WorldWideScience

Sample records for direct current power

  1. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  2. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  3. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  4. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  5. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Zhao Xiuliang

    1997-01-01

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  6. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  7. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  8. A fast fault protection based on direction of bus-side capacitor discharge current for a high-surety power supply

    DEFF Research Database (Denmark)

    Li, Haijin; Chen, Min; Yang, Boping

    2017-01-01

    A short-circuit fault protection strategy based on the direction of bus-side capacitor discharge current for a high-surety power supply, known as Super Uninterruptable Power Supply (Super UPS), is studied in this paper. It consists of multiple energy sources and storage components. All energy...... strategy is necessary to keep the uninterruptable power for the critical load. In this paper, the characteristics of the short-circuit fault are analyzed first. Then, a fast short-circuit fault locating and isolating strategy based on the direction of the discharge current of the busside capacitors...

  9. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  10. High voltage direct current (HVDC) link between the power networks of Italy and Greece

    International Nuclear Information System (INIS)

    Carcano, C.; Oliva, P.; Voyatzakis, J.

    1996-01-01

    Interconnection between the power networks of Italy and Greece has long been declared of European interest. The link, which will directly connect Greece with the power network of UCPTE, is perfectly in line with the targets of the European Union in terms of trans-European power networks. The interconnection, which benefits of a financial contribution of the EU, will rely on a 400 kV d.c. transmission system with one submarine cable between the Italian and Greek coasts, overhead lines on land, d.c./a.c. conversion stations, return of current to sea via marine electrodes. The main technical features of the project are described, highlighting its most significant design concepts. (author)

  11. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  12. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  13. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  14. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  15. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  16. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  17. ENHANCING THE OPERATIONAL EFFICIENCY OF DIRECT CURRENT DRIVE BASED ON USE OF SUPERCONDENSER POWER STORAGE UNITS

    Directory of Open Access Journals (Sweden)

    А. M. Mukha

    2017-10-01

    Full Text Available Purpose.The scientific work is intended to analyse the expansion of the load range and the implementation of regeneration braking (RB of the direct current drive by using the supercondenser power storage units. Methodology.To solve the problem, we use the methods of the electric drive theory, impulse electronics and the method of calculation of transient electromagnetic processes in linear electric circuits in the presence of super-condensers therein. Findings.The stiffness of the mechanical and electromechanical characteristics of a series motor is significantly increased, which makes it possible to use a DC drive under load, much smaller than 15…20% of the nominal one. Numerical calculations of the operation process of the supercondenser power storage unit were fulfilled with a sharp decrease in the load of a traction electric motor of a direct current electric locomotive. The possibility of RB of the direct current drive with the series motor is substantiated. The equations of the process of charging and discharging of super-condenser storage unit in RB mode are solved. The authors examined the effect of capacitance on the nature of maintaining the excitation current of an electric motor in the mode of small loads.Originality.The paper developed theoretical approaches for the transformation of soft (mechanical and electromechanical characteristics into hard ones of DC series motors. For the first time a new, combined method of the series motor RB is proposed and substantiated. Further development obtained the methods for evaluating the storage unit parameters, taking into account the criteria for reliable parallel operation of super-condensers with an electric motor field. Practical value.The proposed and substantiated transformation of soft characteristics into stiff ones allows us to use general-purpose electric drives with series motors and at low loads, and in traction electric drives - to reduce the intensity of electric stockwheel

  18. Method for exciting inductive-resistive loads with high and controllable direct current

    International Nuclear Information System (INIS)

    Hill, H.M. Jr.

    1976-01-01

    The apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator are described. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100 percent duty factor amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity. 4 Claims, 18 Drawing Figures

  19. Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads

    Directory of Open Access Journals (Sweden)

    Martín-Antonio Rodríguez-Licea

    2018-05-01

    Full Text Available A Direct Current (DC microgrid is a concept derived from a smart grid integrating DC renewable sources. The DC microgrids have three particularities: (1 integration of different power sources and local loads through a DC link; (2 on-site power source generation; and (3 alternating loads (on-off state. This kind of arrangement achieves high efficiency, reliability and versatility characteristics. The key device in the development of the DC microgrid is the power electronic converter (PEC, since it allows an efficient energy conversion between power sources and loads. However, alternating loads with strictly-controlled PECs can provide negative impedance behavior to the microgrid, acting as constant power loads (CPLs, such that the overall closed-loop system becomes unstable. Traditional CPL compensation techniques rely on a damping increment by the adaptation of the source or load voltage level, adding external circuitry or by using some advanced control technique. However, none of them provide a simple and general solution for the CPL problem when abrupt changes in parameters and/or in alternating loads/sources occur. This paper proposes a mathematical modeling and a robust control for the basic PECs dealing with CPLs in continuous conduction mode. In particular, the case of the low voltage residential DC microgrid with CPLs is taken as a benchmark. The proposed controller can be easily tuned for the desired response even by the non-expert. Basic converters with voltage mode control are taken as a basis to show the feasibility of this analysis, and experimental tests on a 100-W testbed include abrupt parameter changes such as input voltage.

  20. POLITICAL POWER IN THE PRISM OF POLITICAL ANALYSIS (EXPERIENCE REVIEW OF CURRENT RESEARCH DIRECTIONS

    Directory of Open Access Journals (Sweden)

    A. N. Kuryukin

    2010-01-01

    Full Text Available The broad theoretical material considered relevant areas of the study of political power. Reveals the patterns of occurrence and development of a strictly scientific views on political power as a phenomenon and a social process. Determined the current trends of development of theoreticalunderstanding of political power in relation to the stages of its evolution. The most urgent technological model of exercising political power.

  1. Compulsory Checking of Nuclear Power Engineering Materials by Direct and Eddy Current

    Science.gov (United States)

    Larionov, V. V.; Lider, A. M.; Sednev, D. A.; Xu, Shupeng

    2016-08-01

    The testing technology of copper parts designed for dry storage of spent nuclear fuel with application of direct and eddy current has been developed. Measurements results of flaw quantity caused hydrogenation and oxidation processes are presented. Evolution of copper M 001 flaw structure during hydrogenation from gaseous medium is analyzed. It has been demonstrated that the dependence of copper p electrical resistance on number of flaws in its structure has dome shaped character and changes with eddy current frequency change. Number of flaws formed by hydrogen depends on direction (100) or (200) of the crystal structure of copper lattice.

  2. Co-ordination of directional overcurrent protection with load current for parallel feeders

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.W.; Lloyd, G.; Hindle, P.J. [Alstom, Inc., Stafford (United Kingdom). T and D Protection and Control

    1999-11-01

    Directional phase overcurrent relays are commonly applied at the receiving ends of parallel feeders or transformer feeders. Their purpose is to ensure full discrimination of main or back-up power system overcurrent protection for a fault near the receiving end of one feeder. This paper reviews this type of relay application and highlights load current setting constraints for directional protection. Such constraints have not previously been publicized in well-known text books. A directional relay current setting constraint that is suggested in some text books is based purely on thermal rating considerations for older technology relays. This constraint may not exist with modern numerical relays. In the absence of any apparent constraint, there is a temptation to adopt lower current settings with modern directional relays in relation to reverse load current at the receiving ends of parallel feeders. This paper identifies the danger of adopting very low current settings without any special relay feature to ensure protection security with load current during power system faults. A system incident recorded by numerical relays is also offered to highlight this danger. In cases where there is a need to infringe the identified constraints an implemented and testing relaying technique is proposed.

  3. Current Directional Protection of Series Compensated Line Using Intelligent Classifier

    Directory of Open Access Journals (Sweden)

    M. Mollanezhad Heydarabadi

    2016-12-01

    Full Text Available Current inversion condition leads to incorrect operation of current based directional relay in power system with series compensated device. Application of the intelligent system for fault direction classification has been suggested in this paper. A new current directional protection scheme based on intelligent classifier is proposed for the series compensated line. The proposed classifier uses only half cycle of pre-fault and post fault current samples at relay location to feed the classifier. A lot of forward and backward fault simulations under different system conditions upon a transmission line with a fixed series capacitor are carried out using PSCAD/EMTDC software. The applicability of decision tree (DT, probabilistic neural network (PNN and support vector machine (SVM are investigated using simulated data under different system conditions. The performance comparison of the classifiers indicates that the SVM is a best suitable classifier for fault direction discriminating. The backward faults can be accurately distinguished from forward faults even under current inversion without require to detect of the current inversion condition.

  4. Bi-directional high-side current sense circuit for switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Bruun, Erik; Andersen, Michael A. E.

    2014-01-01

    In order to control a power supply using piezoelectric transformer, AC current in the transformer ne eds to be measured. Due to the control strategy it is necessary to measure amplitude, phase angle and zero crossing of this c urrent. In some applications there is common ground between pri mary...

  5. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  6. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    DEFF Research Database (Denmark)

    Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.

    2017-01-01

    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...

  7. 30 CFR 75.703-3 - Approved methods of grounding offtrack mobile, portable and stationary direct-current machines.

    Science.gov (United States)

    2010-07-01

    ..., portable and stationary direct-current machines. 75.703-3 Section 75.703-3 Mineral Resources MINE SAFETY... stationary direct-current machines. In grounding offtrack direct-current machines and the enclosures of their... requirements: (1) Installation of silicon diodes shall be restricted to electric equipment receiving power from...

  8. Four-quadrant flyback converter for direct audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents a bidirectional, four-quadrant yback converter for use in direct audio power amplication. When compared to the standard Class-D switching-mode audio power amplier with separate power supply, the proposed four-quadrant flyback converter provides simple and compact solution with high efciency, higher level of integration, lower component count, less board space and eventually lower cost. Both peak and average current-mode control for use with 4Q flyback power converters are described and compared. Integrated magnetics is presented which simplies the construction of the auxiliary power supplies for control biasing and isolated gate drives. The feasibility of the approach is proven on audio power amplier prototype for subwoofer applications. (au)

  9. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  10. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  11. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  12. Directed Motivational Currents: Using vision to create effective motivational pathways

    Directory of Open Access Journals (Sweden)

    Christine Muir

    2013-10-01

    Full Text Available Vision, that is, the mental representation of the sensory experience of a future goal state (involving imagination and imagery, is currently at the forefront of motivational innovation, and in recent years it has been seen increasingly more often in the motivational tool kit of practicing language teachers. Theories such as Dörnyei’s L2 motivational self system have explored the power that creating effective visions can harness (see, e.g., Dörnyei & Kubanyiova, 2014 and when viewed in conjunction with other current research avenues, such as future time perspective and dynamic systems theory, vision offers exciting potential. A Directed Motivational Current is a new motivational construct that we suggest is capable of integrating many current theoretical strands with vision: It can be described as a motivational drive which energises long-term, sustained behaviour (such as language learning, and through placing vision and goals as critical central components within this construct, it offers real and practical motivational potential. In this conceptual paper, we first discuss current understandings of vision and of Directed Motivational Currents, and then analyse how they may be optimally integrated and employed to create effective motivational pathways in language learning environments.

  13. Negative sequence current control in wind power plants with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2012-01-01

    Large offshore wind power plants may have multi-MW wind turbine generators (WTG) equipped with full-scale converters (FSC) and voltage source converter (VSC) based high voltaage direct-current (HVDC) transmission for grid connection. The power electronic converters in theWTG-FSC and the VSC......-HVDC allow fast current control in the offshore grid. This paper presents a method of controlling the negative sequence current injection into the offshore grid from the VSC-HVDC as well as WTG-FSCs. This would minimize the power oscillations and hence reduce the dc voltage overshoots in the VSC-HVDC system...... as well as in the WTG-FSCs; especially when the offshore grid is unbalanced due to asymmetric faults. The formulation for negative sequence current injection is mathematically derived and then implemented in electromagnetic transients (EMT) simulation model. The simulated results show that the negative...

  14. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    Science.gov (United States)

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  15. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  16. [Advance directives in clinical practice : Living will, healthcare power of attorney and care directive].

    Science.gov (United States)

    Hack, J; Buecking, B; Lopez, C L; Ruchholtz, S; Kühne, C A

    2017-06-01

    In clinical practice, situations continuously occur in which medical professionals and family members are confronted with decisions on whether to extend or limit treatment for severely ill patients in end of life treatment decisions. In these situations, advance directives are helpful tools in decision making according to the wishes of the patient; however, not every patient has made an advance directive and in our experience medical staff as well as patients are often not familiar with these documents. The purpose of this article is therefore to explain the currently available documents (e.g. living will, healthcare power of attorney and care directive) and the possible (legal) applications and limitations in the routine clinical practice.

  17. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  18. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  19. Object Detection: Current and Future Directions

    Directory of Open Access Journals (Sweden)

    Rodrigo eVerschae

    2015-11-01

    Full Text Available Object detection is a key ability required by most computer and robot vision systems. The latest research on this area has been making great progress in many directions. In the current manuscript we give an overview of past research on object detection, outline the current main research directions, and discuss open problems and possible future directions.

  20. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  1. A three-port direct current converter

    DEFF Research Database (Denmark)

    2016-01-01

    circuit comprises a connection between the at least one input direct current source and the at least one storage battery, the primary side circuit configured for operating as a buck converter; a second magnetic component serially coupled to the first single magnetic component, wherein the first and second...... magnetic components are configured to perform a voltage step-up, wherein the secondary side circuit comprises a connection between the at least one storage battery and at least one load, the secondary side configured for operating as a tapped boost converter; wherein the three-port direct current converter......The three-port direct current converter comprising: at least one input direct current source; at least one storage battery; a primary side circuit; a secondary side circuit; a first single magnetic component shared by the primary side circuit and the secondary side circuit, wherein the primary side...

  2. How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings

    International Nuclear Information System (INIS)

    Glasgo, Brock; Azevedo, Inês Lima; Hendrickson, Chris

    2016-01-01

    Highlights: • DC distribution systems are analyzed using monitored appliance and solar PV data. • DC-distributed PV energy generates savings under real-world load and solar profiles. • Savings from direct-DC are generally not cost-effective in current markets. • Non-technical hurdles remain before DC can be widely adopted in US homes. - Abstract: Advances in semiconductor-based power electronics and growing direct current loads in buildings have led researchers to reconsider whether buildings should be wired with DC circuits to reduce power conversions and facilitate a transition to efficient DC appliances. The feasibility, energy savings, and economics of such systems have been assessed and proven in data centers and commercial buildings, but the outcomes are still uncertain for the residential sector. In this work, we assess the technical and economic feasibility of DC circuits using data for 120 traditionally-wired AC homes in Austin, Texas to understand the effect of highly variable demand profiles on DC-powered residences, using appliance-level use and solar generation data, and performing a Monte Carlo simulation to quantify costs and benefits. Results show site energy savings between 9% and 20% when solar PV is distributed to all home appliances. When battery storage for excess solar energy is considered, these savings increase to 14–25%. At present DC equipment prices, converting all equipment to DC causes levelized annual costs of electricity to homeowners to roughly double. However, by converting only homes’ air conditioning condensing units to DC, the costs of direct-DC are greatly reduced and home site energy savings of 7–16% are generated. In addition to quantifying savings, we find major nontechnical barriers to implementing direct-DC in homes. These include a lack of standards for such systems, a relatively small market for DC appliances and components, utility programs designed for AC power, and a workforce unfamiliar with DC

  3. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  4. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  5. Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter

    International Nuclear Information System (INIS)

    Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim

    2016-01-01

    Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.

  6. Direct-current nanogenerator driven by ultrasonic waves.

    Science.gov (United States)

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  7. Active power compensator of the current harmonics based on the instantaneous power theory

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2005-12-01

    Full Text Available The quality of the electrical current becomes a major concern. The proliferation of the power electronic converters, which are used extensively to control electrical apparatus in industrial and commercial applications (dc and ac variable speed motor drives, induction furnaces, power line conditioners, and industrial power supplies, is at the origin of the AC current distribution network pollution and the reactive power demand. These power electronic converters typically draw non-sinusoidal currents from the utility, causing interference with adjacent sensitive loads and limit the utilization of the available electrical supply. The quality of the electrical current thus becomes a significant concern for the distributors of energy and their customers. Recent progress as regards technology of the power electronics brings a capacity of compensation and correction of the harmonic distortion generated by the nonlinear loads. In this paper a parallel active filter prototype capable of reducing the total harmonic distortion in the supply for most current source or adjustable speed drive type loads is presented. A 33 kVA active power filter was developed for harmonic and reactive power compensation based on the instantaneous power theory. The active filter configuration requires the measurement of both the load and filter currents. Experimental results from a prototype active power filter confirm the suitability of the proposed approach. The actual 33kVA prototype converter has been built and tested in the SIEI S.p.A. (Italy laboratory under the Marie Curie Post Doctoral research. The active power compensator is controlled by a high performance DSP platform, resulting in the following active filter features: source current reduction up to the 25th harmonic, 10% THD achievable for current source type loads, efficiency above 97%, does not cause resonance with other loads, operation in the presence of unbalanced loads, reactive power and harmonics

  8. A Novel Sliding Mode Control Technique for Indirect Current Controlled Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2012-01-01

    Full Text Available A novel sliding mode control (SMC method for indirect current controlled three-phase parallel active power filter is presented in this paper. There are two designed closed loops in the system: one is the DC voltage controlling loop and the other is the reference current tracking loop. The first loop with a PI regulator is used to control the DC voltage approximating to the given voltage of capacitor, and the output of PI regulator through a low-pass filter is applied as the input of the power supply reference currents. The second loop implements the tracking of the reference currents using integral sliding mode controller, which can improve the harmonic treating performance. Compared with the direct current control technique, it is convenient to be implemented with digital signal processing system because of simpler system structure and better harmonic treating property. Simulation results verify that the generated reference currents have the same amplitude with the load currents, demonstrating the superior harmonic compensating effects with the proposed shunt active power filter compared with the hysteresis method.

  9. Power quality issues current harmonics

    CERN Document Server

    Mikkili, Suresh

    2015-01-01

    Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi

  10. Energy efficient direct current distribution in commercially used buildings with smart power link to the AC distribution grid; Energieeffiziente Gleichstromverteilung in kommerziell genutzten Gebaeuden mit intelligenter Kopplung zum Niederspannungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Roland [Siemens AG, Erlangen (Germany); Boeke, Ulrich [Philips Group Innovation-Research, Eindhoven (Netherlands); Maurer, Wilhelm [Infineon Technologies AG, Neubiberg (Germany); Zeltner, Stefan [Fraunhofer-Inst. fuer Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen (Germany)

    2012-07-01

    The joint undertaking ''Direct Current Components and Grid'' (DCC+G) takes on the strategic challenge to reduce energy consumption and thus the reduction of CO{sub 2} emission caused by commercially used buildings through research in the fields of Direct Current distribution at a voltage level of {+-} 380 V. The major energy consumers in commercially used buildings, ready for the ''net-zero-energy'' goal of the European Union, are heat pumps for heating, ventilation systems, air conditioning units, cooling units (HVAC), lighting systems and information technology. All these components and subsystems have in common, that the most efficient versions would benefit from a direct current supply. Additionally the local producers of electric energy like photovoltaic systems usually generate DC-current. A Direct Current distribution grid within buildings would avoid the repeating conversion from DC and AC an vice versa and therefore reduce conversion losses. Important components of a direct current distribution grid are central, smart, high efficient, bidirectional rectifiers replacing the large number of small, less efficient rectifiers used today. Such large central rectifiers units could additionally be used to actively improve the power quality of the smart local AC distribution grid. One major part of the described activities is to show energy savings of about 5 % of electrical energy with a 2-phase direct current distribution grid using a voltage level of {+-} 380 V. (orig.)

  11. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  12. Current Trends in the Nuclear Power Global Market

    Directory of Open Access Journals (Sweden)

    Mariya Mikhailovna Osetskaya

    2018-03-01

    Full Text Available The review of the nuclear energy technologies market, namely the main processes of the initial and final stages of the nuclear fuel cycle (NTC was shown. The authors reveal key players in the markets of natural uranium mining, conversion, enrichment, fabrication of nuclear fuel, direct disposal, and reprocessing as well as determine their market shares. The article shows the fundamental factors influencing the development trends of the global nuclear power market such as: units’ commissioning in China, India, the Republic of Korea and other countries, the restart of the Japanese nuclear power plants, growth of uranium supplies long-term contracting planned for the period up to 2025, volatility of world prices of the NFC initial and final stages, political, economic and environmental reasons for the nuclear power generation choice. The article presents the results of analyses of Russian and world prices on the NFC initial and final stages main processes’ allowing to draw a conclusion about the current competitiveness of Russian nuclear energy technologies

  13. Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Liu, Xiaowei [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001 (China); MEMS Center, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Peng; Zhang, Bo; Li, Jianmin; Deng, Huichao [MEMS Center, Harbin Institute of Technology, Harbin 150001 (China)

    2010-06-15

    An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm{sup 2} at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer. (author)

  14. Coincidence of features of emitted THz electromagnetic wave power form a single Josephson junction and different current components

    Science.gov (United States)

    Hamdipour, Mohammad

    2017-12-01

    By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.

  15. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  16. Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control.

    Science.gov (United States)

    Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir

    2017-10-12

    This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.

  17. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    DEFF Research Database (Denmark)

    Wang, L.; Lee, D. J.; Lee, W. J.

    2008-01-01

    wind turbines andWells turbines to respectively capture wind energy and wave energy from marine wind and oceanwave. In addition to wind-turbine generators(WTGs) andwave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE......This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy...

  19. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This paper proposes a novel Direct Bonded Copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect......, which consequently improves the current sharing among the paralleled SiC MOSFET dies in power module. Mathematic analysis and circuit model of the DBC layout are presented to elaborate on the superior features of the proposed DBC layout. Simulation and experimental results further verify the theoretical...

  20. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study.

    Science.gov (United States)

    Kaski, D; Dominguez, R O; Allum, J H; Islam, A F; Bronstein, A M

    2014-11-01

    To improve gait and balance in patients with Parkinson's disease by combining anodal transcranial direct current stimulation with physical training. In a double-blind design, one group (physical training; n = 8) underwent gait and balance training during transcranial direct current stimulation (tDCS; real/sham). Real stimulation consisted of 15 minutes of 2 mA transcranial direct current stimulation over primary motor and premotor cortex. For sham, the current was switched off after 30 seconds. Patients received the opposite stimulation (sham/real) with physical training one week later; the second group (No physical training; n = 8) received stimulation (real/sham) but no training, and also repeated a sequential transcranial direct current stimulation session one week later (sham/real). Hospital Srio Libanes, Buenos Aires, Argentina. Sixteen community-dwelling patients with Parkinson's disease. Transcranial direct current stimulation with and without concomitant physical training. Gait velocity (primary gait outcome), stride length, timed 6-minute walk test, Timed Up and Go Test (secondary outcomes), and performance on the pull test (primary balance outcome). Transcranial direct current stimulation with physical training increased gait velocity (mean = 29.5%, SD = 13; p transcranial direct current stimulation alone. There was no isolated benefit of transcranial direct current stimulation alone. Although physical training improved gait velocity (mean = 15.5%, SD = 12.3; p = 0.03), these effects were comparatively less than with combined tDCS + physical therapy (p stimulation-related improvements were seen in patients with more advanced disease. Anodal transcranial direct current stimulation during physical training improves gait and balance in patients with Parkinson's disease. Power calculations revealed that 14 patients per treatment arm (α = 0.05; power = 0.8) are required for a definitive trial. © The Author(s) 2014.

  1. Multi-terminal direct-current grids modeling, analysis, and control

    CERN Document Server

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  2. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This letter proposes a novel direct bonded copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect...

  3. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  4. Alternatives for blocking direct current in AC system neutrals at the Radisson/LG2 complex

    International Nuclear Information System (INIS)

    Eitzmann, M.A.; Walling, R.A.; Sublich, M.; Kah, A.; Huynh, H.; Granger, M.; Dutil, A.

    1992-01-01

    Severe offset saturation results from the passage of direct current through power transformers. Such direct current can arise from geomagnetic disturbances, or resistive coupling of the substation ground to HVDC earth electrodes. This paper documents the development of alternative approaches for the design and application of blocking devices placed between transformer neutrals and the substation ground. System constraints on the impedance and overvoltage limitation of the neutral blocking device (NBD) are covered. Three alternative NBD schemes are developed and optimized. System performance of the NBD is discussed, as are the practical implementation considerations for this unconventional equipment application. Although the paper focuses on the NBD requirements of Hydro-Quebec's Radisson/LG2 complex, the fundamental information is applicable to any situation where dc must be clocked from a power transformer neutral in a system designed for effectively-grounded operation

  5. Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors

    Directory of Open Access Journals (Sweden)

    Yean-Der Kuan

    2014-05-01

    Full Text Available The direct methanol fuel cell (DMFC adopts methanol solution as a fuel suitable for low power portable applications. A miniature, lightweight, passive air-breathing design is therefore desired. This paper presents a novel planar disc-type DMFC with multiple cells containing a novel developed lightweight current collector at both the anode and cathode sides. The present lightweight current collector adopts FR4 Glass/Epoxy as the substrate with the current collecting areas located at the corresponding membrane electrolyte assembly (MEA areas. The current collecting areas are fabricated by sequentially coating a corrosion resistant layer and electrical conduction layer via the thermal evaporation technique. The anode current collector has carved flow channels for fuel transport and production. The cathode current collector has drilled holes for passive air breathing. In order to ensure feasibility in the present concept a 3-cell prototype DMFC module with lightweight disc type current collectors is designed and constructed. Experiments were conducted to measure the cell performance. The results show that the highest cell power output is 54.88 mW·cm−2 and successfully demonstrate the feasibility of this novel design.

