WorldWideScience

Sample records for direct boundary integral

  1. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    Science.gov (United States)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  2. A Direct Approach to Determine the External Disturbing Gravity Field by Applying Green Integral with the Ground Boundary Value

    Directory of Open Access Journals (Sweden)

    TIAN Jialei

    2015-11-01

    Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.

  3. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  4. Integrable boundary conditions and modified Lax equations

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2008-01-01

    We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix

  5. Direct imaging of grain boundaries

    International Nuclear Information System (INIS)

    Gronsky, R.

    1979-09-01

    There are currently two types of microscopes which, in principle, are capable of imaging atom positions at grain boundaries. One, the field ion microscope (FIM), yields a projection of the specimen surface (approximately stereographic) by field ionization of an imaging gas at protruding atom sites, and provides topographic information in high-index pole regions which may be interpreted atom-by-atom. The other, a transmission electron microscope (TEM), yields a projection (approximately linear) of the entire specimen thickness by electron optical imaging, and provides atomic resolution detail throughout the illuminated area. In this paper, both methods are described and compared, using examples from practical materials systems

  6. Integrability and boundary conditions of supersymmetric systems

    International Nuclear Information System (INIS)

    Yue Ruihong; Liang Hong

    1996-01-01

    By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms

  7. Classically integrable boundary conditions for affine Toda field theories

    International Nuclear Information System (INIS)

    Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.

    1995-01-01

    Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)

  8. Integral Method of Boundary Characteristics: Neumann Condition

    Science.gov (United States)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  9. A boundary integral equation for boundary element applications in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Ozgener, B.

    1998-01-01

    A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation

  10. A boundary integral approach to unstable solidification

    International Nuclear Information System (INIS)

    Strain, J.

    1989-01-01

    We consider the supercooled Stefan problem with a general anisotropic curvature- and velocity-dependent boundary condition on the moving interface. We present numerical methods, based on an integral equation formulation and including a new algorithm for moving curves with curvature-dependent velocity. These methods compute a periodic interface with O(Δt) accuracy, where Δt is the time step. Previous work has been limited to short time spans and achieved slightly less than O(Δt 1/2 ) accuracy. Accurate numerical results are seen to agree with the predictions of linear stability theory. This agreement has eluded previous authors, because their numerical methods suffered from grid effects and their linear stability theory was incorrect. We study the long-time evolution of an unstable interface. Our computations exhibit the beginnings of a sidebranching instability when the boundary condition includes anisotropy and tip-splitting in the isotropic case. copyright 1989 Academic Press, Inc

  11. Boundary integral methods for unsaturated flow

    International Nuclear Information System (INIS)

    Martinez, M.J.; McTigue, D.F.

    1990-01-01

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,

  12. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  13. A fast direct solver for boundary value problems on locally perturbed geometries

    Science.gov (United States)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  14. Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals

    Directory of Open Access Journals (Sweden)

    Nahed S. Hussein

    2014-01-01

    Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of …eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.

  15. Fused integrable lattice models with quantum impurities and open boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2003-01-01

    The alternating integrable spin chain and the RSOS(q 1 ,q 2 ;p) model in the presence of a quantum impurity are investigated. The boundary free energy due to the impurity is derived, the ratios of the corresponding g functions at low and high temperature are specified and their relevance to boundary flows in unitary minimal and generalized coset models is discussed. Finally, the alternating spin chain with diagonal and non-diagonal integrable boundaries is studied, and the corresponding boundary free energy and g functions are derived

  16. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  17. Boundary conditions in conformal and integrable theories

    CERN Document Server

    Petkova, V B

    2000-01-01

    The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.

  18. Panafricanism, African Boundaries and Regional Integration ...

    African Journals Online (AJOL)

    The Pan African idea of closer unity is examined. Regional economic integration as a Pan African perspective is presented as a major way out of the deep and worsening economic crises bedeviling African economics. Attempts have been made since the 1960s to create and re-create institutions for regional economic ...

  19. Infinite number of integrals of motion in classically integrable system with boundary: Pt.2

    International Nuclear Information System (INIS)

    Chen Yixin; Luo Xudong

    1998-01-01

    In Affine Toda field theory, links among three generating functions for integrals of motion derived from Part (I) are studied, and some classically integrable boundary conditions are obtained. An infinite number of integrals of motion are calculated in ZMS model with quasi-periodic condition. The authors find the classically integrable boundary conditions and K +- matrices of ZMS model with independent boundary conditions on each end. It is identified that an infinite number of integrals of motion does exist and one of them is the Hamiltonian, so this system is completely integrable

  20. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  1. Work and personal life boundary management: boundary strength, work/personal life balance, and the segmentation-integration continuum.

    Science.gov (United States)

    Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E

    2007-10-01

    While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.

  2. Direct extraction of boundaries from computed tomography scans

    International Nuclear Information System (INIS)

    Thirion, J.P.

    1994-01-01

    This paper presents a method, based on the Filtered Backprojection technique (FBP), to extract directly the boundaries of X-ray images, without previous image reconstruction. The authors preprocess the raw data in order to compute directly the reconstructed values of the gradient or of the Laplacian at any location in the plane (defined with real coordinates). The reconstructed value of the gradient and of the Laplacian correspond to the exact mathematical definition of the differentials of the image. For noisy data, the authors propose also to use an extension of existing FBP techniques, adapted to the computation of the gradient and of the Laplacian. Finally, the authors show how to use the corresponding operators to perform the segmentation of a slice, without image reconstruction. Images of the reconstructed gradient, Laplacian, and segmented objects are presented

  3. Numerical solution of boundary-integral equations for molecular electrostatics.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  4. Integrated care in the daily work: coordination beyond organisational boundaries.

    Science.gov (United States)

    Petrakou, Alexandra

    2009-07-09

    In this paper, integrated care in an inter-organisational cooperative setting of in-home elderly care is studied. The aim is to explore how home care workers coordinate their daily work, identify coordination issues in situ and discuss possible actions for supporting seamless and integrated elderly care at home. The empirical findings are drawn from an ethnographic workplace study of the cooperation and coordination taking place between home care workers in a Swedish county. Data were collected through observational studies, interviews and group discussions. The paper identifies a need to support two core issues. Firstly, it must be made clear how the care interventions that are currently defined as 'self-treatment' by the home health care should be divided. Secondly, the distributed and asynchronous coordination between all care workers involved, regardless of organisational belonging must be better supported. Integrated care needs to be developed between organisations as well as within each organisation. As a matter of fact, integrated care needs to be built up beyond organisational boundaries. Organisational boundaries affect the planning of the division of care interventions, but not the coordination during the home care process. During the home care process, the main challenge is the coordination difficulties that arise from the fact that workers are distributed in time and/or space, regardless of organisational belonging. A core subject for future practice and research is to develop IT tools that reach beyond formal organisational boundaries and processes while remaining adaptable in view of future structure changes.

  5. Discretization of the induced-charge boundary integral equation.

    Science.gov (United States)

    Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  6. Discretization of the induced-charge boundary integral equation.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  7. Integrated care in the daily work: coordination beyond organisational boundaries

    Directory of Open Access Journals (Sweden)

    Alexandra Petrakou

    2009-07-01

    Full Text Available Objectives: In this paper, integrated care in an inter-organisational cooperative setting of in-home elderly care is studied. The aim is to explore how home care workers coordinate their daily work, identify coordination issues in situ and discuss possible actions for supporting seamless and integrated elderly care at home. Method: The empirical findings are drawn from an ethnographic workplace study of the cooperation and coordination taking place between home care workers in a Swedish county. Data were collected through observational studies, interviews and group discussions. Findings: The paper identifies a need to support two core issues. Firstly, it must be made clear how the care interventions that are currently defined as ‘self-treatment’ by the home health care should be divided. Secondly, the distributed and asynchronous coordination between all care workers involved, regardless of organisational belonging must be better supported. Conclusion: Integrated care needs to be developed between organisations as well as within each organisation. As a matter of fact, integrated care needs to be built up beyond organisational boundaries. Organisational boundaries affect the planning of the division of care interventions, but not the coordination during the home care process. During the home care process, the main challenge is the coordination difficulties that arise from the fact that workers are distributed in time and/or space, regardless of organisational belonging. A core subject for future practice and research is to develop IT tools that reach beyond formal organisational boundaries and processes while remaining adaptable in view of future structure changes.

  8. Tokamak plasma shape identification based on the boundary integral equations

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki

    1992-05-01

    A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)

  9. Methods for assessing NPP containment pressure boundary integrity

    International Nuclear Information System (INIS)

    Naus, D.J.; Ellingwood, B.R.; Graves, H.L.

    2004-01-01

    Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion

  10. Extending Perceived Supply Chain Boundaries to Motivate and Direct Change

    DEFF Research Database (Denmark)

    Englyst, Linda

    2005-01-01

    is argued to lead to different and predictable areas of attention and change. The paper is mainly conceptual, as it is discussed how perception and modeling of a supply chain induces pressures for different directions of change. Supply chain modeling is argued to be a tool to be used actively in change......Many a change effort has been initiated under the hat of supply chain management in the past decades, motivated by promises of improved performance based on network design and integration of business processes, information systems, and even organizations through the construction of various liaison...... structures. The present research is inspired by an industrial case study, which indicates that a widening of the supply chain perception along horizontal and vertical lines might serve as a point of entry for change. Extending the observed system in these dimensions and at different levels of detail...

  11. A boundary integral formalism for stochastic ray tracing in billiards

    International Nuclear Information System (INIS)

    Chappell, David J.; Tanner, Gregor

    2014-01-01

    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain

  12. Theory and analysis of accuracy for the method of characteristics direction probabilities with boundary averaging

    International Nuclear Information System (INIS)

    Liu, Zhouyu; Collins, Benjamin; Kochunas, Brendan; Downar, Thomas; Xu, Yunlin; Wu, Hongchun

    2015-01-01

    Highlights: • The CDP combines the benefits of the CPM’s efficiency and the MOC’s flexibility. • Boundary averaging reduces the computation effort with losing minor accuracy. • An analysis model is used to justify the choice of optimize averaging strategy. • Numerical results show the performance and accuracy. - Abstract: The method of characteristic direction probabilities (CDP) combines the benefits of the collision probability method (CPM) and the method of characteristics (MOC) for the solution of the integral form of the Botlzmann Transport Equation. By coupling only the fine regions traversed by the characteristic rays in a particular direction, the computational effort required to calculate the probability matrices and to solve the matrix system is considerably reduced compared to the CPM. Furthermore, boundary averaging is performed to reduce the storage and computation but the capability of dealing with complicated geometries is preserved since the same ray tracing information is used as in MOC. An analysis model for the outgoing angular flux is used to analyze a variety of outgoing angular flux averaging methods for the boundary and to justify the choice of optimize averaging strategy. The boundary average CDP method was then implemented in the Michigan PArallel Characteristic based Transport (MPACT) code to perform 2-D and 3-D transport calculations. The numerical results are given for different cases to show the effect of averaging on the outgoing angular flux, region scalar flux and the eigenvalue. Comparison of the results with the case with no averaging demonstrates that an angular dependent averaging strategy is possible for the CDP to improve its computational performance without compromising the achievable accuracy

  13. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    Science.gov (United States)

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  14. A study on infinite number of integrals of motion in classically integrable system with boundary: Pt.1

    International Nuclear Information System (INIS)

    Chen Yixin; Luo Xudong

    1998-01-01

    By the zero curvature condition in classically integrable system, the generating functions for integrals of motion and equations for solving K +- matrices are obtained in two-dimensional integrable systems on a finite interval with independent boundary conditions on each end. Classically integrable boundary conditions will be found by solving K +- matrices. The authors develop a Hamiltonian method in classically integrable system with independent boundary conditions on each end. The result can be applied to more integrable systems than those associated with E.K. Sklyanin's approach

  15. Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation

    Science.gov (United States)

    Bodony, Daniel; Ostoich, Christopher; Geubelle, Philippe

    2013-11-01

    The interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer is investigated using a direct numerical simulation approach for coupled fluid-structure problems. The solid solution uses a finite-strain, finite-deformation formulation, while the direct numerical simulation of the boundary layer uses a finite-difference compressible Navier-Stokes solver. The initially laminar boundary layer contains low amplitude unstable eigenmodes that grow in time and excite traveling bending waves in the panel. As the boundary layer transitions to a fully turbulent state, with Reθ ~ 1200 , the panel's bending waves coalesce into a standing wave pattern exhibiting flutter with a final amplitude approximately 20 times the panel thickness. The corresponding panel deflection is roughly 25 wall units and reaches across the sonic line in the boundary layer profile. Once it reaches a limit cycle state, the panel/boundary layer system is examined in detail where it is found that turbulence statistics, especially the main Reynolds stress - , appear to be modified by the presence of the compliant panel, the effect of which is forgotten within one integral length downstream of the panel. Supported by the U.S. Air Force Research Laboratory Air Vehicles Directorate under contract number FA8650-06-2-3620.

