; Diard, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)

    2009-07-15

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH{sub 4} electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.01 M NaBH{sub 4} at 25 deg. C in the present study vs. ca. 1.6 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.02 M NaBH{sub 4} at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H{sub 2} bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H{sub 2} bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the

  8. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Chatenet, M.; Molina-Concha, M.B.; El-Kissi, N.; Parrour, G.; Diard, J.-P.

    2009-01-01

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH 4 electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.01 M NaBH 4 at 25 deg. C in the present study vs. ca. 1.6 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.02 M NaBH 4 at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H 2 bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H 2 bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the disk to reach the ring trough a distance several orders

  9. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  10. What is the role corporate social responsability (CSR) in society in the perspective of Millennials and how do they react to CSR practices as consumers?

    OpenAIRE

    Barbeiro, Sofia

    2016-01-01

    As it grows older, the Millennial generation is gaining relevance for companies, especially when considering their demands and choices as consumers. But what is Millennials’ opinion with regard to Corporate Social Responsibility (CSR)? And how does the Millennial generation react to CSR initiatives by companies? Since CSR is gaining more importance nowadays, these are the main questions addressed by the present research. Based on primary data collected via semi-structured interviews and an on...

  11. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  12. Theoretical intercomparison of multi-step direct reaction models and computational intercomparison of multi-step direct reaction models

    International Nuclear Information System (INIS)

    Koning, A.J.

    1992-08-01

    In recent years several statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'. These are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates is highlighted. A command framework is outlined that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. However, this appears not to be the case. To show this usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual interactions, the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be crucial to present analysis. 27 refs.; 5 figs.; 1 tab

  13. Effective bending strain estimated from I c test results of a D-shaped Nb3Al CICC coil fabricated with a react-and-wind process for the National Centralized Tokamak

    International Nuclear Information System (INIS)

    Ando, T.; Kizu, K.; Miura, Y.M.; Tsuchiya, K.; Matsukawa, M.; Tamai, H.; Ishida, S.; Koizumi, N.; Okuno, K.

    2005-01-01

    Japan National Centralized Tokamak (NCT) is a superconducting tokamak proposed as a modification to JT-60U. As part of the R and D for the National Centralized Tokamak, a two-turn, approximately 2 m tall, D-shaped Nb 3 Al coil was wound and tested using a full-size cable-in-conduit conductor (CICC). The Nb 3 Al cable-in-conductor was bent following the heat treatment reaction with a maximum bending strain of 0.4% to simulate the react-and-wind fabrication. The comparison of the coil performance to the measured strand data shows that the effective axial strain of the conductor strands is essentially zero despite the 0.4% bending strain of the conductor. This suggests that the strands in the cable slipped relatively to each other during bending of the conduit, thus reducing the effective strain transmitted to the strands. This result is very encouraging for the low-cost fabrication of high-current-density fusion coils using the react-and-wind method

  14. Effect of direct eye contact in PTSD related to interpersonal trauma: an fMRI study of activation of an innate alarm system.

    Science.gov (United States)

    Steuwe, Carolin; Daniels, Judith K; Frewen, Paul A; Densmore, Maria; Pannasch, Sebastian; Beblo, Thomas; Reiss, Jeffrey; Lanius, Ruth A

    2014-01-01

    In healthy individuals, direct eye contact initially leads to activation of a fast subcortical pathway, which then modulates a cortical route eliciting social cognitive processes. The aim of this study was to gain insight into the neurobiological effects of direct eye-to-eye contact using a virtual reality paradigm in individuals with posttraumatic stress disorder (PTSD) related to prolonged childhood abuse. We examined 16 healthy comparison subjects and 16 patients with a primary diagnosis of PTSD using a virtual reality functional magnetic resonance imaging paradigm involving direct vs averted gaze (happy, sad, neutral) as developed by Schrammel et al. in 2009. Irrespective of the displayed emotion, controls exhibited an increased blood oxygenation level-dependent response during direct vs averted gaze within the dorsomedial prefrontal cortex, left temporoparietal junction and right temporal pole. Under the same conditions, individuals with PTSD showed increased activation within the superior colliculus (SC)/periaqueductal gray (PAG) and locus coeruleus. Our findings suggest that healthy controls react to the exposure of direct gaze with an activation of a cortical route that enhances evaluative 'top-down' processes underlying social interactions. In individuals with PTSD, however, direct gaze leads to sustained activation of a subcortical route of eye-contact processing, an innate alarm system involving the SC and the underlying circuits of the PAG.

  15. Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode

    Directory of Open Access Journals (Sweden)

    Ting Liu

    2015-01-01

    Full Text Available This study aims to construct an MFC with a photosynthetic algae cathode, which is maintained by self-capturing CO2 released from the anode and utilizing solar energy as energy input. With this system, a maximum power density of 187 mW/m2 is generated when the anode off gas is piped into the catholyte under light illumination, which is higher than that of 21 mW/m2 in the dark, demonstrating the vital contribution of the algal photosynthesis. However, an unexpected maximum power density of 146 mW/m2 is achieved when the anode off gas is not piped into the catholyte. Measurements of cathodic microenvironments reveal that algal photosynthesis still takes place for oxygen production under this condition, suggesting the occurrence of CO2 crossover from anode to cathode through the Nafion membrane. The results of this study provide further understanding of the algae-based microbial carbon capture cell (MCC and are helpful in improving MCC performance.

  16. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    International Nuclear Information System (INIS)

    De Silva Munoz, L.; Bergel, A.; Basseguy, R.; Feron, D.

    2010-01-01

    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M, pH 4. 0/5. 0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials. (authors)

  17. Controlled disulfonated poly(arylene ether sulfone) multiblock copolymers for direct methanol fuel cells.

    Science.gov (United States)

    Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung

    2014-04-23

    Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.

  18. Excess antibody immunoassays for rat glandular kallikreins. Measurement of kallikrein from different organs in the presence of cross-reacting antigens

    International Nuclear Information System (INIS)

    Johansen, L.; Oerstavik, T.B.; Holck, M.; Nustad, K.

    1983-01-01

    An immunoradiometric assay has previously been developed for measurement of rat glandular kallikrein. In the present paper, further studies on the specificity and sensitivity of the method are described. Problems of interference of immunologically cross-reacting antigens were overcome by proper preabsorption of the antibody. A method was thus established in which enzymatic activity of the immunoreactive kallikrein could be measured even in the presence of enzymes sharing immunological determinants and substrate specificity with kallikrein. Two variants of the immunoradiometric assay have been evaluated. A simplified version with simultaneous addition of all reagents gave results equal to those obtained in the original assay. A further modification with delayed addition of the solid-phase antibody, gave considerable improvement in assay sensitivity. (Auth.)

