WorldWideScience

Sample records for direct perturbation approach

  1. On Direct Transformation Approach to Asymptotical Analytical Solutions of Perturbed Partial Differential Equation

    International Nuclear Information System (INIS)

    Liu Hongzhun; Pan Zuliang; Li Peng

    2006-01-01

    In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.

  2. A perturbed martingale approach to global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-08-01

    A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.

  3. New perturbative approach to renormalizable field theories

    International Nuclear Information System (INIS)

    Dhar, A.; Gupta, V.

    1984-01-01

    A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach

  4. Non-perturbative approach for laser radiation interactions with solids

    International Nuclear Information System (INIS)

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  5. Multiphoton transitions in semiconductors in the non-perturbative approach

    International Nuclear Information System (INIS)

    Iqbal, M.Z.; Hassan, A.R.

    1987-09-01

    Transition rates for multiphoton absorption via direct band-to-band excitation have been calculated using a non-perturbative approach due to Jones and Reiss, based on the Volkov type final state wave functions. Both cases of parabolic and non-parabolic energy bands have been included in our calculations. Absorption coefficients have been obtained for the cases of plane polarized and circularly polarized light. In particular, two-photon absorption coefficients are derived for the two cases of polarization for the parabolic band approximation as well as for non-parabolic bands and compared with the results based on perturbation theory. Numerical estimates of the two photon absorption coefficients resulting from our calculations are also provided. (author). 10 refs, 1 tab

  6. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    Science.gov (United States)

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Alternative perturbation approaches in classical mechanics

    International Nuclear Information System (INIS)

    Amore, Paolo; Raya, Alfredo; Fernandez, Francisco M

    2005-01-01

    We discuss two alternative methods, based on the Lindstedt-Poincare technique, for the removal of secular terms from the equations of perturbation theory. We calculate the period of an anharmonic oscillator by means of both approaches and show that one of them is more accurate for all values of the coupling constant. We believe that present discussion and comparison may be a suitable exercise for teaching perturbation theory in advanced undergraduate courses on classical mechanics

  8. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    Science.gov (United States)

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  9. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  10. A perturbative DFT approach for magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Khoong Hong; Laskowski, Robert, E-mail: rolask@ihpc.a-star.edu.sg

    2017-04-15

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin–orbit Hamiltonian for selected spin polarizations, as in the conventional “force theorem” approach, we show that the effect can be cast into a redefined form of the spin–orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  11. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.

    Science.gov (United States)

    Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi

    2016-06-01

    Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

  12. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-10-06

    In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.

  13. Perturbative evolution: a different approach at small x

    Energy Technology Data Exchange (ETDEWEB)

    Donnachie, A. [University of Manchester, School of Physics and Astromony, Manchester (United Kingdom); Landshoff, P.V. [DAMTP, Cambridge University, Cambridge (United Kingdom)

    2017-08-15

    We propose an approach to DGLAP evolution at small x that circumvents the usual problem that a perturbation expansion is not valid there. The data for the charm structure function are important to motivate the method, and it describes them much more successfully than the conventional approach. (orig.)

  14. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  15. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  16. The Glauber approach in perturbative QCD: nucleon case

    International Nuclear Information System (INIS)

    Ayala Filho, A.L.; Pelotas Univ., RS; Ducaty, M.B. Gay; Levin, E.M.; Petersburg Nuclear Physics Inst.,

    1997-01-01

    We investigate the shadowing corrections for the nucleon gluon distribution predicted from Glauber (Mueller) approach in perturbative QCD. This work is a digest for the nucleon case of the extended work prior presented by the authors

  17. Perturbation approach for nuclear magnetic resonance solid-state quantum computation

    Directory of Open Access Journals (Sweden)

    G. P. Berman

    2003-01-01

    Full Text Available A dynamics of a nuclear-spin quantum computer with a large number (L=1000 of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.

  18. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  19. A fast direct solver for boundary value problems on locally perturbed geometries

    Science.gov (United States)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  20. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  1. Identification of transmissivity fields using a Bayesian strategy and perturbative approach

    Science.gov (United States)

    Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.

    2017-10-01

    The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.

  2. Coupling-parameter expansion in thermodynamic perturbation theory.

    Science.gov (United States)

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  3. a Perturbation Approach to Translational Gravity

    Science.gov (United States)

    Julve, J.; Tiemblo, A.

    2013-05-01

    Within a gauge formulation of 3+1 gravity relying on a nonlinear realization of the group of isometries of space-time, a natural expansion of the metric tensor arises and a simple choice of the gravity dynamical variables is possible. We show that the expansion parameter can be identified with the gravitational constant and that the first-order depends only on a diagonal matrix in the ensuing perturbation approach. The explicit first-order solution is calculated in the static isotropic case, and its general structure is worked out in the harmonic gauge.

  4. Learning gene networks under SNP perturbations using eQTL datasets.

    Directory of Open Access Journals (Sweden)

    Lingxue Zhang

    2014-02-01

    Full Text Available The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network

  5. H{sup +}{sub 2} ionization by ultra-short electromagnetic pulses investigated through a non-perturbative Coulomb-Volkov approach

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2005-08-14

    The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.

  6. A modified variation-perturbation approach to zero-point vibrational motion

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ruud, K.; Sundholm, D.

    2000-01-01

    We present a detailed investigation of the perturbation approach for calculating zero-point vibrational contributions to molecular properties. It is demonstrated that if the sum of the potential energy and the zero-point vibrational energy is regarded as an effective potential energy, the leading...

  7. Image deblurring using a perturbation-basec regularization approach

    KAUST Repository

    Alanazi, Abdulrahman

    2017-11-02

    The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.

  8. Image deblurring using a perturbation-basec regularization approach

    KAUST Repository

    Alanazi, Abdulrahman; Ballal, Tarig; Masood, Mudassir; Al-Naffouri, Tareq Y.

    2017-01-01

    The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.

  9. Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations

    International Nuclear Information System (INIS)

    Losert, W.; Stillman, D.A.; Cummins, H.Z.; Kopczynski, P.; Rappel, W.; Karma, A.

    1998-01-01

    Pattern formation at the solid-liquid interface of a growing crystal was studied in directional solidification using a perturbation technique. We analyzed both experimentally and numerically the stability range and dynamical selection of cellular arrays of 'doublets' with asymmetric tip shapes, separated by alternate deep and shallow grooves. Applying an initial periodic perturbation of arbitrary wavelength to the unstable planar interface allowed us to force the interface to evolve into doublet states that would not otherwise be dynamically accessible from a planar interface. We determined systematically the ranges of wavelength corresponding to stable singlets, stable doublets, and transient unstable patterns. Experimentally, this was accomplished by applying a brief UV light pulse of a desired spatial periodicity to the planar interface during the planar-cellular transient using the model alloy Succinonitrile-Coumarin 152. Numerical simulations of the nonlinear evolution of the interface were performed starting from a small sinusoidal perturbation of the steady-state planar interface. These simulations were carried out using a computationally efficient phase-field symmetric model of directional solidification with recently reformulated asymptotics and vanishing kinetics [A. Karma and W.-J. Rappel, Phys. Rev. E 53 R3017 (1996); Phys. Rev. Lett. 77, 4050 (1996); Phys. Rev. E 57, 4323 (1998)], which allowed us to simulate spatially extended arrays that can be meaningfully compared to experiments. Simulations and experiments show remarkable qualitative agreement in the dynamic evolution, steady-state structure, and instability mechanisms of doublet cellular arrays. copyright 1998 The American Physical Society

  10. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  11. A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions

    International Nuclear Information System (INIS)

    Andersson, B.

    1986-01-01

    The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works

  12. Perturbation theory in angular quantization approach and the expectation values of exponential fields in sine-Gordon model

    International Nuclear Information System (INIS)

    Poghossian, R.H.

    2000-01-01

    In an angular quantization approach a perturbation theory for the Massive Thirring Model (MTM) is developed, which allows us to calculate vacuum expectation values of exponential fields in sine-Gordon theory near the free fermion point in first order of the MTM coupling constant g. The Hankel transforms play an important role when carrying out these calculations. The expression we have found coincides with that of the direct expansion over g of the exact formula conjectured by Lukyanov and Zamolodchikov

  13. A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory

    International Nuclear Information System (INIS)

    Ochiai, Tomoshiro

    2003-01-01

    There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods

  14. A new perturbative approach to QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Kallies, W.; Sarikov, N.A.

    1988-01-01

    For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model

  15. Theoretical approaches to many-body perturbation theory and the challenges

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of many-body perturbation theory (MBPT) and its applications in nuclear physics is given. Problems regarding its application to nuclear-structure calculations are discussed and analysed. It is concluded that the usefulness of nuclear MBPT in terms of an expansion in the nuclear reaction matrix G for the calculation of effective interactions in shell-model investigations is severely challenged and restricted by the problems and uncertainties connected with this approach. New methods based on unitary transformation approaches have proven to be more accurate and reliable, particularly for light nuclei

  16. Hamiltonian approach to second order gauge invariant cosmological perturbations

    Science.gov (United States)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  17. Green's functions in quantum chemistry II - Improving the Σ perturbation approach

    International Nuclear Information System (INIS)

    Sebastian, K.L.; Narayanan, P.; Rama Varma, K.T.

    1978-01-01

    Two methods, which are expected to lead to results better than those of the Σ perturbation approach given earlier are investigated. Within the algebraic approximation, the methods are applied to the hydrogen molecule and to ethylene in the Pariser-Parr-Pople (PPP) approximation. Both the methods are seen to suffer from the defect of not conserving the number of particles in the system. The methods are (a) the use of a partitioning other than Hartree-Fock. Due to the non-conservation of particle number, the method does not seem to be suited for the calculation of the ground state energy, but it gives good results for ionisation potentials. The investigation reveals that the only partitioning which conserves the number of particles is the Hartree-Fock partitioning (b) the renormalised Σ perturbation method, suggested by Csnak and others. For ethylene in the PPP approximation, the method does conserve the number of particles (but not in general). However, the energy obtained is not as good as that in the Σ perturbation method. This method therefore seems to be of limited applicability in molecular calculations. (author)

  18. Supplementary Appendix for: Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Alnaffouri, Tareq Y.

    2016-01-01

    In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).

  19. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  20. Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology

    Science.gov (United States)

    Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.

    2018-02-01

    Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.

  1. Degenerate R-S perturbation theory

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  2. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    Energy Technology Data Exchange (ETDEWEB)

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  3. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    Science.gov (United States)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  4. Effects of perturbations to balance on neuromechanics of fast changes in direction during locomotion.

    Directory of Open Access Journals (Sweden)

    Anderson Souza Oliveira

    Full Text Available This study investigated whether the modular control of changes in direction while running is influenced by perturbations to balance. Twenty-two healthy men performed 90° side-step unperturbed cutting manoeuvres while running (UPT as well as manoeuvres perturbed at initial contact (PTB, 10 cm translation of a moveable force platform. Surface EMG activity from 16 muscles of the supporting limb and trunk, kinematics, and ground reaction forces were recorded. Motor modules composed by muscle weightings and their respective activation signals were extracted from the EMG signals by non-negative matrix factorization. Knee joint moments, co-contraction ratios and co-contraction indexes (hamstrings/quadriceps and motor modules were compared between UPT and PTB. Five motor modules were enough to reconstruct UPT and PTB EMG activity (variance accounted for UPT  = 92 ± 5%, PTB = 90 ± 6%. Moreover, higher similarities between muscle weightings from UPT and PTB (similarity = 0.83 ± 0.08 were observed in comparison to the similarities between the activation signals that drive the temporal properties of the motor modules (similarity = 0.71 ± 0.18. In addition, the reconstruction of PTB EMG from fixed muscle weightings from UPT resulted in higher reconstruction quality (82 ± 6% when compared to reconstruction of PTB EMG from fixed activation signals from UPT (59 ± 11%. Perturbations at initial contact reduced knee abduction moments (7%, as well as co-contraction ratio (11% and co-contraction index (12% shortly after the perturbation onset. These changes in co-contraction ratio and co-contraction index were caused by a reduced activation of hamstrings that was also verified in the activation signals of the specific motor module related to initial contact. Our results suggested that perturbations to balance influence modular control of cutting manoeuvres, especially the temporal properties of muscle recruitment, due to altered afferent

  5. Gauge-invariant perturbations in a spatially flat anisotropic universe

    International Nuclear Information System (INIS)

    Den, Mitsue.

    1986-12-01

    The gauge-invariant perturbations in a spatially flat anisotropic universe with an arbitrary dimension (= N) are studied. In a previous paper the equations for the perturbations with a wave vector k a in one of the axial directions were derived and their solutions were shown. In this paper the perturbations with k a in arbitrary directions are treated. The remarkable properties are that all three types (scalar, vector, and tensor) of perturbations are generally coupled, so that a density perturbation can be produced also by vector or tensor perturbations. The formulation is quite general, but the behavior of the perturbations is discussed in a simple case such that N = 4 and k a is orthogonal to one of the axial directions. In this case, the perturbations are divided into two groups which are dynamically decoupled from each other. The asymptotic behavior of the perturbations in the group containing the density perturbation is discussed. (author)

  6. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  7. Scalar trace anomaly and anti-gravitational interaction in a perturbative approach to self-consistent cosmologies

    International Nuclear Information System (INIS)

    Gunzig, E.; Nardone, P.

    1984-01-01

    We present a perturbative approach to the equations controlling the behavior of the recently proposed self-consistent, causal, singularity-free cosmologies. This approach sheds a new light on the threshold mass which governs both the (in)stability of empty Minkowski space and the existence of these cosmologies. An unexpected fact arises at the lower order of this perturbative scheme: the mass of the massive (scalar) field coupled non-minimally to gravitation is completely absorbed in a rescaling of the gravitational constant. The latter becomes negative, thereby causing an effective anti-gravitational interaction when the corresponding mass exceeds the minkowskian instability threshold. Moreover, the source of this effective antigravitational interaction is the usual scalar trace anomaly associated with the residual massless part of the matter field. (orig.)

  8. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  9. Applications of delta-functions perturbation to the pricing of derivative securities

    NARCIS (Netherlands)

    Decamps, M.; DeSchepper, A.; Goovaerts, M.J.

    2004-01-01

    In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of -function perturbations. First, we show that results about infinitely repulsive -function are applicable

  10. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  11. Generalized perturbation theory (GPT) methods. A heuristic approach

    International Nuclear Information System (INIS)

    Gandini, A.

    1987-01-01

    Wigner first proposed a perturbation theory as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. The first formulation, CPT, for conventional perturbation theory is based on universal quantum mechanics concepts. Since that early conception, significant contributions have been made to CPT, in particular, Soodak, who rendered a heuristic interpretation of the adjoint function, (referred to as the GPT method for generalized perturbation theory). The author illustrates the GPT methodology in a variety of linear and nonlinear domains encountered in nuclear reactor analysis. The author begins with the familiar linear neutron field and then generalizes the methodology to other linear and nonlinear fields, using heuristic arguments. The author believes that the inherent simplicity and elegance of the heuristic derivation, although intended here for reactor physics problems might be usefully adopted in collateral fields and includes such examples

  12. When Differential Privacy Meets Randomized Perturbation: A Hybrid Approach for Privacy-Preserving Recommender System

    KAUST Repository

    Liu, Xiao

    2017-03-21

    Privacy risks of recommender systems have caused increasing attention. Users’ private data is often collected by probably untrusted recommender system in order to provide high-quality recommendation. Meanwhile, malicious attackers may utilize recommendation results to make inferences about other users’ private data. Existing approaches focus either on keeping users’ private data protected during recommendation computation or on preventing the inference of any single user’s data from the recommendation result. However, none is designed for both hiding users’ private data and preventing privacy inference. To achieve this goal, we propose in this paper a hybrid approach for privacy-preserving recommender systems by combining differential privacy (DP) with randomized perturbation (RP). We theoretically show the noise added by RP has limited effect on recommendation accuracy and the noise added by DP can be well controlled based on the sensitivity analysis of functions on the perturbed data. Extensive experiments on three large-scale real world datasets show that the hybrid approach generally provides more privacy protection with acceptable recommendation accuracy loss, and surprisingly sometimes achieves better privacy without sacrificing accuracy, thus validating its feasibility in practice.

  13. Selberg zeta functions and transfer operators an experimental approach to singular perturbations

    CERN Document Server

    Fraczek, Markus Szymon

    2017-01-01

    This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac...

  14. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  15. Acoustic wavefield evolution as a function of source location perturbation

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-12-01

    The wavefield is typically simulated for seismic exploration applications through solving the wave equation for a specific seismic source location. The direct relation between the form (or shape) of the wavefield and the source location can provide insights useful for velocity estimation and interpolation. As a result, I derive partial differential equations that relate changes in the wavefield shape to perturbations in the source location, especially along the Earth\\'s surface. These partial differential equations have the same structure as the wave equation with a source function that depends on the background (original source) wavefield. The similarity in form implies that we can use familiar numerical methods to solve the perturbation equations, including finite difference and downward continuation. In fact, we can use the same Green\\'s function to solve the wave equation and its source perturbations by simply incorporating source functions derived from the background field. The solutions of the perturbation equations represent the coefficients of a Taylor\\'s series type expansion of the wavefield as a function of source location. As a result, we can speed up the wavefield calculation as we approximate the wavefield shape for sources in the vicinity of the original source. The new formula introduces changes to the background wavefield only in the presence of lateral velocity variation or in general terms velocity variations in the perturbation direction. The approach is demonstrated on the smoothed Marmousi model.

  16. A perturbative approach to neutron stars in f(T, T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Mark; Said, Jackson Levi [University of Malta, Department of Physics, Msida (Malta); University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta)

    2017-05-15

    We derive a Tolman-Oppenheimer-Volkoff equation in neutron star systems within the modified f(T, T)-gravity class of models using a perturbative approach. In our approach f(T, T)-gravity is considered to be a static spherically symmetric space-time. In this instance the metric is built from a more fundamental vierbein which can be used to relate inertial and global coordinates. A linear function f = T(r) + T(r) + χh(T, T) + O(χ{sup 2}) is taken as the Lagrangian density for the gravitational action. Finally we impose the polytropic equation of state of neutron star upon the derived equations in order to derive the mass profile and mass-central density relations of the neutron star in f(T, T)-gravity. (orig.)

  17. Perturbative analysis in higher-spin theories

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)

    2016-07-28

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  18. Scalar cosmological perturbations

    International Nuclear Information System (INIS)

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  19. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime.

    Science.gov (United States)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-14

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when iℏω∂∂τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  20. Applications of perturbation theory to the study of CANDU reactors

    International Nuclear Information System (INIS)

    Rozon, D.; Beaudet, M.

    1990-01-01

    The use of Generalized Perturbation Theory (GPT) in the computer code OPTEX-4 is described. This code can be used to simultaneously optimize the fuel management and the control absorber distribution in a CANDU reactor at equilibrium refueling. The gradient of the characteristic functionals are obtained using two independent approaches, requiring the solution of a fixed source eigenvalue problem (direct for the explicit approach. adjoint for the implicit approach). These solutions, as well as the solution of the diffusion problem is obtained in 3D by calling the diffusion module TRIVAC-2. The equivalence of the two approaches is demonstrated [fr

  1. Output synchronization of chaotic systems under nonvanishing perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, Didier [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico)], E-mail: didier@uabc.mx; Cruz-Hernandez, Cesar [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2008-08-15

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

  2. Output synchronization of chaotic systems under nonvanishing perturbations

    International Nuclear Information System (INIS)

    Lopez-Mancilla, Didier; Cruz-Hernandez, Cesar

    2008-01-01

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included

  3. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  4. An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network

    International Nuclear Information System (INIS)

    Shao Hai-Jian; Cai Guo-Liang; Wang Hao-Xiang

    2010-01-01

    In this study, a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional. This paper presents the comprehensive discussion of the approach and also extensive applications

  5. A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    Science.gov (United States)

    Goltsch, Mandy

    Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The corresponding practice of empirical equations and low fidelity analyses becomes obsolete in the light of novel concepts. Ever increasing system complexity and resource scarcity mandate new approaches to adequately capture system characteristics. Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities. Structural and aerodynamic performance requirements necessitate light weight materials and high aspect ratio wings resulting in distinct structural and aeroelastic response characteristics that stand in close correlation with natural vibration modes. The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization. The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed

  6. The pseudo-harmonics method: an application involving perturbations caused by control rod insertion in PWR reactors

    International Nuclear Information System (INIS)

    Claro, L.H.; Alvim, A.C.M.; Thome, Z.D.