  6. Self-commutated high-voltage direct current transmission with DC circuit breakers. Backbone for the energy policy turnaround; Selbstgefuehrte Hochspannungs-Gleichstromuebertragung mit DC-Leistungsschalter. Rueckgrat fuer die Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, Raphael [ABB AG, Mannheim (Germany). Marketing und Vertrieb, Geschaeftsbereich Grid Systems

    2013-06-01

    The 'current war' between direct current and alternating current is extended by a new location. In the future, both technologies work together in order to provide a reliable power transmission in Germany and long-term in Europe. This is based on the self-guided high-voltage direct current transmission. In conjunction with direct current circuit breakers (DC circuit breaker) the power circuit breakers may help to make the transmission grids more flexible and to minimize losses.

  7. Resonant converter topologies for constant-current power supplies and their applications

    International Nuclear Information System (INIS)

    Borage, Mangesh

    2013-01-01

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  8. Study of matrix converter as a current-controlled power supply in QUEST tokamak

    International Nuclear Information System (INIS)

    Liu, Xiaolong; Jiang, Yi; Nakamura, Kazuo

    2011-01-01

    Because QUEST tokamak has a divertor configuration with a higher κ and a negative n-index, a precise power supply with a rapid response is needed to control the vertical position of the plasma. A matrix converter is a direct power conversion device that uses an array of controlled bidirectional switches as the main power elements for creating a variable-output current system. This paper presents a novel three-phase to two-phase topological matrix converter as a proposed power supply that stabilizes the plasma vertical position and achieves unity input power factor. An indirect control strategy in which the matrix converter is split into a virtual rectifier stage and a virtual inverter stage is adopted. In the virtual rectifier stage, the instantaneous active power and reactive power are decoupled on the basis of system equations derived from the DQ transformation; hence, unity power factor is achieved. Space vector pulse width modulation is adopted to determine the switching time of each switch in the virtual rectifier; the output voltage of the virtual rectifier is adjusted by the virtual inverter stage to obtain the desired load current. Theoretical analyses and simulation results are provided to verify its feasibility. (author)

  9. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  10. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  11. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  12. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  13. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  14. Development of high-power inverter supply for current drive of FRC plasma

    International Nuclear Information System (INIS)

    Kitano, Katsuhisa; Higashikozono, Takamitsu; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    High-Power RF supply is developed for the current drive of FRC (Field Reversed Configuration) plasma. The rotating magnetic field is produced by the four antennas set in the parallel direction to the geometrical axis of the FRC and faced each other. The sinusoidal currents with shifted phases by 90 degree each other should be supplied to the antennas. The two power supplies are necessary if a pair of the antennas faced oppositely are connected. Considering the plasma parameters, the rotating field of 50-100kHz and 50G at the center axis is expected to be required. We develop the adequate RF power supply for the purpose. The power supply consists of the inverter circuit, the step-up transformer and the LC tank ciruit. For the switching device of the inverter circuit, the IGBT (Insulated Gate Bipolar Transistor) is adopted. The inverter circuit is full bridge type. To operate it at high voltages, its arm consists of the 3 IGBTs arranged series. The output of the inverter is connected to the tank circuit by way of the step-up transformer with air core. The tank circuit is the parallel circuit of the antenna and the capacitor. By the adjustment of the frequency of the inverter output to the resonance frequency of the tank circuit, the large sinusoidal waveform current is obtained. The developed power supply can produce the current of 5kA at 10kV to the dummy antenna with almost the same inductance of the antenna. (author)

  15. Power spectra of currents off Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...

  16. Evaluation of “direct input” effectiveness for industrial enterprises power supply

    Directory of Open Access Journals (Sweden)

    Malinina Tatyana

    2017-01-01

    Full Text Available The cost of energy has increased significantly for the industrial enterprises over the recent years, due to an increase in the electricity tariffs and the changes in the rules of the electricity market. Tariffs for electricity sold to consumers, differentiated according to various parameters, one of which is the voltage range. The higher the voltage range, the lower the tariffs, and thus, the consumer pays less for the supplied energy. Currently only for big consumers made energy supply “direct input” through the construction of an overhead line (OL with a nominal voltage of 110 kV or 220 kV. However, it is advisable to consider the issue of power supply efficiency of big and medium-sized industrial enterprises based on the “direct input”. The questions of voltage level study based on empirical formulas are considered in the article, expressing the dependence of the voltage from the transmission distance and the amount of transmitted power. It was proven that these formulas give a large spread, so intermediate voltage classes 35 kV and 110 kV, which compared with the traditional option of power supply on the basis of the cable line 10 kV, have been selected. Based on the technical and economic calculations it has been proved the value of the transmit power and length of the line at which the power supply of industrial enterprise on the basis of “ direct input” with a nominal voltage of 110 kV becomes effective.

  17. Virtual Inertia: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Ujjwol Tamrakar

    2017-06-01

    Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

  18. EOP Current Magnitude and Direction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contain shipboard current magnitudes and directions collected in the Pacific, both pelagic and near shore environments. Data is collected using an RD...

  19. Guest Editorial: Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid

    DEFF Research Database (Denmark)

    Li, Yong; Guerrero, Josep M.; Siano, Pierluigi

    2017-01-01

    We appreciate very much the support from the IET Power Electronics editorial board for this Special Issue on ‘Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid’. In this final version for publication, 15 papers have been selected for this Special Issue. Three papers...... relate to the topology of MVDC converter, four papers relate to the control of MVDC converter, four papers relate to the introduction of application fields of MVDC grid, and four papers relate to the semiconductor power device and drives towards the application in the medium- and high-voltage DC grid....

  20. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  1. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  2. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  3. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  4. New digital reference current generation for shunt active power filter under distorted voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abdusalam, Mohamed; Karimi, Shahram; Saadate, Shahrokh [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7037 (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), EA 3440, Universite Henri Poincare - Nancy Universite, B.P. 239, 54506 Vandoeuvre les Nancy Cedex (France)

    2009-05-15

    In this paper, a new reference current computation method suitable for shunt active power filter control under distorted voltage conditions is proposed. The active power filter control is based on the use of self-tuning filters (STF) for the reference current generation and on a modulated hysteresis current controller. This active filter is intended for harmonic compensation of a diode rectifier feeding a RL load under distorted voltage conditions. The study of the active filter control is divided in two parts. The first one deals with the harmonic isolator which generates the harmonic reference currents and is experimentally implemented in a DS1104 card of a DSPACE prototyping system. The second part focuses on the generation of the switching pattern of the inverter by using a modulated hysteresis current controller, implemented in an analogue card. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the {alpha}-{beta} axis without phase locked loop (PLL). The performances are good even under distorted voltage conditions. First, the effectiveness of the new proposed method is mathematically studied and verified by computer simulation. Then, experimental results are presented using a DSPACE system associated with the analogue current controller for a real shunt active power filter. (author)

  5. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  6. Critical power for lower hybrid current drive

    International Nuclear Information System (INIS)

    Assis, A.S. de; Sakanaka, P.H.; Azevedo, C.A. de; Busnardo-Neto, J.

    1995-11-01

    We have solved numerically the quasilinear Fokker-Planck equation which models the critical power for lower hybrid wave current drive. An exact value for the critical power necessary for current saturation, for tokamak current drive experiments, has been obtained. The nonlinear treatment presented here leads to a final profile for the parallel distribution function which is a plateau only in a part of the resonance region. This form of the distribution function is intermediate between two well known results: a plateau throughout the resonance region for the linear strong-source regime, D wave >> D coll and no plateau at all in the resonance region the linear weak-source regimen, D wave coll . The strength of the external power source and the value of the dc electric field are treated as given parameters in the integration scheme. (author). 24 refs, 6 figs

  7. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    of a protection circuit involving twelve diodes with full voltage/current ratings used only during faulty situations, makes this topology not so attractive. Lately, two stage Direct Power Electronic Conversion (DPEC) topologies have been proposed, providing similar functionality as a matrix converter but allowing...... shared by many loads, making this topology more cost effective. The functionality of the proposed two-stage multi-drive direct power electronic conversion topology is validated by experiments on a realistic laboratory prototype....

  8. Comparative studies of high-frequency and direct current molecular gas discharges

    International Nuclear Information System (INIS)

    Goichman, V.H.; Goldfarb, V.M.; Tendler, M.B.

    1975-01-01

    Electron gas parameters, gas temperatures, ionization and thermal instability are found to be markedly different in direct current glow discharges from capactive electrodless high frequency discharge even when equal net power input is provided. It is reasonable to expect that the combined discharge containing both types of discharges mentioned above may be expected to improve significantly both the steady-state and transient characteristics of the plasma. The characteristics of different discharges in air, nitrogen air-CO 2 -He mixture have been compared. Because of the lack of the direct electrical methods for measurements of the hf plasma, exphasis in this investigation has been laid on both theoretical) based on the analytical expression for electron energy distribution function received previously and experimental spectroscopic evaluations of the plasma parameters. (Auth.)

  9. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  10. Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.

    Science.gov (United States)

    Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen

    2016-08-01

    This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.

  11. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  12. A new high current laboratory and pulsed homopolar generator power supply at the University of Texas

    Science.gov (United States)

    Floyd, J. E.; Aanstoos, T. A.

    1984-03-01

    The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.

  13. Direct current insulator based dielectrophoresis (DC-iDEP) microfluidic chip for blood plasma separation

    OpenAIRE

    Mohammadi, Mahdi

    2015-01-01

    Lab-on-a-Chip (LOC) integrated microfluidics has been a powerful tool for new developments in analytical chemistry. These microfluidic systems enable the miniaturization, integration and automation of complex biochemical assays through the reduction of reagent use and enabling portability.Cell and particle separation in microfluidic systems has recently gained significant attention in many sample preparations for clinical procedures. Direct-current insulator-based dielectrophoresis (DC-iDEP) ...

  14. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    International Nuclear Information System (INIS)

    Liu, C.-P.; Lin, T.-K.; Chang, Y.-H.; Yu, C.-S.; Wu, K.-T.; Wang, S.-J.; Ying, T.-F.; Huang, D.-R.

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model

  15. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    CERN Document Server

    Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.

  16. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  17. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  18. The shift of energy regulatory powers under the framework of Directive 2009/72/EC

    International Nuclear Information System (INIS)

    Grimm, N. S.

    2011-01-01

    The paper examines the powers of Member States' national regulatory authorities under the framework of Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC (OJEU L 176/37) and analyses the implications of framework of Directive 2009/72/EC on the national laws of the Member States, in particular on the Austrian and German constitutional, administrative and energy laws. The Introductory Part gives a historical overview of the development of national energy regulators under European energy legislation. This Part shows that the national regulatory authorities attract increased attention and that their regulatory powers are on a constant rise. In order to understand the huge impact of the framework of Directive 2009/72/EC on the regulatory regimes of the Member States, this Part briefly examines the former and current powers of the national energy regulators under Austrian and German law. Part Two analyses whether the powers conferred upon national energy regulators under the framework of Directive 2009/72/EC have been enhanced in comparison to those established under the framework of Directive 2003/54/EC. The main focus lies thereby on the propositions made by the European Commission in its Proposal for a Directive of the European Parliament and of the Council amending Directive 2003/54/EC concerning common rules for the internal market in electricity (COM (2007) 528 final, 2.1) and laid down in Directive 2009/72/EC. Part Two comes to the conclusion that the powers of the national energy regulators under the framework of Directive 2009/72/EC have indeed been enhanced in comparison to former regime of Directive 2003/54/EC. Part Three demonstrates that the enhancement of national energy regulators' powers does not benefit the Member States. On the contrary, they lose considerable powers of control over their own national energy regulators. While

  19. High-current power supply for accelerator magnets

    International Nuclear Information System (INIS)

    Bourkland, K.R.; Winje, R.A.

    1978-01-01

    A power supply for controlling the current to accelerator magnets produces a high current at a precisely controlled time rate of change by varying the resonant frequency of an RLC circuit that includes the magnet and applying the current to the magnet during a predetermined portion of the waveform of an oscillation. The current is kept from going negative despite the reverse-current characteristics of thyristors by a quenching circuit

  20. Current status of research on power-frequency electric and magnetic fields of research

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Recent scientific literature has suggested a number of possible human health effects which might be associated with exposure to power frequency electric and magnetic fields. Several authoritative reviews of this subject have been published. currently, the major uncertainty and the major research effort is directed to the issue of these fields and cancer. Therefore, this review will be limited to examining the evidence relating prolonged power-frequency electric and magnetic field exposure to cancer in human populations. This paper reports that the CIGRE expert Group has assessed the research literature in the following areas: epidemiological evidence, animal studies, cellular effects, knowledge of mechanisms

  1. Statistical mechanical characteristics of slip-ring induction motors when direct current braking

    Energy Technology Data Exchange (ETDEWEB)

    Kedzior, W; Muchorowski, J; Pienkowski, K

    1980-09-01

    This paper evaluates methods of braking high capacity belt conveyors used in brown coal surface mines in Poland. Complications associated with belt conveyor braking, particularly when a conveyor moves down a slope, are analyzed. A method of calculating mechanical characteristics of wound-rotor induction motors during direct current braking taking into account saturation of magnetic circuit is presented. Characteristics of the SZUr motor with 630 kW power, used in brown coal mining, are also given. Analyses show that motor operation can be efficiently braked in two ways: 1. by changing additional resistance in rotor circuit (e.g. using thyristor controller); 2. by changing intensity of electric current supplied to stator winding (e.g. using a rectifier). (3 refs.) (In Polish)

  2. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  3. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-01-01

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products

  4. Expansion of the high-voltage direct current transmission systems; Netzausbau mit Hochspannungs-Gleichstrom-Uebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Spahic, Ervin; Benz, Thomas; Goerner, Raphael; Sass, Florian [ABB AG, Mannheim (Germany)

    2012-12-15

    In September 2010 the German federal government announced its energy concept for an environmentally friendly, reliable and affordable energy supply. This concept describes a ''path into the era of renewable energy'' up to the year 2050, with electricity production from photovoltaics and wind power taking centre stage. Since the expansion of renewable energy production is mainly taking place in the North (wind power) and the South (PV), this poses a great challenge to the electricity networks. It necessitates the expansion of power transmission systems, notably for transporting electricity generated by wind power in the North to the consumer centres in Western and Southern Germany. However, progress to this end has been very slow. For this reason a technical question now presents itself, namely whether high-voltage direct current technology could possibly offer a solution to the electricity transport problems associated with the energy turnaround.

  5. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  6. Autonomous Energy Sources in the North of the Far East: Current State and Directions of Diversification

    Directory of Open Access Journals (Sweden)

    Boris Grigorievich Saneev

    2018-03-01

    Full Text Available The paper presents the current state of autonomous energy sources in the north of the Far East. Consideration is given to the capacity structures with a focus on industrial and residential autonomous energy sources. One of the main problems facing power supply to residential consumers in the north of the Far East is the insufficiently developed transport infrastructure, which causes complicated fuel delivery patterns, fuel price rise, and hence high electricity generation cost. The changes in the installed capacity of renewable energy sources (RES in the north of the Far East are demonstrated for the period between 2011 and 2015. The research shows the main directions of power production diversification in the north of the Far East. The directions include the use of local fuel types, the development of cogeneration, the involvement of renewable energy sources and small-scale nuclear power plants. The paper presents a forecast for the renewable energy development in the north of the Far East up to 2035, made by the authors. The priority RES projects in the off-grid power supply in the north of the Far East are wind and solar power plants

  7. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    International Nuclear Information System (INIS)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk

    2015-01-01

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping

  8. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Park, Jozeph [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Ahn, Byung Du [School of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Hyun-Suk, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  9. Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors

    Directory of Open Access Journals (Sweden)

    Jing-Yi Chang

    2014-01-01

    Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.

  10. Inverter power module with distributed support for direct substrate cooling

    Science.gov (United States)

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  11. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists

    Science.gov (United States)

    Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta

    2014-01-01

    Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311

  12. Power Testing in Basketball: Current Practice and Future Recommendations.

    Science.gov (United States)

    Wen, Neal; Dalbo, Vincent J; Burgos, Bill; Pyne, David B; Scanlan, Aaron T

    2018-02-01

    Numerous foundational movements performed during basketball are predicated on underlying power-related attributes, including speed, change-of-direction, and jumping. Accordingly, fitness testing batteries for basketball have incorporated an assortment of linear speed tests, change-of-direction tests, and jump tests. However, due to the wide variety of testing options it is difficult for basketball practitioners to select appropriate testing protocols for the assessment of power-related attributes. As a result, there is a need to review the relevant literature to identify game-specific, power-related attributes important in basketball and the most appropriate tests available to assess power-related attributes for basketball practitioners. Therefore, the aims of this review were to: (1) identify essential power-related attributes important in basketball; (2) discuss the suitability of common and novel power-related tests; and (3) provide recommendations for future research and best practice approaches for basketball coaching staff. In this review, we propose a series of novel tests that are more targeted and specific to basketball movements including: (1) 5-m and 10-m linear sprints, (2) Modified Agility T-Test, (3) Change-of-Direction Deficit, (4) lateral bound, (5) Sargent jump, (6) one-step jump, and (7) isometric midthigh pull test. Improved testing of power-related attributes should enable basketball practitioners to develop targeted training plans for enhancing player performance.

  13. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  14. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  15. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  16. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from

  17. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J.J.; Meiden, van der H.J.; Morgan, T.W.; Schram, D.C.; De Temmerman, G.C.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 µF) is parallel-coupled to the current regulated power supply. The current is transiently increased from its

  18. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  19. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  20. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  1. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  2. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  3. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  4. Four-quadrant flyback converter for direct audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  5. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  6. Probabilistic Power Flow Simulation allowing Temporary Current Overloading

    NARCIS (Netherlands)

    W.S. Wadman (Wander); G. Bloemhof; D.T. Crommelin (Daan); J.E. Frank (Jason)

    2012-01-01

    htmlabstractThis paper presents a probabilistic power flow model subject to connection temperature constraints. Renewable power generation is included and modelled stochastically in order to reflect its intermittent nature. In contrast to conventional models that enforce connection current

  7. Probablistic Power Flow Simulations Allowing Temporary Current Overloading

    NARCIS (Netherlands)

    Wadman, W.; Bloemhof, G.; Crommelin, D.; Frank, J.; Ozdemir, A.

    2013-01-01

    This paper presents a probabilistic power flow model subject to connection temperature constraints. Renewable power generation is included and modelled stochastically in order to reflect its intermittent nature. In contrast to conventional models that enforce connection current constraints,

  8. A robust low quiescent current power receiver for inductive power transmission in bio implants

    Science.gov (United States)

    Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin

    2017-05-01

    In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.

  9. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    Science.gov (United States)

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  10. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament

    International Nuclear Information System (INIS)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-01-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB 6 ) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 μsx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H - ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  11. A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters

    Directory of Open Access Journals (Sweden)

    Joaquim Monteiro

    2017-06-01

    Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.

  12. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2011-01-01

    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  13. Transcranial Direct Current Stimulation in Epilepsy.

    Science.gov (United States)

    San-Juan, Daniel; Morales-Quezada, León; Orozco Garduño, Adolfo Josué; Alonso-Vanegas, Mario; González-Aragón, Maricarmen Fernández; Espinoza López, Dulce Anabel; Vázquez Gregorio, Rafael; Anschel, David J; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Class H power amplifier for power saving in fluxgate current transducers

    OpenAIRE

    Velasco Quesada, Guillermo; Román Lumbreras, Manuel; Pérez Delgado, Raul; Conesa Roca, Alfons

    2016-01-01

    This paper presents a new improvement in the design of a fluxgate-based current transducer in order to reduce the power consumption of control electronics. The proposed improvement involves the replacement of the output linear amplifier of the transducer by a class H amplifier. The output amplifier is devoted to the magnetic flux compensation and generates the transducer output current, which is proportional to the current to be measured. In this way, it is possible to reduce significantly th...

  15. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    International Nuclear Information System (INIS)

    Wojcicki, F. R.; Negrisoli, M. E. M.; Franco, C. V.

    2003-01-01

    With the growth of several areas in modern society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO 4 reference electrode. It is believed that corrosion results from stray currents that flow through the ground to close the loop between neighboring towers. Stray currents originate in the lightning rod cables of the power line towers, induced by the strong electromagnetic and electric fields of the energized power lines. The intensity and direction of those currents were measured, indicating substantial values of both their AC and DC components. The potential of the tower ground system, measured in the perpendicular direction of the main axis of the power line, was plotted as a function of the distance to the tower base. The results clearly indicated the tendency to corrosive attack in the anodic towers as reflected by the slope of the plot, whereas no signs of corrosion could be found in the reverse slope, confirming the visual inspection of the foundation. The profile of the potential plots could be changed providing the electric insulation of the lightning rod cable. (Author) 8 refs

  16. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    Science.gov (United States)

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Navy Telemedicine: Current Research and Future Directions

    National Research Council Canada - National Science Library

    Reed, Cheryl

    2002-01-01

    .... This report reviews military and civilian models for evaluating telemedicine systems in order to determine future directions for Navy telemedicine research within the current funding environment...

  18. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper reveals that there are circuit mismatches and a current coupling effect in the direct bonded copper (DBC) layout of a silicon carbide (SiC) MOSFET multichip power module. According to the modelling and the mathematic analysis of the DBC layout, the mismatch of the common source stray i...

  19. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  20. Reversal thyristor-relay direct current commutator

    International Nuclear Information System (INIS)

    Ivanenko, A.I.

    1982-01-01

    A thyristor-relay commutator used for alteration of the leading magnetic field direction in experiments with polarized neutrons is described. The commutator flowsheet is presented. Thyristors, connected so as to allow the relay trigger operation mode, are used as controllable electronic relay. Two connected in series coils with the total inductance of the order of 0.28 H serve as the electronic relay load. The arc-free current commutation is effected at the moment of the minimal current across the load terminals, which allows to easily reverse the current up to 10 A at a volatage, v <= 150 V. The experience gained within a year of operation has shown that the commutator meets the requirements of reliability and tuning

  1. Thermodynamic analysis of a directly heated oxyfuel supercritical power system

    International Nuclear Information System (INIS)

    Chowdhury, A.S.M. Arifur; Bugarin, Luz; Badhan, Antara; Choudhuri, Ahsan; Love, Norman

    2016-01-01

    Highlights: • A thermodynamic analysis of a supercritical power cycle is presented. • The supercritical power cycle is modeled using ASPEN HYSYS®. • A liquid methane and oxygen feed system is more efficient than a gaseous system. • CO_2 recirculated in gas form is 10.6% more efficient than when in liquid form. • Commercially available technologies permit liquid feed system delivery. - Abstract: Directly heated supercritical oxy-fuel gas turbines have potential to provide a higher thermal efficiency and lower pollutant emissions compared to current gas turbine systems. Motivated by the advantages of an oxyfuel-based directly heated supercritical power system, this paper presents an analysis of different operating conditions using ASPEN HYSYS®. This study first investigates the efficiency of gaseous or liquid methane and oxygen feed systems. T-s and P-v diagrams are generated and compared to each other to determine which is more efficient. The analysis revealed that the entropy generated during the combustion process for a liquid feed system is approximately three times higher than when methane and oxygen are compressed in gaseous form and delivered to the combustor and burned. To mitigate the high temperatures (3300 K) of the methane and oxygen combustion reaction, carbon dioxide is recirculated. For this portion of the system, the use of gaseous and liquid carbon dioxide recirculation loops and their corresponding efficiencies are determined. The investigation shows that the system yielded a higher net efficiency of 55.1% when gaseous carbon dioxide is recirculated as a diluent with liquid methane and oxygen delivery to the combustor.

  2. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  3. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  4. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl [California Inst. for Energy and the Environment, Berkeley, CA (United States); Vossos, Vagelis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kloss, Margarita [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for an ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.

  5. Packaging of high-power bars for optical pumping and direct applications

    Science.gov (United States)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  6. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  7. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    Directory of Open Access Journals (Sweden)

    E.G. Shehata

    2015-12-01

    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  8. Direct-current vector control of three-phase grid-connected rectifier-inverter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Hong, Yang-Ki; Xu, Ling [Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35475 (United States)

    2011-02-15

    The three-phase grid-connected converter is widely used in renewable and electric power system applications. Traditionally, control of the three-phase grid-connected converter is based on the standard decoupled d-q vector control mechanism. Nevertheless, the study of this paper shows that there is a limitation in the conventional standard vector control method. Some of the limitations have also been found recently by other researchers. To overcome the shortage of the conventional vector control technique, this paper proposes a new direct-current d-q vector control mechanism in a nested-loop control structure, based on which an optimal control strategy is developed in a nonlinear programming formulation. The behaviors of both the conventional and proposed control methods are compared and evaluated in simulation and laboratory hardware experiment environments, both of which demonstrates that the proposed approach is effective for grid-connected power converter control in a wide system conditions while the conventional standard vector control approach may behave improperly especially when the converter operates beyond its PWM saturation limit. (author)

  9. Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis.