  19. What is the role of Corporate Social Responsibility (CSR) in society in the perspective of Millennials and how do they react to CSR practices as consumers?

    OpenAIRE

    Barbeiro, Sofia Pereira

    2016-01-01

    As it grows older, the Millennial generation is gaining relevance for companies, especially when considering their demands and choices as consumers. But what is Millennials’ opinion with regard to Corporate Social Responsibility (CSR)? And how does the Millennial generation react to CSR initiatives by companies? Since CSR is gaining more importance nowadays, these are the main questions addressed by the present research. Based on primary data collected via semi-structured interviews and an on...

  20. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    Science.gov (United States)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  1. Rhythm experience and Africana culture trial (REACT!): A culturally salient intervention to promote neurocognitive health, mood, and well-being in older African Americans.

    Science.gov (United States)

    Lukach, Alexis J; Jedrziewski, M Kathryn; Grove, George A; Mechanic-Hamilton, Dawn J; Williams, Shardae S; Wollam, Mariegold E; Erickson, Kirk I

    2016-05-01

    The Rhythm Experience and Africana Culture Trial (REACT!) is a multi-site randomized controlled intervention study designed to examine the efficacy of using African Dance as a form of moderate-intensity physical activity to improve cognitive function in older African Americans. African Americans are almost two times more likely than Caucasians to experience cognitive impairment in late adulthood. This increased risk may be attributed to lower level and quality of education, lower socioeconomic status, and higher prevalence of vascular diseases, type 2 diabetes, hypertension, and obesity, all of which are recognized as risk factors for dementia. Fortunately, interventions targeting cardiovascular health (i.e., physical activity) are associated with improved neurocognitive function and a reduced risk for dementia, so African Americans may be particularly suited for interventions targeting cardiovascular health and cognitive function. Here, we describe a randomized intervention protocol for increasing physical activity in older (65-75years) African Americans. Participants (n=80) at two study locations will be randomized into one of two groups. The treatment group will participate in African Dance three times per week for six months and the control group will receive educational training on Africana history and culture, as well as information about health behaviors, three times per week for six months. If successful, the REACT! study may transform community interventions and serve as a platform and model for testing other populations, age groups, and health outcomes, potentially identifying novel and creative methods for reducing or eliminating health disparities. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Salinger, A.; Devine, K.; Hennigan, G.; Moffat, H. [and others

    1996-09-01

    This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically reacting flow problems on massively parallel computers. MPSalsa has been written to enable the rigorous modeling of the complex geometry and physics found in engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been made to ensure that the code makes efficient use of the computational resources of massively parallel (MP), distributed memory architectures in a way that is nearly transparent to the user. The result is the ability to simultaneously model both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely manner on MT computers, an ability we believe to be unique. MPSalsa has been designed to allow the experienced researcher considerable flexibility in modeling a system. Any combination of the momentum equations, energy balance, and an arbitrary number of species mass balances can be solved. The physical and transport properties can be specified as constants, as functions, or taken from the Chemkin library and associated database. Any of the standard set of boundary conditions and source terms can be adapted by writing user functions, for which templates and examples exist.

  3. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    Science.gov (United States)

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  4. How do patients and providers react to different incentives in the Chinese multiple health security systems?

    Science.gov (United States)

    Zhang, Chun-Yu; Hashimoto, Hideki

    2015-03-05

    China has achieved universal health insurance coverage. This study examined how patients and hospitals react to the different designs of the plans and to monitoring of patients by the local authority in the Chinese multiple health security schemes. The sample for analysis consisted of 1006 orthopedic inpatients who were admitted between January and December 2011 at a tertiary teaching hospital located in Beijing. We conducted general linear regression analyses to investigate whether medical expenditure and length of stay differed according to the different incentives. Patients under plans with lower copayment rates consumed significantly more medication compared with those under plans with higher copayment rates. Under plans with an annual ceiling for insurance coverage, patients spent significantly more in the second half of the year than in the first half of the year. The length of stay was shorter among patients when there were government monitoring and a penalty to the hospital service provider. Our results indicate that the different designs and monitoring of the health security systems in China cause opportunistic behavior by patients and providers. Reformation is necessary to reduce those incentives, and improve equity and efficiency in healthcare use.

  5. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    Science.gov (United States)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  6. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.

    Science.gov (United States)

    Sun, Yuchao; Gao, Ke; Zhang, Yun; Zou, Hua

    2017-12-01

    Zero-valent iron/activated carbon (Fe/C) particles can degrade persistent organic pollutants via micro-electrolysis and therefore, they may be used to develop materials for permeable reactive barriers (PRBs). In this study, surfactant-enhanced electrokinetics (EK) was coupled with a Fe/C-PRB to treat phenanthrene (PHE) and 2,4,6-trichlorophenol (TCP) co-contaminated clay soil. An environment-friendly biosurfactant, rhamnolipid, was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on PHE and TCP removal from soil as well as the impact of pH and rhamnolipid concentration. The results show that both PHE and TCP, driven by electro-osmotic flow (EOF), moved toward the cathode and reacted with the Fe/C-PRB. Catholyte acidification and rhamnolipid concentration increase improved the removal efficiencies of PHE and TCP. The highest removal efficiency of PHE in soil column was five times the efficiency of the control group on which only EK was applied (49.89 versus 9.40%). The highest removal efficiency of TCP in soil column was 4.5 times the efficiency of the control group (64.60 versus 14.30%). Desorption and mobility of PHE and TCP improved with the increase of rhamnolipid concentration when this exceeded the critical micelle concentration. This study indicates that the combination of EK and a Fe/C-PRB is efficient and promising for removing persistent organic pollutants (POPs) from contaminated soil with the enhancement of rhamnolipid.

  7. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  8. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  9. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging

    Science.gov (United States)

    Halboth, Florian; Roces, Flavio

    2017-10-01

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  10. Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development

    Directory of Open Access Journals (Sweden)

    Ashok Mulchandani

    2003-06-01

    Full Text Available The realisation of a miniaturised potentiometric enzyme biosensor is presented. The biosensor chip utilises the enzyme organophosphorus hydrolase (OPH for the direct determination of pesticides. The transducer structure of the sensors chip consists of a pH-sensitive capacitive electrolyte-insulator-semiconductor (EIS structure that reacts towards pH changes caused by the OPH-catalised hydrolysis of the organophosphate compounds. The biosensor is operated versus a conventional Ag/AgCl reference electrode. Measurements were performed in the capacitance/voltage (C/V and the constant capacitance (ConCap mode for the two different pesticides paraoxon and parathion. For the development of this new type of biosensor, different immobilisation strategies, influence of buffer composition and concentration, transducer material, detection limit, long-term stability and selectivity have been studied.