    1988-08-01

    The objective of this work is to stydy the effect of intense perturbations, such as control rod insertion in the core of PWR reactors, through a perturbation approach consisting of a modified version of the pseudo-harmonics method. A typical one-dimensional PWR reactor model was used as a reference state, from which two perturbations were imposed, simulation gray and black control rod insertion. In the first case, eigenvalue convergence was achieved with the eighth order of approximation approximation and perturbed fluxes and eigenvalue estimates agreed very well with direct calculation results. The second case tested represents a very intense localized perturbation. Oscillation in keff were observed er of approximation increased and the method failed to converge. Results obtained indicate that the pseudo-harmonics method can be used to compute 2 group fluxes and fundamental eigenvalue of perturbated states resulting from gray control rod insertion in PWR reactors. The method is limited, however, by perturbation intensity, as other perturbation methods are. (author) [pt

  7. A perturbative approach for enhancing the performance of time series forecasting.

    Science.gov (United States)

    de Mattos Neto, Paulo S G; Ferreira, Tiago A E; Lima, Aranildo R; Vasconcelos, Germano C; Cavalcanti, George D C

    2017-04-01

    This paper proposes a method to perform time series prediction based on perturbation theory. The approach is based on continuously adjusting an initial forecasting model to asymptotically approximate a desired time series model. First, a predictive model generates an initial forecasting for a time series. Second, a residual time series is calculated as the difference between the original time series and the initial forecasting. If that residual series is not white noise, then it can be used to improve the accuracy of the initial model and a new predictive model is adjusted using residual series. The whole process is repeated until convergence or the residual series becomes white noise. The output of the method is then given by summing up the outputs of all trained predictive models in a perturbative sense. To test the method, an experimental investigation was conducted on six real world time series. A comparison was made with six other methods experimented and ten other results found in the literature. Results show that not only the performance of the initial model is significantly improved but also the proposed method outperforms the other results previously published. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Perturbation approach to design of circularly polarised microstrip antennas

    Science.gov (United States)

    Lo, Y. T.; Richards, W. F.

    1981-05-01

    One of the most interesting applications of microstrip antennas is its use for transmitting or receiving circularly polarized (CP) waves. A description is given of a simple but accurate method to determine the critical dimensions needed to produce circular polarization for nearly square and nearly circular microstrip antennas. Shen (1981) in connection with the determination of the proper dimensions of an elliptical patch CP microstrip antenna first expressed the modal field in terms of Mathieu functions. To avoid the complicated numerical computation of the Mathieu functions, he approximated these functions in terms of Bessel functions. It is pointed out that the computation of Mathieu functions, or their approximate expressions can be avoided altogether if a perturbation method is applied to find the resonant frequencies of the two orthogonal modes. The implementation of this approach is demonstrated.

  9. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  10. The Epstein-Glaser approach to perturbative quantum field theory: graphs and Hopf algebras

    International Nuclear Information System (INIS)

    Lange, Alexander

    2005-01-01

    The paper aims at investigating perturbative quantum field theory in the approach of Epstein and Glaser (EG) and, in particular, its formulation in the language of graphs and Hopf algebras (HAs). Various HAs are encountered, each one associated with a special combination of physical concepts such as normalization, localization, pseudounitarity, causal regularization, and renormalization. The algebraic structures, representing the perturbative expansion of the S-matrix, are imposed on operator-valued distributions equipped with appropriate graph indices. Translation invariance ensures the algebras to be analytically well defined and graded total symmetry allows to formulate bialgebras. The algebraic results are given embedded in the corresponding physical framework, covering the two EG versions by Fredenhagen and Scharf that differ with respect to the concrete recursive implementation of causality. Besides, the ultraviolet divergences occurring in Feynman's representation are mathematically reasoned. As a final result, the change of the renormalization scheme in the context of EG is modeled via a HA and interpreted as the EG analog of Kreimer's HA

  11. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  12. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  13. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  14. A perturbative approach to mass-generation - the non-linear sigma model

    International Nuclear Information System (INIS)

    Davis, A.C.; Nahm, W.

    1985-01-01

    A calculational scheme is presented to include non-perturbative effects into the perturbation expansion. As an example we use the O(N + 1) sigma model. The scheme uses a natural parametrisation such that the lagrangian can be written in a form normal-ordered with respect to the O(N + 1) symmetric vacuum plus vacuum expectation values, the latter calculated by symmetry alone. Including such expectation values automatically leads to the inclusion of a mass-gap in the perturbation series. (orig.)

  15. The power of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  16. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways.

    Directory of Open Access Journals (Sweden)

    Sudin Bhattacharya

    Full Text Available The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC report Toxicity Testing in the 21(st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals and (b the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU. EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.

  17. One-Particle vs. Two-Particle Crossover in Weakly Coupled Hubbard Chains and Ladders: Perturbative Renormalization Group Approach

    OpenAIRE

    Kishine, Jun-ichiro; Yonemitsu, Kenji

    1997-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.

  18. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-03-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N->infinite with g 0 2 N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system. (orig.)

  19. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Simulations with a hydrological model for the river Rhine for the present (1960–1989 and a projected future (2070–2099 climate are discussed. The hydrological model (RhineFlow is driven by meteorological data from a 90-years (ensemble of three 30-years simulation with the HadRM3H regional climate model for both present-day and future climate (A2 emission scenario. Simulation of present-day discharges is realistic provided that (1 the HadRM3H temperature and precipitation are corrected for biases, and (2 the potential evapotranspiration is derived from temperature only. Different methods are used to simulate discharges for the future climate: one is based on the direct model output of the future climate run (direct approach, while the other is based on perturbation of the present-day HadRM3H time series (delta approach. Both methods predict a similar response in the mean annual discharge, an increase of 30% in winter and a decrease of 40% in summer. However, predictions of extreme flows differ significantly, with increases of 10% in flows with a return period of 100 years in the direct approach and approximately 30% in the delta approach. A bootstrap method is used to estimate the uncertainties related to the sample size (number of years simulated in predicting changes in extreme flows.

  20. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  1. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  2. Disruptive event uncertainties in a perturbation approach to nuclear waste repository risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.F.

    1980-09-01

    A methodology is developed for incorporating a full range of the principal forecasting uncertainties into a risk analysis of a nuclear waste repository. The result of this methodology is a set of risk curves similar to those used by Rasmussen in WASH-1400. The set of curves is partially derived from a perturbation approach to analyze potential disruptive event sequences. Such a scheme could be useful in truncating the number of disruptive event scenarios and providing guidance to those establishing data-base development priorities.

  3. A non-perturbative approach to strings

    International Nuclear Information System (INIS)

    Orland, P.

    1986-01-01

    After briefly reviewing the theory of strings in the light-cone gauge, a lattice regularized path integral for the amplitudes is discussed. The emphasis is put on a toy string model; the U(N) Veneziano model in the limit as N → ∞, with g/sup 2//sub o/N fixed. The lattice methods of Giles and Thorn are used extensively, but are found to require modification beyond perturbation theory. The twenty-six-dimensional toy string model is recast as a two-dimensional spin system

  4. Perturbative effect of heavy particles in an effective-Lagrangian approach

    International Nuclear Information System (INIS)

    Hagiwara, T.; Nakazawa, N.

    1981-01-01

    An effective-Lagrangian approach is summarized to estimate the perturbative effect of heavy-mass particles in the leading-logarithmic approximation: the logarithmic corrections to mass-suppressed amplitudes are given in a concise form. We apply the formalism to a simplified model with two scalar fields where one is heavy and the other is light. We derive an effective Lagrangian by calculating heavy-particle one-loop diagrams. Solving renormalization-group equations derived from the effective Lagrangian by light-particle one-loop corrections, we obtain logarithmic corrections to the mass-suppressed amplitudes. The results are confirmed by explicit two-loop calculation in the full theory, up to order O((1/M 2 )1nM 2 ), where M is a heavy scalar mass. It is found that the boundary condition for solving the renormalization-group equations must be specified by the renormalization at the heavy-particle mass. It must also be emphasized that in an effective-Lagrangian approach minimal subtraction is not a proper method of renormalization. The necessity to adopt the conventional momentum-shell subtraction is stressed. Several applications of this formalism are also mentioned

  5. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  6. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach

    Science.gov (United States)

    Lousto, C. O.

    2005-08-01

    . Other sources of gravitational waves are the product of excitation of the supermassive black holes present in the core of most of the galaxies in the universe by surrounding stars; such a star will eventually get close enough - presumably through three-body encounters - for the gravitational radiation to play an important role in the further evolution of its orbit and eventually cause it to merge into its supermassive companion. As the mass ratios are expected to be of the order of 10-3 at most, our perturbative expansion represents a fantastic degree of accuracy, allowing detailed analysis of the sources by space-based detectors sensitive to sub-Hertz frequencies, such as LISA - a joint mission of NASA and ESA that plans to launch three spaceships in orbit around the sun during the next decade. The universe can offer us an even more energetic event: when two galaxies collide, the merger of their central supermassive black holes will produce the largest burst of gravitational radiation in the universe. Presumably the mass ratio in this case will be in the range of 1 to 10-3, hence the extreme usefulness of the second-order approach. Let us return to 1997. After decades of being an open problem, the formulae for the self-force were finally available and, it seemed, ready to be applied in specific computations. This inspired a group of young researchers to meet and study in detail the papers containing the solution to the self-force problem. A ranch donated to Caltech by the movie director Frank Capra made the perfect retreat location, and so in 1998 the series of Capra meetings on radiation reaction was born in San Diego, California. Every year since then, the meeting has incorporated new people and become more formally organized. In 1999 the 2nd Capra meeting took place in Dublin, Ireland http://www.lsc-group.phys.uwm.edu/~patrick/ireland99/. In 2000 it returned to Caltech http://www.tapir.caltech.edu/capra3/, and in 2001 I had the opportunity to organize the 4th Capra

  7. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    Science.gov (United States)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  8. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses

    Science.gov (United States)

    Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona

    2015-01-01

    Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (Pjoints compensated for both increasing displacement and velocity in all directions (Pjoint deflections were particularly sensitive to increasing displacement in the sagittal (Pjoint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061

  9. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    Gandini, A.

    1994-01-01

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  10. Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1974-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.

  11. Perturbation theory and collision probability formalism. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Perturbation theory is commonly used in evaluating the activity effects, particularly those resulting from small and localized perturbation in multiplying media., e.g. in small sample reactivity measurements. The Boltzmann integral transport equation is generally used for evaluating the direct and adjoint fluxes in the heterogenous lattice cells to be used in the perturbation equations. When applying perturbation theory in this formalism, a term involving the perturbation effects on the special transfer kernel arises. This term is difficult to evaluate correctly, since it involves an integration all over the entire system. The main advantage of the perturbation theory which is the limitation of the integration procedure on the perturbation region is found to be of no practical use in such cases. In the present work, the perturbation equation in the collision probability formalism is analyzed. A mathematical treatment of the term in question is performed. A new mathematical expression for this term is derived. The new expression which can be estimated easily is derived.

  12. On the meaning of perturbation expansions in quantum field theory

    International Nuclear Information System (INIS)

    Burdik, C.; Chyla, J.

    1987-01-01

    We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified

  13. Supersymmetry restoration in superstring perturbation theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2015-01-01

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  14. Supersymmetry restoration in superstring perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)

    2015-12-14

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  15. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  16. On perturbation theory for distance dependent statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, S V

    1994-12-31

    It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.

  17. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  18. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  19. High energy deep inelastic scattering in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Wallon, S.

    1996-01-01

    In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)

  20. Radiation-induced perturbation of cell-to-cell signalling and communication

    International Nuclear Information System (INIS)

    Mariotti, L.; Facoetti, A.; Bertolotti, A.; Ranza, E.; Alloni, D.; Ottolenghi, A.

    2011-01-01

    The investigation of the bystander phenomena (i.e. the induction of damage in cells not directly traversed by radiation) is strictly related to the study of the mechanisms of intercellular communication and of the perturbative effects of radiation. A new possible way to try to solve the bystander puzzle is through a 'systems radiation biology' approach with the total integration of experimental and theoretical activities. In particular, this contribution will focus on: (1) 'ad hoc' experiments designed to quantify key parameters involved in intercellular signalling (focusing, as a pilot study, on release, decay and internalization of interleukin-6 molecules, their modulation by radiation, and possible differences between in vivo/in vitro behaviour); (2) the implementation and the development of two different modelling approaches: a stochastic model (based on a Monte Carlo code) that takes account of the local mechanisms of release and internalization of signalling molecules (e.g. cytokines) and an analytical model where signal molecules are treated as a population and their temporal behaviour is described by differential equations. This approach provided instruments to investigate the complex phenomena of signal transmission and the role of cell communication to guarantee (maintain) the robustness of the in vitro experimental systems against the effects of perturbations. (authors)

  1. An integral equation for the continuation of perturbative expansions

    International Nuclear Information System (INIS)

    Ciulli, S.

    1984-01-01

    It is shown how a procedure for analytic continuation, based on methods of functional analysis, can be used to extend the results of a perturbative calculation to yield nonperturbative information which could not be obtained directly from a perturbative expansion

  2. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Benjamin A Logsdon

    Full Text Available Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL, which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1, and genes involved in endocytosis (RCY1, the spindle checkpoint (BUB2, sulfonate catabolism (JLP1, and cell-cell communication (PRM7. Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data.

  3. Perturbative analysis of multiple-field cosmological inflation

    International Nuclear Information System (INIS)

    Lahiri, Joydev; Bhattacharya, Gautam

    2006-01-01

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented

  4. Exact-to-precision generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Wang Congjian; Abdel-Khalik, Hany S.

    2011-01-01

    Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.

  5. Gauge-invariant perturbations in hybrid quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gomar, Laura Castelló; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: laura.castello@iem.cfmac.csic.es, E-mail: m.martin@hef.ru.nl, E-mail: mena@iem.cfmac.csic.es [Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands)

    2015-06-01

    We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations.

  6. Gauge-invariant perturbations in hybrid quantum cosmology

    International Nuclear Information System (INIS)

    Gomar, Laura Castelló; Marugán, Guillermo A. Mena; Martín-Benito, Mercedes

    2015-01-01

    We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations

  7. Operator Decomposition Framework for Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)

    2012-05-15

    This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies

  8. Variational Perturbation Treatment of the Confined Hydrogen Atom

    Science.gov (United States)

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  9. Numerical approaches to model perturbation fire in turing pattern formations

    Science.gov (United States)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  10. Synchronizing the noise-perturbed Lue chaotic system

    International Nuclear Information System (INIS)

    Zhang Yan; Chen Shihua; Zhou Hong

    2009-01-01

    In this paper, synchronization between unidirectionally coupled Lue chaotic systems with noise perturbation is investigated theoretically and numerically. Sufficient conditions of synchronization between these noise-perturbed systems are established by means of the so-called sliding mode control method. Some numerical simulations are also included to visualize the effectiveness and the feasibility of the developed approach.

  11. A perturbational approach for evaluating the brain's capacity for consciousness.

    Science.gov (United States)

    Massimini, Marcello; Boly, Melanie; Casali, Adenauer; Rosanova, Mario; Tononi, Giulio

    2009-01-01

    How do we evaluate a brain's capacity to sustain conscious experience if the subject does not manifest purposeful behaviour and does not respond to questions and commands? What should we measure in this case? An emerging idea in theoretical neuroscience is that what really matters for consciousness in the brain is not activity levels, access to sensory inputs or neural synchronization per se, but rather the ability of different areas of the thalamocortical system to interact causally with each other to form an integrated whole. In particular, the information integration theory of consciousness (IITC) argues that consciousness is integrated information and that the brain should be able to generate consciousness to the extent that it has a large repertoire of available states (information), yet it cannot be decomposed into a collection of causally independent subsystems (integration). To evaluate the ability to integrate information among distributed cortical regions, it may not be sufficient to observe the brain in action. Instead, it is useful to employ a perturbational approach and examine to what extent different regions of the thalamocortical system can interact causally (integration) and produce specific responses (information). Thanks to a recently developed technique, transcranial magnetic stimulation and high-density electroencephalography (TMS/hd-EEG), one can record the immediate reaction of the entire thalamocortical system to controlled perturbations of different cortical areas. In this chapter, using sleep as a model of unconsciousness, we show that TMS/hd-EEG can detect clear-cut changes in the ability of the thalamocortical system to integrate information when the level of consciousness fluctuates across the sleep-wake cycle. Based on these results, we discuss the potential applications of this novel technique to evaluate objectively the brain's capacity for consciousness at the bedside of brain-injured patients.

  12. Mass generation in perturbed massless integrable models

    International Nuclear Information System (INIS)

    Controzzi, D.; Mussardo, G.

    2005-01-01

    We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory

  13. J /ψ →Ds ,dπ , Ds ,dK decays with perturbative QCD approach

    Science.gov (United States)

    Sun, Junfeng; Yang, Yueling; Gao, Jie; Chang, Qin; Huang, Jinshu; Lu, Gongru

    2016-08-01

    Besides the conventional strong and electromagnetic decay modes, the J /ψ particle can also decay via the weak interaction in the standard model. In this paper, nonleptonic J /ψ →Ds ,dπ , Ds ,dK weak decays, corresponding to the externally emitted virtual W boson process, are investigated with the perturbative QCD approach. It is found that the branching ratio for the Cabibbo-favored J /ψ →Dsπ decay can reach up to O (10-10), which might be potentially measurable at the future high-luminosity experiments.

  14. Dynamically constrained ensemble perturbations – application to tides on the West Florida Shelf

    Directory of Open Access Journals (Sweden)

    F. Lenartz

    2009-07-01

    Full Text Available A method is presented to create an ensemble of perturbations that satisfies linear dynamical constraints. A cost function is formulated defining the probability of each perturbation. It is shown that the perturbations created with this approach take the land-sea mask into account in a similar way as variational analysis techniques. The impact of the land-sea mask is illustrated with an idealized configuration of a barrier island. Perturbations with a spatially variable correlation length can be also created by this approach. The method is applied to a realistic configuration of the West Florida Shelf to create perturbations of the M2 tidal parameters for elevation and depth-averaged currents. The perturbations are weakly constrained to satisfy the linear shallow-water equations. Despite that the constraint is derived from an idealized assumption, it is shown that this approach is applicable to a non-linear and baroclinic model. The amplitude of spurious transient motions created by constrained perturbations of initial and boundary conditions is significantly lower compared to perturbing the variables independently or to using only the momentum equation to compute the velocity perturbations from the elevation.

  15. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  16. Sensitivity analysis of critical experiment with direct perturbation compared to TSUNAMI-3D sensitivity analysis

    International Nuclear Information System (INIS)

    Barber, A. D.; Busch, R.

    2009-01-01

    The goal of this work is to obtain sensitivities from direct uncertainty analysis calculation and correlate those calculated values with the sensitivities produced from TSUNAMI-3D (Tools for Sensitivity and Uncertainty Analysis Methodology Implementation in Three Dimensions). A full sensitivity analysis is performed on a critical experiment to determine the overall uncertainty of the experiment. Small perturbation calculations are performed for all known uncertainties to obtain the total uncertainty of the experiment. The results from a critical experiment are only known as well as the geometric and material properties. The goal of this relationship is to simplify the uncertainty quantification process in assessing a critical experiment, while still considering all of the important parameters. (authors)

  17. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  18. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  19. Formulation of nonlinear chromaticity in circular accelerators by canonical perturbation method

    International Nuclear Information System (INIS)

    Takao, Masaru

    2005-01-01

    The formulation of nonlinear chromaticity in circular accelerators based on the canonical perturbation method is presented. Since the canonical perturbation method directly relates the tune shift to the perturbation Hamiltonian, it greatly simplifies the calculation of the nonlinear chromaticity. The obtained integral representation for nonlinear chromaticity can be systematically extended to higher orders

  20. Where does cosmological perturbation theory break down?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark

    2009-01-01

    It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.

  1. Numerical studies of QCD renormalons in high-order perturbative expansions

    International Nuclear Information System (INIS)

    Bauer, Clemens

    2013-01-01

    Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such

  2. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Directory of Open Access Journals (Sweden)

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb

  3. The triangulation in a perturbed Friedmann universe

    International Nuclear Information System (INIS)

    Kasai, Masumi.