    Science.gov (United States)

    Maeoka, Hiroshi; Matsuo, Atsushi; Hiyamizu, Makoto; Morioka, Shu; Ando, Hiroshi

    2012-03-14

    Pain is a multidimensional experience with sensory-discriminative, cognitive-evaluative and affective-motivational components. Emotional factors such as unpleasantness or anxiety are known to have influence on pain in humans. The aim of this single-blinded, cross over study was to evaluate the effects of transcranial direct current stimulation (tDCS) on emotional aspects of pain in pain alleviation. Fifteen subjects (5 females, 10 males) volunteered to participate in this study. In an oddball paradigm, three categories of 20 pictures (unpleasant, neutral, and pleasant) served as rare target pictures from the International Affective Picture System (IAPS). The power of the delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), and gamma (30-40 Hz) frequency bands in the three categories were measured using electroencephalography during an oddball paradigm at pre- and post-anodal or sham tDCS above the left dorsolateral prefrontal cortex (DLPFC). Results showed that the beta band power was significantly increased, and the alpha band power was significantly decreased during unpleasant pictures after anodal tDCS compared with sham tDCS. Furthermore, regarding unpleasant pictures, subjective reports of Self Assessment Manikin (SAM) for emotional valence after anodal tDCS showed a significant decrease of unpleasantness. Therefore, emotional aspects of pain may be effectively alleviated by tDCS of the left DLPFC as was shown not only by subjective evaluation, but also by objective observation of cerebral neural activity. This processing may be mediated by facilitation of the descending pain inhibitory system through enhancing neural activity of the left DLPFC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. A high-current, high-voltage power supply with special output current waveform for APS injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Despe, O.D.; McGhee, D.G.; Mills, F.E.; Turner, L.R.

    1991-01-01

    This paper describes a high-voltage, high-current power supply for the injector synchrotron dipole magnets at APS. In order to reset the dipole magnets in each cycle two different current waveforms are suggested. The first current waveform consists of three sections, namely: dc-reset, linear ramp, and recovery sections where injection is done ''on the fly''. The second current waveform consists of six different sections, dc-reset, transition to injection level, injection flat level, parabolic, linear ramp and recovery sections. The effect of such waveforms on the beam is discussed and the power supply limitations to follow such waveforms are given. The power supply limitations are due to the power components and control loops. The reference for the current loop is generated by a DAC which is discussed

  11. Four-quadrant flyback converter for direct audio power amplification

    OpenAIRE

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better efficiency, higher level of integration and lower component count.

  12. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Science.gov (United States)

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  13. Effect of Cathodal Transcranial Direct Current Stimulation on a Child with Involuntary Movement after Hypoxic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Mayumi Nagai

    2018-01-01

    Full Text Available The aim of the study was to investigate the effect of cathodal transcranial direct current stimulation to the supplementary motor area to inhibit involuntary movements of a child. An 8-year-old boy who developed hypoxic encephalopathy after asphyxia at the age of 2 had difficulty in remaining standing without support because of involuntary movements. He was instructed to remain standing with his plastic ankle-foot orthosis for 10 s at three time points by leaning forward with his forearms on a desk. He received cathodal or sham transcranial direct current stimulation to the supplementary motor area at 1 mA for 10 min. Involuntary movements during standing were measured using an accelerometer attached to his forehead. The low-frequency power of involuntary movements during cathodal transcranial direct current stimulation significantly decreased compared with that during sham stimulation. No adverse effects were observed. Involuntary movement reduction by cathodal stimulation to supplementary motor areas suggests that stimulations modulated the corticobasal ganglia motor circuit. Cathodal stimulation to supplementary motor areas may be effective for reducing involuntary movements and may be safely applied to children with movement disorders.

  14. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  15. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  16. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-05-15

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle.

  17. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    International Nuclear Information System (INIS)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun

    2014-01-01

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle

  18. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  19. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  20. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  1. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.

    Science.gov (United States)

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-08-01

    The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.

  2. Mechanical, tribological and corrosion properties of CrBN films deposited by combined direct current and radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Jahodova, Vera; Ding, Xing-zhao; Seng, Debbie H.L.; Gulbinski, W.; Louda, P.

    2013-01-01

    Cr–B–N films were deposited on stainless steel substrates by a combined direct current and radio frequency (RF) reactive unbalanced magnetron sputtering process using two elemental Cr and one compound BN targets. Boron content in the as-deposited films was qualitatively analyzed by time-of-flight secondary ion mass spectroscopy. Films' microstructure, mechanical and tribological properties were characterized by X-ray diffraction, nanoindentation and pin-on-disk tribometer experiments. Corrosion behavior of the Cr–B–N films was evaluated by electrochemical potentiodynamic polarization method in a 3 wt.% NaCl solution. All the films were crystallized into a NaCl-type cubic structure. At lower RF power applied on the BN target (≤ 600 W), films are relatively randomly oriented, and films' crystallinity increased with increasing RF power. With increasing RF power further (≥ 800 W), films became (200) preferentially oriented, and films' crystallinity decreased gradually. With incorporation of a small amount of boron atoms into the CrN films, hardness, wear- and corrosion-resistance were all improved evidently. The best wear and corrosion resistance was obtained for the film deposited with 600 W RF power applied on the BN target. - Highlights: • CrBN films deposited by direct current and radio frequency magnetron sputtering. • CrBN exhibited higher hardness, wear- and corrosion-resistance than pure CrN. • The best wear- and corrosion-resistant film was deposited with 600 W RF power

  3. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  4. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  5. Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Valero, David; Ortiz, Juan M.; Exposito, Eduardo; Montiel, Vicente; Aldaz, Antonio [Grupo de Electroquimica Aplicada y Electrocatalisis, Departamento de Quimica Fisica, Instituto Universitario de Electroquimica, Universidad de Alicante, Ap 99, Alicante 03080 (Spain)

    2008-03-15

    The feasibility of the use of an electrocoagulation system (EC) directly powered by a photovoltaic (PV) array has been demonstrated. The model pollutant used was a reactive textile dye Remazol Red RB 133. It has been proved that PV array configuration is a factor of great influence on the use of the generated power. The optimum PV array configuration must be reshaped depending on the instantaneous solar irradiation. A useful and effective methodology to adjust the EC-PV system operation conditions depending on solar irradiation has been proposed. The current flow ratio, J{sub v}, is established as the control parameter. (author)

  6. Decentralized Load Sharing in a Low-Voltage Direct Current Microgrid With an Adaptive Droop Approach Based on a Superimposed Frequency

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2017-01-01

    Conventional droop methods for load sharing control in low-voltage direct current microgrids suffer from poor power sharing and voltage regulation, especially in the case when operating many dc sources with long feeders. Hence, the communication-based approaches are employed to improve the load s...

  7. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  8. Use of Directional Spectra for Detection of Engine Cylinder Power Fault

    Directory of Open Access Journals (Sweden)

    Chong-Won Lee

    1997-01-01

    Full Text Available A diagnostic method, which uses the two-sided directional power spectra of complex-valued engine vibration signals, is presented and tested with four-cylinder compression and spark ignition engines for the diagnosis of cylinder power faults. As spectral estimators, the maximum likelihood and FFT methods are compared, and the multi-layer neural network is employed for pattern recognition. Experimental results show that the success rate for identifying the misfired cylinder is much higher with the use of two-sided directional power spectra than conventional one-sided power spectra.

  9. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  10. Nuclear power for sustainable development. Current status and future prospects

    International Nuclear Information System (INIS)

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)

  11. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  12. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  13. Effect of alternating and direct currents on Pseudomonas ...

    African Journals Online (AJOL)

    The test media were Muller-Hinton agar and eosin methylene blue (EMB) agar. In this research Pseudomonas aeruginosa which was isolated from patients wounds was examined with levels of alternating and direct current (AC and DC) electrical stimulation (1.5V, 3.5V, 5.5V and 10V) to see if these currents could inhibit P.

  14. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  15. Current and Future Research Directions in Requirements Engineering

    Science.gov (United States)

    Cheng, Betty H. C.; Atlee, Joanne M.

    In this paper, we review current requirements engineering (RE) research and identify future research directions suggested by emerging software needs. First, we overview the state of the art in RE research. The research is considered with respect to technologies developed to address specific requirements tasks, such as elicitation, modeling, and analysis. Such a review enables us to identify mature areas of research, as well as areas that warrant further investigation. Next, we review several strategies for performing and extending RE research results, to help delineate the scope of future research directions. Finally, we highlight what we consider to be the “hot” current and future research topics, which aim to address RE needs for emerging systems of the future.

  16. NE seeks to sell power directly to customers

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Nuclear Electric, the state-owned company that operates nuclear power stations in England and Wales, has applied to compete directly with privatized electricity generating companies in the sale of electricity to major customers. Since its formation in 1990, NE has had to sell all of its electrical output through the so-called pool operated by the National Grid Company, and then to 12 regional distribution companies that have franchises for about 75 percent of electricity consumption in their regions. On the other hand, the two large companies that took over the fossil-fuel power stations at the time of privatization, and other new independent companies that are building combined-cycle gas-turbine plants, are allowed to conclude supply contracts directly with large industrial customers

  17. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    Science.gov (United States)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  18. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yap Hoon

    2017-02-01

    Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.

  19. Direct heuristic dynamic programming for damping oscillations in a large power system.

    Science.gov (United States)

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  20. High current proton linear accelerators and nuclear power

    International Nuclear Information System (INIS)

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  1. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  2. Impact of Negative Sequence Current Injection by Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Göksu, Ömer; Teodorescu, Remus

    2013-01-01

    This paper presents an analysis of the impact from negative sequence current injection by wind power plants in power systems under steady-state and short-term unbalanced conditions, including faults. The separate positive and negative sequence current control capability of the grid-side converters...... of full scale converter type wind turbines may be utilized to alter voltage imbalance at the point of connection and further into the grid, in turn changing the resultant negative sequence current flow in the grid. The effects of such control actions have been analyzed and discussed through theoretical...

  3. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  4. Analysis of dynamic behavior of the back-to-back High Voltage Direct Current link model as part of electrical power system

    Directory of Open Access Journals (Sweden)

    Rudnik Vladimir

    2017-01-01

    Full Text Available One of the main directions of the development of electric power systems is the introduction of technologies based on high-power semiconductor switches, such as FACTS devices and HVDC technologies. These systems effectively solve a number of urgent tasks of EPS, connected with asynchronous connection of EPS, transmission of electricity, improve local and systemic flexibility and reliability of EPS, increasing the capacity of network elements that contains a “weak” connection. However, the implementation and operation of mentioned technologies in the EPS determines the need for a wide range of analysis and research that can only be done with the help of mathematical modeling.

  5. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  6. New directions in electric power financing

    International Nuclear Information System (INIS)

    Jechoutek, K.G.; Lamech, Ranjit

    1995-01-01

    This paper argues that it is necessary to raise the eyes from the current focus on independent power projects, buttressed by guarantees, to the longer horizon of electric power financing in open markets. Transitional strategies will need to move beyond the commonly seen IPP activity that occurs without fundamental sector reform, and demand-side incentives that introduce further market distortions. These efforts will have to focus on macroeconomic stabilization, removal of price distortions, as well as sector and corporate reform. Mobilization of domestic capital will be essential for sustainable sector financing. Although guarantees to encourage power sector investment can be designed to selectively cover risks, their elimination through fundamental sector reform should be the ultimate goal. Over the longer-term traditional corporate finance should become a more common financing strategy than project finance. Innovations in performance risk management and consumer credit will be crucial to the financing of energy efficiency. (author)

  7. Fundamental X-mode electron cyclotron current drive using remote-steering symmetric direction antenna at larger steering angles

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Sato, K.N.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ohkubo, K.; Kubo, S.; Shimozuma, T.; Ito, S.; Hasegawa, M.; Nakamura, K.; Notake, T.; Hoshika, H.; Maezono, N.; Nishi, S.; Nakashima, K.

    2005-01-01

    A remote steering antenna has been newly developed for Electron Cyclotron Heating and Current Drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. It is a first application of the remote steering antenna to the ECH/ECCD experiments under the conditions relevant to International Thermonuclear Experimental Reactor. Our launcher is a symmetric direction antenna with extended steering capability. The larger steering angles of 8-19 degrees are available, in addition to that near 0 degree. The output beam from the antenna is the well-defined Gaussian beam with a correct steering angle. The Gaussian content and the steering angle accuracy are 0.85 and -0.3 degrees, respectively. Antenna transmission efficiency in the high power test is evaluated as 0.95. The efficiencies at the low and high power tests are consistent with those in the calculation with higher-order modes. The difference between plasma currents increased at co- and counter-steering injections [+/-19 degrees] is clearly observed in the superposition to the Lower Hybrid Current Driven (LHCD) plasma of the fundamental X-mode injection. (author)

  8. A Review on Direct Power Control for Applications to Grid Connected PWM Converters

    Directory of Open Access Journals (Sweden)

    T. A. Trivedi

    2015-08-01

    Full Text Available The Direct Power Control strategy has become popular as an alternative to the conventional vector oriented control strategy for grid connected PWM converters. In this paper, Direct Power Control as applied to various applications of grid connected converters is reviewed. The Direct Power Control for PWM rectifiers, Grid Connected DC/AC inverters applications such as renewable energy sources interface, Active Power Filters, Doubly Fed Induction Generators and AC-DC-AC converters are discussed. Control strategies such as Look-Up table based control, predictive control, Virtual Flux DPC, Model based DPC and DPC-Space Vector Modulation are critically reviewed. The effects of various key parameters such as selection of switching vector, sampling time, hysteresis band and grid interfacing on performance of direct power controlled converters are presented.

  9. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  10. Advance Directives and Powers of Attorney in Intensive Care Patients.

    Science.gov (United States)

    de Heer, Geraldine; Saugel, Bernd; Sensen, Barbara; Rübsteck, Charlotte; Pinnschmidt, Hans O; Kluge, Stefan

    2017-06-05

    Advance directives and powers of attorney are increasingly common, yet data on their use in clinical situations remain sparse. In this single center cross-sectional study, we collected data by questionnaire from 1004 intensive care patients in a university hospital. The frequencies of advance directives and powers of attorney were determined, and the factors affecting them were studied with multivariate logistic regression analysis. Usable data were obtained from 998 patients. 51.3% stated that they had prepared a document of at least one of these two kinds. Among them, 39.6% stated that they had given the relevant document(s) to the hospital, yet such documents were present in the patient's hospital record for only 23%. 508 patients stated their reasons for preparing an advance directive or a power of attorney: the most common reason (48%) was the fear of being at other people's mercy, of the lack of self-determination, or of medical overtreatment. The most important factors associated with a patient's statement that he/she had prepared such a document were advanced age (advance directive: 1.022 [1.009; 1.036], p = 0.001; power of attorney: 1.027 [1.014; 1.040], padvance directive: 1.622 [1.138; 2.311], padvance directives and 44.1% of the powers of attorney that were present in the hospital records were poorly interpretable because of the incomplete filling-out of preprinted forms. Half of the patients who did not have such a document had already thought of preparing one, but had not yet done so. For patients hospitalized in intensive care units, there should be early discussion about the presence or absence of documents of these kinds and early evaluation of the patient's concrete wishes in critical situations. Future studies are needed to determine how best to assure that these documents will be correctly prepared and then given over to hospital staff so that they can take their place in the patient's record.

  11. Systems modeling for a laser-driven IFE power plant using direct conversion

    International Nuclear Information System (INIS)

    Meier, W R

    2008-01-01

    A variety of systems analyses have been conducted for laser driver IFE power plants being developed as part of the High Average Power Laser (HAPL) program. A key factor determining the economics attractiveness of the power plant is the net power conversion efficiency which increases with increasing laser efficiency, target gain and fusion-to-electric power conversion efficiency. A possible approach to increasing the power conversion efficiency is direct conversion of ionized target emissions to electricity. This study examines the potential benefits of increased efficiency when the expanding plasma is inductively coupled to an external circuit allowing some of the ion energy to be directly converted to electricity. For base case direct-drive targets with approximately 24% of the target yield in ions, the benefits are modest, especially for chamber designs that operate at high temperature and thus already have relatively high thermal conversion efficiencies. The reduction in the projected cost of electricity is ∼5-10%

  12. Design and implementation of high performance direct power control of three-phase PWM rectifier, via fuzzy and PI controller for output voltage regulation

    International Nuclear Information System (INIS)

    Bouafia, Abdelouahab; Krim, Fateh; Gaubert, Jean-Paul

    2009-01-01

    This paper proposes direct power control (DPC) for three-phase PWM rectifiers using a new switching table, without line voltage sensors. The instantaneous active and reactive powers, directly controlled by selecting the optimum state of the converter, are used as the PWM control variables instead of the phase line currents being used. The main goal of the control system is to maintain the dc-bus voltage at the required level, while input currents drawn from the power supply should be sinusoidal and in phase with respective phase voltages to satisfy the unity power factor (UPF) operation. Conventional PI and a designed fuzzy logic-based controller, in the dc-bus voltage control loop, have been used to provide active power command. A dSPACE based experimental system was developed to verify the validity of the proposed DPC. The steady-state, and dynamic results illustrating the operation and performance of the proposed control scheme are presented. As a result, it was confirmed that the novel DPC is much better than the classical one. Line currents very close to sinusoidal waveforms (THD < 2%) and good regulation of dc-bus voltage are achieved using PI or fuzzy controller. Moreover, fuzzy logic controller gives excellent performance in transient state, a good rejection of impact load disturbance, and a good robustness

  13. Research on trading patterns of large users' direct power purchase considering consumption of clean energy

    Science.gov (United States)

    Guojun, He; Lin, Guo; Zhicheng, Yu; Xiaojun, Zhu; Lei, Wang; Zhiqiang, Zhao

    2017-03-01

    In order to reduce the stochastic volatility of supply and demand, and maintain the electric power system's stability after large scale stochastic renewable energy sources connected to grid, the development and consumption should be promoted by marketing means. Bilateral contract transaction model of large users' direct power purchase conforms to the actual situation of our country. Trading pattern of large users' direct power purchase is analyzed in this paper, characteristics of each power generation are summed up, and centralized matching mode is mainly introduced. Through the establishment of power generation enterprises' priority evaluation index system and the analysis of power generation enterprises' priority based on fuzzy clustering, the sorting method of power generation enterprises' priority in trading patterns of large users' direct power purchase is put forward. Suggestions for trading mechanism of large users' direct power purchase are offered by this method, which is good for expand the promotion of large users' direct power purchase further.

  14. Design and Construction of Variable Direct Current Speed Drive ...

    African Journals Online (AJOL)

    controlled rectifiers from the viewpoint of simplicity and cost effectiveness to act as power converter and controller. Design and construction of constituent circuits such as acceleration/deceleration, speed and current amplifier and the trigger ...

  15. A superconducting direct-current limiter with a power of up to 8 MVA

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  16. A superconducting direct-current limiter with a power of up to 8 MVA

    Science.gov (United States)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  17. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  18. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine; Chen, Chun-Wei; Hsu, Po-Chien; Tseng, Wei-Min; Wu, Min-Sheng

    2012-01-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result

  19. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  20. Soft commutated direct current motor [summary of proposed paper

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    1998-10-22

    A novel soft commutated direct current (DC) motor is introduced. The current of the commutated coil is intentionally drained before the brush disconnects the coil. This prevents the spark generation that normally occurs in conventional DC motors. A similar principle can be applied for DC generators.

  1. The Development of Models for Assessment of the Geomagnetically Induced Currents Impact on Electric Power Grids during Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    VAKHNINA, V. V.

    2015-02-01

    Full Text Available A model and an algorithm for the calculation of the functioning of an electric power grid of arbitrary configuration and complexity during geomagnetic storms were developed. The calculations were performed in the MATLAB mathematical package and the Simulink environment. The binding of objects to geographical coordinates is realized in the model, which enables to determine the matrix of potentials of geoelectric fields in nodal points. In order to define the instantaneous magnetizing currents, the power transformers are designed on the basis of the T-shaped equivalent circuit with a nonlinear mutual inductance of magnetization branch. Calculation of RMS values of active, reactive and total power values in all the elements is done with regard to the impact of harmonic components of the current and voltage. The results of modeling of the impact of geomagnetic storms of various intensity with the west-east direction of the geoelectric field vector for Samara region electric power grid are given.

  2. A direct current amplifier with linear or logarithmic response; Amplificateur courant continu a reponse lineaire ou logarithmique

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Chandanson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The following paper examines the conditions governing the construction of an instrument with logarithmic response, capable of measuring currents between 10{sup -10} A and 10{sup -4} A. The development is described of a type of stabilised direct current amplifier, designed particularly to operate in a Pile control board, giving indications proportional either to the power, on to the log. of this power, and which may also be linked to an instrument for measuring reactivity. (author) [French] On examine dans ce qui suit les conditions qui president a la realisation d'un ensemble a reponse logarithmique, utilisable pour mesurer des courants compris entre 10{sup -10} A et 10{sup -4} A. On decrit la realisation d'un type d'amplificateur courant continu stable, destine plus specialement a fonctionner dans un tableau de commande de Pile, donnant des indications proportionnelles soit a la puissance, soit au logarithme de cette puissance et de plus associe avec un ensemble de mesure de reactivite. (auteur)

  3. Study of pulse stretching in high current power supplies using multipulse techniques

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    Considerable interest exists at Fermilab to increase the pulse width of the Neutrino Focusing Horn to permit an increase in beam spill length from twenty (20) microseconds to one (1) millisecond. Two techniques to do this were examined: (1) a high current transformer, and (2) increased bank capacitance using the multi-power supply technique. The transformer is the most straightforward conceptually; it is, however, a complicated device requiring sizable changes to the existing horn power supply. This alternative is briefly reviewed. The second scheme involves pulsing a 20 kv 200 ka power supply to establish the required load current and then maintaining this current by the sequential pulsing of a number of low voltage high current power supplies. This alternative is discussed in detail with the results of tests performed on the Fermilab Focusing Horn System

  4. Development of a current-type PWM converter with high power factor. 1

    International Nuclear Information System (INIS)

    Miura, Yushi; Matsukawa, Makoto; Miyachi, Kengo; Kimura, Toyoaki

    1998-01-01

    A power supply system for superconducting poloidal field coils of a next generation tokamak-type fusion device can be operated on the relatively low voltage for the duration of discharge except the plasma initiation. In the case of the conventional phase-controlled thyristor converters are adopted in such a system, the input power factor would be low in average, and a reactive power fluctuation caused by the change of DC output voltage may produce serious effects on the commercial transmission line. From the above viewpoint, a current-type PWM (Pulse Width Modulation) converter, which can work with the power factor of unity for the input power, is regarded as one of the promising candidates of the converters for the power supplies of next generation fusion devices. Hence, a 100kW-class current-type PWM converter has been developed by using IGBT (Insulated Gate Bipolar Transistor) as switching devices. In this development, the basic performance has been preliminary investigated whether this converter is applicable to the power supply for the next generation fusion device. In addition, two different PWM control methods were examined whether these methods can realize a unit power factor and suppress the transient oscillation of converter input current at the same time in case that the reference of DC output current is changed rapidly. (author)

  5. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  6. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  7. Measurement of direct currents of under 10-10 ampere and of resistances of 1012 Ω for a direct current

    International Nuclear Information System (INIS)

    Vagner, J.

    1965-01-01

    Measurement of weak direct currents by Townsend's method using a vibrating condenser electrometer. Development of a current generator giving a pico-ampere independently of the resistance of the circuit used. Development of generators giving currents which may be adjusted continuously and exactly (0.1 to 1 pico-ampere, 1 to 10 pico-amperes, 10 to 100 pico-amperes). Measurement of very high resistances (10 12 Ω) by three different methods. Graphs are made by plotting the value of the resistance against the potential difference applied across it (from 50 milli-volts to 50 volts). Two methods use adjustable current generators and the third is applicable to the measurement of resistances of between 10 7 and 10 13 Ω using a series of condensers ranging from 50 pico-farads to 10 micro-farads. The accuracy of the measurements is between 0. 5 and 1 per cent. (author) [fr

  8. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    Science.gov (United States)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  9. AC over-current test results of YBCO conductor for YBCO power transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The single-layer coils with a diameter of 250 mm and 12 turns were manufactured with YBCO tapes with a CuNi- or Cu-Tape. The AC over-current tests were carried out in subcooled liquid nitrogen at 66 K and 74 K to develop power transformers with current limiting function. The AC over-current was two to seven times larger than the I c of conductor and it was reduced to the same level of I c . The I c of model coils did not degrade. The test results showed the possibility of YBCO superconducting transformers with current limiting function. We are developing elemental technology for 66 kV/6.9 kV 20 MVA-class YBCO power transformer. The YBCO transformer is considered to have a possibility to stabilize the power system by improving function of fault current limiting. Current limiting behavior functions over critical current flows. There is a possibility that superconducting characteristic may be damaged due to increase in temperature of YBCO tapes. Therefore, we have taken a measure to combine YBCO tape with CuNi tape or Cu Tape. We manufactured model coils using these conductors and conducted the AC over-current tests. The test current was two to seven times larger than the I c of conductor and it was damped with time from its maximum value according to the generation of conductor resistance. We verified the effectiveness of current limiting characteristics. In these tests, the I c of model coil did not degrade. We consider this conductor to be able to withstand AC over-current with the function of current limiting.

  10. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.