  16. Turbulent boundary layer noise : direct radiation at Mach number 0.5

    OpenAIRE

    Gloerfelt , Xavier; Berland , Julien

    2013-01-01

    International audience; Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent boundary layer over a plane wall can provide an indirect contribution to the noise by exciting the structure, and a direct noise contribution. The latter part can play a significant role even if its intensity is very low, explaining why it is hardly measured unambiguously. In the present study, the aerodynamic noise generated by a spatially developing turbulent boundary layer is computed ...

  17. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  18. Integrable systems on so(4) related to XXX spin chains with boundaries

    International Nuclear Information System (INIS)

    Tsiganov, A V; Goremykin, O V

    2004-01-01

    We consider two-site XXX Heisenberg magnets with different boundary conditions, which are integrable systems on so(4) possessing additional cubic and quartic integrals of motion. The separated variables for these models are constructed using the Sklyanin method

  19. A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow

    NARCIS (Netherlands)

    Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.

    1995-01-01

    A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra

  20. Piloting and Path Integration within and across Boundaries

    Science.gov (United States)

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…

  1. A domain-decomposition method to implement electrostatic free boundary conditions in the radial direction for electric discharges

    Science.gov (United States)

    Malagón-Romero, A.; Luque, A.

    2018-04-01

    At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that envelops the discharge as closely as possible. However, the development of the discharge is driven by electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions imposed to the electrostatic potential on the external boundary have a strong effect on the discharge. Most numerical codes circumvent this problem by either using a wide computational domain or by calculating the boundary conditions by integrating the Green's function of an infinite domain. Here we describe an accurate and efficient method to impose free boundary conditions in the radial direction for an elongated electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we apply the method to solve Poisson's equation in cylindrical coordinates with free boundary conditions in both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation volume to be bounded by two electrodes.

  2. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  3. An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn

    2012-01-01

    This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)

  4. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  5. δ'-function perturbations and Neumann boundary-conditions by path integration

    International Nuclear Information System (INIS)

    Grosche, C.

    1994-02-01

    δ'-function perturbations and Neumann boundary conditions are incorporated into the path integral formalism. The starting point is the consideration of the path integral representation for the one dimensional Dirac particle together with a relativistic point interaction. The non-relativistic limit yields either a usual δ-function or a δ'-function perturbation; making their strengths infinitely repulsive one obtains Dirichlet, respectively Neumann boundary conditions in the path integral. (orig.)

  6. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  7. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  8. An efficient implicit direct forcing immersed boundary method for incompressible flows

    International Nuclear Information System (INIS)

    Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y

    2015-01-01

    A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature

  9. Direct numerical simulation of stable and unstable turbulent thermal boundary layers

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Houra, Tomoya; Nagano, Yasutaka

    2007-01-01

    This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence

  10. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  11. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2014-01-01

    The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

  12. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2013-01-01

    This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

  13. One out of many? Boundary negotiation and identity formation in postmerger integration

    NARCIS (Netherlands)

    Drori, Israel; Wrzesniewski, Amy; Ellis, Shmuel

    2013-01-01

    This research investigates how boundaries are utilized during the postmerger integration process to influence the postmerger identity of the firm. We suggest that the boundaries that define the structures, practices, and values of firms prior to a merger become reinforced, contested, or revised in

  14. Mixed Element Formulation for the Finite Element-Boundary Integral Method

    National Research Council Canada - National Science Library

    Meese, J; Kempel, L. C; Schneider, S. W

    2006-01-01

    A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...

  15. Second-order domain derivative of normal-dependent boundary integrals

    KAUST Repository

    Balzer, Jonathan

    2010-01-01

    Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape

  16. Topology and boundary shape optimization as an integrated design tool

    Science.gov (United States)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  17. Expanding the Boundaries of Behavioral Integrity in Organizations

    Science.gov (United States)

    2010-07-01

    happened to someone else, subordinates can rationally seek behavioral solutions that punish the managers or the organization they represent (i.e...Thousand Oaks, CA: Sage. Brief, A. P., & Motowidlo, S. J. 1986. Prosocial organizational behaviors . Academy of Management Review, 11(4): 710-725...Dissertation Publication 3. DATES COVERED (From - To) 15-03-2009 to 25-07-2010 4. TITLE AND SUBTITLE Expanding the Boundaries of Behavioral

  18. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    OpenAIRE

    Li, Xiaofan; Nie, Qing

    2009-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...

  19. How to fold a spin chain: Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

    Science.gov (United States)

    De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas

    2017-04-01

    We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.

  20. Boundary-integral equation formulation for time-dependent inelastic deformation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S

    1977-01-01

    The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.

  1. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  2. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    International Nuclear Information System (INIS)

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-01-01

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium

  3. An(1) affine Toda field theories with integrable boundary conditions revisited

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2008-01-01

    Generic classically integrable boundary conditions for the A n (1) affine Toda field theories (ATFT) are investigated. The present analysis rests primarily on the underlying algebra, defined by the classical version of the reflection equation. We use as a prototype example the first non-trivial model of the hierarchy i.e. the A 2 (1) ATFT, however our results may be generalized for any A n (1) (n > 1). We assume here two distinct types of boundary conditions called some times soliton preserving (SP), and soliton non-preserving (SNP) associated to two distinct algebras, i.e. the reflection algebra and the (q) twisted Yangian respectively. The boundary local integrals of motion are then systematically extracted from the asymptotic expansion of the associated transfer matrix. In the case of SNP boundary conditions we recover previously known results. The other type of boundary conditions (SP), associated to the reflection algebra, are novel in this context and lead to a different set of conserved quantities that depend on free boundary parameters. It also turns out that the number of local integrals of motion for SP boundary conditions is 'double' compared to those of the SNP case.

  4. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    Science.gov (United States)

    Kot, V. A.

    2017-11-01

    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  5. Monitoring technology and firm boundaries: physician-hospital integration and technology utilization.

    Science.gov (United States)

    McCullough, Jeffrey S; Snir, Eli M

    2010-05-01

    We study the relationship between physician-hospital integration and its relation to monitoring IT utilization. We develop a theoretical model in which monitoring IT may complement or substitute for integration and test these relationships using a novel data source. Physician labor market heterogeneity identifies the empirical model. We find that monitoring IT utilization is increasing in integration, implying that expanded firm boundaries complement monitoring IT adoption. We argue that the relationship between monitoring IT and firm boundaries depends upon the contractibility of the monitored information.

  6. Second-order domain derivative of normal-dependent boundary integrals

    KAUST Repository

    Balzer, Jonathan

    2010-03-17

    Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape Hessians of boundary integrals are considered difficult to find analytically because they correspond to third-order derivatives of an, in a sense equivalent, domain integral. We complement previous results by considering cost functions depending explicitly on the surface normal. The correctness and practicability of our calculations are verified in the context of a Newton-type shape reconstruction method. © 2010 Birkhäuser / Springer Basel AG.

  7. OhioLINK: Implementing Integrated Library Services across Institutional Boundaries.

    Science.gov (United States)

    Hawks, Carol Pitts

    1995-01-01

    Discusses the implementation of the OhioLINK (Ohio Library and Information Network) system, an integrated library system linking 23 public and private academic institutions and the Ohio State Library. Topics include a history of OhioLINK; organizational structure; decision-making procedures; public relations strategies; cooperative circulation;…

  8. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  9. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    Science.gov (United States)

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  10. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, C.D. [James Madison Univ., Harrisonburg, VA (United States). Dept. of Math. and Comput. Sci.; Chang Chau-Lyan [High Technology Corporation, Hampton, VA 23666 (United States)

    1998-03-01

    The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. (orig.) With 20 figs., 28 refs.

  11. A second order penalized direct forcing for hybrid Cartesian/immersed boundary flow simulations

    International Nuclear Information System (INIS)

    Introini, C.; Belliard, M.; Fournier, C.

    2014-01-01

    In this paper, we propose a second order penalized direct forcing method to deal with fluid-structure interaction problems involving complex static or time-varying geometries. As this work constitutes a first step toward more complicated problems, our developments are restricted to Dirichlet boundary condition in purely hydraulic context. The proposed method belongs to the class of immersed boundary techniques and consists in immersing the physical domain in a Cartesian fictitious one of simpler geometry on fixed grids. A penalized forcing term is added to the momentum equation to take the boundary conditions around/inside the obstacles into account. This approach avoids the tedious task of re-meshing and allows us to use fast and accurate numerical schemes. In contrary, as the immersed boundary is described by a set of Lagrangian points that does not generally coincide with those of the Eulerian grid, numerical procedures are required to reconstruct the velocity field near the immersed boundary. Here, we develop a second order linear interpolation scheme and we compare it to a simpler model of order one. As far as the governing equations are concerned, we use a particular fractional-step method in which the penalized forcing term is distributed both in prediction and correction equations. The accuracy of the proposed method is assessed through 2-D numerical experiments involving static and rotating solids. We show in particular that the numerical rate of convergence of our method is quasi-quadratic. (authors)

  12. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  13. A hybrid method combining the FDTD and a time domain boundary-integral equation marching-on-in-time algorithm

    Directory of Open Access Journals (Sweden)

    A. Becker

    2003-01-01

    Full Text Available In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.

  14. Oswer integrated health and safety standard operating practices. Directive

    International Nuclear Information System (INIS)

    1993-02-01

    The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy

  15. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  16. Integrating Sustainability into the Curriculum: Crossing Disciplinary Boundaries

    Science.gov (United States)

    Pushnik, J.

    2012-12-01

    The next generation will confront an increased number of global issues that interface the complexities of socioeconomic perspectives, environmental stability, poverty and development. Recently California State University Chico undertook a general education reform, providing a unique opportunity to craft a general education pathway to prepare students for these challenges by focusing a curriculum on sustainability. The Sustainability Pathway emphasizes a system thinking approach to help students understand and be able to address a set of problems involving the biosphere processes, human institutions and the economic vitality. The curriculum intentionally integrates courses from across the disciplines of natural sciences, social sciences, agriculture, engineering, economics, arts and humanities into a central focused theme of sustainability. The diverse backgrounds and academic focus of the participating faculty has necessitate the development of a common language and a cohesion within the curriculum. To address these needs a faculty learning community (FLC) was established to build on a common set of case studies. Three regional environmental water related issues were selected that had demonstrable socioeconomic, equity/ethical dimensions and environmental consequences. These case studies are Klamath River basin in northern California, the Bay-Delta project in the central part of the state and the Sultan Sea in southern California. Members of the FLC has contributed a perspective from their academic discipline which includes proposed reading lists, web based resources and PowerPoint presentations which are housed in common web- based resource repository. The pedagogical rational is to create linkages and cohesion among the courses in the curriculum by iteratively examining these case studies as basis for development of a multidisciplinary perspective as students progress through their general education.