    1987-12-01

    A formula for the parallax distance in a general space-time is shown and it is applied to the linearly perturbed Friedmann universe. Its invariance under any coordinate-gauge transformations and any infinitesimal affine transformations is also shown. Then it is applied to the Einstein-de Sitter background model, and it is found that the perturbed space-time behaves as a Friedmann-like universe with the direction-dependent H 0 and q 0 . (author)

  4. The bispectrum of matter perturbations from cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  5. Gribov ambiguity, perturbation theory, and confinement

    International Nuclear Information System (INIS)

    Greensite, J.P.

    1978-01-01

    The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement

  6. One Critical Case in Singularly Perturbed Control Problems

    Science.gov (United States)

    Sobolev, Vladimir

    2017-02-01

    The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.

  7. Modularity and the spread of perturbations in complex dynamical systems.

    Science.gov (United States)

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  8. Level density approach to perturbation theory and inverse-energy-weighted sum-rules

    International Nuclear Information System (INIS)

    Halemane, T.R.

    1983-01-01

    The terms in the familiar Rayleigh-Schroedinger perturbation series involve eigenvalues and eigenfunctions of the unperturbed operator. A level density formalism, that does not involve computation of eigenvalues and eigenfunctions, is given here for the perturbation series. In the CLT (central limit theorem) limit the expressions take very simple linear forms. The evaluation is in terms of moments and traces of operators and operator products. 3 references

  9. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    White, J.R.

    1979-01-01

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  10. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  11. Nucleon-deuteron scattering with Δ-isobar excitation: Perturbation theory

    International Nuclear Information System (INIS)

    Deltuva, A.; Chmielewski, K.; Sauer, P.U.

    2003-01-01

    A perturbative approach for the description of elastic and inelastic nucleon-deuteron scattering is developed. Its validity is discussed. The aim of the perturbative approach is the isolation of details of different reaction mechanisms. The dynamics is based on a two-baryon potential allowing for the excitation of a nucleon to a Δ isobar. The coupled-channel potential yields an effective three-nucleon force in three-nucleon scattering. The purely nucleonic reference potential is the charge-dependent CD-Bonn potential

  12. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  13. Fourth-order Perturbed Eigenvalue Equation for Stepwise Damage Detection of Aeroplane Wing

    Directory of Open Access Journals (Sweden)

    Wong Chun Nam

    2016-01-01

    Full Text Available Perturbed eigenvalue equations up to fourth-order are established to detect structural damage in aeroplane wing. Complete set of perturbation terms including orthogonal and non-orthogonal coefficients are computed using perturbed eigenvalue and orthonormal equations. Then the perturbed eigenparameters are optimized using BFGS approach. Finite element model with small to large stepwise damage is used to represent actual aeroplane wing. In small damaged level, termination number is the same for both approaches, while rms errors and termination d-norms are very close. For medium damaged level, termination number is larger for third-order perturbation with lower d-norm and smaller rms error. In large damaged level, termination number is much larger for third-order perturbation with same d-norm and larger rms error. These trends are more significant as the damaged level increases. As the stepwise damage effect increases with damage level, the increase in stepwise effect leads to the increase in model order. Hence, fourth-order perturbation is more accurate to estimate the model solution.

  14. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  15. Non-linear perturbations of a spherically collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David

    2009-01-01

    Linear perturbation theory has been a successful tool in General Relativity, and can be considered as complementary to full nonlinear simulations. Going to second and higher perturbative orders improves the approximation and offers a controlled way to analyze the nonlinearities of the theory, though the problem becomes much harder computationally. We present a systematic approach to the treatment of high order metric perturbations, focusing on the scenario of nonspherical perturbations of a dynamical spherical background. It is based on the combination of adapted geometrical variables and the use of efficient computer algebra techniques. After dealing with a number of theoretical issues, like the construction of gauge invariants, we apply the formalism to the particular case of a perfect fluid star surrounded by a vacuum exterior. We describe the regularization of the divergences of the perturbations at null infinity and the matching conditions through the surface of the star.

  16. Non-perturbative aspects of nonlinear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael

    2012-12-07

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3){approx_equal}CP{sup 1} model. By the generalization of the topological

  17. Non-perturbative aspects of nonlinear sigma models

    International Nuclear Information System (INIS)

    Flore, Raphael

    2012-01-01

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3)≅CP 1 model. By the generalization of the topological operator and the

  18. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  19. Covariant perturbations of Schwarzschild black holes

    International Nuclear Information System (INIS)

    Clarkson, Chris A; Barrett, Richard K

    2003-01-01

    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of

  20. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    Science.gov (United States)

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  1. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  2. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  3. Supersingular quantum perturbations

    International Nuclear Information System (INIS)

    Detwiler, L.C.; Klauder, J.R.

    1975-01-01

    A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation

  4. Travelling wave solutions for a singularly perturbed Burgers–KdV ...

    Indian Academy of Sciences (India)

    This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...

  5. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.

  6. Non-perturbative construction of the Luttinger-Ward functional

    Directory of Open Access Journals (Sweden)

    M.Potthoff

    2006-01-01

    Full Text Available For a system of correlated electrons, the Luttinger-Ward functional provides a link between static thermodynamic quantities on the one hand and single-particle excitations on the other. The functional is useful in deriving several general properties of the system as well as in formulating the thermodynamically consistent approximations. Its original construction, however, is perturbative as it is based on the weak-coupling skeleton-diagram expansion. Here, it is shown that the Luttinger-Ward functional can be derived within a general functional-integral approach. This alternative and non-perturbative approach stresses the fact that the Luttinger-Ward functional is universal for a large class of models.

  7. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  8. Perturbative instabilities in Horava gravity

    International Nuclear Information System (INIS)

    Bogdanos, Charalampos; Saridakis, Emmanuel N

    2010-01-01

    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches general relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.

  9. Qualitative reasoning for biological network inference from systematic perturbation experiments.

    Science.gov (United States)

    Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco

    2012-01-01

    The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.

  10. Applications of δ-function perturbation to the pricing of derivative securities

    Science.gov (United States)

    Decamps, Marc; De Schepper, Ann; Goovaerts, Marc

    2004-11-01

    In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of δ-function perturbations. First, we show that results about infinitely repulsive δ-function are applicable to the pricing of barrier options. We also introduce functional integrals over skew paths that give rise to a new European option formula when combined with δ-function potential. We propose accurate closed-form approximations based on the theory of comonotonic risks in case the functional integrals are not analytically computable.

  11. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  12. In what sense the canonical perturbation theory is gauge-invariant

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1992-07-01

    It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs

  13. Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes

    Directory of Open Access Journals (Sweden)

    D. V. Lukyanenko

    2016-01-01

    Full Text Available The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts. We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic evaluation of the location and speed of the moving front, its width and structure. Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process compared with classical approaches.The article is published in the authors’ wording.

  14. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  15. Direct calculations of the odderon intercept in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Braun, M.A.; Gauron, P.; Nicolescu, B

    1999-03-08

    The odderon intercept is calculated directly, from its expression via an average energy of the odderon Hamiltonian, using both trial wave functions in the variational approach and the wave function recently constructed by Janik and Wosiek. The results confirm their reported value for the energy. Variational calculations give energies some 30% higher. However, they also predict the odderon intercept to be quite close to unity. In fact, for realistic values of {alpha}{sub s}, the intercept calculated variationally is at most 2% lower than the exact one: 0.94 instead of 0.96. It is also found that the solution for q{sub 3} = 0 does not belong to the odderon spectrum. The diffusion parameter is found to be of the order 0.6.

  16. Pion form factor in QCD sum rules, local duality approach, and O(A2) fractional analytic perturbation theory

    International Nuclear Information System (INIS)

    Bakulev, Alexander P.

    2010-01-01

    Using the results on the electromagnetic pion Form Factor (FF) obtained in the O(α s ) QCD sum rules with non-local condensates [A.P. Bakulev, A.V. Pimikov, and N.G. Stefanis, Phys. Rev. D79 (2009) 093010] we determine the effective continuum threshold for the local duality approach. Then we apply it to construct the O(α s 2 ) estimation of the pion FF in the framework of the fractional analytic perturbation theory.

  17. Perturbation approach to the self-energy of non-S hydrogenic states

    International Nuclear Information System (INIS)

    Le Bigot, Eric-Olivier; Jentschura, Ulrich D.; Mohr, Peter J.; Indelicato, Paul; Soff, Gerhard

    2003-01-01

    We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self-energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self-energy of non-S states, and provide estimates of the so-called A 60 perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of A 60 are given for many P, D, F, and G states, while estimates are given for other states. These results can be used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best available estimate of the self-energy correction of many atomic states

  18. Preregularization and the path integral approach to the chiral anomaly

    International Nuclear Information System (INIS)

    Elias, V.; McKeon, G.; Steele, T.; Mann, R.B.; Treml, T.F.; Sherry, T.N.

    1987-01-01

    We explore the connection between perturbative and non-perturbative (path-integral) approaches to the axial anomaly. In particular, we show how the Jacobian associated with the fermionic measure corresponding to local axial transformations may be calculated directly from shift-of-integration-variable surface terms in four Euclidean dimensions. No regularization (explicit parametrization of UV infinities) is required in this approach, but invariance of the Jacobian under vector gauge transformations (i.e. preregularization) is required to remove a variable-of-integration ambiguity within the expression for the Jacobian of the fermionic measure. (orig.)

  19. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration.

    Science.gov (United States)

    Pereira, Claudete Fernandes; Pasquini, Celio

    2010-05-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection of relevant variables for multivariate calibration models for the determination of quality parameters of gasoline, including ethanol content, MON (motor octane number), and RON (research octane number). The main advantage of this variable selection approach is the direct association between spectral features and chemical composition, allowing easy interpretation of the regression models.

  20. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  1. Detecting a Weak Association by Testing its Multiple Perturbations: a Data Mining Approach

    Science.gov (United States)

    Lo, Min-Tzu; Lee, Wen-Chung

    2014-05-01

    Many risk factors/interventions in epidemiologic/biomedical studies are of minuscule effects. To detect such weak associations, one needs a study with a very large sample size (the number of subjects, n). The n of a study can be increased but unfortunately only to an extent. Here, we propose a novel method which hinges on increasing sample size in a different direction-the total number of variables (p). We construct a p-based `multiple perturbation test', and conduct power calculations and computer simulations to show that it can achieve a very high power to detect weak associations when p can be made very large. As a demonstration, we apply the method to analyze a genome-wide association study on age-related macular degeneration and identify two novel genetic variants that are significantly associated with the disease. The p-based method may set a stage for a new paradigm of statistical tests.

  2. Threshold resummation in SCET vs. perturbative QCD. An analytic comparison

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2012-01-01

    We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale μ s that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of μ s . We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of μ s it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for μ s a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when μ s is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)

  3. Threshold resummation in SCET vs. perturbative QCD. An analytic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ghezzi, Margherita [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rome Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ridolfi, Giovanni [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy)

    2012-01-15

    We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale {mu}{sub s} that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of {mu}{sub s}. We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of {mu}{sub s} it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for {mu}{sub s} a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when {mu}{sub s} is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)

  4. Direct photons and dileptons via color dipoles

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Rezaeian, A.H.; Pirner, H.J.; Schmidt, Ivan

    2007-01-01

    Drell-Yan dilepton pair production and inclusive direct photon production can be described within a unified framework in the color dipole approach. The inclusion of non-perturbative primordial transverse momenta and DGLAP evolution is studied. We successfully describe data for dilepton spectra from 800-GeV pp collisions, inclusive direct photon spectra for pp collisions at RHIC energies √(s)=200 GeV, and for pp-bar collisions at tevatron energies √(s)=1.8 TeV, in a formalism that is free from any extra parameters

  5. Computation of External Quality Factors for RF Structures by Means of Model Order Reduction and a Perturbation Approach

    CERN Document Server

    Flisgen, Thomas; van Rienen, Ursula

    2016-01-01

    External quality factors are significant quantities to describe losses via waveguide ports in radio frequency resonators. The current contribution presents a novel approach to determine external quality factors by means of a two-step procedure: First, a state-space model for the lossless radio frequency structure is generated and its model order is reduced. Subsequently, a perturbation method is applied on the reduced model so that external losses are accounted for. The advantage of this approach results from the fact that the challenges in dealing with lossy systems are shifted to the reduced order model. This significantly saves computational costs. The present paper provides a short overview on existing methods to compute external quality factors. Then, the novel approach is introduced and validated in terms of accuracy and computational time by means of commercial software.

  6. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  7. Effects of 3D magnetic perturbations on toroidal plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  8. An approach of optimal sensitivity applied in the tertiary loop of the automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Belati, Edmarcio A. [CIMATEC - SENAI, Salvador, BA (Brazil); Alves, Dilson A. [Electrical Engineering Department, FEIS, UNESP - Sao Paulo State University (Brazil); da Costa, Geraldo R.M. [Electrical Engineering Department, EESC, USP - Sao Paulo University (Brazil)

    2008-09-15

    This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (author)

  9. A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.

    1995-08-01

    We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs

  10. Quasi-Maxwellian gravitation equations: aplication to the perturbations of the Friedmann cosmological models

    International Nuclear Information System (INIS)

    Salim, J.M.

    1982-01-01

    The perturbation theory of cosmological models, in particular Friedmann models, following the quasi-Maxwellian equations are systematically developed. Perturbations to imperfect sources are directly generalized. It is shown that Friedmann models are unstable by fluid vorticity perturbations. It is also shown that the study of gravitational waves can not be done independently of the coupling with the matter. Lifshitz results concerning matter density perturbation are found again and it is shown that some soluctions, considered in literature as physically acceptable, are naive coordinate transformations. (L.C.) [pt

  11. Stability of vertical posture explored with unexpected mechanical perturbations: synergy indices and motor equivalence.

    Science.gov (United States)

    Yamagata, Momoko; Falaki, Ali; Latash, Mark L

    2018-03-21

    We explored the relations between indices of mechanical stability of vertical posture and synergy indices under unexpected perturbations. The main hypotheses predicted higher posture-stabilizing synergy indices and higher mechanical indices of center of pressure stability during perturbations perceived by subjects as less challenging. Healthy subjects stood on a force platform and held in fully extended arms a bar attached to two loads acting downward and upward. One of the loads was unexpectedly released by the experimenter causing a postural perturbations. In different series, subjects either knew or did not know which of the two loads would be released. Forward perturbations were perceived as more challenging and accompanied by co-activation patterns among the main agonist-antagonist pairs. Backward perturbation led to reciprocal muscle activation patterns and was accompanied by indices of mechanical stability and of posture-stabilizing synergy which indicated higher stability. Changes in synergy indices were observed as early as 50-100 ms following the perturbation reflecting involuntary mechanisms. In contrast, predictability of perturbation direction had weak or no effect on mechanical and synergy indices of stability. These observations are interpreted within a hierarchical scheme of synergic control of motor tasks and a hypothesis on the control of movements with shifts of referent coordinates. The findings show direct correspondence between stability indices based on mechanics and on the analysis of multi-muscle synergies. They suggest that involuntary posture-stabilizing mechanisms show synergic organization. They also show that predictability of perturbation direction has strong effects on anticipatory postural adjustment but not corrective adjustments. We offer an interpretation of co-activation patterns that questions their contribution to postural stability.

  12. Generalizing genetical genomics: getting added value from environmental perturbation.

    Science.gov (United States)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C

    2008-10-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.

  13. Observer-Based Perturbation Extremum Seeking Control with Input Constraints for Direct-Contact Membrane Distillation Process

    KAUST Repository

    Eleiwi, Fadi

    2017-05-08

    An Observer-based Perturbation Extremum Seeking Control (PESC) is proposed for a Direct-Contact Membrane Distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D Advection-Diffusion Equation (ADE) model which has pump flow rates as process inputs. The objective of the controller is to optimize the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analyzed, and simulations based on real DCMD process parameters for each control input are provided.

  14. Observer-based perturbation extremum seeking control with input constraints for direct-contact membrane distillation process

    Science.gov (United States)

    Eleiwi, Fadi; Laleg-Kirati, Taous Meriem

    2018-06-01

    An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.

  15. Balance perturbation system to improve balance compensatory responses during walking in old persons

    Directory of Open Access Journals (Sweden)

    Melzer Itshak

    2010-07-01

    Full Text Available Abstract Ageing commonly disrupts the balance control and compensatory postural responses that contribute to maintaining balance and preventing falls during perturbation of posture. This can lead to increased risk of falling in old adults (65 years old and over. Therefore, improving compensatory postural responses during walking is one of the goals in fall prevention programs. Training is often used to achieve this goal. Most fall prevention programs are usually directed towards improving voluntary postural control. Since compensatory postural responses triggered by a slip or a trip are not under direct volitional control these exercises are less expected to improve compensatory postural responses due to lack of training specificity. Thus, there is a need to investigate the use balance perturbations during walking to train more effectively compensatory postural reactions during walking. This paper describes the Balance Measure & Perturbation System (BaMPer System a system that provides small, controlled and unpredictable perturbations during treadmill walking providing valuable perturbation, which allows training compensatory postural responses during walking which thus hypothesize to improve compensatory postural responses in older adults.

  16. A cross-language study of compensation in response to real-time formant perturbation

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen; Purcell, David W.

    2011-01-01

    error operates at a purely acoustic level. This hypothesis was tested by comparing the response of three language groups to real-time formant perturbations, (1) native English speakers producing an English vowel /e/, (2) native Japanese speakers producing a Japanese vowel (=e...Past studies have shown that when formants are perturbed in real time, speakers spontaneously compensate for the perturbation by changing their formant frequencies in the opposite direction to the perturbation. Further, the pattern of these results suggests that the processing of auditory feedback...... for formant perturbation operates at a purely acoustic level was rejected. Rather, some level of phonological processing influences the feedback processing behavior....

  17. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  18. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  19. A Direct Comparison of the MM-GB/SA Scoring Procedure and Free-Energy Perturbation Calculations Using Carbonic Anhydrase as a Test Case: Strengths and Pitfalls of Each Approach.

    Science.gov (United States)

    Guimarães, Cristiano R W

    2011-07-12

    MM-GB/SA scoring and free energy perturbation (FEP) calculations have emerged as reliable methodologies to understand structural and energetic relationships to binding. In spite of successful applications to elucidate the structure-activity relationships for few pairs of ligands, the reality is that the performance of FEP calculations has rarely been tested for more than a handful of compounds. In this work, a series of 13 benzene sulfonamide inhibitors of carbonic anhydrase with binding free energies determined by isothermal titration calorimetry was selected as a test case. R(2) values of 0.70, 0.71, and 0.49 with the experiment were obtained with MM-GB/SA and FEP simulations run with MCPRO+ and Desmond, respectively. All methods work well, but the results obtained with Desmond are inferior to MM-GB/SA and MCPRO+. The main contrast between the methods is the level of sampling, ranging from full to restricted flexibility to single conformation for the complexes in Desmond, MCPRO+, and MM-GB/SA, respectively. The current and historical results obtained with MM-GB/SA qualify this approach as a more attractive alternative for rank-ordering; it can achieve equivalent or superior predictive accuracy and handle more structurally dissimilar ligands at a fraction of the computational cost of the rigorous free-energy methods. As for the large theoretical dynamic range for the binding energies, that seems to be a direct result of the degree of sampling in the simulations since MCPRO+ as well as MM-GB/SA are plagued by this. Van't Hoff analysis for selected pairs of ligands suggests that the wider scoring spread is not only affected by missing entropic contributions due to restricted sampling but also exaggerated enthalpic separation between the weak and potent compounds caused by diminished shielding of electrostatic interactions, thermal effects, and protein relaxation/strain.

  20. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  1. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  2. Perturbation theory for water with an associating reference fluid

    Science.gov (United States)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  3. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  4. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  5. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  6. Direct and semi-direct approaches to lepton mixing with a massless neutrino

    International Nuclear Information System (INIS)

    King, Stephen F.; Ludl, Patrick Otto

    2016-01-01

    We discuss the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry, extending previous group searches up to order 1535. We find a phenomenologically viable scheme for the semi-direct approach based on Q(648) which contains Δ(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m_1=0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ_1_2∼31"∘ and the Dirac (oscillation) CP phase δ being either about ±45"∘ or ±π.

  7. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  8. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  9. Perturbation and variational approach for the equation of state for hard-sphere and Lennard—Jones fluids

    International Nuclear Information System (INIS)

    Khasare, S.B.