  11. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor

    International Nuclear Information System (INIS)

    Ganesan, Ramakrishnan; Dinachali, Saman Safari; Lim, Su Hui; Saifullah, M S M; He, Chaobin; Low, Hong Yee; Chong, Wee Tit; Lim, Andrew H H; Yong, Jin Jie; Thian, Eng San

    2012-01-01

    Nanostructuring of Al 2 O 3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al 2 O 3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al 2 O 3 . Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ∼100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al 2 O 3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol–gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides. (paper)

  12. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.; Lee, Bok Jik; Im, Hong G.

    2014-01-01

    are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  13. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  14. Role of tropomyosin as a cross-reacting allergen in sensitization to cockroach in patients from Martinique (French Caribbean island) with a respiratory allergy to mite and a food allergy to crab and shrimp

    NARCIS (Netherlands)

    Purohit, A.; Shao, J.; Degreef, J. M.; van Leeuwen, A.; van Ree, R.; Pauli, G.; de Blay, F.

    2007-01-01

    BACKGROUND: Tropomyosin has been described as cross-reacting allergen between mite, cockroach and shrimp. METHODS: In 13 patients with asthma and/or rhinitis sensitized to mite and/or German cockroach and presenting urticaria, oral allergy syndrome or angio-edema upon eating shrimp and/or crab, we

  15. Strategic directions of personnel potential forming of a building complex

    Directory of Open Access Journals (Sweden)

    Simonova Marina

    2016-01-01

    Full Text Available The analysis of directions of strategic approach forming of labor potential management of a building complex is carried out in this paper. On the basis of this analysis the system of actions for strategy forming divided into consecutive stages is offered. The development of the personnel forecast is a strategic planning basis. One of personnel forecast variants is the correlation of needs estimates in personnel of a building complex with available allowances. On the basis of the personnel forecast strategic analysis it is possible to compose working programs for the stated goals of implementation. Operational assessment of personnel requirements of a building complex is proved to be combined with strategic objectives. Some assessment approaches to qualitative and quantitative need for specialists of a building complex are offered. The fact that high-quality labor power supply system of a building complex with should be based on industry development forecast and increase in construction products competitiveness is revealed in the article. Strategic management priority will allow to react immediately to the current situation changes, to introduce amendments both into tactical, and operational management.

  16. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane.

    Science.gov (United States)

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang

    2017-06-01

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A three-dimensional fully coupled thermo-mechanical model for Self-reacting Friction Stir Welding of Aluminium AA6061 sheets

    International Nuclear Information System (INIS)

    Singh, Piyush; Biswas, Pankaj; Kore, Sachin D.

    2016-01-01

    In the present work a three dimensional model of self-reacting friction stir welding in aluminium alloy AA6061 has been developed based on the Computational Fluid Dynamics (CFD) approach using COMSOL Multiphysics software. The temperature dependent material properties have been incorporated in the model from available literature. A slip-stick contact between the workpiece and tool surface has been considered with the slip factor varying linearly with distance. The methodology adopted has been validated with experimental results available in the literature. The temperature distribution observed has been found to be asymmetric about the weld centre line. The maximum temperature has been observed on the advancing side of the weld. However, the temperature distribution across the thickness has been found to be almost symmetric about the mid thickness plane. An hourglass shaped temperature distribution has been observed across the cross-section of the weld. The material flow velocity distribution shows that the deformation zone is limited to a very small region around the tool. (paper)

  18. The property distance index PD predicts peptides that cross-react with IgE antibodies

    Science.gov (United States)

    Ivanciuc, Ovidiu; Midoro-Horiuti, Terumi; Schein, Catherine H.; Xie, Liping; Hillman, Gilbert R.; Goldblum, Randall M.; Braun, Werner

    2009-01-01

    Similarities in the sequence and structure of allergens can explain clinically observed cross-reactivities. Distinguishing sequences that bind IgE in patient sera can be used to identify potentially allergenic protein sequences and aid in the design of hypo-allergenic proteins. The property distance index PD, incorporated in our Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/), may identify potentially cross-reactive segments of proteins, based on their similarity to known IgE epitopes. We sought to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to three linear IgE epitopes of Jun a 1, the dominant allergen from mountain cedar pollen. For each of the three epitopes, 60 peptides were designed with increasing PD values (decreasing physicochemical similarity) to the starting sequence. The peptides synthesized on a derivatized cellulose membrane were probed with sera from patients who were allergic to Jun a 1, and the experimental data were interpreted with a PD classification method. Peptides with low PD values relative to a given epitope were more likely to bind IgE from the sera than were those with PD values larger than 6. Control sequences, with PD values between 18 and 20 to all the three epitopes, did not bind patient IgE, thus validating our procedure for identifying negative control peptides. The PD index is a statistically validated method to detect discrete regions of proteins that have a high probability of cross-reacting with IgE from allergic patients. PMID:18950868

  19. A commercial ELISA detects high levels of human H5 antibody but cross-reacts with influenza A antibodies.

    Science.gov (United States)

    Stelzer-Braid, Sacha; Wong, Bruce; Robertson, Peter; Lynch, Garry W; Laurie, Karen; Shaw, Robert; Barr, Ian; Selleck, Paul W; Baleriola, Cristina; Escott, Ros; Katsoulotos, Gregory; Rawlinson, William D

    2008-10-01

    Commercial serological assays to determine influenza A H5N1 infection are available, although the accuracy and reproducibility of these are not reported in detail. This study aimed to assess the validity of a commercial ELISA H5 hemagglutinin (HA) antibody kit. A commercial ELISA for detection of antibodies towards influenza A H5 HA was evaluated using human sera from vaccinated individuals. The ELISA was used to screen 304 sera with elevated influenza A complement fixation titres collected between the period 1995-2007. The ELISA was found to be accurate for sera with high levels of anti-H5 antibodies, and would be useful in clinical settings where a rapid result is required. Thirteen of the stored sera were positive using the ELISA, but were confirmed as negative for H5N1 exposure using further serological tests. Absorption studies suggested that antibodies towards seasonal H3N2 and H1N1 influenza may cross-react with H5 antigen, giving false positive results with the ELISA.

  20. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows

    Science.gov (United States)

    Sewerin, Fabian; Rigopoulos, Stelios

    2017-10-01

    Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also

  1. Alternative statistics in multi-step direct reaction theory

    International Nuclear Information System (INIS)

    Koning, A.J.