  17. Retroviral DNA Integration Directed by HIV Integration Protein in Vitro

    Science.gov (United States)

    Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert

    1990-09-01

    Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.

  18. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  19. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  20. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  1. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    Science.gov (United States)

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  2. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  3. Integrating medical and environmental sociology with environmental health: crossing boundaries and building connections through advocacy.

    Science.gov (United States)

    Brown, Phil

    2013-06-01

    This article reviews the personal and professional processes of developing an interdisciplinary approach to understanding the complex issues of environmental health in their community, political-economic, social science, and scientific contexts. This interdisciplinary approach includes a synthesis of research, policy work, and advocacy. To examine multiple forms of interdisciplinarity, I examine pathways of integrating medical and environmental sociology via three challenges to the boundaries of traditional research: (1) crossing the boundaries of medical and environmental sociology, (2) linking social science and environmental health science, and (3) crossing the boundary of research and advocacy. These boundary crossings are discussed in light of conceptual and theoretical developments of popular epidemiology, contested illnesses, and health social movements. This interdisciplinary work offers a more comprehensive sociological lens for understanding complex problems and a practical ability to join with scientists, activists, and officials to meet public health needs for amelioration and prevention of environmental health threats.

  4. Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview

    Science.gov (United States)

    Hess, G. D.; Garratt, J. R.

    Data for the cross-isobaric angle 0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for 0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle 0 is more sensitive to violations of the assumptions than is Cg.The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous - the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the

  5. Design Creativity: Future Directions for Integrated Visualisation

    Directory of Open Access Journals (Sweden)

    Jack Steven Goulding

    2015-11-01

    Full Text Available The Architecture, Engineering and Construction (AEC sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them, but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective, by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In

  6. An integral boundary layer method for modelling the effects of vortex generators

    NARCIS (Netherlands)

    Baldacchino, D.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2015-01-01

    In this work, the measured modulated integral boundary layer (IBL) characteristics of low-profile vortex generators (VGs) are used to validate new developments in a viscousinviscid interaction code which is modified to incorporate the effect of the passive mixing devices. The motivations are laid

  7. Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay

    Directory of Open Access Journals (Sweden)

    Archana Chauhan

    2012-12-01

    Full Text Available In this article, we establish a general framework for finding solutions for impulsive fractional integral boundary-value problems. Then, we prove the existence and uniqueness of solutions by applying well known fixed point theorems. The obtained results are illustrated with an example for their feasibility.

  8. On the boundary conditions and optimization methods in integrated digital image correlation

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Verhaegh, B.J.; Hoefnagels, J.P.M.; Ruybalid, A.; van der Sluis, O.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    In integrated digital image correlation (IDIC) methods attention must be paid to the influence of using a correct geometric and material model, but also to make the boundary conditions in the FE simulation match the real experiment. Another issue is the robustness and convergence of the IDIC

  9. Mixed problem with integral boundary condition for a high order mixed type partial differential equation

    OpenAIRE

    M. Denche; A. L. Marhoune

    2003-01-01

    In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.

  10. An improved acoustic Fourier boundary element method formulation using fast Fourier transform integration

    NARCIS (Netherlands)

    Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.

    1997-01-01

    Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be

  11. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke [Univ. of Liverpool (United Kingdom)

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  12. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  13. Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope

    International Nuclear Information System (INIS)

    Kotko, P.; Serino, M.; Staśto, A.M.

    2016-01-01

    One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.

  14. Seismic response of reactor building on alluvial soil by direct implicit integration

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dinkar, A.K.

    1983-01-01

    The evaluation of seismic response of a reactor building is a complex problem. A study has been made in this paper of seismic response of a reactor building by direct implicit integration method. The direct implicit integration methods besides being unconditionally stable have the merit of including response of higher modes without much effort. A reactor building consisting of external shell, internal shell, internals and raft is considered to be resting on alluvium. The complete building including the foundation is idealized by axisymmetric finite elements. The structure is analyzed separately for horizontal and vertical components of ground motion using harmonic analysis. Total response is found by superposition of two responses. The variation of several parameters, such as soil stiffness, embedment depth, inertia of foundation, viscous boundary and damping on seismic response is studied. The structural response is seen to depend significantly on the soil stiffness and damping. The seismic response is observed to be less sensitive to embedment depth and inertia of foundation. The vertical accelerations on the raft, boiler room floor slab and dome due to vertical ground motions are quite appreciable. The viscous boundary is seen to alter structural response in significantly compared to rigid boundaries in a larger mesh and its use appears to be promising in absorbing energy of body waves when used with direct implicit integration method. (orig.)

  15. Description of internal flow problems by a boundary integral method with dipole panels

    International Nuclear Information System (INIS)

    Krieg, R.; Hailfinger, G.

    1979-01-01

    In reactor safety studies the failure of single components is postulated or sudden accident loadings are assumed and the consequences are investigated. Often as a first consequence highly transient three dimensional flow problems occur. In contrast to classical flow problems, in most of the above cases the fluid velocities are relatively small whereas the accelerations assume high values. As a consequence both, viscosity effects and dynamic pressures which are proportional to the square of the fluid velocities are usually negligible. For cases, where the excitation times are considerably longer than the times necessary for a wave to traverse characteristic regions of the fluid field, also the fluid compressibility is negligible. Under these conditions boundary integral methods are an appropriate tool to deal with the problem. Flow singularities are distributed over the fluid boundaries in such a way that pressure and velocity fields are obtained which satisfy the boundary conditions. In order to facilitate the numerical treatment the fluid boundaries are approximated by a finite number of panels with uniform singularity distributions on each of them. Consequently the pressure and velocity field of the given problem may be obtained by superposition of the corresponding fields due to these panels with their singularity intensities as unknown factors. Then satisfying the boundary conditions in so many boundary points as panels have been introduced, yields a system of linear equations which in general allows for a unique determination of the unknown intensities. (orig./RW)

  16. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  17. Sensor for direct measurement of the boundary shear stress in fluid flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-04-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  18. On the elastostatic significance of four boundary integrals involving biharmonic functions

    DEFF Research Database (Denmark)

    Christiansen, Søren

    1998-01-01

    For a biharmonic function U, depending upon two space variables, it is known that four curve integrals, which involve U and some derivatives of U evaluated at a closed boundary, must be equal to zero. When U plays the role of an Airy stress function, we investigate the elastostatic significance o...... with the values of the four integrals. The computer algebra system Maple V has been an invaluable tool. By suitable comparisons among the various results obtained we are led to the conclusions about the elastostatic significance of the integrals....

  19. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  20. Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates

    CERN Document Server

    Kitahara, M

    1985-01-01

    The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro

  1. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  2. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  3. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  4. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    Science.gov (United States)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  5. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  6. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  7. Graphene based integrated tandem supercapacitors fabricated directly on separators

    KAUST Repository

    Chen, Wei; Xia, Chuan; Alshareef, Husam N.

    2015-01-01

    It is of great importance to fabricate integrated supercapacitors with extended operation voltages as high energy density storage devices. In this work, we develop a novel direct electrode deposition on separator (DEDS) process to fabricate graphene

  8. Parallel sparse direct solver for integrated circuit simulation

    CERN Document Server

    Chen, Xiaoming; Yang, Huazhong

    2017-01-01

    This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...

  9. Retarded potentials and time domain boundary integral equations a road map

    CERN Document Server

    Sayas, Francisco-Javier

    2016-01-01

    This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...

  10. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    Science.gov (United States)

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  11. Compliance boundaries for multiple-frequency base station antennas in three directions.

    Science.gov (United States)

    Thielens, Arno; Vermeeren, Günter; Kurup, Divya; Joseph, Wout; Martens, Luc

    2013-09-01

    In this article, compliance boundaries and allowed output powers are determined for the front, back, and side of multiple-frequency base station antennas, based on the root-mean-squared electric field, the whole-body averaged specific absorption rate (SAR), and the 10 g averaged SAR in both the limbs and the head and trunk. For this purpose, the basic restrictions and reference levels defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for both the general public and occupational exposure are used. The antennas are designed for Global System for Mobile Communications around 900 MHz (GSM900), GSM1800, High Speed Packet Access (HSPA), and Long Term Evolution (LTE), and are operated with output powers at the individual frequencies up to 300 W. The compliance boundaries are estimated using finite-difference time-domain simulations with the Virtual Family Male and have been determined for three directions with respect to the antennas for 800, 900, 1800, and 2600 MHz. The reference levels are not always conservative when the radiating part of the antenna is small compared to the length of the body. Combined compliance distances, which ensure compliance with all reference levels and basic restrictions, have also been determined for each frequency. A method to determine a conservative estimation of compliance boundaries for multiple-frequency (cumulative) exposure is introduced. Using the errors on the estimated allowed powers, an uncertainty analysis is carried out for the compliance distances. Uncertainties on the compliance distances are found to be smaller than 122%. Copyright © 2013 Wiley Periodicals, Inc.

  12. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  13. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    Science.gov (United States)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  14. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  15. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    Science.gov (United States)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  16. Pixel extraction based integral imaging with controllable viewing direction

    International Nuclear Information System (INIS)

    Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua

    2012-01-01

    We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time. (paper)

  17. Graphene based integrated tandem supercapacitors fabricated directly on separators

    KAUST Repository

    Chen, Wei

    2015-04-09

    It is of great importance to fabricate integrated supercapacitors with extended operation voltages as high energy density storage devices. In this work, we develop a novel direct electrode deposition on separator (DEDS) process to fabricate graphene based integrated tandem supercapacitors for the first time. The DEDS process generates compact graphene-polyaniline electrodes directly on the separators to form integrated supercapacitors. The integrated graphene-polyaniline tandem supercapacitors demonstrate ultrahigh volumetric energy density of 52.5 Wh L^(−1) at power density of 6037 W L^(−1) and excellent gravimetric energy density of 26.1 Wh kg^(−1) at power density of 3002 W kg^(−1) with outstanding electrochemical stability for over 10000 cycles. This study show great promises for the future development of integrated energy storage devices.

  18. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity

    Science.gov (United States)

    Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.

    2018-05-01

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

  19. Active flow control insight gained from a modified integral boundary layer equation

    Science.gov (United States)

    Seifert, Avraham

    2016-11-01

    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  20. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  1. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  2. Solution of the Stokes system by boundary integral equations and fixed point iterative schemes

    International Nuclear Information System (INIS)

    Chidume, C.E.; Lubuma, M.S.

    1990-01-01

    The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs

  3. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  4. On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis

    International Nuclear Information System (INIS)

    Ignatyev, M. Yu.

    2013-01-01

    This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.

  5. Direct Numerical Simulation of a Compressible Reacting Boundary Layer using a Temporal Slow Growth Homogenization

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert

    2013-11-01

    A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  6. An integrative approach to knowledge transfer and integration: Spanning boundaries through objects, people and processes

    NARCIS (Netherlands)

    Duijn, M.; Rijnveld, M.

    2008-01-01

    Knowledge transfer and integration is the main challenge in many knowledge management projects. This challenge follows from the observation that it is difficult to determine how and what knowledge may transfer from one person to another, from one team to another and from one network or organization

  7. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    Science.gov (United States)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  8. The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer

    Czech Academy of Sciences Publication Activity Database

    Sorokin, S.; Kolman, Radek; Kopačka, Ján

    2017-01-01

    Roč. 87, č. 4 (2017), s. 737-750 ISSN 0939-1533 R&D Projects: GA ČR(CZ) GA16-03823S; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : an elastic layer * symmetric and skew-symmetric waves * the Green’s matrix * boundary integral equations * eigen frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 1.490, year: 2016 https://link.springer.com/article/10.1007/s00419-016-1220-y

  9. On exact solutions for disturbances to the asymptotic suction boundary layer: transformation of Barnes integrals to convolution integrals

    Science.gov (United States)

    Russell, John

    2000-11-01

    A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.

  10. Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Imen Boutana

    2007-12-01

    Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.