    2012-01-01

    The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)

  10. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    Science.gov (United States)

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  12. Improved estimates of the B{sub (s)}→VV decays in perturbative QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Tian; Li, Ying [Yantai Univ. (China). Dept. of Physics; Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lue, Cai-Dian [Institute of High Energy Physics, Beijing, BJ (China); Theoretical Physics Center for Science Facilities, CAS, Beijing (China); Liu, Xin [Jiangsu Normal Univ., Xuzhou (China). School of Physics and Electronic Engineering

    2015-01-15

    We reexamine the branching ratios, CP-asymmetries, and other observables in a large number of B{sub q}→VV(q=u,d,s) decays in the perturbative QCD (PQCD) approach, where V denotes a light vector meson (ρ,K{sup *},ω,φ). The essential difference between this work and the earlier similar works is of parametric origin and in the estimates of the power corrections related to the ratio r{sup 2}{sub i}=m{sup 2}{sub V{sub i}}/m{sup 2}{sub B} (i=2,3) (m{sub V} and m{sub B} denote the masses of the vector and B meson, respectively). In particular, we use up-to-date distribution amplitudes for the final state mesons and keep the terms proportional to the ratio r{sup 2}{sub i} in our calculations. Our updated calculations are in agreement with the experimental data, except for a limited number of decays which we discuss. We emphasize that the penguin annihilation and the hard-scattering emission contributions are essential to understand the polarization anomaly, such as in the B→φK{sup *} and B{sub s}→φφ decay modes. We also compare our results with those obtained in the QCD factorization (QCDF) approach and comment on the similarities and differences, which can be used to discriminate between these approaches in future experiments.

  13. Transport of energetic ions by low-n magnetic perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal

  14. Ignition condition and gain prediction for perturbed inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Kishony, Roy; Shvarts, Dov

    2001-01-01

    The effect of perturbations on hot spot ignition is studied using full two-dimensional (2D) numerical simulations of the National Ignition Facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] direct drive Laboratory for Laser Energetics target design and newly derived 2D self-similar solutions for a perturbed burn wave propagation. It is shown that the required implosion velocity needed for ignition increases with the perturbation mode number and final amplitude, reaching an asymptotic value for high enough perturbation mode numbers, when the entire mixing zone no longer contributes to the ignition of the hot spot. Using the new self-similar solutions, ignition conditions for various perturbation mode numbers and amplitudes are obtained. These ignition conditions, which correspond to areal densities higher than needed for ignition in the symmetric case, are translated to a required increase in the implosion velocity needed for ignition, using the 1D Levendahl-Lindl scaling, in good agreement with the full 2D numerical simulation results. Finally, using the above results, a model for predicting the gain of a perturbed targets as a function of the perturbation spectra (single-mode and multi-mode) is presented, in good agreement with full numerical simulations

  15. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  16. Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    Science.gov (United States)

    Qureshi, Mumnuna A.; Zhong, Johnny; Qureshi, Zihad; Mason, Peter; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2018-03-01

    We consider the evolution of the quantum states of a Hamiltonian that is parametrically perturbed via a term proportional to the adiabatic parameter λ (t ) . Starting with the Pechukas-Yukawa mapping of the energy eigenvalue evolution in a generalized Calogero-Sutherland model of a one-dimensional classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d λ /d t and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of nonadiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfiability problem, we obtain the occupation dynamics, which provides insight into the population of states and sources of decoherence in a quantum system.

  17. Non-perturbative approach to 2D-supergravity and super-Virasoro constraints

    CERN Document Server

    Becker, M

    1994-01-01

    The coupling of N=1 SCFT of type (4m,2) to two-dimensional supergravity can be formulated non-perturbatively in terms of a discrete super-eigenvalue model proposed by Alvarez-Gaum\\'e, et al. We derive the superloop equations that describe, in the double scaling limit, the non-perturbative solution of this model. These equations are equivalent to the double scaled super-Virasoro constraints satisfied by the partition function. They are formulated in terms of a \\widehat c=1 theory, with a \\IZ_2-twisted scalar field and a Weyl-Majorana fermion in the Ramond sector. We have solved the superloop equations to all orders in the genus expansion and obtained the explicit expressions for the correlation functions of gravitationally dressed scaling operators in the NS- and R-sector. In the double scaling limit, we obtain a formulation of the model in terms of a new supersymmetric extension of the KdV hierarchy.

  18. Singular perturbations introduction to system order reduction methods with applications

    CERN Document Server

    Shchepakina, Elena; Mortell, Michael P

    2014-01-01

    These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book’s approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate stude...

  19. Modélisation de l'imagerie biomédicale hybride par perturbations mécaniques

    OpenAIRE

    Seppecher , Laurent

    2014-01-01

    This thesis aims at developing an original mathematical approach for modeling hybrid biomedical imaging modalities. The core idea is to run an ill-posed imaging method while perturbing the medium using mechanical displacements. These displacements described by an elastic wave equation perturb the collected measurements. Using these perturbed measurements and taking advantage of the perturbation localizing e↵ect, it is possible to significantly overcome the resolution of the basic method. The ...

  20. Singular perturbation analysis of relaxation oscillations in reactor systems

    International Nuclear Information System (INIS)

    Ward, M.E.; Lee, J.C.

    1987-01-01

    A singular perturbation method for the analysis of large power oscillations in nuclear reactors is applied to obtain phase-plane solutions of the Ergen-Weinberg model. The system equations, recast in an appropriate form, directly give a first approximation to the closed trajectory in which the system behaviour is idealized as relaxation oscillations. Further approximations in the phase plane are determined using separate perturbation series on individual parts of the oscillation, with variations in the assignment of dependent and independent variables to consistently obtain convergent series. The accuracy of each order of the phase-plane solution increases with the magnitude of the power pulse in the actual physical situation. For realistic reactor conditions, both the trajectory and period of oscillation are well predicted using the first two terms of each perturbation series

  1. Frequent sgRNA-barcode recombination in single-cell perturbation assays.

    Directory of Open Access Journals (Sweden)

    Shiqi Xie

    Full Text Available Simultaneously detecting CRISPR-based perturbations and induced transcriptional changes in the same cell is a powerful approach to unraveling genome function. Several lentiviral approaches have been developed, some of which rely on the detection of distally located genetic barcodes as an indirect proxy of sgRNA identity. Since barcodes are often several kilobases from their corresponding sgRNAs, viral recombination-mediated swapping of barcodes and sgRNAs is feasible. Using a self-circularization-based sgRNA-barcode library preparation protocol, we estimate the recombination rate to be ~50% and we trace this phenomenon to the pooled viral packaging step. Recombination is random, and decreases the signal-to-noise ratio of the assay. Our results suggest that alternative approaches can increase the throughput and sensitivity of single-cell perturbation assays.

  2. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong

    2017-07-04

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.

  3. S -wave K π contributions to the hadronic charmonium B decays in the perturbative QCD approach

    Science.gov (United States)

    Rui, Zhou; Wang, Wen-Fei

    2018-02-01

    We extend our recent works on the two-pion S -wave resonance contributions to the kaon-pion ones in the B meson hadronic charmonium decay modes based on the perturbative QCD approach. The S -wave K π timelike form factor in its distribution amplitudes is described by the LASS parametrization, which consists of the K0*(1430 ) resonant state together with an effective range nonresonant component. The predictions for the decays B →J /ψ K π in this work agree well with the experimental results from the BABAR and Belle collaborations. We also discuss theoretical uncertainties, indicating that the results of this work, which can be tested by the LHCb and Belle-II experiments, are reasonably accurate.

  4. New numerical method for iterative or perturbative solution of quantum field theory

    International Nuclear Information System (INIS)

    Hahn, S.C.; Guralnik, G.S.

    1999-01-01

    A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)

  5. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  6. Perturbative methods applied for sensitive coefficients calculations in thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1993-01-01

    The differential formalism and the Generalized Perturbation Theory (GPT) are applied to sensitivity analysis of thermal-hydraulics problems related to pressurized water reactor cores. The equations describing the thermal-hydraulic behavior of these reactors cores, used in COBRA-IV-I code, are conveniently written. The importance function related to the response of interest and the sensitivity coefficient of this response with respect to various selected parameters are obtained by using Differential and Generalized Perturbation Theory. The comparison among the results obtained with the application of these perturbative methods and those obtained directly with the model developed in COBRA-IV-I code shows a very good agreement. (author)

  7. Analytic-continuation approach to the resummation of divergent series in Rayleigh-Schrödinger perturbation theory

    Science.gov (United States)

    Mihálka, Zsuzsanna É.; Surján, Péter R.

    2017-12-01

    The method of analytic continuation is applied to estimate eigenvalues of linear operators from finite order results of perturbation theory even in cases when the latter is divergent. Given a finite number of terms E(k ),k =1 ,2 ,⋯M resulting from a Rayleigh-Schrödinger perturbation calculation, scaling these numbers by μk (μ being the perturbation parameter) we form the sum E (μ ) =∑kμkE(k ) for small μ values for which the finite series is convergent to a certain numerical accuracy. Extrapolating the function E (μ ) to μ =1 yields an estimation of the exact solution of the problem. For divergent series, this procedure may serve as resummation tool provided the perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic (quartic) oscillator and an example from the many-electron correlation problem.

  8. Emergence of inflationary perturbations in the CSL model

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio (IAFE), UBA-CONICET, Buenos Aires (Argentina)

    2016-01-15

    The inflationary paradigm is the most successful model that explains the observed spectrum of primordial perturbations. However, the precise emergence of such inhomogeneities and the quantum-to-classical transition of the perturbations has not yet reached a consensus among the community. The continuous spontaneous localization model (CSL), in the cosmological context, might be used to provide a solution to the mentioned issues by considering a dynamical reduction of the wave function. The CSL model has been applied to the inflationary universe before and different conclusions have been obtained. In this letter, we use a different approach to implement the CSL model during inflation. In particular, in addition to accounting for the quantum-to-classical transition, we use the CSL model to generate the primordial perturbations, that is, the dynamical evolution provided by the CSL model is responsible for the transition from a homogeneous and isotropic initial state to a final one lacking such symmetries. Our approach leads to results that can be clearly distinguished from preceding works. Specifically, the scalar and tensor power spectra are not time-dependent, and one retains the amplification mechanism of the CSL model. Moreover, our framework depends only on one parameter (the CSL parameter) and its value is consistent with cosmological and laboratory observations. (orig.)

  9. Perturbative anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  10. Comparison between correlated sampling and the perturbation technique of MCNP5 for fixed-source problems

    International Nuclear Information System (INIS)

    He Tao; Su Bingjing

    2011-01-01

    Highlights: → The performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. → In terms of precision, the MCNP perturbation technique outperforms correlated sampling for one type of problem but performs comparably with or even under-performs correlated sampling for the other two types of problems. → In terms of accuracy, the MCNP perturbation calculations may predict inaccurate results for some of the test problems. However, the accuracy can be improved if the midpoint correction technique is used. - Abstract: Correlated sampling and the differential operator perturbation technique are two methods that enable MCNP (Monte Carlo N-Particle) to simulate small response change between an original system and a perturbed system. In this work the performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. In terms of precision of predicted response changes, the MCNP perturbation technique outperforms correlated sampling for the problem involving variation of nuclide concentrations in the same direction but performs comparably with or even underperforms correlated sampling for the other two types of problems that involve void or variation of nuclide concentrations in opposite directions. In terms of accuracy, the MCNP differential operator perturbation calculations may predict inaccurate results that deviate from the benchmarks well beyond their uncertainty ranges for some of the test problems. However, the accuracy of the MCNP differential operator perturbation can be improved if the midpoint correction technique is used.

  11. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  12. Adaptation of reach-to-grasp movement in response to force perturbations.

    Science.gov (United States)

    Rand, M K; Shimansky, Y; Stelmach, G E; Bloedel, J R

    2004-01-01

    This study examined how reach-to-grasp movements are modified during adaptation to external force perturbations applied on the arm during reach. Specifically, we examined whether the organization of these movements was dependent upon the condition under which the perturbation was applied. In response to an auditory signal, all subjects were asked to reach for a vertical dowel, grasp it between the index finger and thumb, and lift it a short distance off the table. The subjects were instructed to do the task as fast as possible. The perturbation was an elastic load acting on the wrist at an angle of 105 deg lateral to the reaching direction. The condition was modified by changing the predictability with which the perturbation was applied in a given trial. After recording unperturbed control trials, perturbations were applied first on successive trials (predictable perturbations) and then were applied randomly (unpredictable perturbations). In the early predictable perturbation trials, reach path length became longer and reaching duration increased. As more predictable perturbations were applied, the reach path length gradually decreased and became similar to that of control trials. Reaching duration also decreased gradually as the subjects adapted by exerting force against the perturbation. In addition, the amplitude of peak grip aperture during arm transport initially increased in response to repeated perturbations. During the course of learning, it reached its maximum and thereafter slightly decreased. However, it did not return to the normal level. The subjects also adapted to the unpredictable perturbations through changes in both arm transport and grasping components, indicating that they can compensate even when the occurrence of the perturbation cannot be predicted during the inter-trial interval. Throughout random perturbation trials, large grip aperture values were observed, suggesting that a conservative aperture level is set regardless of whether the

  13. The scale of soft resummation in SCET vs perturbative QCD

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2013-01-01

    We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  14. The scale of soft resummation in SCET vs perturbative QCD

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2013-01-01

    We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold

  15. The scale of soft resummation in SCET vs perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Milano (Italy); Ghezzi, Margherita [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Roma (Italy); Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Genova (Italy)

    2013-01-15

    We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale {mu}{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  16. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    Science.gov (United States)

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  17. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

    International Nuclear Information System (INIS)

    Basak, S.; Chowdhury, A.R.

    1987-01-01

    The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

  18. Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kernbichler, Winfried; Martitsch, Andreas F. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2016-08-15

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.

  19. EXTENDE MODEL OF COMPETITIVITY THROUG APPLICATION OF NEW APPROACH DIRECTIVES

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2009-03-01

    Full Text Available The basic subject of this work is the model of new approach impact on quality and safety products, and competency of our companies. This work represents real hypothesis on the basis of expert's experiences, in regard to that the infrastructure with using new approach directives wasn't examined until now, it isn't known which product or industry of Serbia is related to directives of the new approach and CE mark, and it is not known which are effects of the use of the CE mark. This work should indicate existing quality reserves and product's safety, the level of possible competency improvement and increasing the profit by discharging new approach directive requires.

  20. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  1. Direct method for the periodic amplification of a soliton in an optical fibre link with loss

    International Nuclear Information System (INIS)

    Li Lu; Xue Wenrui; Xu Zhiyong; Li Zhonghao; Zhou Guosheng

    2003-01-01

    A direct approach is applied to the periodic amplification of a soliton in an optical fibre link with loss. In a single soliton case, the adiabatic solution and first-order correction are given for the system. The apparent advantage of this direct approach is that it not only presents the slow evolution of soliton parameters, but also the perturbation-induced radiation, and can be easily used to investigate the system of dispersion management with periodically varying dispersion and other fields

  2. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  3. PerturbationAnalyzer: a tool for investigating the effects of concentration perturbation on protein interaction networks.

    Science.gov (United States)

    Li, Fei; Li, Peng; Xu, Wenjian; Peng, Yuxing; Bo, Xiaochen; Wang, Shengqi

    2010-01-15

    The propagation of perturbations in protein concentration through a protein interaction network (PIN) can shed light on network dynamics and function. In order to facilitate this type of study, PerturbationAnalyzer, which is an open source plugin for Cytoscape, has been developed. PerturbationAnalyzer can be used in manual mode for simulating user-defined perturbations, as well as in batch mode for evaluating network robustness and identifying significant proteins that cause large propagation effects in the PINs when their concentrations are perturbed. Results from PerturbationAnalyzer can be represented in an intuitive and customizable way and can also be exported for further exploration. PerturbationAnalyzer has great potential in mining the design principles of protein networks, and may be a useful tool for identifying drug targets. PerturbationAnalyzer can be accessed from the Cytoscape web site http://www.cytoscape.org/plugins/index.php or http://biotech.bmi.ac.cn/PerturbationAnalyzer. Supplementary data are available at Bioinformatics online.

  4. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  5. Direct and indirect two-photon processes in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1986-07-01

    The expressions describing direct and indirect two-photon absorption in crystals are given. They are valid both near and far from the energy gap. A perturbative approach through two different band models is adopted. The effects of the non-parabolicity and the degeneracy of the energy bands are considered. The numerical results are compared with the other theories and with a recent experimental data in Zn and AgCl. It is shown that the dominant transition mechanisms are of the allowed-allowed type near and far from the gap for both direct and indirect processes. (author)

  6. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  7. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  8. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  9. The iodine molecule insights into intra- and intermolecular perturbation in diatomic molecules

    CERN Document Server

    Lukashov, Sergey; Pravilov, Anatoly

    2018-01-01

    This book presents experimental and theoretical spectroscopic studies performed over the last 25 years on the iodine molecule’s excited states and their perturbations. It is going to be of interest to researchers who study intra- and intermolecular perturbations in diatomic molecules and more complex systems. The book offers a detailed treatment of the nonadiabatic perturbations of valence, ion pair and Rydberg states induced by intramolecular as well as intermolecular interactions in collisions or in weakly-bound complexes. It also provides an overview of current instrumentation and techniques as well as theoretical approaches describing intra- and intermolecular perturbations. The authors are experts in the use of spectroscopy for the study of intrinsic and collision-induced perturbations in diatomic iodine. They introduced new methods of two- and three-step optical population of the iodine ion-pair states. The iodine molecule has 23 valence states correlating with three dissociation limits, 20 so-called ...

  10. Functional perturbative RG and CFT data in the ε-expansion

    Energy Technology Data Exchange (ETDEWEB)

    Codello, A. [Southern Denmark Univ., Odense (Denmark). CP3-Origins; INFN-Sezione di Bologna, Bologna (Italy); Safari, M. [INFN-Sezione di Bologna, Bologna (Italy); Bologna Univ. (Italy). Dipt di Fisica e Astronomia; Vacca, G.P. [INFN-Sezione di Bologna, Bologna (Italy); Zanusso, O. [INFN-Sezione di Bologna, Bologna (Italy); Jena Univ. (Germany). Theoretisch-Physikalisches Inst.

    2018-01-15

    We show how the use of standard perturbative RG in dimensional regularization allows for a renormalization group-based computation of both the spectrum and a family of coefficients of the operator product expansion (OPE) for a given universality class. The task is greatly simplified by a straightforward generalization of perturbation theory to a functional perturbative RG approach. We illustrate our procedure in the ε-expansion by obtaining the next-to-leading corrections for the spectrum and the leading corrections for the OPE coefficients of Ising and Lee-Yang universality classes and then give several results for the whole family of renormalizable multi-critical models φ{sup 2n}. Whenever comparison is possible our RG results explicitly match the ones recently derived in CFT frameworks. (orig.)

  11. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  12. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  13. Covariant approach of perturbations in Lovelock type brane gravity

    Science.gov (United States)

    Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín

    2016-12-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.

  14. Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2016-01-01

    Full Text Available A perturbed multi-agent system is a scheme self-possessed of multiple networking agents within a location. This scheme can be used to discuss problems that are impossible or difficult for a specific agent to solve. Intelligence cloud entropy management systems involve functions, methods, procedural approaches, and algorithms. In this study, we introduce a new perturbed algorithm based on the fractional Poisson process. The discrete dynamics are suggested by using fractional entropy and fractional type Tsallis entropy. Moreover, we study the algorithm stability.

  15. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  16. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    Science.gov (United States)

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Generalizing genetical genomics : getting added value from environmental perturbation

    NARCIS (Netherlands)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C.

    2008-01-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across

  18. The scale of soft resummation in SCET vs perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: Stefano.Forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ghezzi, Margherita [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma,Italy (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-08-15

    We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  19. Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki

    2002-01-01

    We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index

  20. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  1. Factorization theorems in perturbative quantum field theory

    International Nuclear Information System (INIS)

    Date, G.D.