    1990-06-01

    In recent years a variety of statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton model': these are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates are highlighted. A common framework is sketched that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high-energy tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imaged that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expressions for the MSD emission cross sections. This picture suggests that the mentioned MSD models can be interpreted as variants of essentially one and the same theory. However, this appears not to be the case. To show this the usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual system is introduced. One implication is that the mutual residual interactions of the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be central to the present analysis. (author). 14 refs.; 4

  2. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates.

    Science.gov (United States)

    Bröker, Michael

    2016-03-03

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.

  3. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    Science.gov (United States)

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reductions in Aprotic Media. I. Cathodic Reduction Limits in Acetonitrile at a Platinum Electrode.

    Science.gov (United States)

    1981-08-15

    specifically; (1) The difference in the effect of water on lithium solutions and tetraalkylammonium solutions, (2) the passivation of a platinum electrode...solutions. 5 EXPERIMENTAL Procedure for Controlled Potential Electrolysis The electrolyses were performed in a glass H-cell. The anode and cathode...fine porous glass frit from the Luggin section. The electrolyses were run in constant potential mode. After electrolysis, the catholyte was removed and

  5. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  6. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  7. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  8. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    Science.gov (United States)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  9. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  10. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  11. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  12. Investigation of Microstructure and Microhardness in Self-Reacting Friction Stir Welded AA2014-T6 and AA2219-T87

    Science.gov (United States)

    Horton, K. Renee; McGill, Preston; Barkey, Mark

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.

  13. Blockbuster genres in Danish independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    market dominance. They respond, instead, by delving directly into international blockbuster genres and styles in the search for something missing in Danish cinema. This works, principally, by directly reacting against the institutional and economic dominance and protectionism of primarily The Danish Film...... Institute. Indirectly, the filmmakers seem to react against ‘what is allowed’ in Danish film culture. Therefore, they actually define themselves as being non-mainstream by focussing on international mainstream genres....

  14. Pre-existing IgG antibodies cross-reacting with the Fab region of infliximab predict efficacy and safety of infliximab therapy in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Steenholdt, Casper; Palarasah, Yaseelan; Bendtzen, Klaus

    2013-01-01

    are common and may cross-react with the murine part of IFX. AIM: To investigate if Abs binding to IFX's Fab region (IFX-Fab) are present in IBD patients before exposure to IFX, and whether they predict efficacy and safety of IFX therapy. METHODS: Observational, retrospective cohort study of patients with CD...... (n = 29) and UC (n = 22). RESULTS: Pre-treatment levels of IFX-Fab reactive IgG Abs were significantly lower in CD patients in remission after 1 year of maintenance IFX (median 91 mU/L, n = 8) than in the rest of the patients (639 mU/L, n = 21; P ...

  15. O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-modified proteins induced under glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Takahiro Isono

    Full Text Available Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT and β-D-N-acetylglucosaminase (O-GlcNAcase. O-GlcNAc modification of proteins is dependent on the concentration of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc, which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc(2, rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc(2-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc(2-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc(2. Our results demonstrated that N-GlcNAc(2-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc(2-modified proteins is a newly

  16. Reacting fluids analysis and polluting emissions; Analisis de fluidos reactivos y emisiones contaminantes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo, Ramon; Ley Koo, Marcos [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Varela Ham, Ruben [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1993-12-31

    A problem is set up of a reacting flow which occurs in a gas exhausting duct, which is boiled down to a problem of initial conditions (temperature, pressure and concentration of species) freeing the selection of reaction mechanisms. Through some pre-established algorithms calculation routines can be programmed in specific problems of chemistry kinetics. With the calculation routines set forth in base of the selected mechanism, the temperature, pressure, etc., conditions, a general program is obtained containing the differential equations for the mechanisms, and with its solution, with a certain degree of uncertainty, the gases at a duct outlet can be predicted. The exhaust gases will carry unburned particles and products that can be polluting or not. If we vary the working conditions, we can find the optimum values to work with equipment that produces exhaust gases, anticipating with it the more efficient utilization of the equipment and the energy with the least possible pollution. [Espanol] Se plantea un problema de un flujo reactivo que se lleva a cabo en un ducto de salida de gases de escape, para lo cual se reduce a un problema de condiciones iniciales (temperatura, presion y concentracion de especies), y dejando en libertad la seleccion de mecanismos de reaccion. Mediante algunos algoritmos preestablecidos se pueden programar las rutinas de calculo en problemas especificos de cinetica quimica. Con las rutinas de calculo planteadas en base al mecanismo seleccionado, las condiciones de temperatura, presion, etc. se obtiene un programa general que contiene las ecuaciones diferenciales para el mecanismo y con su solucion se puede predecir con cierto grado de incertidumbre los gases a la salida de un ducto, los gases de salida llevaran particulas inquemadas y productos que pueden ser contaminantes o no, si hacemos variacion en las condiciones de trabajo podemos encontrar los valores optimos para trabajar con equipos que producen gases de escape, previendo con ello

  17. Reacting fluids analysis and polluting emissions; Analisis de fluidos reactivos y emisiones contaminantes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo, Ramon; Ley Koo, Marcos [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Varela Ham, Ruben [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1992-12-31

    A problem is set up of a reacting flow which occurs in a gas exhausting duct, which is boiled down to a problem of initial conditions (temperature, pressure and concentration of species) freeing the selection of reaction mechanisms. Through some pre-established algorithms calculation routines can be programmed in specific problems of chemistry kinetics. With the calculation routines set forth in base of the selected mechanism, the temperature, pressure, etc., conditions, a general program is obtained containing the differential equations for the mechanisms, and with its solution, with a certain degree of uncertainty, the gases at a duct outlet can be predicted. The exhaust gases will carry unburned particles and products that can be polluting or not. If we vary the working conditions, we can find the optimum values to work with equipment that produces exhaust gases, anticipating with it the more efficient utilization of the equipment and the energy with the least possible pollution. [Espanol] Se plantea un problema de un flujo reactivo que se lleva a cabo en un ducto de salida de gases de escape, para lo cual se reduce a un problema de condiciones iniciales (temperatura, presion y concentracion de especies), y dejando en libertad la seleccion de mecanismos de reaccion. Mediante algunos algoritmos preestablecidos se pueden programar las rutinas de calculo en problemas especificos de cinetica quimica. Con las rutinas de calculo planteadas en base al mecanismo seleccionado, las condiciones de temperatura, presion, etc. se obtiene un programa general que contiene las ecuaciones diferenciales para el mecanismo y con su solucion se puede predecir con cierto grado de incertidumbre los gases a la salida de un ducto, los gases de salida llevaran particulas inquemadas y productos que pueden ser contaminantes o no, si hacemos variacion en las condiciones de trabajo podemos encontrar los valores optimos para trabajar con equipos que producen gases de escape, previendo con ello

  18. Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication.