    Science.gov (United States)

    Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S

    2017-09-01

    Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford

  11. Direction-dependent stopping power and beam deflection in anisotropic solids

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1989-01-01

    Directional effects on the motion of swift ions in anisotropic media are studied. The stopping power is a function of the direction of the velocity relative to the principle axes of the medium, and there is a nonzero lateral force on the ion tending to bend its trajectory. These effects arise from the anisotropy of the dielectric response, and are distinct from channeling. Simple expressions are derived for the stopping power and lateral force in the nonrelativistic high-velocity limit, and calculations are performed for crystalline graphite. 6 refs., 7 figs

  12. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  13. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)

  14. The current status of Korea's Nuclear Power Plant Industry and the Need for International Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woo [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2008-04-15

    As an executive in charge of the nuclear power plant sector at Doosan Heavy Industries and Construction ('Doosan'), which is the nation's only major supplier of nuclear power plant equipment and materials, I would like to tell you about how the nation's nuclear power plant industry has developed and in what direction it is currently expected to advance, with the focus on my company's nuclear business activities. In 1980, Doosan built a large factory in Chang won with the aim of engaging in the industrial plant business, including production of power plant equipment and materials. This factory is now capable of producing equipment and materials for large-capacity power plants, ranging from the production of casting and forging to the final assembly of power plant equipment. The Korean government took the dramatic step of integrating power plant facilities of several companies into one entity, and have Doosan take over it. The nation continued to build nuclear power plants while making efforts to achieve self-reliance in the relevant technology.

  15. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Chemello, Elena; Castellazzi, Paola; Filippetti, Mirko; Brugnera, Annalisa; Gandolfi, Marialuisa; Waldner, Andreas; Saltuari, Leopold; Smania, Nicola

    2018-01-01

    Preliminary evidence showed additional effects of anodal transcranial direct current stimulation over the damaged cerebral hemisphere combined with cathodal transcutaneous spinal direct current stimulation during robot-assisted gait training in chronic stroke patients. This is consistent with the neural organization of locomotion involving cortical and spinal control. The cerebellum is crucial for locomotor control, in particular for avoidance of obstacles, and adaptation to novel conditions during walking. Despite its key role in gait control, to date the effects of transcranial direct current stimulation of the cerebellum have not been investigated on brain stroke patients treated with robot-assisted gait training. To evaluate the effects of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke. After balanced randomization, 20 chronic stroke patients received ten, 20-minute robot-assisted gait training sessions (five days a week, for two consecutive weeks) combined with central nervous system stimulation. Group 1 underwent on-line cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation. Group 2 received on-line anodal transcranial direct current stimulation over the damaged cerebral hemisphere + cathodal transcutaneous spinal direct current stimulation. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. The significant differences in the 6-minute walk test noted between groups at the first post-treatment evaluation (p = 0.041) were not maintained at either the 2-week (P = 0.650) or the 4-week (P = 0.545) follow-up evaluations. Our preliminary findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional

  16. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...

  17. Social power and social class: conceptualization, consequences, and current challenges.

    Science.gov (United States)

    Rucker, Derek D; Galinsky, Adam D

    2017-12-01

    This article offers a primer on social power and social class with respect to their theoretical importance, conceptual distinction, and empirical relationship. We introduce and define the constructs of social power, social class, and one's psychological sense of power. We next explore the complex relationship between social power and social class. Because social class can produce a sense of power within an individual, studies on social power can inform theory and research on social class. We conclude with a discussion of the current challenges and future opportunities for the study of social power and social class. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. LANMAS core: Update and current directions

    International Nuclear Information System (INIS)

    Claborn, J.

    1995-01-01

    Local Area Network Material Accountability system (LANMAS) core software provides the framework of a material accountability system. It tracks the movement of material throughout a site and generates the required material accountability reports. LANMAS is a net-work- based nuclear material accountability system that runs in a client/server mode. The database of material type and location resides on the server, while the user interface runs on the client. The user interface accesses the data stored on the server via a network. The LANMAS core can be used as the foundation for building required materials control and accountability (MCA) functionality at any site requiring a new MCA system. An individual site will build on the LANMAS core by supplying site-specific software. This paper will provide an update on the current LANMAS development activities and discuss the current direction of the LANMAS project

  19. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  20. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M

    2018-04-01

    Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  1. Direct detection of cysteine using functionalized BaTiO3 nanoparticles film based self-powered biosensor.

    Science.gov (United States)

    Selvarajan, Sophia; Alluri, Nagamalleswara Rao; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2017-05-15

    Simple, novel, and direct detection of clinically important biomolecules have continuous demand among scientific community as well as in market. Here, we report the first direct detection and facile fabrication of a cysteine-responsive, film-based, self-powered device. NH 2 functionalized BaTiO 3 nanoparticles (BT-NH 2 NPs) suspended in a three-dimensional matrix of an agarose (Ag) film, were used for cysteine detection. BaTiO 3 nanoparticles (BT NPs) semiconducting as well as piezoelectric properties were harnessed in this study. The changes in surface charge properties of the film with respect to cysteine concentrations were determined using a current-voltage (I-V) technique. The current response increased with cysteine concentration (linear concentration range=10µM-1mM). Based on the properties of the composite (BT/Ag), we created a self-powered cysteine sensor in which the output voltage from a piezoelectric nanogenerator was used to drive the sensor. The potential drop across the sensor was measured as a function of cysteine concentrations. Real-time analysis of sensor performance was carried out on urine samples by non-invasive method. This novel sensor demonstrated good selectivity, linear concentration range and detection limit of 10µM; acceptable for routine analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  3. Influence of Waveform and Current Direction on Short-Interval Intracortical Facilitation

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H

    2014-01-01

    -posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). RESULTS: Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas...... monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. CONCLUSION: SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly......BACKGROUND: Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction...

  4. Ground failure in direct current systems of the Itaipu Hydroelectric Power Plant, Parana, Brazil. Impact in the operation; Falla a tierra en sistemas de corriente continua en la Central Hidroelectrica Itaipu, PR, Brasil. Impacto en la operacion

    Energy Technology Data Exchange (ETDEWEB)

    Soto Santacruz, Heriberto [Itaipu Binacional, Foz do Iguacu, PR (Brazil)]. E-mail: soto@itaipu.gov.py

    1998-07-01

    The objective of this work is to share with other companies the operation experience obtained by researching the direct current systems ground failure, in the Itaipu Hydroelectric Power Plant. During the research process electrical and/or electronic components can be damaged, and also human failures can occurred during the circuit connection and disconnection manoeuvres, necessary for the identification of the components causing the failures.

  5. Safety Parameter Considerations of Anodal Transcranial Direct Current Stimulation in Rats

    Science.gov (United States)

    2017-10-01

    Richardson, J.D., Baker, J.M., Rorden, C., 2011. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a...AFRL-RH-WP-TR-2017-0069 Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats R. Andy McKinley...response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the

  6. Reliability of emergency alternating-current power systems at nuclear power plants: a discussion of NUREG/CR-2989

    International Nuclear Information System (INIS)

    Battle, R.E.

    1985-01-01

    The reliability of emergency alternating-current power systems typical of most nuclear power plants was estimated by using fault-tree analysis of selected typical designs. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports and from operating experience information obtained from nuclear plant licensees. Trends of diesel generator independent failure on demand are included. No one or two improvements can be made at all plants to increase significantly the industry-average emergency alternating-current power system reliability; the most beneficial improvements are varied and plant specific

  7. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  8. Gas-steam combined cycles for power generation: Current state-of-the-art and future prospects

    International Nuclear Information System (INIS)

    Macchi, E.; Chiesa, P.; Consonni, S.; Lozza, G.

    1992-01-01

    The first part of this paper points out the many factors which, after years of stagnation in the electric power industry, are giving rise to a true revolution in power generation engineering: the passing from closed cycles, using steam as the working fluid and energy sources external to the power cycle, to the use of open cycles, in which the primary energy source, in the form of a fuel, is directly immersed in the working fluid of the engine. Attention is given to the advantages in terms of energy and cost savings, greater flexibility in energy policy options and pollution abatement which are now being afforded through the use of gas turbines with combined gas-steam cycles. The second part of the paper deals with an assessment of the current state-of-the-art of the technology relative to these innovative power systems. The assessment is followed by a review of foreseen developments in combined cycle system design, choice of construction materials, type of cooling systems, operating temperatures and performance capabilities

  9. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  10. Subcortical structures in humans can be facilitated by transcranial direct current stimulation

    NARCIS (Netherlands)

    Nonnekes, Johan Hendrik; Arrogi, Anass; Munneke, Moniek; van Asseldonk, Edwin H.F.; Oude Nijhuis, Lars; Geurts, Alexander; Weerdesteyn, Vivian

    2014-01-01

    BACKGROUND: Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability via application of a weak direct current. Interestingly, it was demonstrated in cats that tDCS can facilitate subcortical structures as well (Bolzonii et al., J

  11. LANMAS core: Update and current directions

    International Nuclear Information System (INIS)

    Claborn, J.

    1994-01-01

    Local Area Network Material Accountability System (LANMAS) core software will provide the framework of a material accountability system. LANMAS is a network-based nuclear material accountability system. It tracks the movement of material throughout a site and generates the required reports on material accountability. LANMAS will run in a client/server mode. The database of material type and location will reside on the server, while the user interface runs on the client. The user interface accesses the server via a network. The LANMAS core can be used as the foundation for building required Materials Control and Accountability (MC ampersand A) functionality at any site requiring a new MC ampersand A system. An individual site will build on the LANMAS core by supplying site-specific software. This paper will provide an update on the current LANMAS development activities and discuss the current direction of the LANMAS project

  12. Experimental study of anti-tumor activity of direct current

    International Nuclear Information System (INIS)

    Ito, Hisao; Hashimoto, Shozo

    1989-01-01

    The anti-tumor activity of direct current combined with radiation was studied. The experiments were performed with fibrosarcomas (FSA, NFSA) syngenetic to C3H mice. Direct current (0.6mA, 120min) alone was effective to reduce the tumor sizes, but could not cure the tumors. When the direct current therapy (DC therapy) was combined with radiation the DC therapy following radiation was more effective than that before radiation. Using TCD 50 assay, the DC therapy enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.2. However, tumor control rates by the combination therapy were more improved at the smaller doses of radiation than at the larger ones. When the single DC therapy (0.6mA, 120min) was applied immediately after the first radiation of fractionated one the combination therapy still showed the enhanced effect. However, both DC therapy and the radiation therapy were divided in three fractions, and the DC therapy (0.6mA, 40min) was applied after each radiation. Tumor growth retardation by the combination therapy was no different from that by radiation alone. This result suggests that there might be a minimum required dose of coulombs to show the effect of the combination therapy. (author)

  13. Design and implementation of predictive filtering system for current reference generation of active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)

    2007-02-15

    The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)

  14. Direct-Current Forced Interruption and Breaking Performance of Spiral-Type Contacts in Aero Applications

    Directory of Open Access Journals (Sweden)

    Wenlei Huo

    2017-05-01

    Full Text Available This paper analyses the transient characteristics and breaking performance of direct-current (DC forced-interruption vacuum interrupters in 270 V power-supply systems. Three stages are identified in forced interruption: the DC-arcing stage, current-commutation stage, and voltage-recovery stage. During the current-commutation stage, the reverse peak-current coefficient k, which is a key design factor, is used to calculate the rate of current at zero-crossing (di/dt. MATLAB/Simulink simulation models are established to obtain the transient characteristics influenced by the forced-commutation branch parameters and the coefficient k. To study the breaking performance of spiral-type contacts, experiments are conducted for different contact materials and arcing times for currents less than 3.5 kA. During the DC-arcing stage, a locally intensive burning arc is observed in the CuW80 contact; however, it is not observed in the CuCr50 contact. On examining the re-ignition interruption results of the CuW80 contact, the intensive burning arc is found to be positioned within a possible re-ignition region. When the arcing time is longer than 1 ms, the intensive burning arc occurs and affects the breaking performance of the spiral-type contacts. If the DC-arcing stage is prolonged, the total arcing energy increases, which leads to a lower breaking capacity.

  15. Transcranial direct current stimulation enhances propulsion during walking

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Jensen, W.; Andersen, O.K.; Akay, M

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we

  16. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  17. Development and experiment of a 60 kW horizontal-axis marine current power system

    International Nuclear Information System (INIS)

    Xu, Quan-kun; Liu, Hong-wei; Lin, Yong-gang; Yin, Xiu-xing; Li, Wei; Gu, Ya-jing

    2015-01-01

    A 60 kW horizontal-axis marine current power system is designed, built and tested to provide potentially cost-competitive electrical power for residents in remote islands. This power system mainly consists of a three-bladed marine current turbine, a drive-train system, power electronics and a control console. The turbine blade parameters are reasonably calculated and optimized based on the blade element momentum theory. The hydrodynamic performances of this turbine are predicted over a wide range of operating conditions. An adequate drive-train system is carefully designed to make the marine power system work smoothly and quietly even under harsh marine current conditions. The control console is also developed to facilitate the condition monitoring and generator power and speed regulations for this power system by adequately controlling the onshore power electronics. This power system has been tested under real marine current conditions to thoroughly evaluate its dynamic characteristics and effectiveness. - Highlights: • A 60°kW horizontal-axis marine current power system is designed, built and tested. • Detailed design procedure and experimental data are provided. • Experimental results demonstrate high power convention efficiency of the system

  18. A New Generalized Two-Stage Direct Power Conversion Topology to Independently Supply Multiple AC Loads from Multiple Power Grids with Adjustable Power Loading

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    ) and continuously adjust these power fractions will become a desired feature. This paper presents a generalized Direct Power Converter topology, which is able to connect to multiple AC supplies proving complete decoupling and no circulating power between the input ports and to independently control multiple AC...

  19. Design considerations for high current regulated DC power supplies with reference to 600 kW variable DC power supply

    International Nuclear Information System (INIS)

    Ushakumari; Garud, A.N.; Nadkarni, S.S.

    1980-01-01

    High current regulated dc power supplies find increasing applications in industry and research. The power rating of these supplies vary from few killowatts to megawatts. The general requirements of these supplies for various applications and the techniques used to achieve the desired performance are presented. The design and selection of various circuit blocks namely the rectifier transformer, multiphase rectifier arrangement, SCR paralleling and current sensing techniques, are discussed in detail for a 600 killowatt current controlled supply developed in the Bhabha Atomic Research Centre, Bombay, and used for the thermal studies of reactor components. The power supply incorporates paralleled phase controlled thyristors with a closed loop feedback circuitary to achieve a current stability of 0.1% and smooth output variation from 10 to 100%. (auth.)

  20. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  1. Implementation of superconducting fault current limiter for flexible operation in the power substation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong Suk, E-mail: chong_suk@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoon-sung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Suh, Jaewan [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The power load concentrated in load centers results in high levels of fault current. • This paper introduces a fault current reduction scheme using SFCLs in substations. • The SFCL is connected in parallel to the bus tie between the two busbars. • The fault current mitigation using SFCLs is verified through PSS/e simulations. - Abstract: The concentration of large-scale power loads located in the metropolitan areas have resulted in high fault current levels during a fault thereby requiring the substation to operate in the double busbar configuration mode. However, the double busbar configuration mode results in deterioration of power system reliability and unbalanced power flow in the adjacent transmission lines which may result in issues such as overloading of lines. This paper proposes the implementation of the superconducting fault current limiter (SFCL) to be installed between the two substation busbars for a more efficient and flexible operation of the substation enabling both single and double busbar configurations depending on the system conditions for guaranteeing power system reliability as well as fault current limitations. Case studies are being performed for the effectiveness of the SFCL installation and results are compared for the cases where the substation is operating in single and double busbar mode and with and without the installation of the SFCL for fault current mitigation.

  2. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  3. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  4. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  5. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  6. [The risk of direct current countershock].

    Science.gov (United States)

    Gajek, J; Zyśko, D

    2001-07-01

    Direct current cardioversion (DCC) is a procedure commonly used to restore the sinus rhythm in patients with supraventricular and ventricular arrhythmias. Its safety, regarding the use of electric current, is still a matter of controversy and debate. The patients with atrial fibrillation/flutter, supraventricular or ventricular tachycardia represent a broad spectrum of clinical conditions and it is difficult to draw the conclusions. The high success rate of DCC in restoring the sinus rhythm, may be partly responsible for enhancing and revealing proarrhythmic properties of antiarrhythmic drugs. The deaths described as a complications of DCC were mainly due to the proarrhythmia and less common to the progression of the pathologic process. The embolic, arrhythmic and anesthetic complications of DCC can be prevented if the known recommendations of performing the DCC are followed. The authors review critically the literature data about the complications of the procedure and come to the conclusion of safety of DCC.

  7. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  8. Multiday Transcranial Direct Current Stimulation Causes Clinically Insignificant Changes in Childhood Dystonia: A Pilot Study.

    Science.gov (United States)

    Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D

    2015-10-01

    Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.

  9. Design of shape memory alloy actuators for direct power by an automotive battery

    International Nuclear Information System (INIS)

    Leary, M.; Huang, S.; Ataalla, T.; Baxter, A.; Subic, A.

    2013-01-01

    Highlights: ► We model Ni–Ti SMA actuators directly powered by a standard automotive battery. ► Feasible permutations for direct power are identified and confirmed experimentally. ► 0.5 mm diameter SMA of 225 mm length or larger is feasible for direct power. ► The feasibility of 0.25 mm SMA is greater, although the actuation force is lower. ► Prototype actuators are developed for long-stroke and short-stroke applications. -- Abstract: Nickel–Titanium (Ni–Ti) Shape Memory Alloys (SMAs) are increasingly utilized as mechanical actuators due to high power-to-mass ratio, high fatigue life and low cost. The implementation of SMA actuators in an automotive environment is of particular interest due to the potential for lower end-user functional efforts, together with reduced component mass and cost within a limited packaging space. In applications of this kind, the actuators are powered by a standard automotive (six cell lead-acid) battery. Although resistors and electronic devices can be used to avoid overload of either the SMA or battery system, the feasibility of supplying power to the actuators directly from the battery becomes a key objective for reducing system cost and complexity. In this study, the electrical resistivity of a linear Ni–Ti SMA actuator was theoretically calculated and experimentally verified. Based on this developed knowledge, the resistance of various actuator permutations was calculated, and the feasibility of operating the actuators with a standard automotive battery was assessed. To confirm the feasibility of powering SMA actuators directly from the automotive battery, two SMA actuator concepts were developed and experimentally validated.

  10. Direct calculation of current drive efficiency in FISIC code

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1996-01-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. copyright 1996 American Institute of Physics

  11. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  12. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance

    Science.gov (United States)

    Tate, Rothwelle J.; Conway, Bernard A.

    2017-01-01

    Transcutaneous spinal direct current stimulation (tsDCS) is a non-invasive neuromodulatory intervention that has been shown to modify excitability in spinal and supraspinal circuits in animals and humans. Our objective in this study was to explore the functional neuromodulatory potential of tsDCS by examining its immediate and lasting effects over the repeated performance of a whole body maximal exercise in healthy volunteers. Using a double-blind, randomized, crossover, sham-controlled design we investigated the effects of 15 min of anodal tsDCS on repeated vertical countermovement jump (VCJ) performance at 0, 20, 60, and 180 minutes post-stimulation. Measurements of peak and take-off velocity, vertical displacement, peak power and work done during countermovement and push-off VCJ phases were derived from changes in vertical ground reaction force (12 performance parameters) in 12 healthy participants. The magnitude and direction of change in VCJ performance from pre- to post-stimulation differed significantly between sham and active tsDCS for 7 of the 12 VCJ performance measures (P 0.05). Our original findings demonstrate that one single session of anodal tsDCS in healthy subjects can prevent fatigue and maintain or enhance different aspects of whole body explosive motor power over repeated sets of VCJs performed over a period of three hours. The observed effects are discussed in relation to alterations in central fatigue mechanisms, muscle contraction mode during jump execution and changes in spinal cord excitability. These findings have important implications for power endurance sport performance and for neuromotor rehabilitation. PMID:28379980

  13. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance.

    Directory of Open Access Journals (Sweden)

    Helen R Berry

    Full Text Available Transcutaneous spinal direct current stimulation (tsDCS is a non-invasive neuromodulatory intervention that has been shown to modify excitability in spinal and supraspinal circuits in animals and humans. Our objective in this study was to explore the functional neuromodulatory potential of tsDCS by examining its immediate and lasting effects over the repeated performance of a whole body maximal exercise in healthy volunteers. Using a double-blind, randomized, crossover, sham-controlled design we investigated the effects of 15 min of anodal tsDCS on repeated vertical countermovement jump (VCJ performance at 0, 20, 60, and 180 minutes post-stimulation. Measurements of peak and take-off velocity, vertical displacement, peak power and work done during countermovement and push-off VCJ phases were derived from changes in vertical ground reaction force (12 performance parameters in 12 healthy participants. The magnitude and direction of change in VCJ performance from pre- to post-stimulation differed significantly between sham and active tsDCS for 7 of the 12 VCJ performance measures (P 0.05. Our original findings demonstrate that one single session of anodal tsDCS in healthy subjects can prevent fatigue and maintain or enhance different aspects of whole body explosive motor power over repeated sets of VCJs performed over a period of three hours. The observed effects are discussed in relation to alterations in central fatigue mechanisms, muscle contraction mode during jump execution and changes in spinal cord excitability. These findings have important implications for power endurance sport performance and for neuromotor rehabilitation.

  14. Design of the power supply system for the plasma current modulation on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.

    2016-10-15

    Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.

  15. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  16. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  17. On geomagnetically-induced currents in the Finnish 400 kV power system by an auroral electrojet current

    International Nuclear Information System (INIS)

    Pirjola, R.; Viljanen, A.

    1989-01-01

    The auroral electrojet current flowing in the ionosphere is modeled by a horizontal east-west line current of infinite length. The earth is described by a simple two-layer model. An expression for the earth-surface electric field, which is thus connected with a geomagnetic disturbance in and near the auroral zone, is given. This electric field is considered as external from the viewpoint of the Finnish 400 kV power system, and the resulting geomagnetically-induced currents (GICs) in the system are computed. In the north, i.e. near the electrojet, GICs may have values even in the order of hundreds of amperes. A comparison to GICs produced by an equivalent spatially-constant external electric field is demonstrated. Sometimes the location of the electrojet is further south. This possibility is studied by letting the line current have several different locations above the Finnish power grid

  18. Comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, S.

    2009-07-01

    During the past two decades, active power filters have increasingly grown their popularity as a viable method for improving electric power quality. The main reasons for this have been the advent of fast self-commutating solid-state devices, the progression of digital technology and the improved sensor technology. Four-wire active power filters provide an efficient solution for improving the quality of supply in grounded three-phase systems or three-phase systems with neutral conductors, which are commonly used for powering residential, office and public buildings. Four-wire active power filters are applicable in compensating current harmonics, reactive power, neutral current and load phase imbalance.This thesis presents a comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters. The study includes two voltage source topologies and a current source topology with two different dc-link energy storage structures, which are compared on the basis of their filtering properties, filtering performance and efficiency. The obtained results are used for determining the suitability of current source technology for four-wire active power filtering and finding the most viable four-wire shunt active power filter topology. One commonly recognized disadvantage of the current source active power filter has always been the bulky dc-link inductor. To reduce the size of the dc-link inductor, an alternative dc-link structure for current source active power filters was introduced in the late 80's. The hybrid energy storage consists of both inductive and capacitive energy storage elements, two diodes and two controllable semiconductor switching devices. Since the capacitive element is used as a main storage unit, the inductance of the dc-link inductor can be considerably reduced. However, the original dc current control method proposed is not able to utilize the full potential of the hybrid energy storage and the inductance

  19. The control of the upstream movement of fish with pulsated direct current

    Science.gov (United States)

    McLain, Alberton L.

    1957-01-01

    Alternating-current electromechanical devices installed in the mouths of streams have proved effective in stopping the spawning migrations of the parasitic sea lamprey (Petromyzon marinus) which has seriously damaged Great Lakes fisheries. In a few streams, excessive mortality has occurred to other fish at the alternating-current barriers. A direct-current unit was developed in an attempt to reduce this mortality. This direct-current “diversion device” consists of a row of suspended negative electrodes which begins at the end of a trap wing and extends across the river at a downstream angle of 45° and a series of pipes (positive electrodes) driven into the stream bank. A second array, consisting of horizontal pipes installed downstream and parallel to the suspended electrodes and connected to a series of rods driven into the bank near the positive electrodes, controls the electrical field and dissipates the collecting influence of the positive side of the circuit. The electrical field is established from the end of the trap wing to the opposite bank. Fish are diverted away from the negative electrodes and toward the bank near which the trap is located. The array is activiated by pulsated direct current of essentially square wave shape with pulses at a duty cycle of 0.66 and a repetition rate of 3 per second. Direct-current diversion devices were operated in conjunction with alternating-current barriers during 1956 in the Chocolay River, Marquette County, and the Silver River, Baraga County, Michigan.

  20. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

  2. Quality of the current low power and shutdown PSA practice

    International Nuclear Information System (INIS)

    Jang, Seung Cheol; Park, Jin Hee; Lim, Ho Gon; Kim, Tae Woon

    2004-01-01

    A probabilistic safety assessment (PSA) for the low-power and shutdown (LPSD) modes in a Korea standard nuclear power plant (KSNP) has been performed for the purpose of estimating the LPSD risk and identifying the vulnerabilities of LPSD operations. Both the operational experience and PSA results indicate that the risks from LPSD operations could be comparable with those from power operations. However, the application of the LPSD risk insights to risk-informed decision making has been slow to be adopted in practice. It is largely due to the question of whether the current LPSD PSA practice is appropriate for application to risk-informed decision making or not. Such a question has to do with the quality of the current LPSD PSA practice. In this paper, we have performed self-assessment of the KSNP LPSD PSA quality based on the ANS Standard (draft as of 13 Sep. 2002). The aims of the work are to find the LPSD PSA technical areas insufficient for application to risk-informed decision making and to efficiently allocate the limited research resources to improve the LPSD PSA model quality. Many useful findings regarding the current LPSD PSA quality are presented in this paper

  3. Current directions in radiopharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S J [Department of Nuclear Medicine, St. Bartholomew` s Hospital, London (United Kingdom)

    1998-08-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author) 36 refs

  4. Current directions in radiopharmaceutical research

    International Nuclear Information System (INIS)

    Mather, S.J.