  11. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains

    International Nuclear Information System (INIS)

    Guo, Chunwen; Li, Junjie; Yu, Honglei; Wang, Zhijun; Lin, Xin; Wang, Jincheng

    2017-01-01

    We present an investigation of secondary and tertiary branching behavior in diverging grain boundaries (GBs) between two columnar dendritic grains with different crystallographic orientations, both by two-dimensional phase-field simulations and thin-sample experiments. The stochasticity of the GB trajectories and the statistically averaged GB orientations were analyzed in detail. The side-branching dynamics and subsequent branch competition behaviors found in the simulations agreed well with the experimental results. When the orientations of two grains are given, the experimental results indicated that the average GB orientation was independent of the pulling velocity in the dendritic growth regime. The simulation and experimental results, as well as the results reported in the literature exhibit a uniform relation between the percentage of the whole gap region occupied by the favorably oriented grain and the difference in the absolute values of the secondary arm growth directions of the two competitive grains. By describing such a uniform relation with a simple fitting equation, we proposed a simple analytical model for the GB orientation at diverging GBs, which gives a more accurate description of GB orientation selection than the existing models.

  12. An implementation of the direct-forcing immersed boundary method using GPU power

    Directory of Open Access Journals (Sweden)

    Bulent Tutkun

    2017-01-01

    Full Text Available A graphics processing unit (GPU is utilized to apply the direct-forcing immersed boundary method. The code running on the GPU is generated with the help of the Compute Unified Device Architecture (CUDA. The first and second spatial derivatives of the incompressible Navier-Stokes equations are discretized by the sixth-order central compact finite-difference schemes. Two flow fields are simulated. The first test case is the simulated flow around a square cylinder, with the results providing good estimations of the wake region mechanics and vortex shedding. The second test case is the simulated flow around a circular cylinder. This case was selected to better understand the effects of sharp corners on the force coefficients. It was observed that the estimation of the force coefficients did not result in any troubles in the case of a circular cylinder. Additionally, the performance values obtained for the calculation time for the solution of the Poisson equation are compared with the values for other CPUs and GPUs from the literature. Consequently, approximately 3× and 20× speedups are achieved in comparison with GPU (using CUSP library and CPU, respectively. CUSP is an open-source library for sparse linear algebra and graph computations on CUDA.

  13. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    Science.gov (United States)

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  14. The D(D3)-anyon chain: integrable boundary conditions and excitation spectra

    International Nuclear Information System (INIS)

    Finch, Peter E; Frahm, Holger

    2013-01-01

    Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D 3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z 4 parafermion or a M (5,6) minimal model. (paper)

  15. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  16. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    Science.gov (United States)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  17. Bridging firm-internal boundaries for innovation: Directed communication orientation and brokering roles

    NARCIS (Netherlands)

    Aalbers, H.L.; Dolfsma, W.A.

    2015-01-01

    Knowledge flowing across firm-internal (unit) boundaries is an essential contribution to an organization's innovative performance. Knowledge, unfortunately, does not cross firm-internal boundaries as a matter of course. The different contacts an individual maintains in a firm's instrumental-formal

  18. Bridging firm-internal boundaries for innovation : Directed communication orientation and brokering roles

    NARCIS (Netherlands)

    Leendert Aalbers, Hendrik; Dolfsma, Wilfred

    2015-01-01

    Knowledge flowing across firm-internal (unit) boundaries is an essential contribution to an organization's innovative performance. Knowledge, unfortunately, does not cross firm-internal boundaries as a matter of course. The different contacts an individual maintains in a firm's instrumental-formal

  19. A Comprehensive Review of Boundary Integral Formulations of Acoustic Scattering Problems

    Directory of Open Access Journals (Sweden)

    S.I. Zaman

    2000-12-01

    Full Text Available This is a review presenting an overview of the developments in boundary integral formulations of the acoustic scattering problems. Generally, the problem is formulated in one of two ways viz. Green’s representation formula, and the Layer-theoretic formulation utilizing either a simple-layer or a double-layer potential. The review presents and expounds the major contributions in this area over the last four decades. The need for a robust and improved formulation of the exterior scattering problem (Neumann or Dirichlet arose due to the fact that the classical formulation failed to yield a unique solution at (acoustic wave-numbers which correspond to eigenvalues (eigenfrequencies of the corresponding interior scattering problem. Moreover, this correlation becomes more pronounced as the wave-numbers become larger i.e. as the (acoustic frequency increases. The robust integral formulations which are discussed here yield Fredholms integral equations of the second kind which are more amenable to computation than the first kind. However, the integral equation involves a hypersingular kernel which creates ill-conditioning in the final matrix representation. This is circumvented by a regularisation technique. An extensive useful list of references is also presented here for researchers in this area.

  20. Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Nagano, Yasutaka

    2010-01-01

    This paper presents observations and investigations of the detailed turbulent structure of a boundary layer over a forward-facing step. The present DNSs are conducted under conditions with three Reynolds numbers based on step height, or three Reynolds numbers based on momentum thickness so as to investigate the effects of step height and inlet boundary layer thickness. DNS results show the quantitative turbulent statistics and structures of boundary layers over a forward-facing step, where pronounced counter-gradient diffusion phenomena (CDP) are especially observed on the step near the wall. Also, a quadrant analysis is conducted in which the results indicate in detail the turbulence motion around the step.

  1. Direct Numerical Simulation and Experimental Validation of Hypersonic Boundary-Layer Receptivity and Instability

    National Research Council Canada - National Science Library

    Zhong, Xiaolin

    2007-01-01

    .... During the three-year period, we have conducted extensive DNS studies on the receptivity of hypersonic boundary layer flows over a sharp wedge, a flat plate, a blunt cone, and the FRESH aeroshell...

  2. Investigating the performance of directional boundary layer model through staged modeling method

    Science.gov (United States)

    Jeong, Moon-Gyu; Lee, Won-Chan; Yang, Seung-Hune; Jang, Sung-Hoon; Shim, Seong-Bo; Kim, Young-Chang; Suh, Chun-Suk; Choi, Seong-Woon; Kim, Young-Hee

    2011-04-01

    Generally speaking, the models used in the optical proximity effect correction (OPC) can be divided into three parts, mask part, optic part, and resist part. For the excellent quality of the OPC model, each part has to be described by the first principles. However, OPC model can't take the all of the principles since it should cover the full chip level calculation during the correction. Moreover, the calculation has to be done iteratively during the correction until the cost function we want to minimize converges. Normally the optic part in OPC model is described with the sum of coherent system (SOCS[1]) method. Thanks to this method we can calculate the aerial image so fast without the significant loss of accuracy. As for the resist part, the first principle is too complex to implement in detail, so it is normally expressed in a simple way, such as the approximation of the first principles, and the linear combinations of factors which is highly correlated with the chemistries in the resist. The quality of this kind of the resist model depends on how well we train the model through fitting to the empirical data. The most popular way of making the mask function is based on the Kirchhoff's thin mask approximation. This method works well when the feature size on the mask is sufficiently large, but as the line width of the semiconductor circuit becomes smaller, this method causes significant error due to the mask topography effect. To consider the mask topography effect accurately, we have to use rigorous methods of calculating the mask function, such as finite difference time domain (FDTD[2]) and rigorous coupled-wave analysis (RCWA[3]). But these methods are too time-consuming to be used as a part of the OPC model. Until now many alternatives have been suggested as the efficient way of considering the mask topography effect. Among them we focused on the boundary layer model (BLM) in this paper. We mainly investigated the way of optimization of the parameters for the

  3. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  4. A time-domain finite element boundary integral approach for elastic wave scattering

    Science.gov (United States)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  5. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  6. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    Science.gov (United States)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  7. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  8. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    Science.gov (United States)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  9. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    Science.gov (United States)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  10. Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Min Jia

    2012-01-01

    Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t,  0integrals, A is a function of bounded variation, and dA can be a changing-sign measure. The existence, uniqueness, and asymptotic behavior of positive solutions to the singular nonlocal integral boundary value problem for fractional differential equation are obtained. Our analysis relies on Schauder's fixed-point theorem and upper and lower solution method.

  11. Knowledge mobilization in bridging patient-practitioner-researcher boundaries: A systematic integrative review protocol.

    Science.gov (United States)

    Cowdell, Fiona; Booth, Andrew; Appleby, Ben

    2017-11-01

    To review published literature to identify when and how patients and healthcare practitioners have been involved in knowledge mobilization activity and the impact this may have had on their care. Improving patient outcomes, satisfaction and quality of care is increasingly reliant on shared decision-making between health professionals and patients. Knowledge mobilization, at its simplest: "moving knowledge to where it can be most useful" is a growing field of academic study. To date, it appears that much effort has focused on moving knowledge from researchers to healthcare practitioners. Knowledge mobilization to patients is currently under-researched. Integrative review. Methods of integrative review will be used to address the review problem. PRISMA guidelines were used as a general framework to guide structuring and reporting the review. Elements of method-specific reporting guidelines for specific streams of evidence will be used as required. This review will aim to provide a broad and deep understanding of patient-practitioner-researcher engagement in knowledge mobilization activity. This synthesis of the extant literature should offer insights into the optimum characteristics of methods for bridging patient-practitioner-researcher boundaries in knowledge mobilization action. © 2017 John Wiley & Sons Ltd.

  12. On the Theoretical Integration of Accounting Discipline and the Boundary of Accounting

    Institute of Scientific and Technical Information of China (English)

    CAO Wei

    2016-01-01

    The discipline of accounting has formed many branches,and from it split some independent majors as well,such as financial management,auditing and so on.However,due to lacking of comprehensive thinking and theoretical summary,some of the basic relationships between accounting branches still cannot be explained clearly in theory,thus making people have difficulty in understanding clearly the hierarchical structure of the accounting discipline and the nature and boundary of accounting.The idea of theoretical integration presented by this study is:to reconstruct (or return to) the basic theoretical structure of accounting,and on this basis to establish the basic accounting;to shape some accounting branches through the cross links between the basic accounting and other related disciplines;to form a narrow-sense accounting with the external and internal two information systems of the accounting entity,which should be developed on the basis of the basic accounting;and to integrate such disciplines as the narrow-sense accounting,financial management and auditing into a generalized accounting through the value management of the accounting entity,which is necessary.Some interdisciplinary subjects shaped by the accounting information system with some related crossing disciplines (such as national economic accounting,forensic accounting,etc.) belong to a more generalized accounting.

  13. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    Science.gov (United States)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  14. Redefining the Boundaries of Language Study. Issues in Language Program Direction: A Series of Annual Volumes.

    Science.gov (United States)

    Kramsch, Claire, Ed.

    The papers in this volume fall into five categories. After "Introduction: Making the Invisible Visible" (Claire Kramsch), Part 1, "Theoretical Boundaries," includes "The Metamorphosis of the Foreign Language Director, or: Waking Up to Theory" (Mark Webber) and "Subjects-in-Process: Revisioning TA Development…

  15. An introductory study of the convergence of the direct boundary element method

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    1997-01-01

    of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrated that the rate of convergence of these formulations is reduced for calculations involving bodies with edges (geometric singularities). Two methods for improving the rate of convergence...

  16. On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak

    International Nuclear Information System (INIS)

    Demidov, A.; Petrova, V.; Silantiev, V.