    Science.gov (United States)

    Brödel, Andreas K; Jaramillo, Alfonso; Isalan, Mark

    2017-09-01

    Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene-or gene circuit function-that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ∼7 weeks.

  19. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    Science.gov (United States)

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-04-15

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.

  20. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  1. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  2. Ultrasensitive immunoradiometric assay for chorionic gonadotropin which does not cross-react with luteinizing hormone nor free β chain of hCG and which detects hCG in blood of non-pregnant humans

    International Nuclear Information System (INIS)

    Griffin, J.; Odell, W.D.

    1987-01-01

    A sensitive, non-competitive, two-monoclonal antibody, sandwich-type or immunoradiometric assay has been developed for human chorionic gonadotropin (hCG) which shows no cross-reaction with the free β chain of hCG nor with human luteinizing hormone (LH). In the assay procedure, two, highly selected monoclonal antibodies reacted in solution with hCG to be quantified. One antibody was covalently conjugated to biotin. This antibody was specific for the β subunit of hCG, and showed no reaction with LH nor the α subunit. The second antibody was labelled with 125 I and was specific for intact hCG and LH, showing no cross-reaction with βhCG nor the α subunit. The separation system was a polystyrene ball conjugated with biotin. This ball bound via an avidin bridge the monoclonal 'sandwich' containing hCG. Counts per minute bound to the ball were directly proportional to the amount of hCG present. The assay was specific for whole hCG and showed no reaction with βhCG, βLH, intact LH nor the free α subunit. Sensitivity was adequate to detect 'hCG-like' material in all post menopausal women and, when single samples were obtained, in over 2/3 of normal men. When multiple samples were obtained, 'hCG-like' material was detectable in all eugonadal adults studied. 27 refs.; 4 figs.; 1 table

  3. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.

    Science.gov (United States)

    Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2016-12-08

    A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  5. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    Science.gov (United States)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  6. Leptospira spp. vaccinal antibodies do not react with Borrelia burgdorferi peptides used in the AccuPlex 4.

    Science.gov (United States)

    Caress, Amber L; Moroff, Scott; Lappin, Michael R

    2017-11-01

    We attempted to determine if Leptospira spp. antibodies induced by vaccination would cross-react with Borrelia burgdorferi antigens used in a commercial automated immunofluorescent assay (AccuPlex 4 BioCD; Antech). Staff- and student-owned dogs ( n = 31) were recruited at a veterinary teaching hospital in a B. burgdorferi nonendemic area. The dogs were randomized and administered 1 of 4 commercial Leptospira spp. vaccines that contained serovars Canicola, Grippotyphosa, Icterohaemorrhagiae, and Pomona, then booster vaccinated 3 wk later. Blood was collected on weeks 0, 3, 4, 8, and 12. After confirming that maximal Leptospira spp. titers occurred on week 4, aliquots of sera from week 4 were shipped frozen for analysis of B. burgdorferi antibodies against OspA, OspC, OspF, P39, and SLP with the AccuPlex system. Week 4 sera from all 31 dogs had a titer of 1:100 for at least 1 Leptospira spp. serovar. Titers of 1:800 or greater were detected against multiple serovars in 27 dogs. None of the samples contained antibodies against the B. burgdorferi OspA, OspC, OspF, P39, and SLP peptides used in the commercial assay. The B. burgdorferi peptides used in the AccuPlex system do not recognize naturally occurring Leptospira spp. antibodies or those induced by the commercial Leptospira spp. vaccines administered in our study.

  7. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  8. Changes in the Chemistry of Groundwater Reacted with CO2: Comparison of Laboratory Results with the ZERT Field Pilot

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Abedini, Atosa A.; Beers, Sarah; Thomas, Burt

    2017-01-01

    As part of the ZERT program, sediments from two wells at the ZERT site, located in Bozeman, Montana, USA were reacted with a solution having the composition of local groundwater. A total of 50 water samples were collected from 7 containers placed for 15 days in a glove box with one atmosphere of CO2 to investigate detailed changes in the concentrations of major, minor and trace inorganic compounds, and to compare these with changes observed in groundwater at the ZERT site following CO2 injection. Laboratory results included rapid changes in pH (8.6 to 5.7), alkalinity (243 to 1295 mg/L as HCO3), electrical conductance (539 to 1822 μS/cm), Ca (28 to 297 mg/L), Mg (18 to 63 mg/L), Fe (5 to 43 μg/L) and Mn (2 to 837 μg/L) following CO2 injection. These chemical changes, which are in general agreement with those obtained from sampling the ZERT monitoring wells, could provide early detection of CO2 leakage into shallow groundwater. Dissolution of calcite, some dolomite and minor Mn-oxides, and desorption/ion exchange are likely the main geochemical processes responsible for the observed changes.

  9. Direct radioimmunoassay of serum progesterone using heterologous bridge tracer and antibody

    International Nuclear Information System (INIS)

    Kothari, K.; Pillai, M.R.A.

    1998-01-01

    The standardisation of a direct radioimmunoassay for progesterone using an 125 I labeled progesterone prepared by iodinating the tyrosine methyl ester (TME) conjugated to a progesterone hemiphthalate derivative and an antibody prepared using a progesterone linked to bovine serum albumin through 11α hemisuccinate derivative is described. The hemiphthalate derivative of progesterone was prepared by reacting 11α-hydroxy progesterone with phthalic anhydride which was then conjugated to TME by using isobutyl chloroformate. The conjugate was iodinated with 125 I using chloramine-T as oxidising agent and purified by thin layer chromatography. Radiochemical purity of the tracer was >95% in all batches. The tracer gave 70-75% binding with excess antibody. Assays were optimised with 8-anilino-1-naphthalene sulphonic acid (ANS) and sodium salicylate as blocking agents to release the progesterone from binding proteins. The assays optimised with sodium salicylate as blocking agent has a sensitivity of 0.25 ng/ml and a working range of 0.25-50 ng/ml, whereas the assay with ANS has a sensitivity of 0.75 ng/ml and a working range of 0.75-100 ng/ml. Serum samples were analysed and compared with the values obtained with a homologous bridge assay. (author)

  10. HIV-1 specific IgA detected in vaginal secretions of HIV uninfected women participating in a microbicide trial in Southern Africa are primarily directed toward gp120 and gp140 specificities.

    Directory of Open Access Journals (Sweden)

    Kelly E Seaton

    Full Text Available Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035. We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.