    1998-01-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author)

  5. Current earthquake engineering practice for Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Park, Y.J.; Costello, J.F.

    1992-01-01

    This paper provides a brief overview of seismic research being conducted in Japan and describes USNRC efforts to understand Japanese seismic practice. Current earthquake engineering practice for Japanese nuclear power plants is descried in JEAG 4601-1987, ''Technical Guidelines for Aseismic Design of Nuclear Power Plants.'' The USNRC has sponsored BNL to translate this document into English. Efforts are underway to study and understand JEAG 4601-1987 and make the translation more readily available in the United States

  6. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  7. Radiation-induced off-state leakage current in commercial power MOSFETs

    International Nuclear Information System (INIS)

    Dodd, Paul Emerson; Shaneyfelt, Marty Ray; Draper, Bruce Leroy; Felix, James Andrew; Schwank, James Ralph; Dalton, Scott Matthew

    2005-01-01

    The total dose hardness of several commercial power MOSFET technologies is examined. After exposure to 20 krad(SiO 2 ) most of the n- and p-channel devices examined in this work show substantial (2 to 6 orders of magnitude) increases in off-state leakage current. For the n-channel devices, the increase in radiation-induced leakage current follows standard behavior for moderately thick gate oxides, i.e., the increase in leakage current is dominated by large negative threshold voltage shifts, which cause the transistor to be partially on even when no bias is applied to the gate electrode. N-channel devices biased during irradiation show a significantly larger leakage current increase than grounded devices. The increase in leakage current for the p-channel devices, however, was unexpected. For the p-channel devices, it is shown using electrical characterization and simulation that the radiation-induced leakage current increase is related to an increase in the reverse bias leakage characteristics of the gated diode which is formed by the drain epitaxial layer and the body. This mechanism does not significantly contribute to radiation-induced leakage current in typical p-channel MOS transistors. The p-channel leakage current increase is nearly identical for both biased and grounded irradiations and therefore has serious implications for long duration missions since even devices which are usually powered off could show significant degradation and potentially fail.

  8. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2010-01-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  9. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  10. Device for measuring active, reactive and apparent power

    Energy Technology Data Exchange (ETDEWEB)

    Bartosinski, E.; Wieland, J.

    1982-09-30

    The plan consists of a traditional electrodynamic mechanism for measuring power (IM) supplemented by three switches, two rectifiers, resistor, included in parallel, and phaseshifting throttle included in series with the voltage coil of the IM. This makes it possible by selection to perform three types of measurements: active power of alternating current or power of direct current, only the voltage coils and the IM current are engaged; reactive power, the resistor and the throttle are additionally engaged by the aforementioned method; complete (apparent) power--the current and the voltage are supplied directly to the IM coils, but in contrast to the first case, through rectifiers. The influence of the highest harmonic components of voltage and current which are not significant for industrial measurements can be eliminated in necessary cases using filtering devices.

  11. Obesity pharmacotherapy: current perspectives and future directions.

    Science.gov (United States)

    Misra, Monika

    2013-02-01

    The rising tide of obesity and its related disorders is one of the most pressing health concerns worldwide, yet existing medicines to combat the problem are disappointingly limited in number and effectiveness. Recent advances in mechanistic insights into the neuroendocrine regulation of body weight have revealed an expanding list of molecular targets for novel, rationally designed antiobesity pharmaceutical agents. Antiobesity drugs act via any of four mechanisms: 1) decreasing energy intake, 2) increasing energy expenditure or modulating lipid metabolism, 3) modulating fat stores or adipocyte differentiation, and 4) mimicking caloric restriction. Various novel drug candidates and targets directed against obesity are currently being explored. A few of them are also in the later phases of clinical trials. This review discusses the development of novel antiobesity drugs based on current understanding of energy homeostasis.

  12. Directions for advanced use of nuclear power in century XXI

    International Nuclear Information System (INIS)

    Walter, C.E.

    1999-01-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take

  13. A self-powered thin-film radiation detector using intrinsic high-energy current

    Energy Technology Data Exchange (ETDEWEB)

    Zygmanski, Piotr, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sajo, Erno, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States)

    2016-01-15

    Purpose: The authors introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary charged particles in the detector material, which induces conduction current in an external readout circuit. Direct energy conversion of the incident radiation powers the signal formation without the need for external bias voltage or amplification. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. The optimal design of HEC detectors consists of microscopic or nanoscopic structures. Methods: Theoretical and computational developments are presented to illustrate the salient properties of the HEC detector and to demonstrate its feasibility. In this work, the authors examine single-sandwiched and periodic layers of Cu and Al, and Au and Al, ranging in thickness from 100 nm to 300 μm and separated by similarly sized dielectric gaps, exposed to 120 kVp x-ray beam (half-value thickness of 4.1 mm of Al). The energy deposition characteristics and the high-energy current were determined using radiation transport computations. Results: The authors found that in a dual-layer configuration, the signal is in the measurable range. For a defined total detector thickness in a multilayer structure, the signal sharply increases with decreasing thickness of the high-Z conductive layers. This paper focuses on the computational results while a companion paper reports the experimental findings. Conclusions: Significant advantages of the device are that it does not require external power supply and amplification to create a measurable signal; it can be made in any size and geometry, including very thin (sub-millimeter to submicron) flexible curvilinear forms, and it is inexpensive. Potential applications include medical dosimetry (both in vivo and external), radiation protection, and other settings where one or more of the above qualities are desired.

  14. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  15. Regulated-current dc power supply for gaseous-discharge lamps

    Science.gov (United States)

    Freeman, W.; Huguenin, D.

    1970-01-01

    Controlled current source having a high output resistance feeds continuous-flow hydrogen lamps in vacuum-ultraviolet photometric equipment. The power supply, also used with low-pressure sealed lamps, has a short recovery time and smooth regulation without overshoot.

  16. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations

    OpenAIRE

    Gunduz, Aysegul; Kumru, Hatice; Pascual-Leone, Alvaro

    2014-01-01

    Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhibits satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in improving ...

  17. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  18. Design of constant current charging power supply for J-TEXT ohmic field capacitor banks

    International Nuclear Information System (INIS)

    Lv Shudong; Zhang Ming; Rao Bo; Yu Kexun; Yang Cheng

    2014-01-01

    The charging characteristic of the capacitor charging power supply was analyzed with practical series resonant topology. The method that setting two current taps and regulating PWM switching frequency was putted forward with close loop controlling algorithm to charge the multi-group capacitor banks with constant current. A capacitor charging power supply with the max output current 6.5 A and the max output voltage 2000 V is designed. Experimental results show that, this power supply can charge the four capacitor banks to any four different voltages in 1 minute with charging accuracy less than 1%, and meet the requirements of J-TEXT ohmic field power system. (authors)

  19. Technology-based suicide prevention: current applications and future directions.

    Science.gov (United States)

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  20. Approximative calculation of transient short-circuit currents in power-systems

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, K; Rosenberger, R; Dettmann, K D; Kegel, R

    1986-08-01

    The paper shows that it is approximatively possible to calculate the transient short-circuit currents for symmetrical and asymmetrical faults in power-systems. For that purpose a simple equivalent network is found. Its error of approximation is small. For the important maximum short-circuit current limits of error are pointed out compared to VDE 0102.

  1. Impacts of Ripple Current to the Loading and Lifetime of Power Semiconductor Device

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    The thermal loading of power electronics devices is determined by many factors and has being a crucial design consideration because it is closely related to the reliability and cost of the converter system. In this paper the impacts of the ripple current to the loss and thermal loading, as well...... as reliability performances of power devices are comprehensively investigated and tested. It is concluded that the amplitude of ripple current may modify the loss and thermal loading of the power devices, especially under the conditions of converter with low power output, and thus the lifetime of devices could...

  2. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    Science.gov (United States)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  3. National energy policy provides scant power direction. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-07

    More federal direction on electric power developments was expected than actually materialized in the national energy policy released recently by Energy, Mines, and Resources. None of the primary objectives was specifically geared to improving the sagging power outlook. The five targets mentioned would have varying positive influences on Canadian power security if achieved, but oil and gas problems stole the spotlight. Failure of a national energy grid to make the top priority list was a disappointment. Observers had been expecting more prominent treatment for grid schemes in light of comments made by energy minister Alastair Gillespie at the recent energy conservation conference in Ottawa. But the strategy paper merely endorses the strengthening of regional interconnections, particularly in eastern Canada, and urges closer coordination among provincial utilities in planning and development. It reveals no new move to spur grid action and only reiterates the federal offer to back 50 percent of interconnection studies and capital costs. The paper does recognize that strengthened regional ties would lead to a form of integrated national system permitting more efficient systems growth, mutual assistance in the event of power failures, and some averaging out of peak and off-peak loads. They would economize on the need for stand-by power and enhance more rational expansion.

  4. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  5. Maximum power point tracking for PV systems under partial shading conditions using current sweeping

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • A novel approach for tracking the maximum power point of photovoltaic systems. • Able to handle both the uniform insolation and partial shading conditions. • Maximum power point tracking based on current sweeping. - Abstract: Partial shading on photovoltaic (PV) arrays causes multiple peaks on the output power–voltage characteristic curve and local searching technique such as perturb and observe (P&O) method could easily fail in searching for the global maximum. Moreover, existing global searching techniques are still not very satisfactory in terms of speed and implementation complexity. In this paper, a fast global maximum power point (MPPT) tracking method which is using current sweeping for photovoltaic arrays under partial shading conditions is proposed. Unlike conventional approach, the proposed method is current based rather than voltage based. The initial maximum power point will be derived based on a current sweeping test and the maximum power point can be enhanced by a finer local search. The speed of the global search is mainly governed by the apparent time constant of the PV array and the generation of a fast current sweeping test. The fast current sweeping test can easily be realized by a DC/DC boost converter with a very fast current control loop. Experimental results are included to demonstrate the effectiveness of the proposed global searching scheme

  6. Current trends and challenges in power engineering education

    Directory of Open Access Journals (Sweden)

    Dorin Bică

    2009-12-01

    Full Text Available The ‘Energy’ thematic area has grown into an extremely challenging topic lately, due to its impact on economic, social, technical, environmental and even political levels. This large field involves the pawns of the scientific research - the most important generator of knowledge and education - one of the main beneficiaries of research findings. Consequently the power engineering education becomes a significant pillar with direct outcome in the general as well as specific competences that future graduates acquire. This paperwork aims to discourse on and highlight the methods of implementation and promotion of new topics and modern educational forms-energy software, within study programmes. This is of course a permanent process and reflects our efforts and interest in the improvement of power engineering educational quality.

  7. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  8. Addressing Circuitous Currents MVDC Power Systems Protection

    Science.gov (United States)

    2017-12-31

    Addressing Circuitous Currents MVDC Power Systems Protection 5b. GRANT NUMBER N00014-16-1-3113 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR($) Sd. PROJECT NUMBER...efficiency. A challenge with DC distribution is electrical protection . Z-source DC breakers alt! an pti n b&i g cvr.sidcrcd and this w rk ~xplores...zonal distribution, electric ship 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT u u u uu 18. NUMBER

  9. Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    NARCIS (Netherlands)

    Das, S. (Suman); P.J. Holland (Peter); M.A. Frens (Maarten); O. Donchin (Opher)

    2016-01-01

    textabstractTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes

  10. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  11. Analysis of critical thinking ability in direct current electrical problems solving

    Science.gov (United States)

    Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta

    2017-11-01

    This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.

  12. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  13. Revision of the Euratom basic safety standards directive-current status

    International Nuclear Information System (INIS)

    Mundig, S.

    2011-01-01

    The European Commission is currently developing a revised Euratom Basic Safety Standards (BSS) Directive covering two major objectives: the consolidation of existing Euratom Radiation Protection legislation and the revision of the Euratom BSS. The consolidation will merge the following five Directives into one single Directive: the BSS Directive, the Medical Exposures Directive, the Public Information Directive, the Outside Workers Directive and the Directive on the Control of high-activity sealed radioactive sources and orphan sources. The revision of the Euratom BSS will take account of the latest recommendations by the International Commission on Radiological Protection and shall improve clarity of the requirements where appropriate. It is planned to introduce more binding requirements on natural radiation sources, on criteria for exemption and clearance, and on the cooperation between Member States for emergency planning and response. The provisions for regulatory control of planned exposure situations foresee a graded approach commensurate to the magnitude and likelihood of exposures from a practice. Finally, the new BSS shall take account of recent scientific developments. One additional goal is to achieve greater harmonisation between the Euratom BSS and the international BSS. While the requirements on the protection of workers, apprentices and students remain nearly unchanged, the revised BSS will clarify the roles and responsibilities of services and experts involved in technical and practical aspects of radiation protection, such as the occupational health services, the dosimetry services, the radiation protection expert and the medical physics expert. The requirements in the BSS on individual monitoring of category A workers remain unchanged, but the existing guidance on individual monitoring was revised and updated-the technical recommendations for monitoring individuals occupationally exposed to external radiation are published by the European

  14. Novel methods to optimize the effects of transcranial direct current stimulation: a systematic review of transcranial direct current stimulation patents.

    Science.gov (United States)

    Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.

  15. Use of alternating and pulsed direct current electrified fields for zebra mussel control

    Science.gov (United States)

    Luoma, James A.; Dean, Jan C.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew

    2017-01-01

    Alternatives to chemicals for controlling dreissenid mussels are desirable for environmental compatibility, but few alternatives exist. Previous studies have evaluated the use of electrified fields for stunning and/or killing planktonic life stages of dreissenid mussels, however, the available literature on the use of electrified fields to control adult dreissenid mussels is limited. We evaluated the effects of sinusoidal alternating current (AC) and 20% duty cycle square-wave pulsed direct current (PDC) exposure on the survival of adult zebra mussels at water temperatures of 10, 15, and 22 °C. Peak voltage gradients of ~ 17 and 30 Vp/cm in the AC and PDC exposures, respectively, were continuously applied for 24, 48, or 72 h. Peak power densities ranged from 77,999 to 107,199 µW/cm3 in the AC exposures and 245,320 to 313,945 µW/cm3 in the PDC exposures. The peak dose ranged from 6,739 to 27,298 Joules/cm3 and 21,306 to 80,941 Joules/cm3 in the AC and PDC exposures, respectively. The applied power ranged from 16.6 to 68.9 kWh in the AC exposures and from 22.2 to 86.4 kWh in the PDC exposures. Mortality ranged from 2.7 to 92.7% in the AC exposed groups and from 24.0 to 98.7% in PDC exposed groups. Mortality increased with corresponding increases in water temperature and exposure duration, and we observed more zebra mussel mortality in the PDC exposures. Exposures conducted with AC required less of a peak dose (Joules/cm3) but more applied power (kWh) to achieve the same level of adult zebra mussel mortality as corresponding PDC exposures. The results demonstrate that 20% duty cycle square-wave PDC requires less energy than sinusoidal AC to inducing the same level of adult zebra mussel mortality.

  16. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  17. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)

    Science.gov (United States)

    2015-12-01

    TRANSCRANIAL DIRECT CURRENT STIMULATION OF EXPRESSION OF IMMEDIATE EARLY GENES (IEG’S) Jessica...AND SUBTITLE Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s) 5a. CONTRACT NUMBER In-House 5b...community in better understanding what is occurring biologically during tDCS. 15. SUBJECT TERMS Transcranial direct current stimulation

  19. Power deposition profile during lower hybrid current drive in Tore Supra

    International Nuclear Information System (INIS)

    Pecquet, A.L.; Moreau, D.; Fall, T.; Lasalle, J.; Lecoustey, P.; Mattioli, M.; Peysson, Y.; Auge, N.; Rodriguez, L.; Talvard, M.; Hubbard, A.; Moret, J.M.

    1991-01-01

    Lower hybrid current drive (LHCD) experiments have been performed in Tore Supra in various density regimes. The total power coupled to the plasma reached 4MW and a strong electron heating has been observed. To investigate the power deposition mechanism on the electrons, r.f power modulation experiments have been performed. These experiments allow us to estimate the power deposition profiles on both thermal and non-thermal electrons and also to study their respective time responses. From these studies it is possible to deduce a thermal heating scenario which agrees with the experimental results

  20. Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years.

    Science.gov (United States)

    Andrade, Agnes Carvalho; Magnavita, Guilherme Moreira; Allegro, Juleilda Valéria Brasil Nunes; Neto, Carlos Eduardo Borges Passos; Lucena, Rita de Cássia Saldanha; Fregni, Felipe

    2014-10-01

    Transcranial direct current stimulation is a noninvasive brain stimulation technique that has been studied for the treatment of neuropsychiatric disorders in adults, with minimal side effects. The objective of this study is to report the feasibility, tolerability, and the short-term adverse effects of transcranial direct current stimulation in children from 5 to 12 years of age. It is a naturalistic study of 14 children who underwent 10 sessions of transcranial direct current stimulation as an alternative, off-label, and open-label treatment for various languages disorders. Frequency, intensity, adverse effects, and perception of improvement reported by parents were collected. The main side effects detected were tingling (28.6%) and itching (28.6%), acute mood changes (42.9%), and irritability (35.7%). Transcranial direct current stimulation is a feasible and tolerable technique in children, although studies regarding plastic and cognitive changes in children are needed to confirm its safety. In conclusion, this is a naturalistic report in which we considered transcranial direct current stimulation as feasible in children. © The Author(s) 2013.

  1. A micro-power LDO with piecewise voltage foldback current limit protection

    International Nuclear Information System (INIS)

    Wei Hailong; Liu Youbao; Guo Zhongjie; Liao Xue

    2012-01-01

    To achieve a constant current limit, low power consumption and high driving capability, a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented. The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA. To increase the loop stability of the proposed LDO, a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole, and a zero is designed for the purpose of the second pole phase compensation. The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA, the constant limit current under a high drop-out voltage is 440 mA, and the maximum load current under a low drop-out voltage is up to 800 mA. In addition, the quiescent current of the LDO is only 7 μA, the load regulation is about 0.56% on full scale, the line regulation is about 0.012%/V, the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA. (semiconductor integrated circuits)

  2. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  3. Power Swing Detection in UPFC-Compensated Line by Phase Angle of Current

    DEFF Research Database (Denmark)

    Khodaparast, Jalal; Khederzadeh, M.; Silva, Filipe Miguel Faria da

    2017-01-01

    Power swing blocker (PSB) is a complementary part of distance relay protection, that detects power swing, in order to prevent unintended operation of a distance relay. Unified power flow controller (UPFC) is used in power system to control both active and reactive powers and its operation during...... condition. The results show that these indices may no longer work in systems with UPFC. In addition, this paper proposes a new method for detecting power swing based on the phase angle of current at relay point and compares it with two other methods. The new method distinguishes power swing from a fault...

  4. Turbostar: an ICF reactor using both direct and thermal power conversion. Revision 1

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1986-01-01

    Combining direct and thermal power conversion results in a 52% gross plant efficiency with DT fuel and 68% with advanced DD fuel. We maximize the fraction of fusion-yield energy converted to kinetic energy in a liquid-lithium blanket, and use this energy directly with turbine generators to produce electricity. We use the remainder of the energy to produce electricity in a standard Rankine thermal power conversion cycle

  5. Switching current imbalance mitigation in power modules with parallel connected SiC MOSFETs

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Jørgensen, Asger Bjørn; Li, Helong

    2017-01-01

    Multichip power modules use parallel connected chips to achieve high current rating. Due to a finite flexibility in a DBC layout, some electrical asymmetries will occur in the module. Parallel connected transistors will exhibit uneven static and dynamic current sharing due to these asymmetries....... Especially important are the couplings between gate and power loops of individual transistors. Fast changing source currents cause gate voltage imbalances yielding uneven switching currents. Equalizing gate voltages seen by paralleled transistors, done by adjusting source bond wires, is proposed...... in this paper. Analysis is performed on an industry standard DBC layout using numerically extracted module parasitics. The method of tuning individual source inductances shows clear improvement in dynamic current balancing and prevents excessive current overshoot during transistors turn-on....

  6. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  7. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  8. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  9. Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions

    Science.gov (United States)

    Chu, Chia-Chi

    A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are

  10. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    Science.gov (United States)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  11. The need for power, need for influence, sense of power, and directiveness in female and male superiors and subordinates

    Directory of Open Access Journals (Sweden)

    Dagna Kocur

    2017-12-01

    Full Text Available Background The purpose of the study was to examine the phenomenon of power within an organisation from the vantage point of gender, the occupied position, earnings, and the number of subordinates. Participants and procedure The sample group comprised 107 female and 98 male participants. The mean age was 42.14 years (SD = 11.73. The study covered 100 superiors and 105 subordinates. The research tools were: the Need for Power and Influence Questionnaire (Bennett, 1988, the Personal Sense of Power Scale (Anderson, John, & Keltner, 2012, and the Directiveness Scale SD (Ray, 1976. Results The superiors scored significantly higher on the need for power, need for influence, and directiveness. They also scored higher in terms of the need for power in relations with other people, with colleagues, and in superior-subordinate relations. The number of male leaders was conspicuously greater than the number of female leaders. Furthermore, women had fewer subordinates than men and earned less than men. Female participants scored lower on the sense of power and the need for power scales. Conclusions Occupying either an executive or subordinate position differentiates between women and men in terms of sense of power in interpersonal relationships. The findings on sense of power in the professional context may be applied in organisational psychology in order to increase employees’ competence and qualifications.

  12. A Short-Current Control Method for Constant Frequency Current-Fed Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Yanling Li

    2017-04-01

    Full Text Available Frequency drift is a serious problem in Current-Fed Wireless Power Transfer (WPT systems. When the operating frequency is drifting from the inherent Zero Voltage Switching (ZVS frequency of resonant network, large short currents will appear and damage the switches. In this paper, an inductance-dampening method is proposed to inhibit short currents and achieve constant-frequency operation. By adding a small auxiliary series inductance in the primary resonant network, short currents are greatly attenuated to a safe level. The operation principle and steady-state analysis of the system are provided. An overlapping time self-regulating circuit is designed to guarantee ZVS running. The range of auxiliary inductances is discussed and its critical value is calculated exactly. The design methodology is described and a design example is presented. Finally, a prototype is built and the experimental results verify the proposed method.

  13. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  14. Enhancing the Frequency Adaptability of Periodic Current Controllers for Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2015-01-01

    It is mandatory for grid-connected power converters to synchronize the feed-in currents with the grid. Moreover, the power converters should produce feed-in currents with low total harmonic distortions according to the demands, by employing advanced current controllers, e.g., Proportional Resonant...... deviations. Experiments on a single-phase grid-connected inverter system are presented, which have verified the proposals and also the effectiveness of the frequency adaptive current controllers....... (PR) and Repetitive Controllers (RC). The synchronization is actually to detect the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. As a consequence, harmonics and deviations...

  15. Laser power supply

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Hartshorn, D.W.

    1975-01-01

    A method of energizing a laser source stimulating flash lamp directly from an ac power line is presented. Uncontrolled diodes couple the anode and cathode of the flash lamp directly to the ac line. The lamp is triggered by a separate triggering circuit which produces its trigger pulse at a predetermined phase of the ac power source. The use of high current carrying controlled rectifiers and large energy storage devices is thereby eliminated. (U.S.)

  16. A subleading power operator basis for the scalar quark current

    Science.gov (United States)

    Chang, Cyuan-Han; Stewart, Iain W.; Vita, Gherardo

    2018-04-01

    Factorization theorems play a crucial role in our understanding of the strong interaction. For collider processes they are typically formulated at leading power and much less is known about power corrections in the λ ≪ 1 expansion. Here we present a complete basis of power suppressed operators for a scalar quark current at O({λ}^2) in the amplitude level power expansion in the Soft Collinear Effective Theory, demonstrating that helicity selection rules significantly simplify the construction. This basis applies for the production of any color singlet scalar in q\\overline{q} annihilation (such as b\\overline{b}\\to H ). We also classify all operators which contribute to the cross section at O({λ}^2) and perform matching calculations to determine their tree level Wilson coefficients. These results can be exploited to study power corrections in both resummed and fixed order perturbation theory, and for analyzing the factorization properties of gauge theory amplitudes and cross sections at subleading power.

  17. Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia.

    Science.gov (United States)

    Spielmann, Kerstin; van de Sandt-Koenderman, W Mieke E; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M

    2018-04-01

    The aim of the present study is to investigate the effect of transcranial direct current stimulation on word-finding treatment outcome in subacute poststroke aphasia. In this multi-center, double-blind, randomized controlled trial with 6-month follow-up, we included 58 patients with subacute aphasia (transcranial direct current stimulation (1 mA, 20 minutes; experimental group) or sham transcranial direct current stimulation (control group) over the left inferior frontal gyrus. The primary outcome measure was the Boston Naming Test. Secondary outcome measures included naming performance for trained/untrained picture items and verbal communication. Both the experimental (n=26) and the control group (n=32) improved on the Boston Naming Test over the intervention period and 6-month follow-up; however, there were no significant differences between groups. Also for the secondary outcome measures, no significant differences were found. The results of the present study do not support an effect of transcranial direct current stimulation as an adjuvant treatment in subacute poststroke aphasia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp. Unique identifier: NTR4364. © 2018 American Heart Association, Inc.