    1996-01-01

    Theorems of existence of simply connected 'plasma' domain for the cylindrical case of the Grad-Shafranov equation Δu = F(u) are given. For the inverse problem upper and lower estimates of normal derivative of u on the boundary of the 'plasma' domain are obtained. (author)

  17. Direct observations of grain boundary phenomena during indentation of Al and Al-Mg thin films

    NARCIS (Netherlands)

    Soer, WA; De Hosson, JTM; Minor, AM; Stach, EA; Morris, Joan K.; Corcoran, SG; Joo, YC; Moody, NR; Suo, Z

    2004-01-01

    The deformation behaviour of Al and Al-Mg thin films has been studied with the unique experimental approach of in-situ nanoindentation in a transmission electron microscope. This paper concentrates on the role of solute Mg additions in the transfer of plasticity across grain boundaries. The

  18. Temporal direct numerical simulation of transitional natural-convection boundary layer under conditions of considerable external turbulence effects

    International Nuclear Information System (INIS)

    Abramov, Alexey G; Smirnov, Evgueni M; Goryachev, Valery D

    2014-01-01

    Results of direct numerical simulations for time-developing air natural-convection boundary layer are presented. Computations have been performed assuming periodicity conditions in both the directions parallel to the vertical isothermal hot plate. The contribution is mainly focused on understanding of laminar–turbulent transition peculiarities in the case of perturbation action of external turbulence that is modeled by isotropic disturbances initially introduced into the computational domain. Special attention is paid to identification and analysis of evolving three-dimensional vortices that clearly manifest themselves through the whole stages of laminar–turbulent transition in the boundary layer. A comparison of computed profiles of mean velocity, mean temperature and fluctuation characteristics for turbulent regimes of convection with experimental data is performed as well. (paper)

  19. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    Aasmundtveit, Knut E; Ta, Bao Q; Halvorsen, Einar; Hoivik, Nils; Lin, Liwei

    2012-01-01

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH 3 sensor. (paper)

  20. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  1. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  2. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunHo, E-mail: jhk@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States); Kim, SeongYeon [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M. [National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States)

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  3. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    Science.gov (United States)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore

  4. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    Science.gov (United States)

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  5. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed

    2018-03-27

    Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.

  6. The influence of a scaled boundary response on integral system transient behavior

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Kullberg, C.M.

    1989-01-01

    Scaling relationships associated with the thermal-hydraulic response of a closed-loop system are applied to a calculational assessment of a feed-and-bleed recovery in a nuclear reactor integral effects test. The analysis demonstrates both the influence of scale on the system response and the ability of the thermal-hydraulics code to represent those effects. The qualitative response of the fluid is shown to be coupled to the behavior of the bounding walls through the energy equation. The results of the analysis described in this paper influence the determination of computer code applicability. The sensitivity of the code response to scaling variations introduced in the analysis is found to be appropriate with respect to scaling criteria determined from the scaling literature. Differences in the system response associated with different scaling criteria are found to be plausible and easily explained using well-known principles of heat transfer. Therefore, it is concluded that RELAP5/MOD2 can adequately represent the scaled effects of heat transfer boundary conditions of the thermal-hydraulic calculations through the mechanism of communicating walls. The results of the analysis also serve to clarify certain aspects of experiment and facility design

  7. Measuring brain atrophy with a generalized formulation of the boundary shift integral.

    Science.gov (United States)

    Prados, Ferran; Cardoso, Manuel Jorge; Leung, Kelvin K; Cash, David M; Modat, Marc; Fox, Nick C; Wheeler-Kingshott, Claudia A M; Ourselin, Sebastien

    2015-01-01

    Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Boundary integral method to calculate the sensitivity temperature error of microstructured fibre plasmonic sensors

    International Nuclear Information System (INIS)

    Esmaeilzadeh, Hamid; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2013-01-01

    In this paper, using the boundary integral method (BIM), we simulate the effect of temperature fluctuation on the sensitivity of microstructured optical fibre (MOF) surface plasmon resonance (SPR) sensors. The final results indicate that, as the temperature increases, the refractometry sensitivity of our sensor decreases from 1300 nm/RIU at 0 °C to 1200 nm/RIU at 50 °C, leading to ∼7.7% sensitivity reduction and the sensitivity temperature error of 0.15% °C −1 for this case. These results can be used for biosensing temperature-error adjustment in MOF SPR sensors, since biomaterials detection usually happens in this temperature range. Moreover, the signal-to-noise ratio (SNR) of our sensor decreases from 0.265 at 0 °C to 0.154 at 100 °C with the average reduction rate of ∼0.42% °C −1 . The results suggest that at lower temperatures the sensor has a higher SNR. (paper)

  9. Study of pollutant transport in surface boundary layer by generalized integral transform technique

    International Nuclear Information System (INIS)

    Guerrero, Jesus S.P.; Heilbron Filho, Paulo F.L.; Pimentel, Luiz C.G.; Cataldi, Marcio

    2001-01-01

    A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)

  10. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    Science.gov (United States)

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  11. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    Science.gov (United States)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  12. Ultrafast electron microscopy integrated with a direct electron detection camera

    Directory of Open Access Journals (Sweden)

    Young Min Lee

    2017-07-01

    Full Text Available In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM, which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  13. Ultrafast electron microscopy integrated with a direct electron detection camera.

    Science.gov (United States)

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  14. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    Science.gov (United States)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  15. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    is of particular importance to achieve a sound field that reaches both microphones with the same level and that is sufficiently uniform at the microphone positions, in order to reduce the effect of misalignment. An existing sound source has been modeled using the Boundary Element Method, and the simulations have......The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source...... been used to modify the source and make it suitable for this kind of calibration. It has been found that a central plug, already present in the device, can be re-shaped in such a way that makes the sound field on the microphone positions more uniform, even at rather high frequencies. Measurements have...

  16. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  17. Semi-direct sums of Lie algebras and continuous integrable couplings

    International Nuclear Information System (INIS)

    Ma Wenxiu; Xu Xixiang; Zhang Yufeng

    2006-01-01

    A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems

  18. Studying the active deformation of distributed plate boundaries by integration of GNSS networks

    Science.gov (United States)

    D'Agostino, Nicola; Avallone, Antonio; Cecere, Gianpaolo; D'Anastasio, Elisabetta

    2013-04-01

    In the last decade GNSS networks installed for different purposes have proliferated in Italy and now provide a large amount of data available to geophysical studies. In addition to the existing regional and nation-wide scientific GNSS networks developed by ASI (http://geodaf.mt.asi.it), INGV (http://ring.gm.ingv.it) and OGS (http://crs.inogs.it/frednet), a large number (> 400) of continuously-operating GPS stations have been installed in the framework of regional and national networks, both publicly-operated and commercial, developed to provide real-time positioning capability to surveyors. Although the quality of the data and metadata associated to these stations is generally lower with respect to the "scientific" CGPS stations, the increased density and redundancy in crustal motion information, resulting in more than 500 stations with more than 2.5 years of observations, significantly increase the knowledge of the active deformation of the Italian territory and provides a unique image of the crustal deformation field. The obtained GPS velocity field is analysed and various features ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults are presented in this work. Undeforming, aseismic regions (Sardinia, Southern Apulia) provide test sites to evaluate the lower bound on the accuracy achievable to measure tectonic deformation. Integration of GNSS networks significantly improves the resolution of the strain rate field in Central Italy showing that active deformation is concentrated in a narrow belt along the crest of the Apennines, consistently with the distribution of the largest historical and recent earthquakes. Products derived from dense GPS velocity and strain rate fields include map of earthquake potential developed under the assumption that the rate of seismic moment accumulation measured from geodesy distributes into earthquake sizes that

  19. Development of ecological monitoring systems for near-boundary regions of Russia and Kazakhstan in the 'Integration' Federal program framework

    International Nuclear Information System (INIS)

    Valyaev, A.N.; Kiselev, V.P.; Gerasimenko, N.N.; Dzhamanbalin, K.K.

    2003-01-01

    The present paper is devoted to description of basic works carrying out within framework of the International project 'Ecological monitoring of Russia and Kazakhstan boundary regions'. In 2002 the works were conducted by three directions: preparation of necessary boundary areas' electronic maps; overview of existing information sources (Kostanai and Chelyabinsk cities are as an example); implementation of ecological information data bases structures on boundary areas. The geographic information system MapInfo was selected in the capacity of geo-information system. The implementation information-simulating complex is planing as open developing system. In the framework of the complex the combined operation of a set of different-scale special-purpose information, simulating and geo-information systems have been provided

  20. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  1. Boundary-value problems with integral conditions for a system of Lame equations in the space of almost periodic functions

    Directory of Open Access Journals (Sweden)

    Volodymyr S. Il'kiv

    2016-11-01

    Full Text Available We study a problem with integral boundary conditions in the time coordinate for a system of Lame equations of dynamic elasticity theory of an arbitrary dimension. We find necessary and sufficient conditions for the existence and uniqueness of solution in the class of almost periodic functions in the spatial variables. To solve the problem of small denominators arising while constructing solutions, we use the metric approach.

  2. Boundary element analysis of the directional sensitivity of the concentric EMG electrode

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1993-01-01

    on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where...... as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses...... the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by.the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick...

  3. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements.

    Directory of Open Access Journals (Sweden)

    Timothy L Haskett

    2018-03-01

    Full Text Available Tripartite integrative and conjugative elements (ICE3 are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.

  4. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements.

    Science.gov (United States)

    Haskett, Timothy L; Terpolilli, Jason J; Ramachandran, Vinoy K; Verdonk, Callum J; Poole, Phillip S; O'Hara, Graham W; Ramsay, Joshua P

    2018-03-01

    Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.

  5. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement

  6. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  7. Integrating and interpreting the Habitats- and Birds Directives

    NARCIS (Netherlands)

    Kistenkas, F.H.

    2005-01-01

    The Birds Directive of 1979 and the Habitats Directive of 1992 might be seen as the two major EU nature conservation directives, both protecting a habitats network throughout Europe and species. The transposition of both the Habitats and Birds Directive (HBD) into domestic national or subnational

  8. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    Science.gov (United States)

    Bellingham, Alyssa

    electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.

  9. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  10. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  11. Direct localization of poles of a meromorphic function from measurements on an incomplete boundary

    Science.gov (United States)

    Nara, Takaaki; Ando, Shigeru

    2010-01-01

    This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.

  12. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  13. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  14. Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains

    Science.gov (United States)

    2016-06-01

    solve the Helmholtz equation as ∂Ω goes through significant change in its shape and topology — applications for which implicit representation of the...boundary-value problems for the wave equation and maxwell’s equations. Russian Math . Surv., 1965. [16] S. Reutskiy. The method of fundamental

  15. The unbiasedness of a generalized mirage boundary correction method for Monte Carlo integration estimators of volume

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2014-01-01

    The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...

  16. Cross-lagged relations between mentoring received from supervisors and employee OCBs: Disentangling causal direction and identifying boundary conditions.

    Science.gov (United States)

    Eby, Lillian T; Butts, Marcus M; Hoffman, Brian J; Sauer, Julia B

    2015-07-01

    Although mentoring has documented relationships with employee attitudes and outcomes of interest to organizations, neither the causal direction nor boundary conditions of the relationship between mentoring and organizational citizenship behaviors (OCBs) has been fully explored. On the basis of Social Learning Theory (SLT; Bandura, 1977, 1986), we predicted that mentoring received by supervisors would causally precede OCBs, rather than employee OCBs resulting in the receipt of more mentoring from supervisors. Results from cross-lagged data collected at 2 points in time from 190 intact supervisor-employee dyads supported our predictions; however, only for OCBs directed at individuals (OCB-Is) and not for OCBs directed at the organization (OCB-Os). Further supporting our theoretical rationale for expecting mentoring to precede OCBs, we found that coworker support operates as a substitute for mentoring in predicting OCB-Is. By contrast, no moderating effects were found for perceived organizational support. The results are discussed in terms of theoretical implications for mentoring and OCB research, as well as practical suggestions for enhancing employee citizenship behaviors. (c) 2015 APA, all rights reserved).

  17. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  18. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  19. 77 FR 67063 - VA Directive 0005 on Scientific Integrity

    Science.gov (United States)

    2012-11-08

    ... in multiple areas, including data integrity, ethics, privacy, and human research protections, as well... replace the Association for the Accreditation of Human Research Protection Programs (AAHRPP) with Alion... human research protection programs. VA Response: VA is currently reviewing its accreditation...