    1982-01-01

    This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered

  2. Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials

    Science.gov (United States)

    Poltavsky, Igor; DiStasio, Robert A.; Tkatchenko, Alexandre

    2018-03-01

    Nuclear quantum effects (NQE), which include both zero-point motion and tunneling, exhibit quite an impressive range of influence over the equilibrium and dynamical properties of molecules and materials. In this work, we extend our recently proposed perturbed path-integral (PPI) approach for modeling NQE in molecular systems [I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016)], which successfully combines the advantages of thermodynamic perturbation theory with path-integral molecular dynamics (PIMD), in a number of important directions. First, we demonstrate the accuracy, performance, and general applicability of the PPI approach to both molecules and extended (condensed-phase) materials. Second, we derive a series of estimators within the PPI approach to enable calculations of structural properties such as radial distribution functions (RDFs) that exhibit rapid convergence with respect to the number of beads in the PIMD simulation. Finally, we introduce an effective nuclear temperature formalism within the framework of the PPI approach and demonstrate that such effective temperatures can be an extremely useful tool in quantitatively estimating the "quantumness" associated with different degrees of freedom in the system as well as providing a reliable quantitative assessment of the convergence of PIMD simulations. Since the PPI approach only requires the use of standard second-order imaginary-time PIMD simulations, these developments enable one to include a treatment of NQE in equilibrium thermodynamic properties (such as energies, heat capacities, and RDFs) with the accuracy of higher-order methods but at a fraction of the computational cost, thereby enabling first-principles modeling that simultaneously accounts for the quantum mechanical nature of both electrons and nuclei in large-scale molecules and materials.

  3. Large leptonic Dirac CP phase from broken democracy with random perturbations

    Science.gov (United States)

    Ge, Shao-Feng; Kusenko, Alexander; Yanagida, Tsutomu T.

    2018-06-01

    A large value of the leptonic Dirac CP phase can arise from broken democracy, where the mass matrices are democratic up to small random perturbations. Such perturbations are a natural consequence of broken residual S3 symmetries that dictate the democratic mass matrices at leading order. With random perturbations, the leptonic Dirac CP phase has a higher probability to attain a value around ± π / 2. Comparing with the anarchy model, broken democracy can benefit from residual S3 symmetries, and it can produce much better, realistic predictions for the mass hierarchy, mixing angles, and Dirac CP phase in both quark and lepton sectors. Our approach provides a general framework for a class of models in which a residual symmetry determines the general features at leading order, and where, in the absence of other fundamental principles, the symmetry breaking appears in the form of random perturbations.

  4. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2014-08-01

    Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.

  5. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  6. Numerical solution of Euler's equation by perturbed functionals

    Science.gov (United States)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  7. Energy momentum tensor in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2001-01-01

    We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)

  8. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  9. Direct Problem-Based Learning (DPBL): A Framework for Integrating Direct Instruction and Problem-Based Learning Approach

    Science.gov (United States)

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…

  10. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    Science.gov (United States)

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  11. One-group Perturbation Theory Applied to Substitution Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, R

    1962-06-15

    Formulas suitable for evaluating substitution measurements or single-rod experiments by means of one-group perturbation theory are derived. The diffusion coefficient may depend on direction and position. By using the buckling concept the expressions derived are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0.263 {+-} 0.015/m{sup 2} and 0.274 {+-} 0.005 /m{sup 2} resp. The differences between diffusion coefficients are also determined, {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018.

  12. Perturbative and constructive renormalization

    International Nuclear Information System (INIS)

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  13. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  14. One-particle versus two-particle crossover in weakly coupled Hubbard chains and ladders: perturbative renormalization group approach

    International Nuclear Information System (INIS)

    Kishine, Jun-Ichiro; Yonemitsu, Kenji

    1998-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  15. The comparison of MCNP perturbation technique with MCNP difference method in critical calculation

    International Nuclear Information System (INIS)

    Liu Bin; Lv Xuefeng; Zhao Wei; Wang Kai; Tu Jing; Ouyang Xiaoping

    2010-01-01

    For a nuclear fission system, we calculated Δk eff , which arise from system material composition changes, by two different approaches, the MCNP perturbation technique and the MCNP difference method. For every material composition change, we made four different runs, each run with different cycles or each cycle generating different neutrons, then we compared the two Δk eff that are obtained by two different approaches. As a material composition change in any particular cell of the nuclear fission system is small compared to the material compositions in the whole nuclear fission system, in other words, this composition change can be treated as a small perturbation, the Δk eff results obtained from the MCNP perturbation technique are much quicker, much more efficient and reliable than the results from the MCNP difference method. When a material composition change in any particular cell of the nuclear fission system is significant compared to the material compositions in the whole nuclear fission system, both the MCNP perturbation technique and the MCNP difference method can give satisfactory results. But for the run with the same cycles and each cycle generating the same neutrons, the results obtained from the MCNP perturbation technique are systemically less than the results obtained from the MCNP difference method. To further confirm our calculation results from the MCNP4C, we run the exact same MCNP4C input file in MCNP5, the calculation results from MCNP5 are the same as the calculation results from MCNP4C. We need caution when using the MCNP perturbation technique to calculate the Δk eff as the material composition change is large compared to the material compositions in the whole nuclear fission system, even though the material composition changes of any particular cell of the fission system still meet the criteria of MCNP perturbation technique.

  16. Perturbation of the solar wind in a model terrestrial foreshock

    International Nuclear Information System (INIS)

    Skadron, G.; Holdaway, R.D.; Scholer, M.

    1986-01-01

    We analyze the perturbation of the solar wind in the earth's foreshock. The foreshock is modulated as a planar magnetic flux tube having a 15 R/sub E/ half width. Within the flux tube the upstream energetic particle pressure is assumed to fall monotonically to zero at the flux tube boundary and decline in the upstream direction with a scale length of 8 R/sub E/. The incident solar wind is assumed to flow uniformly with a velocity of 400 km s -1 , a density of 8 cm -3 , a pressure of 50 eV cm -3 , and a magnetic field of 4γ directed parallel to the flow. The solar wind density, velocity, and magnetic field within the foreshock are described by the steady state ideal MHD equations. We find that (1) the vector solar wind velocity perturbation rotates from the sunward to the transverse direction with increasing distance from the axis of the flux tube, (2) the peak solar wind deflection is located --3R/sub E/ within the flux tube boundary, (3) a central upstream pressure of 200 eV cm -3 produces a maxium deceleration of 6 km s -1 and a maximum deflection of 1.3 0 , (4) a central upstream pressure of 600 eV cm -3 produces a maximum deceleration of 19 km s -1 and a maximum deflection of 3.6 0 , and (5) the deflection and deceleration are accompanied by perturbations of the solar wind density and magnetic field. These perturbations are largest near the flux tube boundary where both form spikes having a width of --2R/sub E/. For a 600 eV cm -3 central pressure those spikes have amplitudes of 2 cm -3 and lγ, respectively. We have analyzed the linearized flow problem analytically and reduced the solutions to quadrature. These solutions are found to be good approximations to the numerical nonlinear solutions for moderate values of the upstream particle pressure

  17. Perturbation analysis for patch occupancy dynamics

    Science.gov (United States)

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  18. A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2013-01-01

    Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

  19. Perturbative Gaussianizing transforms for cosmological fields

    Science.gov (United States)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  20. Understanding Theoretical Uncertainties in Perturbative QCD Computations

    DEFF Research Database (Denmark)

    Jenniches, Laura Katharina

    effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....

  1. Commutator perturbation method in the study of vibrational-rotational spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Matamala-Vasquez, A.; Karwowski, J.

    2000-01-01

    The commutator perturbation method, an algebraic version of the Van Vleck-Primas perturbation method, expressed in terms of ladder operators, has been applied to solving the eigenvalue problem of the Hamiltonian describing the vibrational-rotational motion of a diatomic molecule. The physical model used in this work is based on Dunham's approach. The method facilitates obtaining both energies and eigenvectors in an algebraic way

  2. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  3. An Operator Perturbation Method of Polarized Line Transfer V ...

    Indian Academy of Sciences (India)

    tribpo

    imate Lambda Iteration) method to the resonance scattering in spectral lines formed in the presence of weak magnetic fields. The method is based on an operator perturbation approach, and can efficiently give solutions for oriented vector magnetic fields in the solar atmosphere. Key words. ... 1999 for observational.

  4. Insights on non-perturbative aspects of TMDs from models

    Energy Technology Data Exchange (ETDEWEB)

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  5. Perturbation theory and nonperturbative effects: a happy marriage?

    International Nuclear Information System (INIS)

    Chyla, J.

    1992-01-01

    Perturbation expansions in renormalized quantum theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k (a,χ) of the couplant and the free parameter χ specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. A close connection of this procedure to the Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated. (author) 3 figs., 17 refs

  6. Regular perturbation theory for two-electron atoms

    International Nuclear Information System (INIS)

    Feranchuk, I.D.; Triguk, V.V.

    2011-01-01

    Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.

  7. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  8. Phase and amplitude perturbations on the NWC signal at Dunedin from lightning-induced electron precipitation

    International Nuclear Information System (INIS)

    Dowden, R.L.; Adams, C.D.D.

    1989-01-01

    Localized ionospheric depressions near the NWC-Dunedin great circle path diffract echoes which interfere with the direct signal at the Dunedin receiver to produce perturbations in phase and amplitude. The statistics both of these perturbations and of the echo phasors (echo magnitude and echo phase) which can be deduced from them are studied here. From these statistics it is deduced that echo paths must be frequently more than a wavelength (14 km) longer than the direct path so that many of the diffracting centers (electron precipitation beams) must be laterally displaced up to 200 km from the direct path. Since echo signals from these must be diffracted through angles of ∼10 0 , ionization enhancements produced by electron precipitation must frequently have lateral (cross-path) dimensions of less than 50 km, with some as narrow as 25 km. The largest perturbation magnitudes seem to require ionization enhancement of longitudinal (parallel to path) dimensions of ∼300 km. Electron precipitation confined to thin L-shells could produce such enhancements for the NWC-Dunedin path. copyright American Geophysical Union 1989

  9. Kicking the rugby ball: perturbations of 6D gauged chiral supergravity

    Science.gov (United States)

    Burgess, C. P.; de Rham, C.; Hoover, D.; Mason, D.; Tolley, A. J.

    2007-02-01

    We analyse the axially symmetric scalar perturbations of 6D chiral gauged supergravity compactified on the general warped geometries in the presence of two source branes. We find that all of the conical geometries are marginally stable for normalizable perturbations (in disagreement with some recent calculations) and the non-conical ones for regular perturbations, even though none of them are supersymmetric (apart from the trivial Salam Sezgin solution, for which there are no source branes). The marginal direction is the one whose presence is required by the classical scaling property of the field equations, and all other modes have positive squared mass. In the special case of the conical solutions, including (but not restricted to) the unwarped 'rugby-ball' solutions, we find closed-form expressions for the mode functions in terms of Legendre and hypergeometric functions. In so doing we show how to match the asymptotic near-brane form for the solution to the physics of the source branes, and thereby how to physically interpret perturbations which can be singular at the brane positions.

  10. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  11. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  12. Perturbations i have Known and Loved

    Science.gov (United States)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  13. Zeeman effect: new outlook on old perturbation theory

    International Nuclear Information System (INIS)

    Turbiner, A.V.

    1980-01-01

    The problem of hydrogen atom placed in constant external magnetic field is studied. The properties of ordinary perturbation theory (in powers of the field) in the framework of a new approach proposed earlier are investigated. The ground state are considered in detailed while the excited states are discussed only in brief. It is shown that the ''wave function corrections'' with in this approach are simpler than within ordinary one and contain a finite number of harmonics with polynomial coefficients. Some coefficients of these polynomials are found explicitly

  14. Diagrammatic perturbation methods in networks and sports ranking combinatorics

    International Nuclear Information System (INIS)

    Park, Juyong

    2010-01-01

    Analytic and computational tools developed in statistical physics are being increasingly applied to the study of complex networks. Here we present recent developments in the diagrammatic perturbation methods for the exponential random graph models, and apply them to the combinatoric problem of determining the ranking of nodes in directed networks that represent pairwise competitions

  15. Perturbative approach to the mode dispersion in charged particle bilayers

    CERN Document Server

    Ballester, D; Tkachenko, I M; Zhang, H

    2003-01-01

    Earlier theoretical and computer studies on the dynamics of strongly coupled charged particle bilayers have revealed the existence of an energy gap (omega(k = 0) not = 0, optical behaviour) for the out-of-phase plasmon. This is in contrast to the correlationless RPA prediction of acoustic (omega approx k) behaviour. We have studied the question whether a classical perturbation calculation for weak coupling shows the onset of the energy gap, and whether there is a minimal coupling threshold for the formation of the gap. A formally exact lowest order expansion technique due to Zhang and Kalman (1992 Phys. Rev. A 45 5935) has been used.

  16. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Directory of Open Access Journals (Sweden)

    Alexander Tichai

    2016-05-01

    Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  17. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Energy Technology Data Exchange (ETDEWEB)

    Tichai, Alexander, E-mail: alexander.tichai@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Langhammer, Joachim [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Binder, Sven [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Roth, Robert, E-mail: robert.roth@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-05-10

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  18. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  19. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  20. One-Group Perturbation Theory Applied to Measurements with Void

    International Nuclear Information System (INIS)

    Persson, Rolf

    1966-09-01

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020

  1. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    International Nuclear Information System (INIS)

    Attema, Jisk J; Loriaux, Jessica M; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius–Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11–14% per degree, in closer agreement with the observed relation. (paper)

  2. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  3. Horizontal Directional Drilling (HDD) for shore approach applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Neil [MGI do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Horizontal directional drilling (HDD) has become a commonly used construction method for pipeline shore approaches. HDD can mitigate environmental impact, provide greater burial depths and minimize construction schedules. The risks that are associated with HDD river crossings, which are generally well recognized, also apply to HDD shore approaches where they are combined with specific risks occurring from working in the marine environment. The shore approach projects of The Bronx and Hunts Point provide good practical examples of the benefits of this technology in spite of the various challenges encountered. (author)

  4. Perturbation theory of low-dimensional quantum liquids. I. The pseudoparticle-operator basis

    International Nuclear Information System (INIS)

    Carmelo, J.M.P.; Castro Neto, A.H.; Campbell, D.K.

    1994-01-01

    We introduce an operator algebra for the description of the low-energy physics of one-dimensional, integrable, multicomponent quantum liquids. Considering the particular case of the Hubbard chain in a magnetic field and chemical potential, we show that at low energy its Bethe-ansatz solution can be interpreted in terms of a pseudoparticle-operator algebra. Our algebraic approach provides a concise interpretation of, and justification for, several recent studies of low-energy excitations and trasnport which have been based on detailed analyses of specific Bethe-ansatz eigenfunctions and eigenenergies. A central point is that the exact ground state of the interacting many-electron problem is the noninteracting pseudoparticle ground state. Furthermore, in the pseudoparticle basis, the quantum problem becomes perturbative, i.e., the two-pseudoparticle forward-scattering vertices and amplitudes do not diverge, and one can define a many-pseudoparticle perturbation theory. We write the general quantum-liquid Hamiltonian in the pseudoparticle basis and show that the pseudoparticle-perturbation theory leads, in a natural way, to the generalized Landau-liquid approach

  5. Perturbative matching of continuum and lattice quasi-distributions

    Directory of Open Access Journals (Sweden)

    Ishikawa Tomomi

    2018-01-01

    Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.

  6. Quantum geometry of resurgent perturbative/nonperturbative relations

    Energy Technology Data Exchange (ETDEWEB)

    Basar, Gökçe [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States); Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, CT 06269-3046 (United States); Ünsal, Mithat [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain N=2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c=3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  7. Alternative approach for Article 5. Energie Efficiency Directive; Alternatieve aanpak artikel 5. Energy Efficiency Directive

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Jablonska, B. [ECN Beleidsstudies, Petten (Netherlands)

    2013-05-15

    Article 5 of the Energy Efficiency Directive (EED) is an annual obligation to renovate 3% of the building stock of central government. After renovation the buildings will meet the minimum energy performance requirements laid down in Article 4 of the EPBD. The Directive gives room to an alternative approach to achieve the same savings. The Ministry of Interior Affairs has asked ECN to assist with this alternative approach. ECN calculated what saving are achieved with the 3% renovation obligation under the directive. Then ECN looked for the possibilities for an alternative approach to achieve the same savings [Dutch] In artikel 5 van de Energie Efficiency Directive (EED) staat een verplichting om jaarlijks 3% van de gebouwvoorraad van de centrale overheid te renoveren. Die 3% van de gebouwvoorraad moet na renovatie voldoen aan de minimum eisen inzake energieprestatie die door het betreffende lidstaat zijn vastgelegd op grond van artikel 4 in de EPBD. De verplichting betreft gebouwen die in bezit en in gebruik zijn van de rijksoverheid met een gebruiksoppervlakte groter dan 500 m{sup 2}, vanaf juli 2015 groter dan 250 m{sup 2}. De gebouwen die eigendom zijn van de Rijksgebouwendienst betreft kantoren van rijksdiensten, gerechtsgebouwen, gebouwen van douane en politie en gevangenissen. Van de gebouwen van Defensie hoeven alleen kantoren en legeringsgebouwen aan de verplichting te voldoen.

  8. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  10. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  11. Correlation effects of third-order perturbation in the extended Hubbard model

    International Nuclear Information System (INIS)

    Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.

    1989-01-01

    Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs

  12. Optimal perturbations for nonlinear systems using graph-based optimal transport

    Science.gov (United States)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  13. Disformal transformation of cosmological perturbations

    Directory of Open Access Journals (Sweden)

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  14. Disformal transformation of cosmological perturbations

    International Nuclear Information System (INIS)

    Minamitsuji, Masato

    2014-01-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame

  15. Three types of superpotentials for perturbations in the Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Petrov, A N

    2009-01-01

    Superpotentials (antisymmetric tensor densities) in the Einstein-Gauss-Bonnet (EGB) gravity for arbitrary types of perturbations on arbitrary curved backgrounds are constructed. As a basis, the generalized conservation laws in the framework of an arbitrary D-dimensional metric theory, where conserved currents are expressed through divergences of superpotentials, are used. Such a derivation is exact (perturbations are not infinitesimal) and is approached when a solution (dynamical) is considered as a perturbed system with respect to another solution (background). Three known prescriptions are elaborated: they are the canonical Noether theorem, the Belinfante symmetrization rule and the field-theoretical derivation. All three approaches are presented in a unique way convenient for comparisons and development. Exact expressions for the 01-component of the three types of the superpotentials are derived in the case when an arbitrary static Schwarzschild-like solution in the EGB gravity is considered as a perturbed system with respect to a background of the same type. These formulae are used for calculating the mass of the Schwarzschild-anti-de Sitter black hole in the EGB gravity. As a background, both the anti-de Sitter spacetime in arbitrary dimensions and a 'mass gap' vacuum, which has no maximal set of symmetries, in five dimensions are considered. Problems and perspectives for future development, including the Lovelock gravity, are discussed.

  16. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  17. Non-perturbative Heavy-Flavor Transport at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    He, Min, E-mail: mhe@comp.tamu.edu; Fries, Rainer J.; Rapp, Ralf

    2013-08-15

    We calculate open heavy-flavor (HF) transport in relativistic heavy-ion collisions by applying a strong-coupling treatment in both macro- and microscopic dynamics (hydrodynamics and non-perturbative diffusion interactions). The hydrodynamic medium evolution is quantitatively constrained by bulk and multi-strange hadron spectra and elliptic flow. The heavy quark transport coefficient is evaluated from a non-perturbative T-matrix approach in the Quark–Gluon Plasma which, close to the critical temperature, leads to resonance formation and feeds into the recombination of heavy quarks on a hydrodynamic hypersurface. In the hadronic phase, the diffusion of HF mesons is obtained from effective hadronic theory. We compute observables at RHIC and LHC for non-photonic electrons and HF mesons, respectively.

  18. Reconstructing the ideal results of a perturbed analog quantum simulator

    Science.gov (United States)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  19. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  20. Utilization of the perturbation method for determination of the buckling heterogenous reactors

    International Nuclear Information System (INIS)

    Gheorghe, R.

    1975-01-01

    Evaluation of material buckling for heterogenous nulcear reactors is a key-problem for reactor people. In this direction several methods have been elaborated: bi-group method, heterogenous method and perturbation methods. Out of them, mostly employed is the perturbation method which is also presented in this paper and is applied in some parameter calculations of a new cell type for which fuel is positioned in the marginal area and the moderator is in the centre. It is based on the technique of progressive substitution. Advantages of the method: buckling comes out clearly, high level defects due to differences between O perturbated fluxes and the unperturbated flux Osub(o) can be corrected by an iterative procedure; using a modified bi-group theory, one can clearly describe effects of other parameters

  1. Dimensional perturbation theory for the two-electron atom

    International Nuclear Information System (INIS)

    Goodson, D.Z.