  11. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    Science.gov (United States)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  12. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    International Nuclear Information System (INIS)

    Jiang, Huawei; Dong, Liang; Halverson, Larry J

    2015-01-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm −3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs. (paper)

  13. Combustion oil production by direct liquefaction of the black liquor; Obtencao de oleo combustivel atraves da liquefacao direta de lixivia negra

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J L.M. [Universidade Estadual de Maringa, PR (Brazil). Dept. de Quimica; Rodrigues, J A.R.; Schuchardt, U [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1985-12-31

    A large number of publications about the liquefaction of carbonaceous materials with carbon monoxide in water have appeared. As carbon monoxide reacts with water to form formate. We have decided to use this compound for the direct liquefaction of black liquor, obtained from the pulp and paper industry. The reactions were performed in a stainless steel autoclave of 1 litre using a ratio of water/black liquor/sodium formate of 69/29,5/1,5 %. The reaction conditions were varied between 200 and 300 deg C and 110 to 130 bar of inert gas. We obtained heavy oils of an average molecular weight around 500 in 90 to 100 % yield on a dry and ash-free basis. The calorific value of this oil was estimated in 38000 kJ/kg. (author). 12 refs., 2 figs., 7 tabs

  14. SEQUENTIAL ELECTRODIALYTIC EXTRACTION OF PHOSPHORUS COMPOUNDS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an apparatus for electrodialytic extraction of phosphorus from a particulate material in suspension and to a method for electrodialytic phosphorus recovery, which uses the apparatus. The method may be applied for wastewater treatment, and/or treatment of particulate...... material rich in phosphorus. The present invention provides an apparatus for electrodialytic extraction of phosphorus from a particulate material comprising acidic and/or alkaline soluble phosphorus compounds, in suspension, comprising: • a first electrodialytic cell comprising a first anolyte compartment...

  15. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  16. Studies on unusually reactive metal powders. Preparation of new organometallic and organic compounds including potential new catalysts. Final report, July 1, 1980-December 31, 1984

    International Nuclear Information System (INIS)

    Rieke, R.D.

    1985-06-01

    This research project was involved with the preparation and study of highly reactive metal powders prepared by the reduction of metal salts with alkali metals. Studies concentrated on nickel, copper, cadmium, uranium, iron, and magnesium. The nickel powders have been found to react rapidly with benzylic halides, and the resulting organonickel complexes yield dibenzyl. Aryl halides react rapidly with the nickel powders to produce biaryl compounds in high yields. Benzylic halides react with the nickel powders in the presence of acylhalides to produce benzyl ketones in high yields. Reactions of ROCOCOC1 and benzylic halides with nickel powders yield benzyl ketones. These reactions proceed with a wide variety of substituents on the phenyl ring of the benzylic halides. Highly reactive uranium has been prepared, and found to react with a variety of oxygen containing substrates, such as nitrobenzene to yield azo benzene. Highly reactive magnesium has opened up a totally new area of low temperature Grignard chemistry. The preparation of highly reactive copper has allowed the direct preparation of organocopper species directly from organic halides. 16 refs., 6 tabs

  17. A modified direct insulin lodination for insulin radioreceptor assay in human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Elnabrawie, F S; Megahed, Y M; Fahim, F A; Ahmed, A M [Middle Eastern Regional radioisotope center for Arab Countries biochemistry dept. Faculty of science Ain Shams university, cairo, (Egypt)

    1995-10-01

    A substitution of iodine in to the inulin molecule will easily lead to a decreased hormonal activity. Nevertheless it cannot be concluded without further investigation that one or several of the tyrosyl groups are directly involve in the degree of iodination and the loss activity has been demonstrated by many workers, (Frenkel-Conrat 1950, and de Zoeten and van Strik, 1961). On the basis of the Frenkel-Conrat experiments, lee 1957 suggested that a mono-substitution of iodine in two tyrosyl groups is possible without loss of biological activity. In general, iodination is easy to perform as usually carried out at room temperature at PH of 7.5 in a phosphate buffer medium (Megahed et al., 1976, 1979). Reaction between antigen and antibody in radioimmunoassay (RIA), immunoradiometric assay (IRMA) and radioreceptor assay (RRA), is detected by radiation emitted from a radioisotope incorporated into the antigen or antibody molecule. Ideally the radiolabelled molecule has an immunoreactivity identical to the natural molecule and this behaves in the same way as in the assay procedure. Oxidation of 125 I-iodide gives rise to the 125 I-iodination which in a mildly alkaline PH (7.5) reacts with the phenolic benzene ring of tyrosine and tyrosyl residues by a process of electrophilic attack.

  18. A modified direct insulin lodination for insulin radioreceptor assay in human erythrocytes

    International Nuclear Information System (INIS)

    Elnabrawie, F.S.; Megahed, Y.M.; Fahim, F.A.; Ahmed, A.M.

    1995-01-01

    A substitution of iodine in to the inulin molecule will easily lead to a decreased hormonal activity. Nevertheless it cannot be concluded without further investigation that one or several of the tyrosyl groups are directly involve in the degree of iodination and the loss activity has been demonstrated by many workers, (Frenkel-Conrat 1950, and de Zoeten and van Strik, 1961). On the basis of the Frenkel-Conrat experiments, lee 1957 suggested that a mono-substitution of iodine in two tyrosyl groups is possible without loss of biological activity. In general, iodination is easy to perform as usually carried out at room temperature at PH of 7.5 in a phosphate buffer medium (Megahed et al., 1976, 1979). Reaction between antigen and antibody in radioimmunoassay (RIA), immunoradiometric assay (IRMA) and radioreceptor assay (RRA), is detected by radiation emitted from a radioisotope incorporated into the antigen or antibody molecule. Ideally the radiolabelled molecule has an immunoreactivity identical to the natural molecule and this behaves in the same way as in the assay procedure. Oxidation of 125 I-iodide gives rise to the 125 I-iodination which in a mildly alkaline PH (7.5) reacts with the phenolic benzene ring of tyrosine and tyrosyl residues by a process of electrophilic attack

  19. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  20. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  1. Effects of polishing on surface roughness, gloss and color of surface reaction type pre-reacted glass-ionomer filled resin composite.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Miyazaki, Masashi; García-Godoy, Franklin

    2011-06-01

    To evaluate the effects of polishing on surface roughness, gloss and color of different shades of surface reaction type pre-reacted glass-ionomer (S-PRG) filled nano-hybrid resin composite. Resin disks of 15 mm diameter and 2 mm thickness and final polish with 1000-grit SiC paper, super fine cut diamond (FG) point, silicon (MFR) point and Super-Snap mini-disk red (SNAP) were made with Beautifil II shades: A2, A20, Inc). One week after curing, the surface roughness, gloss and color were measured. Data was analyzed with ANOVA and Fisher's PLSD with alpha= 0.05 For all shades, the order of roughness (Ra) ranked according to groups of 1000-grit SiC > FG > MFR > SNAP with significant differences among all groups. For all shades, the order of gloss ranked according to groups of SNAP > MFR > FG > 1000-grit SiC with significant differences among the groups except for between MFR and FG without significant difference. The influence of the surface roughness on color differed among the polishing groups and shades. However, the values of the color differences (deltaE*ab) between the polishing groups of all shades were imperceptible to the naked eye.