  20. Determination of stable shapes of a thin liquid metal layer using a boundary integral method

    Energy Technology Data Exchange (ETDEWEB)

    Hinaje, M [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Vinsard, G [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Dufour, S [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2006-03-21

    This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions.

  1. Determination of stable shapes of a thin liquid metal layer using a boundary integral method

    International Nuclear Information System (INIS)

    Hinaje, M; Vinsard, G; Dufour, S

    2006-01-01

    This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions

  2. Detuned resonances of Tollmien-Schlichting waves in an airfoil boundary layer: Experiment, theory, and direct numerical simulation

    Science.gov (United States)

    Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.

    2012-09-01

    Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the

  3. Shifting contours of boundaries: an exploration of inter-agency integration between hospital and community interprofessional diabetes programs.

    Science.gov (United States)

    Wong, Rene; Breiner, Petra; Mylopoulos, Maria

    2014-09-01

    This article reports on research into the relationships that emerged between hospital-based and community-based interprofessional diabetes programs involved in inter-agency care. Using constructivist grounded theory methodology we interviewed a purposive theoretical sample of 21 clinicians and administrators from both types of programs. Emergent themes were identified through a process of constant comparative analysis. Initial boundaries were constructed based on contrasts in beliefs, practices and expertise. In response to bureaucratic and social pressures, boundaries were redefined in a way that created role uncertainty and disempowered community programs, ultimately preventing collaboration. We illustrate the dynamic and multi-dimensional nature of social and symbolic boundaries in inter-agency diabetes care and the tacit ways in which hospitals can maintain a power position at the expense of other actors in the field. As efforts continue in Canada and elsewhere to move knowledge and resources into community sectors, we highlight the importance of hospitals seeing beyond their own interests and adopting more altruistic models of inter-agency integration.

  4. Evaluating Models Of The Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part Ii. Modelling Observed Conditions

    Science.gov (United States)

    Hess, G. D.; Garratt, J. R.

    The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.

  5. DIRECT SALES IN THE CONTEXT OF ROMANIA'S UE INTEGRATION

    Directory of Open Access Journals (Sweden)

    Gherman Cristina

    2010-12-01

    Full Text Available More recently, direct sales business is stimulated by the difficult market conditions. While retailers hardly bear fixed costs such as rent, administrative costs and tend to raise prices, customers fall back to products offered by direct sale. In addition, labour market conditions made more and more Romanians (who were left without incomes to move towards this system. On the other hand, the direct sales field doesnt concern only those who remained without a job, but rather those who want to round their incomes.

  6. Future directions in international financial integration research - A crowdsourced perspective

    OpenAIRE

    Lucey, B.M.; Vigne, S.A.; Ballester, L.; Barbopoulos, L.; Brzeszczynski, J.; Carchano, O.; Dimic, N.; Fernandez, V.; Gogolin, F.; González-Urteaga, A.; Goodell, J.W.; Helbing, P.; Ichev, R.; Kearney, F.; Laing, E.

    2018-01-01

    This paper is the result of a crowdsourced effort to surface perspectives on the present and future direction of international finance. The authors are researchers in financial economics who attended the INFINITI 2017 conference in the University of Valencia in June 2017 and who participated in the crowdsourcing via the Overleaf platform. This paper highlights the actual state of scientific knowledge in a multitude of fields in finance and proposes different directions for future research.

  7. European community direct taxation: the recent integration trends

    OpenAIRE

    Kalvytė, Vesta

    2011-01-01

    While Member States retain direct tax sovereignity and determine the tax, its base, rate, taxable subjects discretionary, fundamental differencies occur, resulting in market fragmentation and big obstacles for effective functioning of Community internal market. These differencies and the gap between harmonization in direct taxes and other spheres stipulate the need of harmonization and pressure for the Member States. However, the sole harmonization base requires the Council to act unanimously...

  8. A nonlinear boundary integral equations method for the solving of quasistatic elastic contact problem with Coulomb friction

    Directory of Open Access Journals (Sweden)

    Yurii M. Streliaiev

    2016-06-01

    Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.

  9. Numerical experiments using CHIEF to treat the nonuniqueness in solving acoustic axisymmetric exterior problems via boundary integral equations

    Directory of Open Access Journals (Sweden)

    Adel A.K. Mohsen

    2010-07-01

    Full Text Available The problem of nonuniqueness (NU of the solution of exterior acoustic problems via boundary integral equations is discussed in this article. The efficient implementation of the CHIEF (Combined Helmholtz Integral Equations Formulation method to axisymmetric problems is studied. Interior axial fields are used to indicate the solution error and to select proper CHIEF points. The procedure makes full use of LU-decomposition as well as the forward solution derived in the solution. Implementations of the procedure for hard spheres are presented. Accurate results are obtained up to a normalised radius of ka = 20.983, using only one CHIEF point. The radiation from a uniformly vibrating sphere is also considered. Accurate results for ka up to 16.927 are obtained using two CHIEF points.

  10. An Integral Method and Its Application to Some Three-Dimensional Boundary-Layer Flows,

    Science.gov (United States)

    1979-07-18

    M. Scala Dr. H. Lew Mr. J. W. Faust A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O...RESEARCH AND TECHNOLOGY DEPARTMENT 18 JULY 1979 Approved for public release, distribution unlimited DTICEILECTE1 APR 2 5 1930,, A NAVAL SURFACE WEAPONS...TITLE (end Subtlle) S. TYPE OF REPORT A PERIOD COVERED I INVTEGRAL M.ETHOD AND ITS 4PPLICATION TO SSOME THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS 6

  11. Prospects for direct measurement of time-integrated Bs mixing

    International Nuclear Information System (INIS)

    Siccama, I.

    1994-01-01

    This note investigates the prospects of measuring time-integrated B s mixing. Three inclusive decay modes of the B s meson are discussed. For each reconstruction mode, the expected number of events and the different background channels are discussed. Estimates are given for the uncertainty on the mixing parameter χ s . (orig.)

  12. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed; Al Farhan, Mohammed; Al-Harthi, Noha A.; Chen, Rui; Yokota, Rio; Bagci, Hakan; Keyes, David E.

    2018-01-01

    scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory

  13. Developments of integrated laser crystals by a direct bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki; Tanaka, Mitsuhiro; Okada, Yukikatu

    2003-01-01

    Laser crystal integration using a neodymium-doped yttrium vanadate (or orthovanadate) laser crystal, and non-doped yttrium vanadate crystals that function as cold fingers has been demonstrated. A newly developed dry etching process was adopted in the preparation for contact of mechanically polished surfaces. In the heat treatment process, temperature optimization was essential to get rid of precipitation of vanadic acid caused by the thermo-chemical reaction in a vacuum furnace. The bonded crystal was studied via optical characteristics, magnified inspections, laser output performances pumped by a CW laser diode. From these experiments, it was clear that the integrated Nd:YVO 4 laser crystal, securing the well-improved thermal conductivity, can increase laser output power nearly twice that of the conventional single crystal which was cracked in high power laser pumping of 10 W due to its intrinsic poor thermal conductivity. (author)

  14. Producing software by integration: challenges and research directions (keynote)

    OpenAIRE

    Inverardi , Paola; Autili , Marco; Di Ruscio , Davide; Pelliccione , Patrizio; Tivoli , Massimo

    2013-01-01

    International audience; Software is increasingly produced according to a certain goal and by integrating existing software produced by third-parties, typically black-box, and often provided without a machine readable documentation. This implies that development processes of the next future have to explicitly deal with an inherent incompleteness of information about existing software, notably on its behaviour. Therefore, on one side a software producer will less and less know the precise behav...

  15. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  16. Three dimensional modelling of grain boundary interaction and evolution during directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Jain, T.; Lin, H. K.; Lan, C. W.

    2018-03-01

    The development of grain structures during directional solidification of multi-crystalline silicon (mc-Si) plays a crucial role in the materials quality for silicon solar cells. Three dimensional (3D) modelling of the grain boundary (GB) interaction and evolution based on phase fields by considering anisotropic GB energy and mobility for mc-Si is carried out for the first time to elucidate the process. The energy and mobility of GBs are allowed to depend on misorientation and the GB plane. To examine the correctness of our method, the known the coincident site lattice (CSL) combinations such as (∑ a + ∑ b → ∑ a × b) or (∑ a + ∑ b → ∑ a / b) are verified. We frther discuss how to use the GB normal to characterize a ∑ 3 twin GB into a tilt or a twist one, and show the interaction between tilt and twist ∑ 3 twin GBs. Two experimental scenarios are considered for comparison and the results are in good agreement with the experiments as well as the theoretical predictions.

  17. An Integrative Conceptual Framework of Disability: New Directions for Research.

    Science.gov (United States)

    Tate, Denise G.; Pledger, Constance

    2003-01-01

    Examines various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of people with disabilities. Recommends new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current…

  18. Integration of the Residual Limb with Prostheses via Direct Skin-Bone-Peripheral Nerve Interface

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0791 TITLE: Integration of the Residual Limb with Prostheses via Direct Skin- Bone-Peripheral Nerve Interface...ABOVE ADDRESS. 1. REPORT DATE October 2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Integration of the...translational study to develop Skin and Bone Integrated Pylon with Peripheral Neural Interface (SBIP-PNI) directly attached to the residuum and the

  19. Integration project of regional markets in Europe (European directive)

    International Nuclear Information System (INIS)

    Gonzalez Fernandez-Castaneda, J. J.

    2010-01-01

    The article presents the current situation of the Day-Ahead electricity markets in the different countries and Regions along West Europe. It describes the different possibilities applied to congestion management in the borders between countries and price areas, and the options employed to couple Day-ahead markets to form regional markets in Europe. Finally, it presents the initiative to Price couple Regional markets (PCR) that is being developed by Nord pool spot, EPEX Spot and OMEL with the objective to advance towards the integration of the markets that they operate in the internal Electricity Market. (Author)

  20. Direct Energy Centre underground parking integrated light control system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    LightSavers is a project undertaken by the Toronto Atmospheric Fund to accelerate the use of lighting technologies. As part of the project a pilot test has been carried out in the Direct Energy Center in Toronto. The aim of this report is to present the study and its results. The Direct Energy Center is a large event facility with an large underground parking facility. A lighting energy management system, the energy control system (ECS), capable of adjusting lighting levels based on occupancy was implemented in the centre and data was collected during over one year. Results showed that the ECS permitted a reduction in energy consumption and thus greenhouse gas emissions by 47% and the payback will take less than 6 years. This project demonstrated that the energy control system provides better energy, environmental and economic performance than a traditional automation system.

  1. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    Science.gov (United States)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average

  2. Integral Boundary Value Problems for Fractional Impulsive Integro Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    A. Anguraj

    2014-02-01

    Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.

  3. Process-oriented integration and coordination of healthcare services across organizational boundaries.

    Science.gov (United States)

    Tello-Leal, Edgar; Chiotti, Omar; Villarreal, Pablo David

    2012-12-01

    The paper presents a methodology that follows a top-down approach based on a Model-Driven Architecture for integrating and coordinating healthcare services through cross-organizational processes to enable organizations providing high quality healthcare services and continuous process improvements. The methodology provides a modeling language that enables organizations conceptualizing an integration agreement, and identifying and designing cross-organizational process models. These models are used for the automatic generation of: the private view of processes each organization should perform to fulfill its role in cross-organizational processes, and Colored Petri Net specifications to implement these processes. A multi-agent system platform provides agents able to interpret Colored Petri-Nets to enable the communication between the Healthcare Information Systems for executing the cross-organizational processes. Clinical documents are defined using the HL7 Clinical Document Architecture. This methodology guarantees that important requirements for healthcare services integration and coordination are fulfilled: interoperability between heterogeneous Healthcare Information Systems; ability to cope with changes in cross-organizational processes; guarantee of alignment between the integrated healthcare service solution defined at the organizational level and the solution defined at technological level; and the distributed execution of cross-organizational processes keeping the organizations autonomy.