    1987-01-01

    Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed

  2. A singular perturbation approach to non-Markovian escape rate problems

    International Nuclear Information System (INIS)

    Dygas, M.M.; Matkowsky, B.J.; Schuss, Z.

    1986-01-01

    The authors employ singular perturbation methods to examine the generalized Langevin equation which describes the dynamics of a Brownian particle in an arbitrary potential force field, acted on by a fluctuating force describing collisions between the Brownian particle and lighter particles comprising a thermal bath. In contrast to models in which the collisions occur instantaneously, and the dynamics are modeled by a Langevin stochastic equation, they consider the situation in which the collisions do not occur instantaneously, so that the process is no longer a Markov process and the generalized Langevin equation must be employed. They compute expressions for the mean exit time of the Brownian particle from the potential well in which it is confined

  3. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    OpenAIRE

    Mi, Yuzhen

    2016-01-01

    This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  4. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    Directory of Open Access Journals (Sweden)

    Yuzhen Mi

    2016-01-01

    Full Text Available This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-vv+ϵf(ϵ,v,vx,u,ux, uxx=-(1-u-a1vu+ϵg(ϵ,v,vx,u,ux. By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  5. Retrospective qualitative analysis of ecological networks under environmental perturbation: a copper-polluted intertidal community as a case study.

    Science.gov (United States)

    Ramos-Jiliberto, Rodrigo; Garay-Narváez, Leslie; Medina, Matías H

    2012-01-01

    The coast of Chañaral Bay in northern Chile has been affected by copper mine wastes for decades. This sustained perturbation has disrupted the intertidal community in several ways, but the mechanisms behind the observed shifts in local biodiversity remain poorly understood. Our main goal was to identify the species (lumped into trophic groups) belonging to the Chañaral intertidal community that, being directly affected by copper pollution, contributed primarily to the generation of the observed changes in community structure. These groups of species were called initiators. We applied a qualitative modelling approach based only on the sign and direction of effects among species, and present a formula for predicting changes in equilibrium abundances considering stress on multiple variables simultaneously. We then applied this technique retrospectively to identify the most likely set of initiators. Our analyses allowed identification of a unique set of four initiators in the studied intertidal system (a group of algae, sessile invertebrates, a group of herbivores and starfish), which were hypothesized to be the primary drivers of the observed changes in community structure. In addition, a hypothesis was derived about how the perturbation affected these initiators. The hypothesis is that pollution affected negatively the population growth rate of both algae and sessile invertebrates and suppressed the interaction between herbivores and starfish. Our analytic approach, focused on identifying initiators, constitutes an advance towards understanding the mechanisms underlying human-driven ecosystem disruption and permits identifying species that may serve as a focal point for community management and restoration.

  6. A convergent reformulation of perturbative QCD

    International Nuclear Information System (INIS)

    Alves, R.J.G.

    2000-10-01

    We present and explore a new formulation of perturbative QCD based not on the renormalised coupling but on the dimensional transmutation parameter of the theory and the property of asymptotic scaling. The approach yields a continued function, the iterated function being that involved in the solution of the two-loop β-function equation. In the so-called large-b limit the continued function reduces to a continued fraction and the successive approximants are diagonal Pade approximants. We investigate numerically the convergence of successive approximants using the leading-b approximation, motivated by renormalons, to model the all-orders result. We consider the Adler D-function of vacuum polarisation, the Polarised Bjorken and Gross-LIewellyn Smith sum rules, the (unpolarised) Bjorken sum rule, and the Minkowskian quantities R τ and the R-ratio of e + e - annihilation. In contrast to diagonal Pade approximants the truncated continued function method gives remarkably stable large-order approximants in cases where infrared renormalon effects are important. We also use the new approach to determine the QCD fundamental parameters from the R τ and the R-ratio measurements, where we find Λ-tilde (3)/MS = 516 ± 48 MeV (which yields α s (μ = m τ ) = 0.360 -0.020 +0.021 ), and Λ-tilde (5)/MS = 299 -7 +6 MeV (which yields α s (μ = m z 0 ) = 0.1218 ± 0.0004), respectively. The evolution of the former value to the m z 0 energy results in α s (μ = m z 0 ) = 0.123 ± 0.002. These values are in line with other determinations available in the literature. We implement the Complete Renormalisation Group Improvement (CORGI) scheme throughout all the calculations. We report on how the mathematical concept of Stieltjes series can be used to assess the convergence of Pade approximants of perturbative series. We find that the combinations of UV renormalons which occur in perturbative QCD may or may not be Stieltjes series depending on the renormalisation scheme used. (author)

  7. Angular momentum in general relativity. II. Perturbations of a rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-30

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.

  8. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  9. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  10. Block correlated second order perturbation theory with a generalized valence bond reference function

    International Nuclear Information System (INIS)

    Xu, Enhua; Li, Shuhua

    2013-01-01

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a “multi-orbital” block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Møller–Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods

  11. Block correlated second order perturbation theory with a generalized valence bond reference function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  12. Application of perturbation methods for sensitivity analysis for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Gurjao, Emir Candeia

    1996-02-01

    The differential and GPT (Generalized Perturbation Theory) formalisms of the Perturbation Theory were applied in this work to a simplified U-tubes steam generator model to perform sensitivity analysis. The adjoint and importance equations, with the corresponding expressions for the sensitivity coefficients, were derived for this steam generator model. The system was numerically was numerically solved in a Fortran program, called GEVADJ, in order to calculate the sensitivity coefficients. A transient loss of forced primary coolant in the nuclear power plant Angra-1 was used as example case. The average and final values of functionals: secondary pressure and enthalpy were studied in relation to changes in the secondary feedwater flow, enthalpy and total volume in secondary circuit. Absolute variations in the above functionals were calculated using the perturbative methods, considering the variations in the feedwater flow and total secondary volume. Comparison with the same variations obtained via direct model showed in general good agreement, demonstrating the potentiality of perturbative methods for sensitivity analysis of nuclear systems. (author)

  13. Evolution of nonlinear perturbations inside Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.

    1998-01-01

    We present our results on numerical study of evolution of nonlinear perturbations inside spherically symmetric black holes in the SU(2) Einstein-Yang-Mills (EYM) theory. Recent developments demonstrate a new type of the behaviour of the metric for EYM black hole interiors; the generic metric exhibits an infinitely oscillating approach to the singularity, which is a spacelike but not of the mixmaster type. The evolution of various types of spherically symmetric perturbations, propagating from the internal vicinity of the external horizon towards the singularity is investigated in a self-consistent way using an adaptive numerical algorithm. The obtained results give strong numerical evidence in favor of nonlinear stability of the generic EYM black hole interiors. Alternatively, the EYM black hole interiors of S (schwarzschild)-type, which form only a zero measure subset in the space of all internal solutions are found to be unstable and transform to the generic type as perturbations are developed

  14. Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory

    International Nuclear Information System (INIS)

    Mugica R, C.A.

    2004-01-01

    Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)

  15. Controllability for Variational Inequalities of Parabolic Type with Nonlinear Perturbation

    Directory of Open Access Journals (Sweden)

    Jeong Jin-Mun

    2010-01-01

    Full Text Available We deal with the approximate controllability for the nonlinear functional differential equation governed by the variational inequality in Hilbert spaces and present a general theorems under which previous results easily follow. The common research direction is to find conditions on the nonlinear term such that controllability is preserved under perturbation.

  16. Overview and direction in the tandem mirror program

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1983-04-01

    There are two main thrusts to the tandem mirror program at the present time. One is to gather the experimental data base to verify the axicell thermal-barrier concept and the other to improve the end plugs for tandems. With such improvements one might approach the ideal fusion reactor, a simple solenoid of modular elements whose ends are but a modest perturbation on the configuration from both a cost and technological viewpoint. Progress toward these two goals is discussed here, and the directions to be taken in the immediate future are described

  17. Statistical mechanical perturbation theory of solid-vapor interfacial free energy

    NARCIS (Netherlands)

    Kalikmanov, Vitalij Iosifovitsj; Hagmeijer, Rob; Venner, Cornelis H.

    2017-01-01

    The solid–vapor interfacial free energy γsv plays an important role in a number of physical phenomena, such as adsorption, wetting, and adhesion. We propose a closed form expression for the orientation averaged value of this quantity using a statistical mechanical perturbation approach developed in

  18. Statistical Mechanical Perturbation Theory of Solid−Vapor Interfacial Free Energy

    NARCIS (Netherlands)

    Kalikmanov, V.I.; Hagmeijer, R.; Venner, C.H.

    2017-01-01

    The solid–vapor interfacial free energy γsv plays an important role in a number of physical phenomena, such as adsorption, wetting, and adhesion. We propose a closed form expression for the orientation averaged value of this quantity using a statistical mechanical perturbation approach developed in

  19. Performance optimization of queueing systems with perturbation realization

    KAUST Repository

    Xia, Li

    2012-04-01

    After the intensive studies of queueing theory in the past decades, many excellent results in performance analysis have been obtained, and successful examples abound. However, exploring special features of queueing systems directly in performance optimization still seems to be a territory not very well cultivated. Recent progresses of perturbation analysis (PA) and sensitivity-based optimization provide a new perspective of performance optimization of queueing systems. PA utilizes the structural information of queueing systems to efficiently extract the performance sensitivity information from a sample path of system. This paper gives a brief review of PA and performance optimization of queueing systems, focusing on a fundamental concept called perturbation realization factors, which captures the special dynamic feature of a queueing system. With the perturbation realization factors as building blocks, the performance derivative formula and performance difference formula can be obtained. With performance derivatives, gradient-based optimization can be derived, while with performance difference, policy iteration and optimality equations can be derived. These two fundamental formulas provide a foundation for performance optimization of queueing systems from a sensitivity-based point of view. We hope this survey may provide some inspirations on this promising research topic. © 2011 Elsevier B.V. All rights reserved.

  20. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  1. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    Science.gov (United States)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  2. Base case and perturbation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  3. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures

  4. Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, Kamal; Peixinho, Jorge [Laboratoire Ondes Milieux Complexes, CNRS and Université du Havre, F-76600 Le Havre (France); Willis, Ashley P, E-mail: jorge.peixinho@univ-lehavre.fr [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2016-12-15

    We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially, depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies, which applied a tilt perturbation, as the localised turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For large vortex amplitude, the localised turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic. (paper)

  5. Higher order perturbation theory applied to radiative transfer in non-plane-parallel media

    International Nuclear Information System (INIS)

    Box, M.A.; Polonsky, I.N.; Davis, A.B.

    2003-01-01

    Radiative transfer in non-plane-parallel media is a very challenging problem, which is currently the subject of concerted efforts to develop computational techniques which may be used to tackle different tasks. In this paper we develop the full formalism for another technique, based on radiative perturbation theory. With this approach, one starts with a plane-parallel 'base model', for which many solution techniques exist, and treat the horizontal variability as a perturbation. We show that under the most logical assumption as to the base model, the first-order perturbation term is zero for domain-average radiation quantities, so that it is necessary to go to higher order terms. This requires the computation of the Green's function. While this task is by no means simple, once the various pieces have been assembled they may be re-used for any number of perturbations--that is, any horizontal variations

  6. A statistical state dynamics approach to wall turbulence.

    Science.gov (United States)

    Farrell, B F; Gayme, D F; Ioannou, P J

    2017-03-13

    This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  7. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Lee, Winson Chiu-Chun

    2017-10-01

    Maintaining postural equilibrium requires fast reactions and constant adjustments of the center of mass (CoM) position to prevent falls, especially when there is a sudden perturbation of the support surface. During this study, a newly developed wearable feedback system provided immediate vibrotactile clues to users based on plantar force measurement, in an attempt to reduce reaction time and CoM displacement in response to a perturbation of the floor. Ten healthy young adults participated in this study. They stood on a support surface, which suddenly moved in one of four horizontal directions (forward, backward, left and right), with the biofeedback system turned on or off. The testing sequence of the four perturbation directions and the two system conditions (turned on or off) was randomized. The resulting reaction time and CoM displacement were analysed. Results showed that the vibrotactile feedback system significantly improved balance control during translational perturbations. The positive results of this preliminary study highlight the potential of a plantar force measurement based biofeedback system in improving balance under perturbations of the support surface. Future system optimizations could facilitate its application in fall prevention in real life conditions, such as standing in buses or trains that suddenly decelerate or accelerate. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  9. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  10. Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods

    CERN Document Server

    Bhatnagar, S; Prashanth, L A

    2013-01-01

    Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...

  11. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  12. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    Science.gov (United States)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  13. Inclusive central region in perturbative Reggeon calculus

    International Nuclear Information System (INIS)

    Pajares, C.; Pascual, R.

    1976-01-01

    The single-particle inclusive cross section and the correlation function are studied in the perturbative approach to Gribov's Reggeon calculus; the leading contributions to both functions are evaluated. The large energy rise of the inclusive cross section appears as a consequence of the Pomerons having an intercept larger than 1. The same set of parameters which describes correctly the cross-section data and the triple-Regge region also describes the inclusive data in the central region

  14. Computational modeling of direct-drive fusion pellets and KrF-driven foil experiments

    International Nuclear Information System (INIS)

    Gardner, J.H.; Schmitt, A.J.; Dahlburg, J.P.; Pawley, C.J.; Bodner, S.E.; Obenschain, S.P.; Serlin, V.; Aglitskiy, Y.

    1998-01-01

    FAST is a radiation transport hydrodynamics code that simulates laser matter interactions of relevance to direct-drive laser fusion target design. FAST solves the Euler equations of compressible flow using the Flux-Corrected Transport finite volume method. The advection algorithm provides accurate computation of flows from nearly incompressible vortical flows to those that are highly compressible and dominated by strong pressure and density gradients. In this paper we describe the numerical techniques and physics packages. FAST has also been benchmarked with Nike laser facility experiments in which linearly perturbed, low adiabat planar plastic targets are ablatively accelerated to velocities approaching 10 7 cm/s. Over a range of perturbation wavelengths, the code results agree with the measured Rayleigh endash Taylor growth from the linear through the deeply nonlinear regimes. FAST has been applied to the two-dimensional spherical simulation design to provide surface finish and laser bandwidth tolerances for a promising new direct-drive pellet that uses a foam ablator

  15. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  16. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  17. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  18. An intermolecular perturbation theory for the region of moderate overlap

    International Nuclear Information System (INIS)

    Hayes, I.C.; Stone, A.J.

    1984-01-01

    A perturbational method is described for calculating the interaction energy of two molecules in the region where the overlap between their wave-functions is significant. By working directly with a basis of determinants constructed from the SCF orbitals of the separated molecules, without orthogonalization, it is possible to avoid many of the disadvantages of other methods. (author)

  19. Numerical investigation of a perturbed swirling annular two-phase jet

    Energy Technology Data Exchange (ETDEWEB)

    Siamas, George A. [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: siamas@spidernet.com.cy; Jiang, Xi; Wrobel, Luiz C. [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2009-06-15

    A swirling annular gas-liquid two-phase jet flow system has been investigated by solving the compressible, time-dependent, non-dimensional Navier-Stokes equations using highly accurate numerical methods. The mathematical formulation for the flow system is based on an Eulerian approach with mixed-fluid treatment while an adjusted volume of fluid method is utilised to account for the gas compressibility. Surface tension effects are captured by a continuum surface force model. Swirling motion is applied at the inlet while a small helical perturbation is also applied to initiate the instability. Three-dimensional spatial direct numerical simulation has been performed with parallelisation of the code based on domain decomposition. The results show that the flow is characterised by a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation zone further downstream. Swirl enhances the flow instability and vorticity and promotes liquid dispersion in the cross-streamwise directions. A dynamic precessing vortex core is developed demonstrating that the growth of such a vortex in annular configurations can be initiated even at low swirl numbers, in agreement with experimental findings. Analysis of the averaged results revealed the existence of a geometrical recirculation zone and a swirl induced central recirculation zone in the flow field.

  20. Determination of partial molar volumes from free energy perturbation theory†

    Science.gov (United States)

    Vilseck, Jonah Z.; Tirado-Rives, Julian

    2016-01-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343

  1. Determination of partial molar volumes from free energy perturbation theory.

    Science.gov (United States)

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  2. Status of perturbative QCD

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs

  3. Class Restricted Clustering and Micro-Perturbation for Data Privacy.

    Science.gov (United States)

    Li, Xiao-Bai; Sarkar, Sumit

    2013-04-01

    The extensive use of information technologies by organizations to collect and share personal data has raised strong privacy concerns. To respond to the public's demand for data privacy, a class of clustering-based data masking techniques is increasingly being used for privacy-preserving data sharing and analytics. Traditional clustering-based approaches for masking numeric attributes, while addressing re-identification risks, typically do not consider the disclosure risk of categorical confidential attributes. We propose a new approach to deal with this problem. The proposed method clusters data such that the data points within a group are similar in the non-confidential attribute values whereas the confidential attribute values within a group are well distributed . To accomplish this, the clustering method, which is based on a minimum spanning tree (MST) technique, uses two risk-utility tradeoff measures in the growing and pruning stages of the MST technique respectively. As part of our approach we also propose a novel cluster-level micro-perturbation method for masking data that overcomes a common problem of traditional clustering-based methods for data masking, which is their inability to preserve important statistical properties such as the variance of attributes and the covariance across attributes. We show that the mean vector and the covariance matrix of the masked data generated using the micro-perturbation method are unbiased estimates of the original mean vector and covariance matrix. An experimental study on several real-world datasets demonstrates the effectiveness of the proposed approach.

  4. Perturbative methods for sensitivity calculation in safety problems of nuclear reactors: state-of-the-art

    International Nuclear Information System (INIS)

    Lima, Fernando R.A.; Lira, Carlos A.B.O.; Gandini, Augusto

    1995-01-01

    During the last two decades perturbative methods became an efficient tool to perform sensitivity analysis in nuclear reactor safety problems. In this paper, a comparative study taking into account perturbation formalisms (Diferential and Matricial Mthods and generalized Perturbation Theory - GPT) is considered. Then a few number of applications are described to analyze the sensitivity of some functions relavant to thermal hydraulics designs or safety analysis of nuclear reactor cores and steam generators. The behaviours of the nuclear reactor cores and steam generators are simulated, respectively, by the COBRA-IV-I and GEVAP codes. Results of sensitivity calculations have shown a good agreement when compared to those obtained directly by using the mentioned codes. So, a significative computational time safe can be obtained with perturbative methods performing sensitivity analysis in nuclear power plants. (author). 25 refs., 5 tabs

  5. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  6. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  7. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.; Rohach, A.F.

    1982-01-01

    Perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations and, hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time and obtain better power peaking factors. The code also has a burnup capability that can be used to check power peaking throughout the core life

  8. Excited states of ethylene interpreted in terms of perturbed Rydberg series

    International Nuclear Information System (INIS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2003-01-01

    We have investigated the excited states of the ethylene molecule by the multireference configuration interaction (MRCI) method. In particular, the nature of the V state (1 1 B 1u π→π*) was interpreted in terms of perturbed Rydberg series. To clarify the role of the perturbers, we use pseudo-restricted Hartree-Fock natural orbitals (PRHFNO), which would be the most suitable molecular orbital set to describe Rydberg series. It is well known that the expectation value of x 2 for the V state is reduced from 44a 0 2 (RHF) to around 17a 0 2 by considering electron correlation effects, where x is the direction out of the molecular plane. In the present study, a reasonable 2 > value was obtained from small multireference configuration interaction with single excitations (MRCIS), where the π→π* configurations and a few perturbers were assigned as the reference configurations. The major perturbers were found to be five configurations represented by 3a g → 3b 1u , 1b 3g → 3b 2u , 2b 1u → 4a g , 2a g → 3b 1u , and 1b 2u → 2b 3g with respect to the ground state configuration. The V state can therefore be described as a scattering process of the π→π* state by these perturbers. Other low-lying excited states are also investigated by the MRCI method

  9. Perturbation theory for the effective diffusion constant in a medium of random scatterers

    International Nuclear Information System (INIS)

    Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A

    2004-01-01

    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation

  10. Generalized perturbation theory in DRAGON: application to CANDU cell calculations

    International Nuclear Information System (INIS)

    Courau, T.; Marleau, G.