  18. Directed Current Without Dissipation: Reincarnation of a Maxwell-Loschmidt Demon

    Science.gov (United States)

    Goychuk, Igor; Haenggi, Peter

    We investigate whether for initially localized particles a directed current in rocked periodic structures is possible in absence of a dissipative mechanism. With a pure Hamiltonian dynamics the breaking of Time-Reversal-Invariante presents anecessary condition to find nonzero current values. Numerical studies are presented for the classical Hamiltonian dynamical case. These support the fact that indeed a finite current does occur when a time-reversal symmetry-breaking signal, such as a harmonic mixing signal, is acting. To gain analytical insight we consider the coherent driven quantum transport in a one-dimensional tight-binding lattice. Here, a finite coherent current is absent for initially localized preparations; it emerges, however, when the initial preparation (with zero initial current) possesses finite coherence. The presence of phase fluctuations will eventually kill any finite current, thereby rendering the nondissipative currents a transient phenomenon.

  19. Power Quality Problems Due to Transformer Inrush Current

    OpenAIRE

    Tokić, A.; Uglešić, I.

    2017-01-01

    Transformer energization can produce a large nonsinuoidal inrush current which contains both odd and higher order harmonic components that can put transformer winding under mechanical stress. Additionally, they can cause irregular tripping of harmonic protection relays. Furthermore, in relatively weak power systems, such as is the Bosnian system, the superposition of harmonic components with system resonance frequencies may produce temporary overvoltages (TOV). Transformer wind...

  20. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  1. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  2. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  3. A current-controlled PWM bipolar power supply for a magnet load

    International Nuclear Information System (INIS)

    Kang, Y.G.; McGhee, D.G.

    1994-01-01

    The Advanced Photon Source, at Argonne National Laboratory will produce the world's brightest x-ray beams when it is complete. A number of correction magnets are used to maintain proper beam position. Basically, two different types of bipolar power supplies are used for all the correction magnets: one requires dc correction only, and the other requires dc and ac correction. Normally linear-mode power amplifiers would be used for the bipolar power supplies. However, linear-mode power amplifiers dissipate a substantial amount of power as heat, resulting in poor efficiency for their large size. In addition, most commercial bipolar power supplies are linear-mode and available for lower power levels. Therefore, for higher power levels it was necessary to design a bipolar power supply that uses switch-mode power conversion. This paper describes a control technique for a pulse-width-modulatcd bipolar power supply, which can deliver a controlled current, dc plus ac to a correction magnet. A design example of a 150A bipolar power supply is presented

  4. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.; Lazarus, E.A.

    1994-02-01

    This paper describes recent DIII-D high power heating and current drive experiments. Describes are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal beta

  5. What is past is prologue: future directions in tokamak power reactor design research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    Conceptual tokamak power reactor designs over the last five years have provided us with many fundamental insights regarding tokamaks as fusion reactors. This first generation of studies has helped lay the groundwork upon which to build improvements in reactor design and begin a process of optimization. After reviewing the first generation of studies and the primary conclusions they produced, we discuss four current designs that are representative of present trends in this area of research. In particular, we discuss the trends towards reduced reactor size and higher neutron wall loadings. Moving in this direction requires new approaches to many subsystem designs. We describe new approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets. We close with a discussion of the future role of conceptual reactor design research and the need for close interaction with ongoing experiments in fusion technology

  6. Current status and future direction of the MONK software package

    International Nuclear Information System (INIS)

    Smith, Nigel; Armishaw, Malcolm; Cooper, Andrew

    2003-01-01

    The current status of the MONK criticality software package is summarized in terms of recent and current developments and envisaged directions for the future. The areas of the discussion are physics modeling, geometry modeling, source modeling, nuclear data, validation, supporting tools and customer services. In future development plan, MONK continues to be focused on meeting the short and long-term needs of the code user community. (J.P.N.)

  7. Regional power marketing opportunities : current challenges and future outlooks

    International Nuclear Information System (INIS)

    Stiers, M.

    1998-01-01

    The North American demand for electric power and natural gas by sector was described and a comparison was made between the number of FERC certified electric power marketers versus natural gas marketing companies between 1986 and 1997 to illustrate the extent of changes that occurred during the decade. Regional opportunities for energy marketers were reviewed. By way of current challenges, the author identified (1) regulatory impediments, (2) divestiture of assets, (3) creation of an effective ISO, (4) establishment of effective pricing mechanisms, (5) customer systems and infrastructure, (6) forcing legislative reform, and (7) stranded cost recovery, as the most important. figs

  8. Extrapolating power-ramp performance criteria for current and advanced CANDU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.; Chassie, G.G

    2000-06-01

    To improve the precision and accuracy of power-ramp performance criteria for high-burnup fuel, we have examined in-reactor fuel performance data as well as out-reactor test data. The data are consistent with some of the concepts used in the current formulations for defining fuel failure thresholds, such as size of power-ramp and extent of burnup. Our review indicates that there is a need to modify some other aspects of the current formulations; therefore, a modified formulation is presented in this paper. The improvements mainly concern corrodent concentration and its relationships with threshold stress for failure. The new formulation is consistent with known and expected trends such as strength of Zircaloy in corrosive environment, timing of the release of fission products to the pellet-to-sheath gap, CANLUB coating, and fuel burnup. Because of the increased precision and accuracy, the new formulation is better able to identify operational regimes that are at risk of power-ramp failures; this predictive ability provides enhanced protection to fuel against power-ramp defects. At die same time, by removing unnecessary conservatisms in other areas, the new formulation permits a greater range of defect-free operational envelope as well as larger operating margins in regions that are, in fact, not prone to power-ramp failures. (author)

  9. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Lazarus, E.A.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal β. ((orig.))

  10. Recent DIII-D high power heating and current drive experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C. [General Atomics, San Diego, CA (United States); Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Politzer, P.A. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); DIII-D Team

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal {beta}. ((orig.)).

  11. Power and momentum relations in rotating magnetic field current drive

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1984-01-01

    The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.

  12. Comprehensive Investigation on Current Imbalance among Parallel Chips inside MW-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Wang, Huai

    2015-01-01

    With the demands for increasing the power rating and improving reliability level of the high power IGBT modules, there are further needs of understanding how to achieve stable paralleling and identical current sharing between the chips. This paper investigates the stray parameters imbalance among...... parallel chips inside the 1.7 kV/1 kA high power IGBT modules at different frequencies by Ansys Q3D parastics extractor. The resulted current imbalance is further confirmed by experimental measurement....

  13. Comprehensive benefit evaluation of direct power-purchase for large consumers

    Science.gov (United States)

    Liu, D. N.; Li, Z. H.; Zhou, H. M.; Zhao, Q.; Xu, X. F.

    2017-06-01

    Based on "several opinions of the CPC Central Committee and the State Council on further deepening the reform of electric power system" in 2015, this paper analyses the influence of direct power-purchase for large consumers on operation benefit of power grid. In three aspects, such as economic benefit, cleaning benefit and social benefit, the index system is proposed. In which, the profit of saving coal energy consumption, reducing carbon emissions and reducing pollutant emissions is quantitative calculated. Then the subjective and objective weights and index scores are figured out through the analytic hierarchy process, entropy weight method and interval number method. Finally, the comprehensive benefit is evaluated combined with the actual study, and some suggestions are made.

  14. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation.

    Science.gov (United States)

    Coffman, Brian A; Clark, Vincent P; Parasuraman, Raja

    2014-01-15

    This article reviews studies demonstrating enhancement with transcranial direct current stimulation (tDCS) of attention, learning, and memory processes in healthy adults. Given that these are fundamental cognitive functions, they may also mediate stimulation effects on other higher-order processes such as decision-making and problem solving. Although tDCS research is still young, there have been a variety of methods used and cognitive processes tested. While these different methods have resulted in seemingly contradictory results among studies, many consistent and noteworthy effects of tDCS on attention, learning, and memory have been reported. The literature suggests that although tDCS as typically applied may not be as useful for localization of function in the brain as some other methods of brain stimulation, tDCS may be particularly well-suited for practical applications involving the enhancement of attention, learning, and memory, in both healthy subjects and in clinical populations. © 2013 Elsevier Inc. All rights reserved.

  15. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2015-01-01

    Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for

  16. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 μA, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 μA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 μA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell–material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: ► D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. ► Cells cultured on Ti were stimulated by using a custom made electrical stimulator. ► Optimization was performed by using a varying range of direct currents ∼ 5 to 25 μA. ► 25 μA stimulation was found most beneficial for promotion of cell adhesion/growth.

  17. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  18. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  19. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    Science.gov (United States)

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  20. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods

    International Nuclear Information System (INIS)

    Chávez-Valdez, Alejandra; Boccaccini, Aldo R.

    2012-01-01

    This review summarizes emerging developments in the field of alternating current (AC) and pulsed direct current (DC) electrophoretic deposition (EPD) in aqueous or organic media. Numerous applications of AC-EPD are discussed including two major groups of investigations: (i) AC-EPD to suppress water hydrolysis at high voltages in inorganic (ceramic) coatings and (ii) AC-EPD for deposition of biological entities. The deposition, purification and manipulation of carbon nanotubes and nanoparticles by AC-EPD to form specific arrays, for development of sensors and other electronic devices and the application of AC-EPD as method for separation of particles according to their shape or size are also presented. Other applications reviewed relate to the fabrication by AC-EPD of toxic gas sensors from oxides and superconducting layers. The main materials being examined by AC-EPD are inorganic, including carbon nanotubes, TiO 2 nanoparticles, Al 2 O 3 , Si, SnO 2 , ZnO and WO 3 and biological entities, e.g. bacteria cells. For pulsed EPD, the applications reviewed are divided in pulsed current and pulsed voltage EPD. Among the applications of pulsed EPD, the formation of thick films from aqueous suspensions without water decomposition, the fabrication of multilayer and composite materials and the size-selective deposition of ceramic nanoparticles are the most important investigated to date, based on the quality of the coatings and deposits obtained and their relevance for applications.

  1. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Science.gov (United States)

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Testing a direction-dependent primordial power spectrum with observations of the cosmic microwave background

    International Nuclear Information System (INIS)

    Ma Yinzhe; Efstathiou, George; Challinor, Anthony

    2011-01-01

    Statistical isotropy is often assumed in cosmology and should be tested rigorously against observational data. We construct simple quadratic estimators to reconstruct asymmetry in the primordial power spectrum from CMB temperature and polarization data and verify their accuracy using simulations with quadrupole power asymmetry. We show that the Planck mission, with its millions of signal-dominated modes of the temperature anisotropy, should be able to constrain the amplitude of any spherical multipole of a scale-invariant quadrupole asymmetry at the 0.01 level (2σ). Almost independent constraints can be obtained from polarization at the 0.03 level after four full-sky surveys, providing an important consistency test. If the amplitude of the asymmetry is large enough, constraining its scale dependence should become possible. In scale-free quadrupole models with 1% asymmetry, consistent with the current limits from WMAP temperature data (after correction for beam asymmetries), Planck should constrain the spectral index q of power-law departures from asymmetry to Δq=0.3. Finally, we show how to constrain models with axisymmetry in the same framework. For scale-free quadrupole models, Planck should constrain the direction of the asymmetry to a 1σ accuracy of about 2 degrees using one year of temperature data.

  3. Current status and directions for fast reactor reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1983-01-01

    The development of fast breeder reactors (FBRs) for commercial electric power production has been under way in several countries for more than 20 years. In the United States (US), as elsewhere, early work was focused on small reactors to prove the feasibility of concepts and later was followed by larger reactors to test engineering features and to develop fuel technology. Because of the perceived crisis in electrical generation expected late in this century, major efforts (including fuel cycle activities) were developed in the early 1970s to ensure the capability of developing and using this new form of nuclear power. However, because of the effects of the oil price rise and subsequent emphasis on conservation, and a slowdown of industrial growth, there has been a decline in such activities, particularly in the US, which was at one time (1970s) the world leader in reactor development. This paper provides a brief history of breeder reprocessing and describes the current status, with emphasis on US programs and glimpses into the future

  4. HIV vaccines: current challenges and future directions.

    Science.gov (United States)

    Avrett, Sam; Collins, Chris

    2002-07-01

    Volume seven of the Review will mark the tenth anniversary of the Canadian HIV/AIDS Legal Network with a series of articles that describe past developments and future directions in several areas of policy and law related to HIV/AIDS. The following article is the first of these, discussing current challenges and future directions in the development of and access to HIV vaccines. It argues that governments are under public health, ethical, and legal obligations to develop and provide access to HIV vaccines. It further explains what is required for governments to fulfill their obligations: additional commitment and resources for HIV vaccine development in the context of increased global research and development regarding diseases of the poor; increased support and advocacy for partnerships to develop HIV vaccines; enhanced regulatory capacity in every country to review, approve, and monitor HIV vaccines; and assurance of global supply of, procurement of, delivery of, and access to vaccines in the context of efforts to increase global access to public health measures and technologies.

  5. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  6. Mechanical Extraction of Power From Ocean Currents and Tides

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  7. Current experience with nuclear power plant simulators and analysers

    International Nuclear Information System (INIS)

    Drozd, A.

    1998-01-01

    Topics of a Specialist Meeting are presented on Simulators and Plant Analyzers: Current Issues in Nuclear Power Plant Simulation (Espoo, Finland). They dealt with the need for maintaining expertise, training and education, control rooms and operator support tools, simulators as tools for plant safety analysis. The major conclusions of the payers and the meeting are discussed. (R.P.)

  8. Current status of countermeasures for ageing of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Koyama, M.; Ishikawa, M.; Tajima, K.

    2002-01-01

    This paper summarizes ageing coutermeasure program of the nuclear power plants performed by the Japanese Government and industries and related activities, and describes current research program and utilization of the research results for the aged nuclear power plants. Regulatory bodies (NISA of METI: Nuclear and Industrial Safety Agency of the Ministry of Economy, Trade and Industry) reviewed the ageing issues of nuclear power plants to enhance countermeasures for the aged plants. Nuclear Power Plant Life Engineering Center (PLEC) entrusted by NISA is carrying out the task relating to the aged plants. (orig.)

  9. Design of high current bunching system and high power fast Faraday cup for high current LEBT at VECC

    International Nuclear Information System (INIS)

    Anuraag Misra, A.; Pandit, B.V.S.; Gautam Pal, C.

    2011-01-01

    A high current microwave ion source as described is currently operational at VECC. We are able to optimize 6.4 mA of proton current in the LEBT line of ion source. The cyclotron type of accelerators accept only a fraction of DC ion beam coming from ion source so a ion beam buncher is needed to increase the accepted current into the cyclotron. The buncher described in this paper is unique in its kind as it has to handle high beam loading power upto 400 W as it is designed to bunch few mA of proton beam currents at 80 keV beam energy. A sinusoidal quarter wave RF structure has been chosen to bunch the high current beam due to high Q achievable in comparison with other configurations. This buncher has been designed using CST Microwave studio 3D advanced code since the design frequency of our buncher is 42 MHz, we have provided the RF and vacuum window near the drift tube of buncher to avoid vacuum and multipacting problems and to keep maximum volume in air region. There is a provision of multipacting interlocks to shut off amplifier during multipacting. We have carried out a detailed electromagnetic and thermal design of the buncher in CST Microwave studio and simulated values of unloaded Q was calculated be 4000. We have estimated a power of 400 W to achieve gap (designed) voltage of 10 kV. This buncher is in advanced stage of fabrication. A high power fast Faraday cup is also designed to characterize the above mentioned high current bunching system. The fast Faraday cup is designed in 50 Ω coaxial geometry to transmit fast pulse of bunched ion beam. The design of Faraday cup was completed using ANSYS HFSS and a bandwidth of 1.75 GHz was achieved this faraday cup design was different from conventional Faraday cup design as we have designed the support and cooling lines at such a place on Faraday cup which do not disturb the electrical impedance of the cup. (author)

  10. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator

    International Nuclear Information System (INIS)

    Coiante, D.

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator

  11. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    International Nuclear Information System (INIS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-01-01

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields

  12. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Bruno, Emanuela [Dipartimento di Fisica, Università della Calabria, Via Pietro Bucci, Cubo 31C, 87036 Rende (CS) (Italy); Marino, Lucia, E-mail: lucia.marino@fis.unical.it [CNR-IPCF UoS di Cosenza, Licryl Laboratory, and Centro di Eccellenza CEMIF.CAL, Università della Calabria, 87036 Rende (CS) (Italy); Scaramuzza, Nicola [Dipartimento di Fisica, Università della Calabria, Via Pietro Bucci, Cubo 31C, 87036 Rende (CS) (Italy); CNR-IPCF UoS di Cosenza, Licryl Laboratory, and Centro di Eccellenza CEMIF.CAL, Università della Calabria, 87036 Rende (CS) (Italy)

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  13. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  14. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  15. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Science.gov (United States)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  16. Design of Jet lower hybrid current drive generator and operation of high power test bed

    International Nuclear Information System (INIS)

    Dobbing, J.A.; Bosia, G.; Brandon, M.; Gammelin, M.; Gormezano, C.; Jacquinot, J.; Jessop, G.; Lennholm, M.; Pain, M.; Sibley, A.

    1989-01-01

    The JET Lower Hybrid Current Drive (LHCD) generator consists of 24 klystrons each rated for 650 KW operating at 3.7 GHz, giving a nominal generator power of 15.6 MW for 10 seconds or 12 MW for 20 seconds. This power will be transmitted through 24 waveguides to a phased array launcher on one of the main ports of the JET machine. In addition, two klystrons are currently being operated on a high power test bed to establish reliable operation of the generators components and test high power microwave components prior to their installation

  17. Direct cycle type nuclear power plant

    International Nuclear Information System (INIS)

    Tagawa, Hisato; Ibe, Hidefumi.

    1990-01-01

    In a direct cycle type nuclear power plant such as BWR type reactor, since oxygen atoms in reactor water are actuvated by neutron irradiation in the reactor core, carry over of the thus formed radioactive nitrogen atoms causes increase in the dosage in a turbine system. Since 16 N accompanies in the main steams in the chemical form of 16 NO, it can not effectively be removed in a nitrogen removing device. In view of the above, hydrogen atom concentration is reduced by adding metals having high reaction with hydrogen atoms, for example, silver ions, chromium ions, or ruthenium ions are added to reactor water. Then, equilibrium concentration of 16 NO in water is reduced by suppressing the reaction: 16 NO 2 + H → 16 NO + OH. (T.M.)

  18. CONCEPTS OF IMPROVING CURRENT PROTECTION OF POWER-GRID LINES

    Directory of Open Access Journals (Sweden)

    F. A. Romaniuk

    2015-01-01

    Full Text Available The  6–35  kV  power-grid  current  protection  serves  to  protect  the  transmission  lines against phase-to-phase short-circuits. The major disadvantage of it lies in the relatively large time delays of the last stages especially in the main sections of the grid owing to the stepped relay characteristics as well as a large number of the steps. A full-fledged protection of the 6–35 kV lines against inter-phase short circuits can be provided by the two-stage current protection: the first stage being the current cutoff without any time delay and the second stage – the maximum current protection where the time delay is linear contingent on the distance between the protection placement and the fault-point location. The article introduces the rating formulae for the time delays of the second-stage and their exemplary graphic presentation. The authors offer a variant for solving the problem with computation of the second-stage time delays in those instances where several feeders diverge from the bus bars of the substation located in the end of the protected line.Improving current protections for the 6–35 kV transmission lines with one-end power supply against interphase short-circuits can be based on the collective application of the following principles: accounting for the type and location of the short-circuit which provides for the high-performance cutoff zone instantaneous expansion and its independence on the mode of failure and the grid operation mode. It also allows increase of the last stage sensitiveness towards asymmetrical short-circuits; detection of the short-circuit location only on the results of fault currents measurement which simplifies the protection implementation; realization of the last (second protection stage with linear-dependent time delay which ensures potentiality of its operation speed increase.

  19. Developments for improved direct methanol fuel cell stacks for portable power

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, C.; Stimming, U. [Bavarian Center for Applied Energy Research, ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany); Technische Universitaet Muenchen, Department of Physics E19, James-Franck-Str. 1, D-85748 Garching (Germany); Scholz, M.; Seliger, W. [Bavarian Center for Applied Energy Research, ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany); Racz, A. [Technische Universitaet Muenchen, Department of Physics E19, James-Franck-Str. 1, D-85748 Garching (Germany); Knechtel, W.; Rittmayr, J.; Grafwallner, F.; Peller, H. [ET EnergieTechnologie GmbH, Eugen-Saenger-Ring 4, D-85649 Brunnthal-Nord (Germany)

    2007-02-15

    Different aspects of the improvement of direct methanol fuel cell (DMFC) systems for portable power generation are investigated, in a project funded by the Bavarian state. The materials research focuses on the development of improved catalysts, in particular for the oxygen reduction reaction. Some recent results on supported ruthenium selenium catalysts are reported. In parallel, tests on other fuel cell materials are performed using MEAs made from industrial unsupported catalysts as the reference. These standard MEAs have catalyst loadings of about 11 mg cm{sup -2} and, at high air flux, can deliver current densities of about 500 mA cm{sup -2} and 100 mA cm{sup -2} at 110 C and 50 C, respectively. At low air flux and 50 C, current densities between 60 and 80 mA cm{sup -2} are possible rate at 500 mV. Using these MEAs, different commercial gas diffusion materials are tested as the cathode backing. Thus, it is found that the Sigracet materials by SGL Carbon are the most suitable for operation at a low air flux. Finally, a demonstration stack, comprised of up to ten cells, is developed using graphite PVDF compound bipolar plates by SGL Carbon. As will be reported, this stack shows a high homogeneity of cell voltages and stable operation under relevant conditions, using standard MEAs. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    extracted additional maintenance measures and incorporated them into their long-term maintenance plans, thereby reinforcing their current maintenance activities. Considering the latest information including domestic and overseas operating experiences and knowledge of academics and experts consigned by the Minister of Economy, Trade and Industry (METI), the Nuclear and Industry Safety Agency (NISA) of the METI reviewed and studied the technical evaluation and long-term maintenance plans of these electric utility companies. This paper describes the outlines of the NISA's report and related activities on current approaches to cope with the ageing of nuclear power plants in Japan. (Note) In 2001, the MITI was reorganized to the Ministry of Economy, Trade and Industry (METI). (author)

  1. IMPROVING MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Yu. P. Artemenko

    2015-01-01

    Full Text Available This article is devoted to math modeling of channel of alternating current airborne electrical power-supply system. Mathematical modeling of generator, voltage regulator, constant speed drive is considered.

  2. Nuclear power in the Asia-Pacific region. Current status and future perspective

    International Nuclear Information System (INIS)

    Hao, Jia; Otsuki, Takashi; Irie, Kazutomo

    2017-01-01

    This paper presents the current status and future perspective of nuclear power in the APEC region. We design three scenarios, including Low-nuclear Scenario, Business-as-Usual Scenario (BAU) as well as High-nuclear Scenario, in order to quantitatively evaluate contribution of nuclear power to the low-carbon energy system. Preliminary results from the modeling are presented in the paper, and the drivers and challenges for nuclear power development in the APEC region are discussed. (author)

  3. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  4. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying

    2011-10-01

    One form of power overshoot commonly observed with mixed culture microbial fuel cells (MFCs) is doubling back of the power density curve at higher current densities, but the reasons for this type of overshoot have not been well explored. To investigate this, MFCs were acclimated to different external resistances, producing a range of anode potentials and current densities. Power overshoot was observed for reactors acclimated to higher (500 and 5000. Ω) but not lower (5 and 50. Ω) resistances. Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current in cyclic voltammograms (CVs) and higher levels of redox activity over a broader range of anode potentials (-0.4 to 0. V; vs. a Ag/AgCl electrode) based on first derivative cyclic voltammetry (DCV) plots. Reactors acclimated to higher external resistances produced lower current in CVs, exhibited lower redox activity over a narrower anode potential range (-0.4 to -0.2. V vs. Ag/AgCl), and failed to produce higher currents above ∼-0.3. V (vs. Ag/AgCl). After the higher resistance reactors were acclimated to the lowest resistance they also exhibited similar CV and DCV profiles. Our findings show that to avoid overshoot, prior to the polarization and power density tests the anode biofilm must adapt to low external resistances to be capable of higher currents. © 2011 Elsevier B.V.

  5. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  6. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Variable speed DFIG wind energy system for power generation and harmonic current mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)

    2009-06-15

    This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)

  8. Assessing harmonic current source modelling and power definitions in balanced and unbalanced networks

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson-Hope, Gary; Stemmet, W.C. [Cape Peninsula University of Technology, Cape Town Campus, Cape Town (South Africa)

    2006-07-01

    The purpose of this paper is to assess the DlgSILENT PowerFactory software power definitions (indices) in terms of phase and sequence components for balanced and unbalanced networks when harmonic distortion is present and to compare its results to hand calculations done, following recommendation made by the IEEE Working Group on this topic. This paper also includes the development of a flowchart for calculating power indices in balanced and unbalanced three-phase networks when non-sinusoidal voltages and currents are present. A further purpose is to determine how two industrial grade harmonic analysis software packages (DlgSILENT and ERACS) model three-phase harmonic sources used for current penetration studies and to compare their results when applied to a network. From the investigations, another objective was to develop a methodology for modelling harmonic current sources based on a spectrum obtained from measurements. Three case studies were conducted and the assessment and developed methodologies were shown to be effective. (Author)

  9. Industrial power takes new directions

    International Nuclear Information System (INIS)

    Smith, D.J.