  4. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    International Nuclear Information System (INIS)

    Zio, Enrico

    2014-01-01

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives

  5. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico, E-mail: enrico.zio@ecp.fr [Ecole Centrale Paris and Supelec, Chair on System Science and the Energetic Challenge, European Foundation for New Energy – Electricite de France (EDF), Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2014-12-15

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives.

  6. The Blurred Boundaries and Multiple Effects of European Integration and Globalisation

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2015-01-01

    of how European integration contribute to, and are effected by, globalisation. By means of concrete research examples the chapter discusses the advantages of the research strategies and tools typically applied on the area and the challenges we face in this regard. This includes discussions of top......This chapter presents analytical strategies for the study of European integration and Globalisation in concert. This is an increasingly important as well as a highly diverse field of inquiry. The chapter presents a series of research clusters in various ways concerned with the fundamental questions......-down and bottom-up research designs, process tracing, counterfactual analysis, comparative designs and comparative temporal analysis. The chapter gives special attention to the promotion of cross-fertilisation in this otherwise dispersed area of research and concludes by giving pointers to potential areas...

  7. Constructing integrable full-pressure full-current free-boundary stellarator magnetohydrodynamic equilibrium solutions

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2002-01-01

    For stellarators to be feasible candidates for fusion power stations it is essential that the magnetic field lines lie on nested flux surfaces; however, the lack of a continuous symmetry implies that magnetic islands, caused by Pfirsch-Schlueter currents, diamagnetic currents and resonant coil fields, are guaranteed to exist. The challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the PIES code [Comp. Phys. Comm., 43:157, 1986] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to lie in the nullspace of certain measures of engineering acceptability and kink stability. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for NCSX [Phys. Plas., 7:1911, 2000]. (author)

  8. The role of boundary organizations in co-management: examining the politics of knowledge integration in a marine protected area in Belize

    Directory of Open Access Journals (Sweden)

    Noella J. Gray

    2016-08-01

    Full Text Available Marine protected areas (MPAs are an increasingly popular tool for management of the marine commons. Effective governance is essential if MPAs are to achieve their objectives, yet many MPAs face conflicts and governance challenges, including lack of trust and knowledge integration between fishers, scientists, and policy makers. This paper considers the role of a boundary organization in facilitating knowledge integration in a co-managed MPA, the Gladden Spit and Silk Cayes Marine Reserve in Belize. Boundary organizations can play an important role in resource management, by bridging the science-policy divide, facilitating knowledge integration, and enabling communication in conditions of uncertainty. Drawing on ethnographic research conducted in Belize, the paper identifies four challenges for knowledge integration. First, actors have divergent perspectives on whether and how knowledge is being integrated. Second, actors disagree on resource conditions within the MPA and how these should be understood. Third, in order to maintain accountability with multiple actors, including fishers, government, and funders, the boundary organization has promoted the importance of different types of knowledge for different purposes (science and fishers’ knowledge, rather than the integration of these. Finally, a lack of trust and uneven power relations make it difficult to separate knowledge claims from political claims. However, even if knowledge integration proves difficult, boundary organizations may still play an important role by maintaining accountability, providing space for conflicting understandings to co-exist, and ultimately for governance institutions to evolve.

  9. The Integrated Landscape Modeling partnership - Current status and future directions

    Science.gov (United States)

    Mushet, David M.; Scherff, Eric J.

    2016-01-28

    The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When

  10. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  11. An integrative conceptual framework of disability. New directions for research.

    Science.gov (United States)

    Tate, Denise G; Pledger, Constance

    2003-04-01

    Advances in research on disability and rehabilitation are essential to creating equal opportunity, economic self-sufficiency, and full participation for persons with disabilities. Historically, such initiatives have focused on separate and specific areas, including neuroscience, molecular biology and genetics, gerontology, engineering and physical sciences, and social and behavioral sciences. Research on persons with disabilities should examine the broader context and trends of society that affect the total environment of persons with disabilities. This article examines the various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of persons with disabilities. The authors recommend new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current interventions, an emphasis on consumer-driven investigations within a socioecological perspective of disability, and the implications for research and practice.

  12. A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation

    Science.gov (United States)

    Smith, David J.

    2018-04-01

    The method of regularized stokeslets is extensively used in biological fluid dynamics due to its conceptual simplicity and meshlessness. This simplicity carries a degree of cost in computational expense and accuracy because the number of degrees of freedom used to discretise the unknown surface traction is generally significantly higher than that required by boundary element methods. We describe a meshless method based on nearest-neighbour interpolation that significantly reduces the number of degrees of freedom required to discretise the unknown traction, increasing the range of problems that can be practically solved, without excessively complicating the task of the modeller. The nearest-neighbour technique is tested against the classical problem of rigid body motion of a sphere immersed in very viscous fluid, then applied to the more complex biophysical problem of calculating the rotational diffusion timescales of a macromolecular structure modelled by three closely-spaced non-slender rods. A heuristic for finding the required density of force and quadrature points by numerical refinement is suggested. Matlab/GNU Octave code for the key steps of the algorithm is provided, which predominantly use basic linear algebra operations, with a full implementation being provided on github. Compared with the standard Nyström discretisation, more accurate and substantially more efficient results can be obtained by de-refining the force discretisation relative to the quadrature discretisation: a cost reduction of over 10 times with improved accuracy is observed. This improvement comes at minimal additional technical complexity. Future avenues to develop the algorithm are then discussed.

  13. Constructing Integrable High-pressure Full-current Free-boundary Stellarator Magnetohydrodynamic Equilibrium Solutions

    International Nuclear Information System (INIS)

    Hudson, S.R.; Monticello, D.A.; Reiman, A.H.; Strickler, D.J.; Hirshman, S.P.; Ku, L-P; Lazarus, E.; Brooks, A.; Zarnstorff, M.C.; Boozer, A.H.; Fu, G-Y.; Neilson, G.H.

    2003-01-01

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schluter currents, diamagnetic currents, and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [Reiman and Greenside, Comp. Phys. Comm. 43 (1986) 157] which iterate s the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator Experiment [Reiman, et al., Phys. Plasmas 8 (May 2001) 2083

  14. Integrated stratigraphy of a shallow marine Paleocene-Eocene boundary section, MCBR cores, Maryland (USA)

    Science.gov (United States)

    Self-Trail, J. M.; Robinson, M. M.; Edwards, L. E.; Powars, D. S.; Wandless, G. A.; Willard, D. A.

    2013-12-01

    An exceptional Paleocene-Eocene boundary section occurs in a cluster of six short (color from gray to alternating gray and pink also occurs within the CIE transition. These alternating changes in color coincide with cyclic peaks in the carbon isotope and percent calcium carbonate curves, where gray color corresponds to a positive shift in carbon isotope values and to a corresponding increase in percent benthic and planktic foraminifera. The upper third of the Marlboro Clay is barren of all calcareous microfossil material, although the presence of foraminiferal molds and linings proves that deposition occurred in a marine environment. Co-occurrence of the dinoflagellates Apectodinium augustum and Phthanoperidinium crenulatum at the top of the Marlboro Clay suggests that the Marlboro Clay at Mattawoman Creek is truncated. This is corroborated by the absence in the Marlboro of specimens of the calcareous nannofossil Rhomboaster-Discoaster assemblage, which is restricted to early Eocene Zone NP9b. Based on planktic/benthic foraminifera ratios, deposition of sediments at Mattawoman Creek occurred predominantly in an inner neritic environment, at water depths between 25-50 m. Occasional deepening to approximately 75m (middle neritic environment) occurred in the early Eocene, as represented by the basal Marlboro Clay. The planktic/benthic ratio, however, could also be affected by surface productivity and/or river runoff. The gradual shift up-section in core color from gray to alternating gray and red, to dark red, coupled with dissolution of calcareous microfossil assemblages, is possibly secondary and may represent lysocline shoaling in a nearshore environment. This would suggest that lysocline shoaling continued after the CIE and well into the early Eocene.

  15. Constructing integrable high-pressure full-current free-boundary stellarator magnetohydrodynamic equilibrium solutions

    International Nuclear Information System (INIS)

    Hudson, S.R.; Monticello, D.A.; Reiman, A.H.

    2003-01-01

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlueter currents, diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157) which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment (Reiman et al 2001 Phys. Plasma 8 2083). (author)

  16. Reliability and integrity management program for PBMR helium pressure boundary components - HTR2008-58036

    International Nuclear Information System (INIS)

    Fleming, K. N.; Gamble, R.; Gosselin, S.; Fletcher, J.; Broom, N.

    2008-01-01

    The purpose of this paper is to present the results of a study to establish strategies for the reliability and integrity management (RIM) of passive metallic components for the PBMR. The RIM strategies investigated include design elements, leak detection and testing approaches, and non-destructive examinations. Specific combinations of strategies are determined to be necessary and sufficient to achieve target reliability goals for passive components. This study recommends a basis for the RIM program for the PBMR Demonstration Power Plant (DPP) and provides guidance for the development by the American Society of Mechanical Engineers (ASME) of RIM requirements for Modular High Temperature Gas-Cooled Reactors (MHRs). (authors)

  17. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Directory of Open Access Journals (Sweden)

    Möhlenkamp Stefan

    2006-06-01

    Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal

  18. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.

    Science.gov (United States)

    Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole

    2018-04-05

    Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  19. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  20. MODELLING THE DEVELOPMENT OF THE INTEGRATION PROCESSES DIRECTION IN THE BAKING INDUSTRY

    OpenAIRE

    Tetyana Kublikova; Svetlana Stupak

    2013-01-01

    The paper presents the characteristics of the economic interaction between organizations and enterprises within the system of cluster type and the direction of their investment and innovation transformation through the implementation of the integration processes in the bakery industry.

  1. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    Science.gov (United States)

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  2. Solution of the Helmholtz-Poincare Wave Equation using the coupled boundary integral equations and optimal surface eigenfunctions

    International Nuclear Information System (INIS)

    Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.

    1992-01-01

    The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented

  3. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Science.gov (United States)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  4. 77 FR 21158 - VA Directive 0005 on Scientific Integrity: Availability for Review and Comment

    Science.gov (United States)

    2012-04-09

    ... Draft VA Directive 0005 on Scientific Integrity: [square] Fosters a culture of transparency, integrity, and ethical behavior in the development and application of scientific and technological findings in VA... information from inappropriate political or commercial influence; [square] Ensures that selection and...

  5. When do letter features migrate? A boundary condition for feature-integration theory.

    Science.gov (United States)

    Butler, B E; Mewhort, D J; Browse, R A

    1991-01-01

    Feature-integration theory postulates that a lapse of attention will allow letter features to change position and to recombine as illusory conjunctions (Treisman & Paterson, 1984). To study such errors, we used a set of uppercase letters known to yield illusory conjunctions in each of three tasks. The first, a bar-probe task, showed whole-character mislocations but not errors based on feature migration and recombination. The second, a two-alternative forced-choice detection task, allowed subjects to focus on the presence or absence of subletter features and showed illusory conjunctions based on feature migration and recombination. The third was also a two-alternative forced-choice detection task, but we manipulated the subjects' knowledge of the shape of the stimuli: In the case-certain condition, the stimuli were always in uppercase, but in the case-uncertain condition, the stimuli could appear in either upper- or lowercase. Subjects in the case-certain condition produced illusory conjunctions based on feature recombination, whereas subjects in the case-uncertain condition did not. The results suggest that when subjects can view the stimuli as feature groups, letter features regroup as illusory conjunctions; when subjects encode the stimuli as letters, whole items may be mislocated, but subletter features are not. Thus, illusory conjunctions reflect the subject's processing strategy, rather than the architecture of the visual system.