    2001-01-01

    Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)

  11. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  12. Canonical perturbation theory in linearized general relativity theory

    International Nuclear Information System (INIS)

    Gonzales, R.; Pavlenko, Yu.G.

    1986-01-01

    Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field

  13. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2017-09-01

    Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.

  14. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  15. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Gubbins, M.E.

    1965-09-01

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  16. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  17. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  18. Gauge-invariant cosmological density perturbations

    International Nuclear Information System (INIS)

    Sasaki, Misao.

    1986-06-01

    Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)

  19. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  20. Effect of Hydrotherapy on Static and Dynamic Balance in Older Adults: Comparison of Perturbed and Non-Perturbed Programs

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: Falling is a main cause of mortality in elderly. Balance training exercises can help to prevent falls in older adults. According to the principle of specificity of training, the perturbation-based trainings are more similar to the real world. So these training programs can improve balance in elderly. Furthermore, exercising in an aquatic environment can reduce the limitations for balance training rather than a non-aquatic on. The aim of this study is comparing the effectiveness of perturbed and non-perturbed balance training programs in water on static and dynamic balance in aforementioned population group. Methods & Materials: 37 old women (age 80-65, were randomized to the following groups: perturbation-based training (n=12, non-perturbation-based training (n=12 and control (n=13 groups. Static and dynamic balance had been tested before and after the eight weeks of training by the postural stability test of the Biodex balance system using dynamic (level 4 and static platform. The data were analyzed by one sample paired t-test, Independent t-test and ANOVA. Results: There was a significant improvement for all indexes of static and dynamic balance in perturbation-based training (P<0.05. However, in non-perturbed group, all indexes were improved except ML (P<0.05. ANOVA showed that perturbed training was more effective than non-perturbed training on both static and dynamic balances. Conclusion: The findings confirmed the specificity principle of training. Although balance training can improve balance abilities, these kinds of trainings are not such specific for improving balance neuromuscular activities.The perturbation-based trainings can activate postural compensatory responses and reduce falling risk. According to results, we can conclude that hydrotherapy especially with perturbation-based programs will be useful for rehabilitation interventions in elderly .

  1. Dynamics of linear perturbations in f(R) gravity

    International Nuclear Information System (INIS)

    Bean, Rachel; Bernat, David; Pogosian, Levon; Silvestri, Alessandra; Trodden, Mark

    2007-01-01

    We consider predictions for structure formation from modifications to general relativity in which the Einstein-Hilbert action is replaced by a general function of the Ricci scalar. We work without fixing a gauge, as well as in explicit popular coordinate choices, appropriate for the modification of existing cosmological code. We present the framework in a comprehensive and practical form that can be directly compared to standard perturbation analyses. By considering the full evolution equations, we resolve perceived instabilities previously suggested, and instead find a suppression of perturbations. This result presents significant challenges for agreement with current cosmological structure formation observations. The findings apply to a broad range of forms of f(R) for which the modification becomes important at low curvatures, disfavoring them in comparison with the ΛCDM scenario. As such, these results provide a powerful method to rule out a wide class of modified gravity models aimed at providing an alternative explanation to the dark energy problem

  2. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S ( ⋅ ) may not be densely defined and the perturbation operator is a bounded linear operator from D ( A ) ¯ into () such that = on D ( A ) ¯ ...

  3. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...

  4. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  5. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  6. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    Science.gov (United States)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  7. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.

  8. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  9. Development of parallellized higher-order generalized depletion perturbation theory for application in equilibrium cycle optimization

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van E-mail: rene.vangeemert@psi.ch; Hoogenboom, J.E. E-mail: j.e.hoogenboom@iri.tudelft.nl

    2001-09-01

    As nuclear fuel economy is basically a multi-cycle issue, a fair way of evaluating reload patterns is to consider their performance in the case of an equilibrium cycle. The equilibrium cycle associated with a reload pattern is defined as the limit fuel cycle that eventually emerges after multiple successive periodic refueling, each time implementing the same reload scheme. Since the equilibrium cycle is the solution of a reload operation invariance equation, it can in principle be found with sufficient accuracy only by applying an iterative procedure, simulating the emergence of the limit cycle. For a design purpose such as the optimization of reload patterns, in which many different equilibrium cycle perturbations (resulting from many different limited changes in the reload operator) must be evaluated, this requires far too much computational effort. However, for very fast calculation of these many different equilibrium cycle perturbations it is also possible to set up a generalized variational approach. This approach results in an iterative scheme that yields the exact perturbation in the equilibrium cycle solution as well, in an accelerated way. Furthermore, both the solution of the adjoint equations occurring in the perturbation theory formalism and the implementation of the optimization algorithm have been parallellized and executed on a massively parallel machine. The combination of parallellism and generalized perturbation theory offers the opportunity to perform very exhaustive, fast and accurate sampling of the solution space for the equilibrium cycle reload pattern optimization problem.

  10. Geometric data perturbation-based personal health record transactions in cloud computing.

    Science.gov (United States)

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  11. Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing

    Science.gov (United States)

    Balasubramaniam, S.; Kavitha, V.

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826

  12. Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Rezzolla, Luciano

    2005-01-01

    The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this review is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides pointing out some inconsistencies in the literature, the expressions collected here could serve as a quick reference for the calculation of the perturbations of a Schwarzschild black-hole spacetime driven by generic sources and for those approaches in which gravitational waves are extracted from numerically generated spacetimes. (topical review)

  13. Locally extracting scalar, vector and tensor modes in cosmological perturbation theory

    International Nuclear Information System (INIS)

    Clarkson, Chris; Osano, Bob

    2011-01-01

    Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second and higher order because perturbative modes are sourced by products of lower order modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second order. We perform much of our analysis using an index-free 'vector-calculus' approach which makes manipulating tensor equations considerably simpler. (papers)

  14. Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing

    Directory of Open Access Journals (Sweden)

    S. Balasubramaniam

    2015-01-01

    Full Text Available Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  15. Green's function method for perturbed Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Cai Hao; Huang Nianning

    2003-01-01

    The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair

  16. The Feynman integrand as a white noise distribution beyond perturbation theory

    International Nuclear Information System (INIS)

    Grothaus, Martin; Vogel, Anna

    2008-01-01

    In this note the concepts of path integrals and techniques how to construct them are presented. Here we concentrate on a White Noise approach. Combining White Noise techniques with a generalized time-dependent Doss' formula Feynman integrands are constructed as white noise distributions beyond perturbation theory

  17. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  18. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  19. Perturbed gradient flow trees and a∞-algebra structures in morse cohomology

    CERN Document Server

    Mescher, Stephan

    2018-01-01

    This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geome...

  20. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

    Science.gov (United States)

    de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas

    2018-01-23

    High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. The Direct Anterior Approach Does Not Increase Return to Function Following Hemiarthroplasty for Femoral Neck Fracture.

    Science.gov (United States)

    Carlson, Victor R; Ong, Alvin C; Orozco, Fabio R; Lutz, Rex W; Duque, Andres F; Post, Zachary D

    2017-11-01

    The purpose of this study was to evaluate functional outcomes for hemiarthroplasty using a direct anterior approach or a direct lateral approach for femoral neck fracture. This retrospective review used data collected from a single institution between 2006 and 2016. Eighty-five and 75 consecutive patients who underwent hemiarthroplasty via a direct anterior approach and a direct lateral approach, respectively, met inclusion criteria. All patients with femoral neck fractures were treated by 1 of 2 fellowship-trained orthopedic surgeons using the direct anterior approach or the direct lateral approach to hemiarthroplasty. Disposition, ambulation, and other perioperative surgical outcomes were compared between the cohorts. Compared with the direct lateral cohort, the direct anterior cohort had a shorter mean operative time (2.4 minutes, P<.01), a shorter mean length of hospital stay (2.7 days, P<.01), and a smaller mean decrease in hemoglobin postoperatively (0.7 g/dL, P<.01). No significant difference was observed between the cohorts for postoperative disposition, the number of feet ambulated on the second postoperative day, or the prevalence of ambulatory decline at 4- to 6-week and 4- to 6-month follow-up visits. Compared with the direct lateral approach, the direct anterior approach may benefit patients by small, but statistically significant, improvements in blood loss, surgical time, and length of hospital stay after hemiarthroplasty. However, the direct anterior approach does not appear to decrease the likelihood of transfer to a skilled nursing facility postoperatively or accelerate return to preoperative function. [Orthopedics. 2017; 40(6):e1055-e1061.]. Copyright 2017, SLACK Incorporated.

  2. Generating scale-invariant tensor perturbations in the non-inflationary universe

    International Nuclear Information System (INIS)

    Li, Mingzhe

    2014-01-01

    It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  3. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-09-01

    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  4. Dispersion Theory of Direct Nuclear Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, I. S. [Institute Of Theoretical And Experimental Physics, Moscow, USSR (Russian Federation)

    1963-01-15

    reasons for the agreement if it is not accidental. In short, the theory behaves like an unpredictable person. A major success in the application of perturbation theory to direct processes in the Butler theory of deuteron stripping ((d, p), (d, n)) and pick-up ((p, d), (n, d)). The Butler theory satisfactorily predicts the position of the first maximum (by the increase of the angle) in the angular distribution of reaction products as a function of the orbital momentum of the nucleon captured by the nucleus (stripping reaction) or picked up by an incident particle (pick- up reaction). This result permitted the use of stripping and pick-up reactions in nuclear spectroscopy. At the same time this led to the problem of understanding the true meaning of the Butler approximation. This problem was also essential because the Butler theory inadequately describes several other features of the stripping and pick-up reactions (such as the change of angular distribution with the energy of incident particles, the relation of intensities at the maxima of angular distributions, absolute values of. cross-sections and, sometimes, the relative probabilities for the excitation of different states of residual nuclei). A new method in direct process theory was offered not so long ago (in 1961). The method is based on fairly general properties of the reaction amplitudes and is free from the un-justified assumptions, of the form er theory, in particular the application of perturbation theory. This method makes it possible to obtain several new results and obtain a uniform description cf a great variety of processes (such as direct reactions of the conventional type at low and medium energies, the transfer of nucleons in the bombardment of nuclei by multi-charged ions and the processes of fragmentation at high energies). At the same time the new approach explains, with surprising simplicity, the causes of the form erly enigmatic success of the Butler theory and indicates the limits of its

  5. Dispersion Theory of Direct Nuclear Reactions

    International Nuclear Information System (INIS)

    Shapiro, I.S.

    1963-01-01

    reasons for the agreement if it is not accidental. In short, the theory behaves like an unpredictable person. A major success in the application of perturbation theory to direct processes in the Butler theory of deuteron stripping ((d, p), (d, n)) and pick-up ((p, d), (n, d)). The Butler theory satisfactorily predicts the position of the first maximum (by the increase of the angle) in the angular distribution of reaction products as a function of the orbital momentum of the nucleon captured by the nucleus (stripping reaction) or picked up by an incident particle (pick- up reaction). This result permitted the use of stripping and pick-up reactions in nuclear spectroscopy. At the same time this led to the problem of understanding the true meaning of the Butler approximation. This problem was also essential because the Butler theory inadequately describes several other features of the stripping and pick-up reactions (such as the change of angular distribution with the energy of incident particles, the relation of intensities at the maxima of angular distributions, absolute values of. cross-sections and, sometimes, the relative probabilities for the excitation of different states of residual nuclei). A new method in direct process theory was offered not so long ago (in 1961). The method is based on fairly general properties of the reaction amplitudes and is free from the un-justified assumptions, of the form er theory, in particular the application of perturbation theory. This method makes it possible to obtain several new results and obtain a uniform description cf a great variety of processes (such as direct reactions of the conventional type at low and medium energies, the transfer of nucleons in the bombardment of nuclei by multi-charged ions and the processes of fragmentation at high energies). At the same time the new approach explains, with surprising simplicity, the causes of the form erly enigmatic success of the Butler theory and indicates the limits of its

  6. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  7. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  8. Some remarks on perturbation in flame photometry; Quelques remarques sur les perturbations dans la photometrie de flamme

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After classifying the various types of perturbations, the author attempts to explain their causes. He then gives examples of possibilities of suppressing them. (author) [French] Ayant classe les divers types de perturbations en categories, l'auteur essaie d'expliquer les causes de ces perturbations. Il donne ensuite des exemples de possibilites de les supprimer. (auteur)

  9. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  10. Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model.

    Science.gov (United States)

    Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam

    2003-03-07

    We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.

  11. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  12. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  13. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  14. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  16. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  17. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment.

    Science.gov (United States)

    Fukuyama, Julia; Rumker, Laurie; Sankaran, Kris; Jeganathan, Pratheepa; Dethlefsen, Les; Relman, David A; Holmes, Susan P

    2017-08-01

    Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.

  19. Joint queue-perturbed and weakly-coupled power control for wireless backbone networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-09-01

    Full Text Available perturbation and weakly-coupled based power control approach for the WBNs. The ultimate objectives are to increase energy-efficiency and the overal network capacity. In order to achieve these objectives, a Markov chain model is first presented to describe...

  20. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  1. Nonperturbative perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  2. Non-perturbative Debye mass in finite-T QCD

    CERN Document Server

    Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E

    1997-01-01

    Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.

  3. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  4. Singular Perturbation for the Discounted Continuous Control of Piecewise Deterministic Markov Processes

    International Nuclear Information System (INIS)

    Costa, O. L. V.; Dufour, F.

    2011-01-01

    This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP’s) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space ℝ n . The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter ε>0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as ε goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as ε goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.

  5. Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented

  6. Kerr-CFT and gravitational perturbations

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Reall, Harvey S.; Santos, Jorge E.

    2009-01-01

    Motivated by the Kerr-CFT conjecture, we investigate perturbations of the near-horizon extreme Kerr spacetime. The Teukolsky equation for a massless field of arbitrary spin is solved. Solutions fall into two classes: normal modes and traveling waves. Imposing suitable (outgoing) boundary conditions, we find that there are no unstable modes. The explicit form of metric perturbations is obtained using the Hertz potential formalism, and compared with the Kerr-CFT boundary conditions. The energy and angular momentum associated with scalar field and gravitational normal modes are calculated. The energy is positive in all cases. The behaviour of second order perturbations is discussed.

  7. A Modeling Approach for Plastic-Metal Laser Direct Joining

    Science.gov (United States)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  8. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  9. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  10. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  11. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  12. A real-frequency solver for the Anderson impurity model based on bath optimization and cluster perturbation theory

    Science.gov (United States)

    Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus

    2018-05-01

    Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.

  13. Test-retest reliability of a balance testing protocol with external perturbations in young healthy adults.

    Science.gov (United States)

    Robbins, Shawn M; Caplan, Ryan M; Aponte, Daniel I; St-Onge, Nancy

    2017-10-01

    External perturbations are utilized to challenge balance and mimic realistic balance threats in patient populations. The reliability of such protocols has not been established. The purpose was to examine test-retest reliability of balance testing with external perturbations. Healthy adults (n=34; mean age 23 years) underwent balance testing over two visits. Participants completed ten balance conditions in which the following parameters were combined: perturbation or non-perturbation, single or double leg, and eyes open or closed. Three trials were collected for each condition. Data were collected on a force plate and external perturbations were applied by translating the plate. Force plate center of pressure (CoP) data were summarized using 13 different CoP measures. Test-retest reliability was examined using intraclass correlation coefficients (ICC) and Bland-Altman plots. CoP measures of total speed and excursion in both anterior-posterior and medial-lateral directions generally had acceptable ICC values for perturbation conditions (ICC=0.46 to 0.87); however, many other CoP measures (e.g. range, area of ellipse) had unacceptable test-retest reliability (ICCbalance testing protocols that include external perturbations should be made to improve test-retest reliability and diminish learning including more extensive participant training and increasing the number of trials. CoP measures that consider all data points (e.g. total speed) are more reliable than those that only consider a few data points. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Secondary isocurvature perturbations from acoustic reheating

    Science.gov (United States)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  15. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  16. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    International Nuclear Information System (INIS)

    Fink, Reinhold F.

    2009-01-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH 2 , SiH 2 , and NH 2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster

  17. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    Science.gov (United States)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  18. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  19. Magnetic monopoles in 4D: a perturbative calculation

    Energy Technology Data Exchange (ETDEWEB)

    Khvedelidze, Arsen [Department of Theoretical Physics, A.M.Razmadze Mathematical Institute, Tbilisi, GE-0193 (Georgia); McMullan, David [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States)

    2006-01-15

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W{sup {+-}}). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite.

  20. Magnetic monopoles in 4D: a perturbative calculation

    International Nuclear Information System (INIS)

    Khvedelidze, Arsen; McMullan, David; Kovner, Alex

    2006-01-01

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W ± ). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite

  1. Stepping stability: effects of sensory perturbation

    Directory of Open Access Journals (Sweden)

    Krebs David E

    2005-05-01

    Full Text Available Abstract Background Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH and central (cerebellar pathology, CB balance dysfunction by means a sensory (auditory perturbation test. Methods Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min at a predetermined time (but unpredictable by the subject during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax, error after recovery (Emin and the recovery response (Edif were documented for each participant, and groups were compared with ANOVA. Results Both balance impaired groups exhibited significantly higher Emax (p = .019 and Emin (p = .028 fractional errors compared to the healthy (HE subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051. Conclusion The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes.

  2. Perturbative analysis of transport and fluctuation studies on RFX

    International Nuclear Information System (INIS)

    Martini, S.

    2002-01-01

    On the RFX reversed field pinch different transport mechanisms govern the centre and the edge of the plasma. Core transport is driven by parallel transport in a stochastic magnetic field, giving rise to an outward directed particle convection velocity. At the edge, roughly corresponding to the region outside the toroidal field reversal surface (where q=0), electrostatic fluctuations are an important loss channel, but more than 50% of the power losses have been associated to localized plasma-wall interaction due to the non-axisymmetric magnetic perturbations caused by locked modes. In the paper we present the most recent progress made in the modeling and understanding of the above mechanisms underlying particle and energy transport. The paper also discusses the correlations between core and edge transport phenomena. The main tools are perturbative transport studies by pellet injection and the analysis of the contribution of intermittency processes to particle transport in the edge. (author)

  3. Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers: An Application to Lunisolar Perturbations

    Directory of Open Access Journals (Sweden)

    Antonio Fernando Bertachini de Almeida Prado

    2013-01-01

    Full Text Available The present paper has the goal of developing a new criterion to search for orbits that minimize the fuel consumption for station-keeping maneuvers. This approach is based on the integral over the time of the perturbing forces. This integral measures the total variation of velocity caused by the perturbations in the spacecraft, which corresponds to the equivalent variation of velocity that an engine should deliver to the spacecraft to compensate the perturbations and to keep its orbit Keplerian all the time. This integral is a characteristic of the orbit and the set of perturbations considered and does not depend on the type of engine used. In this sense, this integral can be seen as a criterion to select the orbit of the spacecraft. When this value becomes larger, more consumption of fuel is required for the station keeping, and, in this sense, less interesting is the orbit. This concept can be applied to any perturbation. In the present research, as an example, the perturbation caused by a third body is considered. Then, numerical simulations considering the effects of the Sun and the Moon in a satellite around the Earth are shown to exemplify the method.

  4. Perturbatively improving RI-MOM renormalization constants

    Energy Technology Data Exchange (ETDEWEB)

    Constantinou, M.; Costa, M.; Panagopoulos, H. [Cyprus Univ. (Cyprus). Dept. of Physics; Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schhierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.

  5. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  6. Instabilities in mimetic matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  7. Directive Versus Participative Leadership: Two Complementary Approaches to Managing School Effectiveness

    Science.gov (United States)

    Somech, Anit

    2005-01-01

    Purpose: The educational literature reflects the widely shared belief that participative leadership has an overwhelming advantage over the contrasting style of directive leadership in organizational and team effectiveness. The purpose of this study was to examine the relative effect of a directive leadership approach as compared with a…

  8. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  9. Dispersive approach to the axial anomaly and nonrenormalization theorem

    International Nuclear Information System (INIS)

    Pasechnik, R.S.; Teryaev, O.V.

    2006-01-01

    Anomalous triangle graphs for the divergence of the axial-vector current are studied using the dispersive approach generalized for the case of higher orders of perturbation theory. The validity of this procedure is proved up to the two-loop level. By direct calculation in the framework of dispersive approach we have obtained that the two-loop axial-vector-vector (AVV) amplitude is equal to zero. According to the Vainshtein's theorem, the transversal part of the anomalous triangle is not renormalized in the chiral limit. We generalize this theorem for the case of finite fermion mass in the triangle loop

  10. Isocurvature perturbations in the Ekpyrotic Universe

    International Nuclear Information System (INIS)

    Notari, A.; Riotto, A.