    1992-01-01

    The line between industrial power producers, non-utility power producers, and more specifically cogenerators, is no longer clear. Some industrials still own and operate their own power plants; others have become equity partners in third-party plants. Many industrial complexes have their steam and electrical power requirements supplied by third-party cogeneration plants. This paper reports that one of the major reasons industrial plants choose third-party cogeneration over self-generation is economics. Rather than spend capital on non-revenue projects such as power plants, manufacturers prefer to invest in profit-making ventures. Responding to the recent environmental awareness of many communities, industrial power plants are now collaborating with electric utilities to address environmental concerns. One way this is being accomplished is the dispatching of power plants for localized NO x reduction

  10. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)

    OpenAIRE

    Yukihisa, Washio; Japan Marine Science and Technology Center

    1985-01-01

    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  11. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  12. Nuclear power in the OECD countries results and current issues

    International Nuclear Information System (INIS)

    Jones, C.F.

    1989-01-01

    The first use of nuclear power for the generation of electricity on a commercial scale occurred in the United Kingdom in 1956. Today, 13 OECD countries have 318 nuclear units in operation and 66 more in construction or on order. This outstanding achievement is the result of the successful organization, start up, and operation of an industry to design, build, equip, fuel, and maintain these facilites. Nuclear power, however, is currently troubled by a number of issues that may impair its ability to reach its full potential. The industry has acknowledged problems that can be and are being managed. But the industry also has a number of political difficulties that could be beyond its ability to resolve with its own resources. These are issues common to the introduction of new technologies into a complex world. Nevertheless, nuclear power continues to be the means by which we can provide the electric power needed to raise the living standard of everyone on the globe

  13. Current status and directions for fast reactor reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1983-01-01

    The development of fast breeder reactors (FBRs) for commercial electric power production has been under way in several countries for more than 20 years. In the United States as elsewhere, early work was centered on small reactors to prove the feasibility of concepts and later was followed by larger reactors to test engineering features and to develop fuel technology. In the early 1970s, with the perceived crisis in electrical generation expected late in this century, major efforts were mounted to plan and carry out comprehensive development programs to ensure the capability to develop and begin using this new form of nuclear power by the end of this century. This comprehensive effort included the first serious efforts directed toward the supporting fuel cycle activities. However, because of the effects of the oil price rise and resulting conservation, a slowdown of industrial growth, and cut-backs in energy needs, there has been a decline in program activities. Unlike the fuel cycle for light-water reactors (LWRs), where supply and the back-end recycle and/or waste disposal activities can largely be uncoupled, recovery and recycle of fissile materials in spent fuel must be accomplished in one or two years in a practical breeder system. 3 references

  14. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  15. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016.

    Science.gov (United States)

    Bikson, Marom; Grossman, Pnina; Thomas, Chris; Zannou, Adantchede Louis; Jiang, Jimmy; Adnan, Tatheer; Mourdoukoutas, Antonios P; Kronberg, Greg; Truong, Dennis; Boggio, Paulo; Brunoni, André R; Charvet, Leigh; Fregni, Felipe; Fritsch, Brita; Gillick, Bernadette; Hamilton, Roy H; Hampstead, Benjamin M; Jankord, Ryan; Kirton, Adam; Knotkova, Helena; Liebetanz, David; Liu, Anli; Loo, Colleen; Nitsche, Michael A; Reis, Janine; Richardson, Jessica D; Rotenberg, Alexander; Turkeltaub, Peter E; Woods, Adam J

    2016-01-01

    This review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk. Safety data from animal tests for tissue damage are reviewed with systematic consideration of translation to humans. Arbitrary safety considerations are avoided. Computational models are used to relate dose to brain exposure in humans and animals. We review relevant dose-response curves and dose metrics (e.g. current, duration, current density, charge, charge density) for meaningful safety standards. Special consideration is given to theoretically vulnerable populations including children and the elderly, subjects with mood disorders, epilepsy, stroke, implants, and home users. Evidence from relevant animal models indicates that brain injury by Direct Current Stimulation (DCS) occurs at predicted brain current densities (6.3-13 A/m(2)) that are over an order of magnitude above those produced by conventional tDCS. To date, the use of conventional tDCS protocols in human trials (≤40 min, ≤4 milliamperes, ≤7.2 Coulombs) has not produced any reports of a Serious Adverse Effect or irreversible injury across over 33,200 sessions and 1000 subjects with repeated sessions. This includes a wide variety of subjects, including persons from potentially vulnerable populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  17. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  18. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Torreglosa, Juan P.; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2016-01-01

    Although electric vehicles (EVs) are experiencing a considerable upsurge, the technology associated with them is still under development. This study focused on the control and operation of a medium-voltage direct-current (MVDC) microgrid with an innovative decentralized control system, which was used as a fast charging station (FCS) for EVs. The FCS was composed of a photovoltaic (PV) system, a Li-ion battery energy storage system (BESS), two 48 kW fast charging units for EVs, and a connection to the local grid. With this configuration and thanks to its decentralized control, the FCS was able to work as a stand-alone system most of the time though with occasional grid support. This paper presents a new decentralized energy management system (EMS) with two options to control the power sources of the FCS. The choice of the power source depends on the MVDC bus voltage, the state-of-charge (SOC) of the BESS, and the control option of the EMS. This control was tested by simulating the FCS, when connected to several EVs and under different sun irradiance conditions. Simulation results showed that the FCS operated smoothly and effectively, which confirms the feasibility of using this technology in EVs. - Highlights: • This paper studies a MVDC microgrid for fast charging station of EV. • It is composed of a PV system, a BESS, two EV charging stations and a grid connection. • A decentralized control scheme is applied to control the power sources. • The MVDC bus voltage is the key parameter for controlling the system. • The results demonstrate the feasibility of the system and control under study.

  19. Transcranial direct-current stimulation as treatment in epilepsy.

    Science.gov (United States)

    Gschwind, Markus; Seeck, Margitta

    2016-12-01

    Neuromodulation (NM) is a complementary therapy for patients with drug-resistant epilepsy. Vagal nerve stimulation and deep brain stimulation of the anterior thalamus are established techniques and have shown their efficacy in lowering seizure frequency, but they are invasive and rarely render patients seizure-free. Non-invasive NM techniques are therefore increasingly investigated in a clinical context. Areas covered: Current knowledge about transcranial direct-current stimulation (tDCS) and other non-invasive NM in patients with epilepsy, based on the available animal and clinical studies from PubMed search. Expert commentary: tDCS modulates neuronal membrane potentials, and consequently alters cortical excitability. Cathodal stimulation leads to cortical inhibition, which is of particular importance in epilepsy treatment. The antiepileptic efficacy is promising but still lacks systematic studies. The beneficial effect, seen in ~20%, outlasts the duration of stimulation, indicating neuronal plasticity and is therefore of great interest to obtain long-term effects.

  20. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  1. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    Science.gov (United States)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  2. Estimation and reduction of harmonic currents from power converters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian

    -based method depends very much on the amount and accuracy of collected data in the development stage. The outcome of this investigation is a Harmonic Calculation Software compiled into a Graphical User Interface PC-software application, which can be applied for fast estimations of the harmonic currents...... control of the proposed topologies are given together with laboratory tests. One harmonic current mitigation solution found is to connect (two) smaller power APF's in parallel, sharing the same ac- and dc-bus. It is proven that parallel APF's may have lower passive components although other issues arises......, like circulation currents, which is removed here by common mode coils. Another harmonic solution is to use cascade connection of (two) independent APF's that cooperatively share the task of the harmonic mitigation. Two cooperative control methods are proposed called load-sharing and harmonic-sharing...

  3. A Component-Minimized Single-Phase Active Power Decoupling Circuit with Reduced Current Stress to Semiconductor Switches

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    inductor. With such a configuration, this leg can control the current going into the two output capacitors connected in series for power decoupling, and the other leg can control the line current according to active and reactive power requirement. The proposed topology does not require additional passive...... component, e.g. inductors or film capacitors for ripple energy storage because this task can be accomplished by the dc-link capacitors, and therefore its implementation cost can be minimized. Another unique feature of the proposed topology is that the current stress of power semiconductors can be reduced...

  4. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  5. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  6. Assessment of environmental impact of HVDC power lines in terms of corona currents

    International Nuclear Information System (INIS)

    Tikhodeev, N.N.

    1997-01-01

    Corona loss measurements were made on a HVDC power transmission line to evaluate current density. Ion currents were obtained from unipolar and bipolar 400 to 1000 kV DC test lines. A numerical solution was proposed for assessing the maximum current density of unipolar corona currents near the lines. A larger ground clearance of line conductors was proposed as being the most effective way of lowering the current density. 11 refs., 2 tabs., 4 figs

  7. Analysis of a BWR direct cycle forced circulation power plants operation

    International Nuclear Information System (INIS)

    Andrade, G.G. de.

    1973-01-01

    First, it is established a general view over the operational problems of the BWR direct cycle forced circulation power plants, and then it is analysed the possibility of the utilization of the energy purged from the turbine as an additional energy for the electrical generation. To simulate the BWR power plant and to obtain the solution of the mathematical model it was developed a computer code named ATOR which shows the feasibility of the proposed method. In this way it is shown the possibility to get a better maneuvering allowance for the BWR power plant whenever it is permitted a convenient use of the vapor extracted from the turbine for the feedwater pre-heaters of the reactor. (author)

  8. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  9. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  10. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  11. Effects of Transcranial Direct Current Stimulation, Transcranial Pulsed Current Stimulation, and Their Combination on Brain Oscillations in Patients with Chronic Visceral Pain: A Pilot Crossover Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-11-01

    Full Text Available ObjectiveChronic visceral pain (CVP syndromes are persistently painful disorders with a remarkable lack of effective treatment options. This study aimed at evaluating the effects of different neuromodulation techniques in patients with CVP on cortical activity, through electreocephalography (EEG and on pain perception, through clinical tests.DesignA pilot crossover randomized controlled study.SettingsOut-patient.SubjectsAdults with CVP (>3 months.MethodsParticipants received four interventions in a randomized order: (1 transcranial pulsed current stimulation (tPCS and active transcranial direct current stimulation (tDCS combined, (2 tPCS alone, (3 tDCS alone, and (4 sham condition. Resting state quantitative electroencephalography (qEEG and pain assessments were performed before and after each intervention. Results were compared with a cohort of 47 healthy controls.ResultsWe enrolled six patients with CVP for a total of 21 visits completed. Compared with healthy participants, patients with CVP showed altered cortical activity characterized by increased power in theta, alpha and beta bands, and a significant reduction in the alpha/beta ratio. Regarding tES, the combination of tDCS with tPCS had no effect on power in any of the bandwidths, nor brain regions. Comparing tPCS with tDCS alone, we found that tPCS induced higher increase in power within the theta and alpha bandwidths.ConclusionThis study confirms that patients with CVP present abnormal EEG-indexed cortical activity compared with healthy controls. Moreover, we showed that combining two types of neurostimulation techniques had no effect, whereas the two interventions, when applied individually, have different neural signatures.

  12. Effects of Transcranial Direct Current Stimulation, Transcranial Pulsed Current Stimulation, and Their Combination on Brain Oscillations in Patients with Chronic Visceral Pain: A Pilot Crossover Randomized Controlled Study.

    Science.gov (United States)

    Thibaut, Aurore; Russo, Cristina; Hurtado-Puerto, Aura Maria; Morales-Quezada, Jorge Leon; Deitos, Alícia; Petrozza, John Christopher; Freedman, Steven; Fregni, Felipe

    2017-01-01

    Chronic visceral pain (CVP) syndromes are persistently painful disorders with a remarkable lack of effective treatment options. This study aimed at evaluating the effects of different neuromodulation techniques in patients with CVP on cortical activity, through electreocephalography (EEG) and on pain perception, through clinical tests. A pilot crossover randomized controlled study. Out-patient. Adults with CVP (>3 months). Participants received four interventions in a randomized order: (1) transcranial pulsed current stimulation (tPCS) and active transcranial direct current stimulation (tDCS) combined, (2) tPCS alone, (3) tDCS alone, and (4) sham condition. Resting state quantitative electroencephalography (qEEG) and pain assessments were performed before and after each intervention. Results were compared with a cohort of 47 healthy controls. We enrolled six patients with CVP for a total of 21 visits completed. Compared with healthy participants, patients with CVP showed altered cortical activity characterized by increased power in theta, alpha and beta bands, and a significant reduction in the alpha/beta ratio. Regarding tES, the combination of tDCS with tPCS had no effect on power in any of the bandwidths, nor brain regions. Comparing tPCS with tDCS alone, we found that tPCS induced higher increase in power within the theta and alpha bandwidths. This study confirms that patients with CVP present abnormal EEG-indexed cortical activity compared with healthy controls. Moreover, we showed that combining two types of neurostimulation techniques had no effect, whereas the two interventions, when applied individually, have different neural signatures.

  13. Current status and future program for nuclear power education in the State University of Skopje

    International Nuclear Information System (INIS)

    Causevski, A.

    2004-01-01

    Nuclear Education in the State University 'Ss. Cyril and Methodius' in Skopje, Macedonia is takes place in few Departments and Faculties. The Nuclear Power and Nuclear Reactors for electricity generation are the fields studied in the Department of Electric Power Systems and Power Plants in the Faculty of Electrical Engineering, Skopje. The paper gives the overview of the current status of nuclear education on the Faculty of Electrical Engineering, as well as the future perspectives and programs for improving. In the current module of Power Engineering, the Nuclear Power is studied in two subjects: Basics of Nuclear Energy, and the second one is Nuclear Power Reactors and Nuclear Power Plants. The new concept of studying will include the new module of 'Power Engineering and Energy Management' with 4 subjects, and some of them are modified, transformed or innovated from the old ones, and the others are totally new courses. In the paper also will include some steps that should be done in order to achieve the targets for new improved nuclear education in the field of nuclear power. (author)

  14. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  15. Current Status of QA For Nuclear Power Plants in Japan

    International Nuclear Information System (INIS)

    Nagoshi, Hitohiko

    1986-01-01

    It is the current status of QA and our QA experiences with nuclear power plants against the background of the Japanese social and business environment. Accordingly, in 1972, 'The Guidance for Quality Assurance in Construction of Nuclear Power Plants' based on U. S. 10CEF50 Appendix B, was published by the Japan Electric Association. 'Jug-4101 The Guide for Quality Assurance of Nuclear Power Plants' has been prepared by referring to the IAEA QA code. The Guide has been accepted by the Japanese nuclear industry and applied to the QA programs of every organization concerned therewith. The Japanese approach to higher quality will naturally be different from that of other countries because of Japan's cultural, social, and economic conditions. Even higher quality is being aimed at through the LWR Improvement and Standardization Program and coordinated quality assurance efforts

  16. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study.

    Science.gov (United States)

    Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.

  17. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  18. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  19. Low-noise pulse-mode current power supply for magnetic field measurements of magnets for accelerators

    International Nuclear Information System (INIS)

    Omel'yanenko, M.M.; Borisov, V.V.; Donyagin, A.M.; Kostromin, S.A.; Makarov, A.A.; Khodzhibagiyan, G.G.; Shemchuk, A.V.

    2017-01-01

    The described pulse-mode current power supply has been designed and fabricated for the magnetic field measurement system of superconducting magnets for accelerators. The power supply is based on a current regulator with pass transistor bank in linear mode. The output current pulses (0-100 A) are produced by using the energy of preliminary charged capacitor bank (5-40 V), which is charged additionally after each pulse. There is no AC-line frequency and harmonics ripple in the output current, the relative noise level is less than -100 dB (or 10 -5 ) of RMS value (it is defined as the ratio of output RMS noise current to the maximal output current 100 A within the operating bandwidth, expressed in dB).

  20. Spectrochemical analysis of plutonium using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Morris, W.F.; Fadeff, S.K.; Torres, S.

    1983-01-01

    One year ago, LLNL was just completing the installation of a Direct Current Plasma (DCP) spectrometer for the analysis of Pu and Pu alloys. The installation was completed in December 1982 and has been utilized regularly for Pu analysis since then. This paper discusses the experience with the instrument and some data demonstrating its performance

  1. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    OpenAIRE

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  2. Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system

    Directory of Open Access Journals (Sweden)

    Wenge Christoph

    2017-12-01

    Full Text Available Electric vehicles (EVs can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.

  3. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  4. Enhanced Power Quality and Minimized Peak Current Control in An Inverter based Microgrid under Unbalanced Grid Faults

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Sulligoi, Giorgio

    2016-01-01

    The microgrid inverter experiences the power oscillations and current harmonics in case of the unbalanced grid voltage faults. However, there is a trade-off between power oscillations and current harmonics should be considered in three phase three wire inverter systems during the conventional fault...... ride through control. In order to solve this problem, a novel control strategy is proposed to enhance the output current quality while mitigating the active and reactive output power oscillations. Moreover, a simple current-limited control strategy can be achieved without the necessity of the voltage....../current positive/negative sequence extraction. Finally, the simulation tests of the conventional and proposed control solutions are carried out. The results verify the effectiveness of the proposed strategy....

  5. Progress and plans for the EnCurrent power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Bear, C. [New Energy Corp. Inc., Calgary, AB (Canada)

    2008-07-01

    This presentation discussed a new vertical axis hydro turbine designed by New Energy Corporation. The EnCurrent turbine design was based on the Darrieus wind turbine, and suited for use in rivers, irrigation canals, industrial outflows, and tidal current applications. The turbine has a flexible deployment configuration with a variable aspect ratio. Designs for the turbine were initiated in fresh water applications, and the size of the equipment was increased to include tidal applications and large river arrays after the technology was proven. A study has demonstrated that use of the turbines in Canada's canal systems would result in significant annual power generation revenues. The use of smaller turbine systems can provide indirect sales to owners through local resellers, while larger systems can provide power or additional revenues for utilities, large cooperatives, and project developers. Case studies of small turbine installations were provided, as well as case studies of turbines used by larger commercial plants. The presentation also discussed several large projects recently undertaken by the company, including the $6.5 million Canoe pass installation. tabs., figs.

  6. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  7. Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Directory of Open Access Journals (Sweden)

    Raymond Sieh

    2016-07-01

    Full Text Available The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM, energy dispersive X-ray (EDS, optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF between 0.06 and 0.12.

  8. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  9. Transcranial direct current stimulation for depression in Alzheimer's disease: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Narita, Zui; Yokoi, Yuma

    2017-06-19

    Patients with Alzheimer's disease frequently elicit neuropsychiatric symptoms as well as cognitive deficits. Above all, depression is one of the most common neuropsychiatric symptoms in Alzheimer's disease but antidepressant drugs have not shown significant beneficial effects on it. Moreover, electroconvulsive therapy has not ensured its safety for potential severe adverse events although it does show beneficial clinical effect. Transcranial direct current stimulation can be the safe alternative of neuromodulation, which applies weak direct electrical current to the brain. Although transcranial direct current stimulation has plausible evidence for its effect on depression in young adult patients, no study has explored it in older subjects with depression in Alzheimer's disease. Therefore, we present a study protocol designed to evaluate the safety and clinical effect of transcranial direct current stimulation on depression in Alzheimer's disease in subjects aged over 65 years. This is a two-arm, parallel-design, randomized controlled trial, in which patients and assessors will be blinded. Subjects will be randomized to either an active or a sham transcranial direct current stimulation group. Participants in both groups will be evaluated at baseline, immediately, and 2 weeks after the intervention. This study investigates the safety and effect of transcranial direct current stimulation that may bring a significant impact on both depression and cognition in patients with Alzheimer's disease, and may be useful to enhance their quality of life. ClinicalTrials.gov, NCT02351388 . Registered on 27 January 2015. Last updated on 30 May 2016.

  10. New IES scheme for power conditioning at ultra-high currents: from concept to MHD modeling and first experiments

    International Nuclear Information System (INIS)

    Chuvatin, Alexandre S.; Aranchuk, Leonid E.; Rudakov, Leonid I.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Fursov, Fiodor I.; Huet, Dominique; Gasilov, Vladimir A.; Krukovskii, Alexandre Yu.

    2002-01-01

    This work introduces an inductive energy storage (IES) scheme which aims pulsed-power conditioning at multi- MJ energies. The key element of the scheme represents an additional plasma volume, where a magnetically accelerated wire array is used for inductive current switching. This plasma acceleration volume is connected in parallel to a microsecond capacitor bank and to a 100-ns current ruse-time useful load. Simple estimates suggest that optimized scheme parameters could be reachable even when operating at ultra-high currents. We describe first proof-of-principle experiments carried out on GIT12 generator at the wire-array current level of 2 MA. The obtained confirmation of the concept consists in generation of a 200 kV voltage directly at an inductive load. This load voltage value can be already sufficient to transfer the available magnetic energy into kinetic energy of a liner at this current level. Two-dimensional modeling with the radiational MHD numerical tool Marple confirms the development of inductive voltage in the system. However, the average voltage increase is accompanied by short-duration voltage drops due to interception of the current by the low-density upstream plasma. Upon our viewpoint, this instability of the current distribution represents the main physical limitation to the scheme performance

  11. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  12. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  13. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Natalie Dittert

    2018-04-01

    Full Text Available Although posttraumatic stress disorder (PTSD; DSM-V 309.82 and anxiety disorders (DSM-V 300.xx are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS and a 95-dB female scream as unconditioned stimulus (UCS. We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC, which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84. The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be

  14. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  15. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    International Nuclear Information System (INIS)

    Sibatov, R T

    2011-01-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  16. Application of over-current relay in offshore wind power plant grid with VSC-HVDC connection

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sanjay K.; Teodorescu, Remus [Aalborg Univ. (Denmark). Dept. of Energy Technology; Rodriguez, Pedro [Technical Univ. of Catalonia, Terrassa (Spain). Dept. of Electrical Engineering; Kjaer, Philip C. [Vestas Technology R and D, Aarhus (Denmark)

    2011-07-01

    This paper presents the setting and coordination of over-current relays in an offshore wind power plant (WPP) grid connected only to the power electronic converters with limited fault current capability. The limited fault current injection capability of the converters has been considered as a hindrance for the relay setting. This characteristic can be utilized to develop a deterministic picture of the radial grid network and then the relays settings could be applied. The relay coordination has been demonstrated through an implementation in the Real Time Digital Simulation (RTDS) platform. The setting of relay parameters based upon maximum nominal currents is explained and the consequences are investigated. (orig.)

  17. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  18. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  19. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    Science.gov (United States)

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  20. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  1. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  2. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2018-03-01

    Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.

  3. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  4. Directed Motivational Currents: Using vision to create effective motivational pathways

    OpenAIRE

    Christine Muir; Zoltán Dörnyei

    2013-01-01

    Vision, that is, the mental representation of the sensory experience of a future goal state (involving imagination and imagery), is currently at the forefront of motivational innovation, and in recent years it has been seen increasingly more often in the motivational tool kit of practicing language teachers. Theories such as Dörnyei’s L2 motivational self system have explored the power that creating effective visions can harness (see, e.g., Dörnyei & Kubanyiova, 2014) and when viewed in conju...

  5. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  6. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study.

    Science.gov (United States)

    Santos, Michele Devido; Gagliardi, Rubens José; Mac-Kay, Ana Paula Machado Goyano; Boggio, Paulo Sergio; Lianza, Roberta; Fregni, Felipe

    2013-01-01

    Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. Prospective cohort study developed in a public university hospital. Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034), naming (P = 0.041) and verbal fluency for names of animals (P = 0.038). Improved scores for performing these three tasks were seen after stimulation. We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.

  7. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  8. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  9. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  10. Current direction-dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS).

    Science.gov (United States)

    Shirota, Yuichiro; Dhaka, Suman; Paulus, Walter; Sommer, Martin

    2017-05-22

    Transcranial magnetic stimulation (TMS) with different current directions can activate different sets of neurons. Current direction can also affect the results of repetitive TMS. To test the influence of uni-directional intermittent theta burst stimulation (iTBS) using different current directions, namely posteroanterior (PA) and anteroposterior (AP), on motor behaviour. In a cross-over design, PA- and AP-iTBS was applied over the left primary motor cortex in 19 healthy, right-handed volunteers. Performance of a finger-tapping task was recorded before and 0, 10, 20, and 30min after the iTBS. The task was conducted with the right and left hands separately at each time point. As a control, AP-iTBS with reduced intensity was applied to 14 participants in a separate session (AP weak condition). The finger-tapping count with the left hand was decreased after PA-iTBS. Neither AP- nor AP weak -iTBS altered the performance. Current direction had a significant impact on the after-effects of iTBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.

    Science.gov (United States)

    Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria

    2016-05-01

    Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  12. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  13. Harmonics in Offshore Wind Power Plants Employing Power Electronic Devices in the Transmission System

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm

    Introduction The trend in power generation is to partly replace conventional power plants with renewable energy sources. Offshore wind power has been selected to take up a significant proportion of the renewable energy production. The grid codes have been updated to accommodate the rising share...... of wind power. The onshore as well as offshore wind power plants (OWPPs) therefore have to meet the same stringent requirement as the conventional power plants. This can be accommodated by employment of flexible alternating current transmission system (FACTS) devices, such as the static compensator...... gives rise to a number of challenges to the wind power industry with regard to construction, installation as well as transmission of the generated energy. The STATCOM and the voltage-sourced converter high-voltage direct current (VSC-HVDC) are attractive solutions for grid connection of remotely located...