  2. The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system.

    Science.gov (United States)

    Balikov, Daniel A; Brady, Sonia K; Ko, Ung Hyun; Shin, Jennifer H; de Pereda, Jose M; Sonnenberg, Arnoud; Sung, Hak-Joon; Lang, Matthew J

    2017-09-03

    The cytoskeleton provides structure and plays an important role in cellular function such as migration, resisting compression forces, and transport. The cytoskeleton also reacts to physical cues such as fluid shear stress or extracellular matrix remodeling by reorganizing filament associations, most commonly focal adhesions and cell-cell cadherin junctions. These mechanical stimuli can result in genome-level changes, and the physical connection of the cytoskeleton to the nucleus provides an optimal conduit for signal transduction by interfacing with nuclear envelope proteins, called nesprins, within the LINC (linker of the nucleus to the cytoskeleton) complex. Using single-molecule on single nuclei assays, we report that the interactions between the nucleus and the cytoskeleton, thought to be nesprin-cytoskeleton interactions, are highly sensitive to force magnitude and direction depending on whether cells are historically interfaced with the matrix or with cell aggregates. Application of ∼10-30 pN forces to these nesprin linkages yielded structural transitions, with a base transition size of 5-6 nm, which are speculated to be associated with partial unfoldings of the spectrin domains of the nesprins and/or structural changes of histones within the nucleus.

  3. Broadcasting, Reacting, Engaging

    DEFF Research Database (Denmark)

    Etter, Michael

    2014-01-01

    Purpose - Symmetric communication and relationship building are core principles of public relations, which have been highlighted for CSR communication. In this paper three different communication strategies for CSR communication in Twitter are developed, of which each contributes differently...... to the ideals of symmetric communication and relationship building. The framework is then applied to analyze how companies use the micro-blogging service Twitter for CSR communication. Design/methodology/approach - Social network analysis is used to identify the 30 most central corporate accounts in a CSR...... Twitter-Network. From these accounts over 40´000 tweets are extracted and manually coded. Anova is applied to investigate differences in the weighting of CSR topics between the different strategies. Findings - The analysis reveals that corporations adhere to a broadcasting strategy or a reactive strategy...

  4. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    Science.gov (United States)

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  5. Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation

    International Nuclear Information System (INIS)

    Cui, Yi; Liang, Yanna

    2014-01-01

    Highlights: • Direct transesterfication of wet yeast cells using methanol and microwave irradiation is feasible. • Methanol to biomass ratio, stirring speed and KOH concentration were critical to biodiesel yield. • Under optimal conditions, the crude biodiesel contained 64% of FAMEs and was 92% of yeast lipids. - Abstract: Cryptococcus curvatus is a highly promising oleaginous yeast strain that can accumulate intracellular lipids when grown on renewable carbon sources. In order to convert yeast lipids to biodiesel in a simple but cost-effective way, we aim to react whole yeast cells with methanol to produce biodiesel eliminating the step of drying and lipid extraction while adopting microwave energy for heating and disrupting cell walls. Through use of a screening test followed by response surface methodology, optimal parameters leading to the highest yield of crude biodiesel and FAMEs were identified. Under optimal conditions of reaction time (2 min), methanol/biomass ratio (50/1, v/m), stirring speed (966 rpm), KOH concentration (5%), and water content (80%), the yield of crude biodiesel (% of total lipids) was 56.1% after the first round reaction. A second round reaction using the residual yeast cells increased the total yield to 92%. Among the crude biodiesel, 63.88% was FAMEs as revealed by GC analysis. Results from this study indicated that it is feasible to produce biodiesel from wet microbial biomass directly without the steps of drying and lipid extraction. With the assistance of microwave, this process can be accomplished in minutes with good process efficiency

  6. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  7. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react?

    Science.gov (United States)

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C

    2013-01-01

    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time. Documentary study. We searched the web-sites of the European Medicines Agency and the drug agencies in USA, UK, and Denmark for documents mentioning benzodiazepines or SSRIs. We supplemented with other relevant literature that could contribute to our study. The searches were performed in 2009 in PubMed, Google, BMJ and JAMA. It took many years before the drug regulators acknowledged benzodiazepine dependence and SSRI withdrawal reactions and before the prescribers and the public were informed. Drug regulators relied mainly on the definitions of dependence and withdrawal reactions from the diagnostic psychiatric manuals, which contributed to the idea that SSRIs do not cause dependence, although it is difficult for many patients to stop treatment. In the perspective of a precautionary principle, drug agencies have failed to acknowledge that SSRIs can cause dependence and have minimised the problem with regard to its frequency and severity. In the perspective of a risk management principle, the drug agencies have reacted in concordance with the slowly growing knowledge of adverse drug reactions and have sharpened the information to the prescribers and the public over time. However, solely relying on spontaneous reporting of adverse effects leads to underestimation and delayed information about the problems. Given the experience with the benzodiazepines, we believe the regulatory bodies should have required studies from the manufacturers that could have elucidated the dependence potential of the SSRIs before marketing authorization was granted.

  8. Amyloplast Distribution Directs a Root Gravitropic Reaction

    Science.gov (United States)

    Kordyum, Elizabeth

    Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. As it is known, roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector, stems - with negative gravitropism, i. e. they grow in the direction opposite to a gravitational vector. According to the Nemec’s and Haberlandt’s starch-statolith hypothesis, amyloplasts in diameter of 1.5 - 3 μ in average, which appear to act as gravity sensors and fulfill a statolythic function in the specialized graviperceptive cells - statocytes, sediment in the direction of a gravitational vector in the distal part of a cell, while a nucleus is in the proximal one. There are reasonable data that confirm the amyloplasts-statoliths participation in gravity perception: 1) correlation between the statoliths localization and the site of gravity sensing, 2) significant redistribution (sedimentation) of amyloplasts in statocytes under gravistimulation in comparison with other cell organelles, 3) root decreased ability to react on gravity under starch removal from amyloplasts, 4) starchless Arabidopsis thaliana mutants are agravitropic, 5) amyloplasts-statoliths do not sediment in the absence of the gravitational vector and are in different parts or more concentrated in the center of statocytes. Plant tropisms have been intensively studied for many decades and continue to be investigated. Nevertheless, the mechanisms by which plants do so is still not clearly explained and many questions on gravisensing and graviresponse remain unanswered. Even accepted hypotheses are now being questioned and recent data are critically evaluated. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence

  9. A green non-acid-catalyzed process for direct N=N-C group formation: comprehensive study, modeling, and optimization.

    Science.gov (United States)

    Khakyzadeh, Vahid; Zolfigol, Mohammad Ali; Derakhshan-Panah, Fatemeh; Jafarian, Majid; Miri, Mir Vahid; Gilandoust, Maryam

    2018-01-04

    The aim of this work is to introduce, model, and optimize a new non-acid-catalyzed system for a direct N[Formula: see text]N-C bond formation. By reacting naphthols or phenol with anilines in the presence of the sodium nitrite as nitrosonium ([Formula: see text] source and triethylammonium acetate (TEAA), a N[Formula: see text]N-C group can be formed in non-acid media. Modeling and optimization of the reaction conditions were investigated by response surface method. Sodium nitrite, TEAA, and water were chosen as variables, and reaction yield was also monitored. Analysis of variance indicates that a second-order polynomial model with F value of 35.7, a P value of 0.0001, and regression coefficient of 0.93 is able to predict the response. Based on the model, the optimum process conditions were introduced as 2.2 mmol sodium nitrite, 2.2 mL of TEAA, and 0.5 mL [Formula: see text] at room temperature. A quadratic (second-order) polynomial model, by analysis of variance, was able to predict the response for a direct N=N-C group formation. Predicted response values were in good agreement with the experimental values. Electrochemistry studies were done to introduce new Michael acceptor moieties. Broad scope, high yields, short reaction time, and mild conditions are some advantages of the presented method.

  10. Directed polymers versus directed percolation

    Science.gov (United States)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  11. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes

    OpenAIRE

    1984-01-01

    Fluorescent derivatives of gangliosides were prepared by oxidizing the sialyl residues to aldehydes and reacting them with fluorescent hydrazides. When rhodaminyl gangliosides were incubated with lymphocytes, the cells incorporated them in a time- and temperature- dependent manner. Initially, the gangliosides were evenly distributed on the cell surface but were redistributed into patches and caps by antirhodamine antibodies. When the cells were then stained with a second antibody or protein A...

  12. Immunoperoxidase staining and radioimmunobinding of human tumor markers separated by direct tissue agarose isoelectric focusing

    International Nuclear Information System (INIS)

    Saravis, C.A.; Cunningham, C.G.; Marasco, P.V.; Cook, R.B.; Zamcheck, N.; FMC Corp., Rockland, ME

    1980-01-01

    The new technique of agarose isoelectric focusing is used to identify, quantitate, and characterize specific tumor markers. After fixation of the isoelectric focusing patterns these are reacted with specific anti-tumor marker antisera, then with second antibody either peroxidase conjugated or radiolabellad (radioiodine). (RB) [de

  13. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other...... preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious...

  14. Directed cell migration in the presence of obstacles

    Directory of Open Access Journals (Sweden)

    Grima Ramon

    2007-01-01

    Full Text Available Abstract Background Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. Results We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. Conclusion Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles.

  15. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  16. Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically Reacting Horizontal Plate in a Porous Media

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-01-01

    Full Text Available The optimal homotopy analysis method (OHAM is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth order method. The effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. This close agreement supports our analysis and the accuracy of the numerical computations. This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.

  17. Application of a two-cell adiabatic model for direct containment heating to the ABB C-E system 80+ ALWR

    International Nuclear Information System (INIS)

    Schneider, R.E.; Sherry, R.R.

    1993-01-01

    During certain severe reactor accidents, such as those initiated by a station blackout or small-break loss of coolant accident (LOCA) degradation of the reactor core can take place while the reactor coolant system remains pressurized. If unmitigated, core materials will melt and relocate to the lower regions of the reactor pressure vessel and ultimately melt through the reactor pressure vessel (RPV) lower head. Once the RPV is breached, core debris will be ejected from the RPV and entrained from the reactor cavity by the high velocity gases blowing down from the reactor vessel. During the entrainment process, metallic constituents of the ejected material, principally zirconium and steel, exothermically react with oxygen and steam to generate chemical energy and (in the case of reactions with steam) hydrogen. Concomitant with the high pressure melt ejection (HPME) process, there is the potential for hydrogen combustion and vaporization of available water. The sensible heat loss to the containment atmosphere and the associated processes are typically referred to as direct containment heating (DCH). If large quantities of energy from the corium and corium-steam reactions are transferred directly to the containment atmosphere, the containment may pressurize to a point where failure is possible. Since the containment threat is coincident with vessel breach, relatively high containment radiation releases would be expected from this type of containment failure

  18. Liquefied Gas Catholytes for UItra-Low Temperature Lithium Primary Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ocean Worlds exploration missions require batteries which operate as low as -100 C (defined here are "Ultra-Low Temperatures") and lower, a critically...

  19. Direct Monte Carlo Simulation Methods for Nonreacting and Reacting Systems at Fixed Total Internal Energy or Enthalpy

    Czech Academy of Sciences Publication Activity Database

    Smith, W.; Lísal, Martin

    2002-01-01

    Roč. 66, č. 1 (2002), s. 011104-1 - 011104-1 ISSN 1063-651X R&D Projects: GA ČR GA203/02/0805 Grant - others:NSERC(CA) OGP1041 Keywords : MC * simulation * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.397, year: 2002

  20. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior.

    Science.gov (United States)

    Schraa-Tam, Caroline K L; Rietdijk, Willem J R; Verbeke, Willem J M I; Dietvorst, Roeland C; van den Berg, Wouter E; Bagozzi, Richard P; De Zeeuw, Chris I

    2012-03-01

    Several studies indicate that the cerebellum might play a role in experiencing and/or controlling emphatic emotions, but it remains to be determined whether there is a distinction between positive and negative emotions, and, if so, which specific parts of the cerebellum are involved in these types of emotions. Here, we visualized activations of the cerebellum and extracerebellar regions using high-field fMRI, while we asked participants to observe and imitate images with pictures of human faces expressing different emotional states or with moving geometric shapes as control. The state of the emotions could be positive (happiness and surprise), negative (anger and disgust), or neutral. The positive emotional faces only evoked mild activations of crus 2 in the cerebellum, whereas the negative emotional faces evoked prominent activations in lobules VI and VIIa in its hemispheres and lobules VIII and IX in the vermis. The cerebellar activations associated with negative emotions occurred concomitantly with activations of mirror neuron domains such as the insula and amygdala. These data suggest that the potential role of the cerebellum in control of emotions may be particularly relevant for goal-directed behavior that is required for observing and reacting to another person's (negative) expressions.