    2002-01-01

    The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parameterizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isocurvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature perturbations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations

  11. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  12. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  13. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  14. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment.

    Directory of Open Access Journals (Sweden)

    Julia Fukuyama

    2017-08-01

    Full Text Available Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.

  15. Foreign Direct Investment versus Portfolio Investment : A Global Games Approach

    OpenAIRE

    Yamin Ahmad; Pietro Cova; Rodrigo Harrison

    2004-01-01

    We present a model of investment under uncertainty about fundamentals, using a global games approach. Goldstein & Razin (2003) show that there is an information based trade-off between foreign direct investment (FDI) and portfolio investment (PI) which rationalizes some well known stylised facts in the literature - the relative volatility and reversibility of foreign direct investment versus portfolio investment. We extend their result and show that uncertainty about fundamentals does not imp...

  16. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    International Nuclear Information System (INIS)

    Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.

    2015-01-01

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated

  17. Edge-Localized mode control and transport generated by externally applied magnetic perturbations

    International Nuclear Information System (INIS)

    Joseph, I.

    2012-01-01

    This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E x B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Strings as perturbations of evolving spin networks

    International Nuclear Information System (INIS)

    Smolin, Lee

    2000-01-01

    One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory

  19. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  20. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  1. Ferromagnetism in the Hubbard model: a modified perturbation theory

    International Nuclear Information System (INIS)

    Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.

    2005-01-01

    We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)

  2. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    Science.gov (United States)

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  3. Studying the perturbed Wess–Zumino–Novikov–Witten SU(2k theory using the truncated conformal spectrum approach

    Directory of Open Access Journals (Sweden)

    R.M. Konik

    2015-10-01

    Full Text Available We study the SU(2k Wess–Zumino–Novikov–Witten (WZNW theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behavior of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG. The numerical results so obtained provide support for a semiclassical analysis valid at k≫1. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, λ. Moreover, for λ>0 this behavior depends on whether k is even or odd. With k even, we find definitive evidence that the model at low energies is equivalent to the massive O(3 sigma model. For k odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.

  4. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    Science.gov (United States)

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  5. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)

    2013-05-15

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  6. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  7. Application of linear and higher perturbation theory in reactor physics

    International Nuclear Information System (INIS)

    Woerner, D.

    1978-01-01

    For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de

  8. Using perturbed handwriting to support writer identification in the presence of severe data constraints

    Science.gov (United States)

    Chen, Jin; Cheng, Wen; Lopresti, Daniel

    2011-01-01

    Since real data is time-consuming and expensive to collect and label, researchers have proposed approaches using synthetic variations for the tasks of signature verification, speaker authentication, handwriting recognition, keyword spotting, etc. However, the limitation of real data is particularly critical in the field of writer identification in that in forensics, adversaries cannot be expected to provide sufficient data to train a classifier. Therefore, it is unrealistic to always assume sufficient real data to train classifiers extensively for writer identification. In addition, this field differs from many others in that we strive to preserve as much inter-writer variations, but model-perturbed handwriting might break such discriminability among writers. Building on work described in another paper where human subjects were involved in calibrating realistic-looking transformation, we then measured the effects of incorporating perturbed handwriting into the training dataset. Experimental results justified our hypothesis that with limited real data, model-perturbed handwriting improved the performance of writer identification. Particularly, if only one single sample for each writer was available, incorporating perturbed data achieved a 36x performance gain.

  9. 't Hooft loops and perturbation theory

    CERN Document Server

    De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David

    2005-01-01

    We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.

  10. Loschmidt echo for local perturbations: non-monotonic cross-over from the Fermi-golden-rule to the escape-rate regime

    International Nuclear Information System (INIS)

    Goussev, Arseni; Waltner, Daniel; Richter, Klaus; Jalabert, Rodolfo A

    2008-01-01

    We address the sensitivity of quantum mechanical time evolution by considering the time decay of the Loschmidt echo (LE) (or fidelity) for local perturbations of the Hamiltonian. Within a semiclassical approach, we derive analytical expressions for the LE decay for chaotic systems for the whole range from weak to strong local perturbations and identify different decay regimes which complement those known for the case of global perturbations. For weak perturbations, a Fermi-golden-rule (FGR)-type behavior is recovered. For strong perturbations, the escape-rate regime is reached, where the LE decays exponentially with a rate independent of the perturbation strength. The transition between the FGR regime and the escape-rate regime is non-monotonic, i.e. the rate of the exponential time-decay of the LE oscillates as a function of the perturbation strength. We further perform extensive quantum mechanical calculations of the LE based on numerical wave packet evolution, which strongly support our semiclassical theory. Finally, we discuss in some detail possible experimental realizations for observing the predicted behavior of the LE

  11. Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2014-10-01

    There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.

  12. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  13. Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao

    2012-04-01

    We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation code for calculating the thermal diffusivity in the perturbed region. The perturbed region is assumed to be generated on and around the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χ r in the perturbed region is represented as χ r = χ r (0) {1 + c r parallel 2 >}. Here r parallel 2 > 1/2 is the strength of the RMPs in the radial directions, means the flux surface average defined by the unperturbed (i.e., original) magnetic field, χ r (0) is the neoclassical thermal diffusivity, and c is a positive coefficient. In this paper, dependence of the coefficient c on parameters of the toroidal plasma is studied in results given by the δ f simulation code solving the drift kinetic equation under an assumption of zero electric field. We find that the dependence of c is given as c ∝ ω b /ν eff m in the low collisionality regime ν eff b , where ν eff is the effective collision frequency, ω b is the bounce frequency and m is the particle mass. In case of ν eff > ω b , the thermal diffusivity χ r evaluated by the simulations becomes close to the neoclassical thermal diffusivity χ r (0) . (author)

  14. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    Science.gov (United States)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  15. Multidimensional periodic Schrödinger operator perturbation theory and applications

    CERN Document Server

    Veliev, Oktay

    2015-01-01

    The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the ...

  16. Transjugular intrahepatic portosystemic shunt by direct transcaval approach: indications and anatomic foundation

    International Nuclear Information System (INIS)

    Chu Jianguo; Sun Xiaoli; Huang He; Xu Xiaoming; Pu Longsong; Lv Chunyan; Sun Peng; Yang Shuhui; Liu Shuying

    2004-01-01

    Objective: To investigate into the indications and related anatomic foundation of transjugular intrahepatic portosystemic shunt (TIPS) creation by direct transcaval approach in patients with portal hypertension cirrhosis suffering unusual anatomy between the hepatic veins and portal bifurcation; and to evaluate the security, feasibility and clinical significance. Methods: Direct transcaval approach TIPS were performed in 65 patients including active variceal bleeding (n=52), intractable ascites (n=12), and as a bridge to liver transplantation (n=1). Results: Technical and functional success were achieved in all patients. The success rate was 100% without related complications including the technique and primary patency rate is obvious higher than classical TIPS. Conclusion: In patients with unusual anatomy between the hepatic veins and portal bifurcation, and inaccessible or inadequate hepatic veins, transcaval TIPS creation is secure and feasible. The results suggest that the direct transcaval approach offering favorable primary patency because the shunt has a straight line in construction

  17. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  18. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  19. Two-component multistep direct reactions: A microscopic approach

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.

    1998-03-01

    The authors present two principal advances in multistep direct theory: (1) A two-component formulation of multistep direct reactions, where neutron and proton excitations are explicitly accounted for in the evolution of the reaction, for all orders of scattering. While this may at first seem to be a formidable task, especially for multistep processes where the many possible reaction pathways becomes large in a two-component formalism, the authors show that this is not so -- a rather simple generalization of the FKK convolution expression 1 automatically generates these pathways. Such considerations are particularly relevant when simultaneously analyzing both neutron and proton emission spectra, which is always important since these processes represent competing decay channels. (2) A new, and fully microscopic, method for calculating MSD cross sections which does not make use of particle-hole state densities but instead directly calculates cross sections for all possible particle-hole excitations (again including an exact book-keeping of the neutron/proton type of the particle and hole at all stages of the reaction) determined from a simple non-interacting shell model. This is in contrast to all previous numerical approaches which sample only a small number of such states to estimate the DWBA strength, and utilize simple analytical formulae for the partial state density, based on the equidistant spacing model. The new approach has been applied, along with theories for multistep compound, compound, and collective reactions, to analyze experimental emission spectra for a range of targets and energies. The authors show that the theory correctly accounts for double-differential nucleon spectra

  20. Perturbation methods for power and reactivity reconstruction

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.; Estiot, J.C.; Broccoli, U.; Bruna, G.; Gomit, J.M.

    1987-01-01

    This paper deals with recent developments and applications in perturbation methods. Two types of methods are used. The first one is an explicit method, which allows the explicit reconstruction of a perturbed flux using a linear combination of a library of functions. In our application, these functions are the harmonics (i.e. the high order eigenfunctions of the system). The second type is based on the Generalized Perturbation Theory GPT and needs the calculation of an importance function for each integral parameter of interest. Recent developments of a particularly useful high order formulation allows to obtain satisfactory results also for very large perturbations

  1. On adiabatic perturbations in the ekpyrotic scenario

    International Nuclear Information System (INIS)

    Linde, A.; Mukhanov, V.; Vikman, A.

    2010-01-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario

  2. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    Science.gov (United States)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  3. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    Science.gov (United States)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  4. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    International Nuclear Information System (INIS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-01-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. (letter)

  5. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    Science.gov (United States)

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (pnonlinear metric FD was decreased due to the cognitive loads (pnonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  6. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  7. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  8. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  9. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  10. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  11. On the all-order perturbative finiteness of the deformed N=4 SYM theory

    International Nuclear Information System (INIS)

    Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.

    2006-01-01

    We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6

  12. Enforcing conservation laws in nonequilibrium cluster perturbation theory

    Science.gov (United States)

    Gramsch, Christian; Potthoff, Michael

    2017-05-01

    Using the recently introduced time-local formulation of the nonequilibrium cluster perturbation theory (CPT), we construct a generalization of the approach such that macroscopic conservation laws are respected. This is achieved by exploiting the freedom for the choice of the starting point of the all-order perturbation theory in the intercluster hopping. The proposed conserving CPT is a self-consistent propagation scheme which respects the conservation of energy, particle number, and spin, which treats short-range correlations exactly up to the linear scale of the cluster, and which represents a mean-field-like approach on length scales beyond the cluster size. Using Green's functions, conservation laws are formulated as local constraints on the local spin-dependent particle and the doublon density. We consider them as conditional equations to self-consistently fix the time-dependent intracluster one-particle parameters. Thanks to the intrinsic causality of the CPT, this can be set up as a step-by-step time propagation scheme with a computational effort scaling linearly with the maximum propagation time and exponentially in the cluster size. As a proof of concept, we consider the dynamics of the two-dimensional, particle-hole-symmetric Hubbard model following a weak interaction quench by simply employing two-site clusters only. Conservation laws are satisfied by construction. We demonstrate that enforcing them has strong impact on the dynamics. While the doublon density is strongly oscillating within plain CPT, a monotonic relaxation is observed within the conserving CPT.

  13. Geometry of perturbed Gaussian states and quantum estimation

    International Nuclear Information System (INIS)

    Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A

    2011-01-01

    We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)

  14. Perturbation resilience and superiorization of iterative algorithms

    International Nuclear Information System (INIS)

    Censor, Y; Davidi, R; Herman, G T

    2010-01-01

    Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the value of a given function is optimal, algorithms tend to need more computer memory and longer execution time. A methodology is presented whose aim is to produce automatically for an iterative algorithm of the first kind a 'superiorized version' of it that retains its computational efficiency but nevertheless goes a long way toward solving an optimization problem. This is possible to do if the original algorithm is 'perturbation resilient', which is shown to be the case for various projection algorithms for solving the consistent convex feasibility problem. The superiorized versions of such algorithms use perturbations that steer the process in the direction of a superior feasible point, which is not necessarily optimal, with respect to the given function. After presenting these intuitive ideas in a precise mathematical form, they are illustrated in image reconstruction from projections for two different projection algorithms superiorized for the function whose value is the total variation of the image

  15. A Newton-Based Extremum Seeking MPPT Method for Photovoltaic Systems with Stochastic Perturbations

    Directory of Open Access Journals (Sweden)

    Heng Li

    2014-01-01

    Full Text Available Microcontroller based maximum power point tracking (MPPT has been the most popular MPPT approach in photovoltaic systems due to its high flexibility and efficiency in different photovoltaic systems. It is well known that PV systems typically operate under a range of uncertain environmental parameters and disturbances, which implies that MPPT controllers generally suffer from some unknown stochastic perturbations. To address this issue, a novel Newton-based stochastic extremum seeking MPPT method is proposed. Treating stochastic perturbations as excitation signals, the proposed MPPT controller has a good tolerance of stochastic perturbations in nature. Different from conventional gradient-based extremum seeking MPPT algorithm, the convergence rate of the proposed controller can be totally user-assignable rather than determined by unknown power map. The stability and convergence of the proposed controller are rigorously proved. We further discuss the effects of partial shading and PV module ageing on the proposed controller. Numerical simulations and experiments are conducted to show the effectiveness of the proposed MPPT algorithm.

  16. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  17. On the generation of a non-gaussian curvature perturbation during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori; Lyth, David H. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Valenzuela-Toledo, Cesar A., E-mail: k.kohri@lancaster.ac.uk, E-mail: d.lyth@lancaster.ac.uk, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

    2010-02-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case.

  18. On the generation of a non-gaussian curvature perturbation during preheating

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Lyth, David H.; Valenzuela-Toledo, Cesar A.

    2010-01-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case

  19. Nonlinear spherical perturbations in quintessence models of dark energy

    Science.gov (United States)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  20. Origin of directionally tuned responses in lower limb muscles to unpredictable upper limb disturbances.

    Directory of Open Access Journals (Sweden)

    Ali Forghani

    Full Text Available Unpredictable forces which perturb balance are frequently applied to the body through interaction between the upper limb and the environment. Lower limb muscles respond rapidly to these postural disturbances in a highly specific manner. We have shown that the muscle activation patterns of lower limb muscles are organized in a direction specific manner which changes with lower limb stability. Ankle muscles change their activity within 80 ms of the onset of a force perturbation applied to the hand which is earlier than the onset of changes in ground reaction force, ankle angle or head motion. The latency of the response is sensitive to the perturbation direction. However, neither the latency nor the magnitude of the response is affected by stiffening the arm even though this alters the magnitude and timing of motion of the body segments. Based on the short latency, insensitivity of the change in ankle muscle activation to motion of the body segments but sensitivity to perturbation direction we reason that changes in ankle muscle activation are most likely triggered by sensory signals originating from cutaneous receptors in the hand. Furthermore, evidence that the latency of changes in ankle muscle activation depends on the number of perturbation directions suggests that the neural pathway is not confined to the spinal cord.

  1. Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.

    1997-01-01

    Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion

  2. Variational approach to direct and inverse problems of atmospheric pollution studies

    Science.gov (United States)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition

  3. Random surfaces: A non-perturbative regularization of strings?

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1989-12-01

    I review the basic properties of the theory of randum surfaces. While it is by now well known that the theory of (discretized) random surfaces correctly describes the (perturbative) aspects of non-critical strings in d 1. In these lectures I intend to show that the theory of dynamical triangulated random surfaces provides us with a lot of information about the dynamics of both the bosonic string and the superstring even for d>1. I also briefly review recent attempts to define a string field theory (sum over all genus) in this approach. (orig.)

  4. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  5. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction.

    Science.gov (United States)

    Nikazad, T; Davidi, R; Herman, G T

    2012-03-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.

  6. Fast spectral source integration in black hole perturbation calculations

    Science.gov (United States)

    Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.

    2015-08-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.

  7. Very high order lattice perturbation theory for Wilson loops

    International Nuclear Information System (INIS)

    Horsley, R.

    2010-10-01

    We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)

  8. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  9. Core design and operation optimization methods based on time-dependent perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1983-08-01

    A general approach for the optimization of nuclear reactor core design and operation is outlined; it is based on two cornerstones: a newly developed time-dependent (or burnup-dependent) perturbation theory for nonlinear problems and a succesive iteration technique. The resulting approach is capable of handling realistic reactor models using computational methods of any degree of sophistication desired, while accounting for all the constraints imposed. Three general optimization strategies, different in the way for handling the constraints, are formulated. (author)

  10. Assessing the stability of free-energy perturbation calculations by performing variations in the method

    Science.gov (United States)

    Manzoni, Francesco; Ryde, Ulf

    2018-03-01

    We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R 2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.

  11. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  12. Photoabsorption spectra in the perturbative regime for atoms in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Marxer, H.; Moser, I.; O'Mahony, P.F.; Mota-Furtado, F.

    1994-01-01

    We calculate photoabsorption spectra of atoms in crossed electric and magnetic fields using a truncated basis of Coulomb eigenfunctions. The method yields spectra in the regime where inter-n-mixing is not dominant and allows for the treatment of non-hydrogenic atoms via a simple recourse to quantum defects. We compare results for hydrogen to those obtained in second order perturbation theory where the residual degeneracy left in first order perturbation theory is completely lifted and we show that only a very small basis size is needed to achieve convergence to within the accuracy of second order perturbation theory. In the case of lithium the coupling of an incomplete hydrogen-like manifold to states with non-negligible quantum defects substantially modifies the spectra obtained in comparison to the purely hydrogenic spectra. In the inter-n-mixing regime we also compare our convoluted results directly with an experimental spectrum for hydrogen and find good agreement below the saddle point. (Author)

  13. High-Speed imaging of the plasma response to resonant magnetic perturbations in HBT-EP

    International Nuclear Information System (INIS)

    Angelini, Sarah M; Levesque, Jeffrey P; Mauel, Michael E; Navratil, Gerald A

    2015-01-01

    A Phantom v7.3 fast digital camera was used to study visible light fluctuations in the High Beta Tokamak–Extended Pulse (HBT–EP). This video data is the first to be used to analyze and understand the behavior of long wavelength kink perturbations in a wall-stabilized tokamak. The light was mostly comprised of Dα 656 nm light. Profiles of the plasma light at the midplane were hollow with a radial scale length of approximately 4 cm at the plasma edge. The fast camera was also used to measure the plasma’s response to applied helical magnetic perturbations. The programmed toroidal phase angle of the resonant magnetic perturbation (RMP) was directly inferred from the resulting images of the plasma response. The plasma response and the intensity of the RMP were compared under different conditions. The resulting amplitude correlations are consistent with previous measurements of the static response using an array of magnetic sensors. (paper)

  14. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  15. The Euclidean three-point function in loop and perturbative gravity

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Zhang Mingyi

    2011-01-01

    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.

  16. Solitonic Integrable Perturbations of Parafermionic Theories

    CERN Document Server

    Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L

    1997-01-01

    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.

  17. Application of perturbation theory to sensitivity calculations of PWR type reactor cores using the two-channel model

    International Nuclear Information System (INIS)

    Oliveira, A.C.J.G. de.

    1988-12-01

    Sensitivity calculations are very important in design and safety of nuclear reactor cores. Large codes with a great number of physical considerations have been used to perform sensitivity studies. However, these codes need long computation time involving high costs. The perturbation theory has constituted an efficient and economical method to perform sensitivity analysis. The present work is an application of the perturbation theory (matricial formalism) to a simplified model of DNB (Departure from Nucleate Boiling) analysis to perform sensitivity calculations in PWR cores. Expressions to calculate the sensitivity coefficients of enthalpy and coolant velocity with respect to coolant density and hot channel area were developed from the proposed model. The CASNUR.FOR code to evaluate these sensitivity coefficients was written in Fortran. The comparison between results obtained from the matricial formalism of perturbation theory with those obtained directly from the proposed model makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations (author). 23 refs, 4 figs, 7 tabs

  18. Baryon chiral perturbation theory extended beyond the low-energy region.

    Science.gov (United States)

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  19. Baryon chiral perturbation theory extended beyond the low-energy region

    International Nuclear Information System (INIS)

    Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang

    2015-01-01

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region. (orig.)

  20. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    International Nuclear Information System (INIS)

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin

    2016-01-01

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.