  14. Impact of Neutral Point Current Control on Copper Loss Distribution of Five Phase PM Generators Used in Wind Power Plants

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Efficiency improvement under faulty conditions is one of the main objectives of fault tolerant PM drives. This goal can be achieved by increasing the output power while reducing the losses. Stator copper loss not only directly affects the total efficiency, but also plays an important role in thermal stress generations of iron core. In this paper, the effect of having control on neutral point current is studied on the efficiency of five-phase permanent magnet machines. Open circuit fault is considered for both one and two phases, and the distribution of copper loss along the windings are evaluated in each case. It is shown that only by having access to neutral point, it is possible to generate less stator thermal stress and more mechanical power in five-phase permanent magnet generators. Wind power generation and their applications are kept in mind, and the results are verified via simulations and experimental tests on an outer-rotor type of five-phase PM machine.

  15. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Patel, Sonal G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Falcon, Ross Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Maron, Yitzhak [Weizmann Inst. of Science, Rehovot (Israel)

    2017-11-01

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

  16. Dynamical model of computation of the rhodium self-powered neutron detector current

    International Nuclear Information System (INIS)

    Erben, O.; Slovacek, M.; Zerola, L.

    1992-01-01

    A model is presented for the calculation of the rhodium self-powered neutron detector current in dependence on the neutron flux density during reactor core transients. The total signal consists of a beta emission, prompt, and gamma component and a background signal. The model has been verified by means of experimental data obtained during measurements on the LVR-15 research reactor and at the Dukovany nuclear power plant. (author) 9 figs., 21 refs

  17. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    Science.gov (United States)

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats.

  18. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  19. Unilateral jumps in different directions: a novel assessment of soccer-associated power?

    Science.gov (United States)

    Murtagh, Conall F; Vanrenterghem, Jos; O'Boyle, Andrew; Morgans, Ryland; Drust, Barry; Erskine, Robert M

    2017-11-01

    We aimed to determine whether countermovement jumps (CMJs; unilateral and bilateral) performed in different directions assessed independent lower-limb power qualities, and if unilateral CMJs would better differentiate between elite and non-elite soccer players than the bilateral vertical (BV) CMJ. Elite (n=23; age, 18.1±1.0years) and non-elite (n=20; age, 22.3±2.7years) soccer players performed three BV, unilateral vertical (UV), unilateral horizontal-forward (UH) and unilateral medial (UM) CMJs. Jump performance (height and projectile range), kinetic and kinematic variables from ground reaction forces, and peak activation levels of the vastus lateralis and biceps femoris (BF) muscles from surface electromyography, were compared between jumps and groups of players. Peak vertical power (V-power) was greater in BV (220.2±30.1W/kg) compared to UV (144.1±16.2W/kg), which was greater than UH (86.7±18.3W/kg) and UM (85.5±13.5W/kg) (all, pprojectile range than non-elite (51.6±15.4 vs. 40.4±10.4cm, p=0.009). We have shown that UH, UV and UM CMJs assess distinct lower-limb muscular power capabilities in soccer players. Furthermore, as elite players outperformed non-elite players during unilateral but not BV CMJs, unilateral CMJs in different directions should be included in soccer-specific muscular power assessment and talent identification protocols, rather than the BV CMJ. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Transcranial direct current stimulation versus caffeine as a fatigue countermeasure.

    Science.gov (United States)

    McIntire, Lindsey K; McKinley, R Andy; Nelson, Justin M; Goodyear, Chuck

    To assess the efficacy of using transcranial direct current stimulation (tDCS) to remediate the deleterious effects of fatigue induced by sleep deprivation and compare these results to caffeine, a commonly used fatigue countermeasure. Based on previous research, tDCS of the dorsolateral prefrontal cortex (DLPFC) can modulate attention and arousal. The authors hypothesize that tDCS can be an effective fatigue countermeasure. Five groups of ten participants each received either active tDCS and placebo gum at 1800, caffeine gum with sham tDCS at 1800, active tDCS and placebo gum at 0400, caffeine gum with sham tDCS at 0400, or sham tDCS with placebo gum at 1800 and 0400 during 36-h of sustained wakefulness. Participants completed a vigilance task, working memory task, psychomotor vigilance task (PVT), and a procedural game beginning at 1800 h and continued every two hours throughout the night until 1900 the next day. tDCS dosed at 1800 provided 6 h of improved attentional accuracy and reaction times compared to the control group. Caffeine did not produce an effect. Both tDCS groups also had an improved effect on mood. Participants receiving tDCS reported feeling more vigor, less fatigue, and less bored throughout the night compared to the control and caffeine groups. We believe tDCS could be a powerful fatigue countermeasure. The effects appear to be comparable or possibly more beneficial than caffeine because they are longer lasting and mood remains more positive. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The current status and prospect of nuclear power in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, S. [State Nuclear Power Technology Corp., Beijing (China)

    2014-07-01

    'Full text:' China's nuclear power development has attracted world attention. This paper presented the current status of the nuclear power plant in China. By June 30, 2014, China has 20 operational units of 18.05GWe installed capacity, taking up 1.44% of the country's total. All the units have been operating well without any events above INES Level 1 in 2013. China also has 28 units of 30.5GWe installed capacity under construction, which accounts for around 40% of that in the world. The paper presented the progress of AP1000 in China. China made a national plan for 2011 to 2020 with the target to reach 58GWe operational nuclear power and 30GWe under construction by 2020. The Chinese President Xi Jinping urged recently to speed up the approval for new builds. This paper also presented the work of 'Go Global' by Chinese nuclear companies, i.e., their development of international market. (author)

  2. The current status and prospect of nuclear power in China

    International Nuclear Information System (INIS)

    Wei, S.

    2014-01-01

    'Full text:' China's nuclear power development has attracted world attention. This paper presented the current status of the nuclear power plant in China. By June 30, 2014, China has 20 operational units of 18.05GWe installed capacity, taking up 1.44% of the country's total. All the units have been operating well without any events above INES Level 1 in 2013. China also has 28 units of 30.5GWe installed capacity under construction, which accounts for around 40% of that in the world. The paper presented the progress of AP1000 in China. China made a national plan for 2011 to 2020 with the target to reach 58GWe operational nuclear power and 30GWe under construction by 2020. The Chinese President Xi Jinping urged recently to speed up the approval for new builds. This paper also presented the work of 'Go Global' by Chinese nuclear companies, i.e., their development of international market. (author)

  3. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  4. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    Science.gov (United States)

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  5. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    International Nuclear Information System (INIS)

    Oku, Takeo; Matsumoto, Taisuke; Ohishi, Yuya; Hiramatsu, Koichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2016-01-01

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter

  6. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan); Hiramatsu, Koichi; Yasuda, Masashi [Collaborative Research Center, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan); Shimono, Akio; Takeda, Yoshikazu [Kyoshin Electric Co. Ltd., 18, Goshonouchi-Nishimachi, Shichijo, Shimogyou-ku, Kyoto 600-8865 (Japan); Murozono, Mikio [Clean Venture 21 Co., 38 Ishihara Douno-Ushirocho, Kissyouin, Minami-ku, Kyoto 601-8355 (Japan)

    2016-02-01

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  7. Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources

    International Nuclear Information System (INIS)

    Wassermann, Sandra; Reeg, Matthias; Nienhaus, Kristina

    2015-01-01

    Electricity generated by renewable energies (RES-E) already accounts for 25% of Germany’s electricity supply. This has led to recent discussions for a better market integration of RES-E. The paper examines how competing actors and their ideas on market integration developed new services for direct marketing according to their respective origins and tried to shape the regulatory framework. The paper analyses this process and explains the current shape of the field of direct marketing. Medium-sized structured actors, who favoured RES-E integration via the conventional wholesale power markets, and who formed early close coalitions with RES-E power producers at the same time, have been most successful in terms of market shares. Moreover, they have been very successful for different reasons in building-up coalitions with governance units and influencing the field rules and routines. Based on those findings, the paper will conclude with some policy advices for the future adjustment of the current regulative frameworks. As long as there is no evidence of how RES-E can be integrated most effectively and efficiently, policies should maintain a competition between different direct marketing strategies to find out which strategies serve the best in terms of achieving a successful energy transition. - Highlights: • Innovation sociological analysis of the market integration of electricity from renewables in the German electricity markets. • Direct marketing of RES-E seen as a new strategic action field in the German “Energiewende”. • Strategies of incumbent and challenger actors to shape the rules of the field. • Suggestions for the future design of policy instruments for direct marketing of RES-E

  8. Current problems of the nuclear power - society relationship in Romania

    International Nuclear Information System (INIS)

    Constantin, Marin

    2004-01-01

    The present work tries to make an analysis of the current aspects of the interaction between the nuclear field, environment and society. One starts from the general conception of sustainable development. The analysis focusses mainly the social side of the sustainable development and the environmental protection issues. As prominent appears the sensitive problem of radioactive waste management. The papers analyses the current public perception, the mutations expected in the public opinion as well as the problems which the nuclear industry and decision makers confront to harmonize the requirements in the nuclear power sector and those imposed by society. Particularly focused is the situation in Romania

  9. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    International Nuclear Information System (INIS)

    Shimizu, T; Villamayor, M; Helmersson, U; Lundin, D

    2016-01-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar–N 2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N 2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf–N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail. (paper)

  10. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  11. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  12. Analog fault diagnosis based on ramping power supply current signature clusters

    NARCIS (Netherlands)

    Somayajula, S.A.S.; Sanchez-Sinencio, E.; Pineda de Gyvez, J.

    1996-01-01

    Measurement of power supply currents was found to be very useful for testing CMOS IC's because of its potential to detect a large class of manufacturing defects. However, this technique was used mainly for fault detection and was confined to digital circuits. In this paper, we present a suited

  13. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  14. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  15. A GPS-Based Control Framework for Accurate Current Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Savaghebi, Mehdi; Lu, Dylan

    2017-01-01

    This paper proposes a novel hierarchical control strategy for improvement of load sharing and power quality in ac microgrids. This control framework is composed of a droop based controller at the primary level, and a combination of distributed power sharing and voltage conditioning schemes...... consensus protocol to ensure proportional sharing of average power. The voltage conditioning scheme produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method....... dynamic response. The droop coefficient, which acts as a virtual resistance is adaptively changed as a function of the peak current. This strategy not only simplifies the control design but also improves the current sharing accuracy at high loading conditions. The distributed power sharing scheme uses...

  16. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    Directory of Open Access Journals (Sweden)

    Michele Devido Santos

    Full Text Available CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. RESULTS: There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034, naming (P = 0.041 and verbal fluency for names of animals (P = 0.038. Improved scores for performing these three tasks were seen after stimulation. CONCLUSIONS: We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.

  17. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    Claassen, Gert

    2007-01-01

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modulator Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be solid to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. These considerations are included in the paper. (author)

  18. A direct power conversion topology for grid integrations of hybrid AC/DC resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    and modulation schemes are proposed to extract the commanded current from the input ac/dc sources to the grid and guarantee high quality ac/dc inputs and ac output current waveforms with unity power factors. The proposed modulation scheme for sinusoidal outputs of the VMC is mathematically proved...

  19. Performance of a direct drive hydro turbine for wave power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y-H; Kim, C-G [Division of Mechanical and Information Engineering, Korea Maritime University Dongsam-dong 1, Youngdo-ku, Busan, 606-791 (Korea, Republic of); Choi, Y-D; Kim, I-S [Department of Mechanical Engineering, Mokpo National University Muan-ro 560, Chunggye-myun, Jeonnam, 534-729 (Korea, Republic of); Hwang, Y-C, E-mail: lyh@hhu.ac.k [R and D Institute, Shinhan Precision Co. Ltd. Gomo-ri 313, Jinle-myun, Kimhae, 621-881 (Korea, Republic of)

    2010-08-15

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in both cases of with wave and no wave conditions. As the turbine performance is influenced considerably by the wave condition, designed point of the turbine should be determined according to the wave condition at an expected installation site. Most of the output power generates at the runner passage of the Stage 2.

  20. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  1. Nuclear power systems: Their safety. Current issue review

    International Nuclear Information System (INIS)

    Myers, L.C.

    1994-04-01

    Human beings utilize energy in many forms and from a variety of sources. A number of countries have chosen nuclear-electric generation as a component of their energy system. At the end of 1992, there were 419 power reactors operating in 29 countries, accounting for more than 15% of the world's production of electricity. In 1992, 13 countries derived at least 25% of their electricity from nuclear units, with Lithuania leading at just over 78%, followed closely by France at 72%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 53 power reactors are under construction in 14 countries outside the former USSR. Within the ex-USSR countries, six new reactors are currently under construction. No human endeavour carries the guarantee of perfect safety and the question of whether of not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986 in the then Soviet Union, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor irrevocably changed all that. This disaster brought the matter of nuclear safety into the public mind in a dramatic fashion. Subsequent opening of the ex-Soviet nuclear power program to outside scrutiny has done little to calm people's concerns about the safety of nuclear power in that part of the world. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents that have occurred to date, as well as more recent, less dramatic events touching on the safety issue. (author). 7 refs

  2. Study of In-Cylinder Reactions of High Power-Density Direct Injection Diesel Engines

    National Research Council Canada - National Science Library

    Jansons, M

    2004-01-01

    Direct-injection (DI) Diesel or compression-ignition (CI) engine combustion process is investigated when new design and operational strategies are employed in order to achieve a high power-density (HPD) engine...

  3. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  4. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  5. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    OpenAIRE

    Santos,Michele Devido; Gagliardi,Rubens José; Mac-Kay,Ana Paula Machado Goyano; Boggio,Paulo Sergio; Lianza,Roberta; Fregni,Felipe

    2013-01-01

    CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with ...

  6. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  7. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  8. Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Ioannis Bouloumpasis

    2015-03-01

    Full Text Available This work presents a method of current harmonic reduction in a distorted distribution system. In order to evaluate the proposed method a grid with high-order current harmonics is assumed. The reduction of current distortion is feasible due to the pulse modulation of an active filter, which consists of a buck-boost converter connected back-to-back to a polarity swapping inverter. For a practical application, this system would be the power electronic interface of a Renewable Energy Source (RES and therefore it changes a source of harmonics to a damping harmonics system. Using the proposed method, the current Total Harmonic Distortion (THD of the grid is reduced below the acceptable limits and thus the general power quality of the system is improved. Simulations in the MATLAB/SIMULINK platform and experiments have been performed in order to verify the effectiveness of the proposed method.

  9. FWCD (fast wave current drive) and ECCD (electron cyclotron current drive) experiments on DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.

    1994-01-01

    Fast wave current drive and electron cyclotron current drive experiments have been performed on the DIII-D tokamak as part of the advanced tokamak program. The goal of this program is to develop techniques for controlling the profile of the current density in order to access regimes of improved confinement and stability. The experiments on fast wave current drive used a four strap antenna with 90deg phasing between straps. A decoupler was used to help maintain the phasing, and feedback control of the plasma position was used to keep the resistive loading constant. RF pickup loops demonstrate that the directivity of the antenna is as expected. Plasma currents up to 0.18 MA were driven by 1.5 MW of fast wave power. Electron cyclotron current drive experiments at 60 GHz have shown 0.1 MA of plasma current driven by 1 MW of power. New fast wave and electron cyclotron heating systems are in development for DIII-D, so that the goals of the advanced tokamak program can be carried out. (author)

  10. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  11. Analysis of output currents of self-powered detectors polarized by an external potential

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K; Glowacki, S

    1980-01-01

    During measurement of self-powered detector current the electrical potential is induced between the emitter and collector caused by the input resistivity of measuring device. The detector current dependence on the emitter potential has been analyzed. The experimental results confirm the theoretical model of electronic processes within the insulator and also give the requirements that measuring device should fulfil.

  12. The Philippine historical earthquakecatalog: its development, current stateand future directions

    OpenAIRE

    Bautista, M. L. P.; Bautista, B. C.

    2004-01-01

    This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines...

  13. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do; Lee, Soo Yeol; Jung, Ki-Young

    2008-01-01

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  14. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    Energy Technology Data Exchange (ETDEWEB)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Lee, Soo Yeol [Department of Biomedical Engineering, Kyung Hee University, Suwon (Korea, Republic of); Jung, Ki-Young [Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of)], E-mail: ich@yonsei.ac.kr

    2008-06-07

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  15. Predicting the behavioural impact of transcranial direct current stimulation: issues and limitations

    Directory of Open Access Journals (Sweden)

    Archy Otto De Berker

    2013-10-01

    Full Text Available The transcranial application of weak currents to the human brain has enjoyed a decade of success, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with tDCS is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique’s use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modelling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behaviour can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.

  16. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  17. Transition from columnar to point pinning in coated conductors: critical currents that are independent of magnetic field direction

    International Nuclear Information System (INIS)

    Zuev, Yuri L; Hun Wee, Sung; Christen, David K

    2012-01-01

    We identify a sharp crossover in the vortex pinning of a high-temperature superconductor with nanocolumnar stacks of precipitates as strong vortex pinning centers. Above a particular, temperature-dependent field B X (T) the vortex response is no longer determined by the nanocolumns, and is instead determined by point-like pinning. This crossover is evident as a change in the dependence of the critical current density on the angle between the applied magnetic field and the nanocolumns. It also leads to the field-orientation-independent power law index n of the E–J curves. Below the transition, there is a strong maximum in J C when the field is aligned parallel to the columns and n depends on field direction. Above the transition, n is independent of the field direction and there is a J C minimum for H parallel to the columns. We discuss a possible mechanism for such behavior change, as well as testing and confirming a prediction that the crossover must become very broad at high temperatures and low fields. (paper)

  18. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  19. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  20. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  1. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  2. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  3. Federal supervisory authorities' power to issue directives in nuclear licensing procedures (Kalkar reactor)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Federal Constitutional Court (BVerfG) is concerned in its judgement with the legal instrument of Federal supervisory authorities' power to issue directives in nuclear licensing procedures (Kalkar reactor). Dealt with are questions concerning material and excercising competences, the Federal Government's right to issue directives and possible violation of Laender rights, as well as the legal position between Land and Federal Government, the necessity to issue clear directives, questions concerning the competence to issue directives and the Federal Government's duty to consider the overall interests (Federal Government and Laender interests), questions concerning constitutional state principles and the limits in the relations between Federal Government - Laender concerning legal competence. (RST) [de

  4. Combined Dextroamphetamine and Transcranial Direct Current Stimulation in Poststroke Aphasia.

    Science.gov (United States)

    Keser, Zafer; Dehgan, Michelle Weber; Shadravan, Shaparak; Yozbatiran, Nuray; Maher, Lynn M; Francisco, Gerard E

    2017-10-01

    There is a growing need for various effective adjunctive treatment options for speech recovery after stroke. A pharmacological agent combined with noninvasive brain stimulation has not been previously reported for poststroke aphasia recovery. In this "proof of concept" study, we aimed to test the safety of a combined intervention consisting of dextroamphetamine, transcranial direct current stimulation, and speech and language therapy in subjects with nonfluent aphasia. Ten subjects with chronic nonfluent aphasia underwent two experiments where they received dextroamphetamine or placebo along with transcranial direct current stimulation and speech and language therapy on two separate days. The Western Aphasia Battery-Revised was used to monitor changes in speech performance. No serious adverse events were observed. There was no significant increase in blood pressure with amphetamine or deterioration in speech and language performance. Western Aphasia Battery-Revised aphasia quotient and language quotient showed a statistically significant increase in the active experiment. Comparison of proportional changes of aphasia quotient and language quotient in active experiment with those in placebo experiment showed significant difference. We showed that the triple combination therapy is safe and implementable and seems to induce positive changes in speech and language performance in the patients with chronic nonfluent aphasia due to stroke.

  5. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    Science.gov (United States)

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  6. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...

  7. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    Science.gov (United States)

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  8. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  9. A 1–2 GHz high linearity transformer-feedback power-to-current LNA

    NARCIS (Netherlands)

    Li, X.; Serdijn, W.A.; Woestenburg, B.E.M.; Bij de Vaate, J.G.

    2009-01-01

    This paper demonstrates that a double-loop transformer-feedback power-to-current low noise amplifier, to be implemented in a 0.2 lm GaAs p-HEMT IC process, is able to obtain a noise figure less than 0.8 dB, an input return loss less than -12 dB, a flat voltage-to-current signal transfer of 180 mS,

  10. Lower-power, high-linearity class-AB current-mode programmable gain amplifier

    International Nuclear Information System (INIS)

    Wu Yiqiang; Wang Zhigong; Wang Junliang; Ma Li; Xu Jian; Tang Lu

    2014-01-01

    A novel class-AB implementation of a current-mode programmable gain amplifier (CPGA) including a current-mode DC offset cancellation loop is presented. The proposed CPGA is based on a current amplifier and provides a current gain in a range of 40 dB with a 1 dB step. The CPGA is characterized by a wide range of current gain variation, a lower power dissipation, and a small chip size. The proposed circuit is fabricated using a 0.18 μm CMOS technology. The CPGA draws a current of less than 2.52 mA from a 1.8 V supply while occupying an active area of 0.099 μm 2 . The measured results show an overall gain variation from 10 to 50 dB with a gain error of less than 0.40 dB. The OP 1dB varies from 11.80 to 13.71 dBm, and the 3 dB bandwidth varies from 22.2 to 34.7 MHz over the whole gain range. (semiconductor integrated circuits)

  11. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  12. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    Science.gov (United States)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  13. Eddy current imaging. Simplifying the direct problem. Analysis of a 2D case with formulations

    International Nuclear Information System (INIS)

    Spineanu, A.; Zorgati, R.

    1995-01-01

    Eddy current non-destructive testing is used by EDF to detect faults affecting conductive objects such as steam generator tubes. A new technique, known as eddy current imaging, is being developed to facilitate diagnosis in this context. The first stage in this work, discussed in the present paper, consists in solving the direct problem. This entails determining the measurable quantities, on the basis of a thorough knowledge of the material considered. This was done by formulating the direct problem in terms of eddy currents in general 3D geometry context, applying distribution theory and Maxwell equations. Since no direct problem code was available we resorted to simplified situations. Taking care not to interfere with previous developments or those to be attempted in an inversion context, we studied the case of a flaw affecting a 2D structure, illuminated by a plane wave type probe. For this configuration, we studied the exact model and compared results with those of a linearized simplified model. This study emphasizes the ill-posed situation of the eddy current inverse problem related with the severe electromagnetic field attenuation. This means that regularization of the inverse problem, although absolutely necessary, will not be sufficient. Owing to the simplicity of the models available and implemented during the inversion process, processing real data would not yet be possible. We must first focus all our efforts on the direct 3 D problem, in conformity with the requirements of the inverse procedure ad describing a realistic eddy current NDT situation. At the same time, consideration should be given to the design of a specific probe customized for eddy current imaging. (authors). 9 refs., 5 figs., 3 appends

  14. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Conditions in Indonesia

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2017-04-01

    kinetic energy dissipation. Preliminary results show the effectiveness of the method to capture the effects of power extraction, and wake characteristics and recovery reasonably well with low computational cost. It was found that although there is no significant change regarding water levels, an impact has been observed on current velocities as a result of velocity profile adjusting to the increased momentum transfer. It was also seen that, depending on the level of energy dissipation, currently recommended tidal farm configurations can be conservative regarding the spacing of the tidal turbines.

  15. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    Gert, Claassen

    2007-01-01

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modular Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be sold to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike: 1) political enabling framework, 2) regulatory framework, 3) responsible owner, 4) responsible operator, 5) finance, 6) contact management, 7) fuel supply and waste management framework, 8) training and education, and 9) industrial infrastructure. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. (author)

  16. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  17. Further improvement in the light output power of InGaN-based light emitting diodes by reflective current blocking design

    International Nuclear Information System (INIS)

    Tsai, Chun-Fu; Su, Yan-Kuin; Lin, Chun-Liang

    2011-01-01

    In this study, the fabrication and characterization of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with further improvement by the design of a reflective current blocking layer (CBL) were described, and these are demonstrated to be an inexpensive and feasible way for improving the performance of LEDs. With the reflective CBL, not only was the injected current forced to spread outside instead of flowing directly downward under a p-pad, but the light generated from the active region could also be extracted outside of the LED by reflection under the p-pad. At 20 mA, as compared to the conventional LED, the light output power of the LEDs with the normal and reflective CBL can be increased by 15.7% and 25.8%, respectively. We found that the forward voltages of the LEDs with CBL structure were both about 3.7 V at 20 mA, which was slightly higher than that of the conventional LED (3.6 V). In our experiment, the further increase in the light output power of the reflective CBL LED could be attributed to more current injection into the light-emitting active region outside of the p-pad by the CBL and a reduction in optical absorption at the p-pad with more extraction by the reflective design

  18. Multilink DC Transmission for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Silva, Rodrigo Da; Teodorescu, Remus

    2012-01-01

    analysis the Multi Terminal Direct Current (MTDC) operation and focuses on the sharing of active power produced by an offshore Wind Power Plant (WPP). The first objective was to model the system in PSCAD/EMTDC simulation software and then control structure tested under different situations. The second......The High Voltage Direct Current (HVDC) system gains much more flexibility on a basis of multi terminal operation. Having extra converters brings also new ideas in sharing the active power and one of the solutions is the use of virtual impedance correlated with a droop controller. This paper...... objective was to validate the simulation on a laboratory platform using 15 kW Voltage Source Converters (VSC) and a Real Time Interface (RTI). As a result, the power sharing is validated using such methodology and the influence in the parameters can be evaluated...

  19. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  20. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying; Call, Douglas F.; Werner, Craig M.; Logan, Bruce E.

    2011-01-01

    . Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current