  6. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas

  7. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  8. Fracture mechanics analysis approach to assess structural integrity of the first confinement boundaries in ITER Generic Upper Port Plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Julio, E-mail: julio@natec-ingenieros.com [Numerical Analysis Technologies S.L. (NATEC), Gijon (Spain); Iglesias, Silvia; Vacas, Christian; Udintsev, Victor [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Pak, Sunil [Diagnostic and Control Team, National Fusion Research Institute, Daejeon (Korea, Republic of); Maquet, Philippe [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Rodriguez, Eduardo; Roces, Jorge [Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon (Spain)

    2015-10-15

    Highlights: • A parametric submodel of the spot under study is developed. • The associated macro has the capability to successively re-build the submodel implementing the crack with the geometry of the updated crack front as a function of the predicted increments of length in the apexes of the crack from the calculated stress intensity factor at the crack front. • The analysis incorporates the crack behavior model to predict the evolution of the postulated defect under the application of the different transients. • The analysis is based on the Elasto-Plastic Fracture Mechanics (EPFM) theory to account for the ductility of the materials (316LN type stainless steel). - Abstract: This paper demonstrates structural integrity of the first confinement boundary in Generic Upper Port Plug structures against cracking during service. This constitutes part of the justification to demonstrate that the non-aggression to the confinement barrier requirement may be compatible with the absent of a specific in-service inspections (ISI) program in the trapezoidal section. Since the component will be subjected to 100% volumetric inspections it can be assumed that no defects below the threshold of applied Nondestructive Evaluation techniques will be present before its commissioning. Cracks during service would be associated to defects under Code acceptance limit. This limit can be reasonably taken as 2 mm. Using elastic–plastic fracture mechanics an initial defect is postulated at the worst location in terms of probability and impact on the confinement boundary. Its evolution is simulated through finite element analysis and final dimension at the end of service is estimated. Applying the procedures in RCC-MR 2007 (App-16) the stability of the crack is assessed. As relative high safety margin was achieved, a complementary assessment postulating an initial defect of 6 mm was also conducted. New margin calculated provides a more robust design.

  9. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  10. Effects of the integrated pollution prevention and control directive on environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Kat, W. [Corus Staal BV, Evironmental Manangement Dept. (Netherlands)

    2005-06-01

    The Integrated Pollution Prevention and Control Directive (IPPC) published in the EU in 1996 is presented within an approach based on source-targeted measures. The Directive implementation is based on the granting of permits and it introduces new concepts like Best Available Technique (BAT), Best Reference Document (BREF) and Level Playing Field (LPF). The consequences for the EU steel industry are discussed. (author)

  11. Integrated optical devices for wavelength division multiplexing using PECVD and direct UV writing techniques

    DEFF Research Database (Denmark)

    Zauner, Dan; Leistiko, Otto

    1999-01-01

    channel waveguides are presented: a conventional method and direct UV writing. It is shown that an optimized three layer glass structure yields directly UV written waveguides with low insertion losses. Integrated optical structures have been designed and fabricated. The impact of process variations...

  12. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  13. On boundary superalgebras

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2010-01-01

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  14. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  15. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  16. Integration of the ATHENA mirror modules: development of indirect and x-ray direct AIT methods

    Science.gov (United States)

    Vernani, Dervis; Blum, Steffen; Seure, Thibault; Bavdaz, Marcos; Wille, Eric; Schaeffer, Uwe; Lièvre, Nicolas; Nazeeruddin, Adeeb; Barrière, Nicolas M.; Collon, Maximilien J.; Cibik, Levent; Krumrey, Michael; Müller, Peter; Burwitz, Vadim

    2017-08-01

    Within the ATHENA optics technology plan, activities are on-going for demonstrating the feasibility of the mirror module Assembly Integration and Testing (AIT). Each mirror module has to be accurately attached to the mirror structure by means of three isostatic mounts ensuring minimal distortion under environmental loads. This work reports on the status of one of the two parallel activities initiated by ESA to address this demanding task. In this study awarded to the industrial consortium, the integration relies on opto-mechanical metrology and direct X-ray alignment. For the first or "indirect" method the X-ray alignment results are accurately referenced, by means of a laser tracking system, to optical fiducial targets mounted on the mirror modules and finally linked to the mirror structure coordinate system. With the second or "direct" method the alignment is monitored in the X-ray domain, providing figures of merit directly comparable to the final performance. The integration being designed and here presented, foresees combining the indirect method to the X-ray direct method. The characterization of the single mirror modules is planned at PTB's X-ray Parallel Beam Facility (XPBF 2.0) at BESSY II, and the integration and testing campaign at Panter. It is foreseen to integrate and test a demonstrator with two real mirror modules manufactured by cosine.

  17. Investigating Species Boundaries within the Hard Coral Genus Goniopora (Cnidaria, Scleractinia) from the Red Sea Using an Integrative Morphomolecular Approach

    KAUST Repository

    Terraneo, Tullia Isotta

    2015-12-01

    In the present study the species boundaries of the scleractinian coral genus Goniopora from the Saudi Arabian Red Sea were investigated. An integrated morpho-molecular approach was used to better clarify the complex scenario derived from traditional classification efforts based on skeletal morphology. Traditional taxonomy of this genus considers skeletal morphology first and polyp morphology as a secondary discriminating character. This leads to potential complication due to plasticity in skeletal features within a species. To address this issue, molecular analyses of evolutionary relationships between nine traditional morphospecies of Goniopora from the Red Sea were performed and were used to re-evaluate the informativeness of macromorphological and micromorphological features. Between four and six putative molecular lineages were identified within Goniopora samples from the Saudi Arabian Red Sea on the basis of four molecular markers: the mitochondrial intergenic spacer between Cytochrome b and the NADH dehydrogenase subunit 2, the entire nuclear ribosomal internal transcribed spacer region, the ATP synthase subunit β gene, and a portion of the Calmodulin gene. The results were strongly corroborated by three distinct analyses of species delimitation. Subsequent analyses of micromorphological and microstructural skeletal features identified the presence of distinctive characters in each of the molecular clades. Unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. The proposed re-organization of Goniopora will resolve several taxonomic problems in this genus while reconciling molecular and morphological evidence. Reliable species-level identification of Goniopora spp. can be achieved with polyp morphology under the proposed revision.

  18. MODELLING THE DEVELOPMENT OF THE INTEGRATION PROCESSES DIRECTION IN THE BAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Tetyana Kublikova

    2013-09-01

    Full Text Available The paper presents the characteristics of the economic interaction between organizations and enterprises within the system of cluster type and the direction of their investment and innovation transformation through the implementation of the integration processes in the bakery industry.

  19. Integrated GNSS attitude determination and positioning for direct geo-referencing

    NARCIS (Netherlands)

    Nadarajah, N.; Paffenholz, J.A.; Teunissen, P.J.G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS

  20. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  1. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    Science.gov (United States)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  2. Boundary element method for modelling creep behaviour

    International Nuclear Information System (INIS)

    Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

    2002-01-01

    A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

  3. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Directory of Open Access Journals (Sweden)

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  5. Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method

    NARCIS (Netherlands)

    Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.

  6. A computational method for direct integration of motion equations of structural systems

    International Nuclear Information System (INIS)

    Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.

    1975-01-01

    The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)

  7. INTEGRATED STRATIGRAPHY FROM THE CONTRADA FORNAZZO SECTION, MONTE INICI, WESTERN SICILY, ITALY: PROPOSED G.S.S.P. FOR THE BASAL BOUNDARY OF THE TITHONIAN STAGE

    Directory of Open Access Journals (Sweden)

    GIULIO PAVIA

    2004-03-01

    Full Text Available This paper deals with a definition of the lower boundary stratotype of the Tithonian Stage in the Upper Jurassic succession of Monte Inici, Western Sicily. The upper member of the Rosso Ammonitico Fm. is 27 m thick and shows a typical nodular-calcareous lithofacies; its lower beds have been sampled for biostratigraphic and paleomagnetic purposes. Though the succession is affected by high stratigraphic condensation, the resulting hiatuses have been shown to be below biochronological resolution and thus do not hinder any biostratigraphic definition. The biostratigraphic analysis has been based on the rich ammonite assemblages in which the common genus Hybonoticeras is the index-key for characterizing the Kimmeridgian-Tithonian boundary. Four ammonite biozones have been identified; the basal Tithonian one is defined by the assemblage of Hybonoticeras gr. hybonotum and Haploceras staszycii. The recorded calcareous nannofossil bioevents allow recognition of the V. stradneri and C. mexicana Zones, whose boundary is located a little below the identified Tithonian lower boundary. The paleomagnetic record shows normal polarity in the S. darwini/V. albertinum Zone and mainly reverse polarity in the H. beckeri and H. hybonotum Zones, with three minor normal polarity intervals; the lower boundary of the Tithonian falls in the oldest of these intervals. The integrated multidisciplinary stratigraphic information gathered from the Contrada Fornazzo section defines the lower boundary of the H. hybonotum Zone at the base of Bed 110, and supplies elements of chrono-correlation sufficient to regard this section as a possible G.S.S.P. of the Tithonian Stage.

  8. Direct measurement of anisotropy of interfacial free energy from grain boundary groove morphology in transparent organic metal analong systems

    Energy Technology Data Exchange (ETDEWEB)

    Rustwick, Bryce A. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Both academia and industry alike have paid close attention to the mechanisms of microstructural selection during the solidification process. The forces that give rise to and the principles which rule the natural selection of particular morphologies are important to understanding and controlling new microstructures. Interfacial properties play a very crucial role to the selection of such microstructure formation. In the solidification of a metallic alloy, the solid-liquid interface is highly mobile and responds to very minute changes in the local conditions. At this interface, the driving force must be large enough to drive solute diffusion, maintain local curvature, and overcome the kinetic barrier to move the interface. Therefore, the anisotropy of interfacial free energy with respect to crystallographic orientation is has a significant influence on the solidification of metallic systems. Although it is generally accepted that the solid-liquid interfacial free energy and its associated anisotropy are highly important to the overall selection of morphology, the confident measurement of these particular quantities remains a challenge, and reported values are scarce. Methods for measurement of the interfacial free energy include nucleation experiments and grain boundary groove experiments. The predominant method used to determine anisotropy of interfacial energy has been equilibrium shape measurement. There have been numerous investigations involving grain boundaries at a solid-liquid interface. These studies indicated the GBG could be used to describe various interfacial energy values, which affect solidification. Early studies allowed for an estimate of interfacial energy with respect to the GBG energy, and finally absolute interfacial energy in a constant thermal gradient. These studies however, did not account for the anisotropic nature of the material at the GBG. Since interfacial energy is normally dependent on orientation of the crystallographic plane of the

  9. Heading-vector navigation based on head-direction cells and path integration.

    Science.gov (United States)

    Kubie, John L; Fenton, André A

    2009-05-01

    Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal

  10. Impact of Foreign Direct Investments on Unemployment in Emerging Market Economies: A Co-integration Analysis

    Directory of Open Access Journals (Sweden)

    Yilmaz Bayar

    2017-09-01

    Full Text Available Purpose: The goal of the paper is to investigate the long run effect of both foreign direct investments and domestic investments on the unemployment in 21 emerging economies over the period 1994-2014. Design/methodology/approach: The effect of domestic and foreign direct investments on unemployment was investigated via panel data analysis. First tests of cross-section dependence and homogeneity were conducted, and then the stationarity of the series was analyzed with Pesaran's (2007 CIPS unit root test. The long run relationship among the series was examined with Westerlund-Durbin-Hausman's (2008 co -integration test. Finally, we estimated the long run coefficients with the Augmented Mean Group (AMG estimator. Findings: The empirical findings revealed a co-integrating relationship among domestic investments, foreign direct investments, and unemployment. Furthermore, foreign direct investment inflows affected the unemployment positively in the long term, but domestic investments affected the unemployment negatively. Originality/value: This study can be considered as one of the early studies researching the long run interaction between domestic investments, foreign direct investments and unemployment for the sample of emerging market economies. Furthermore, the findings are very meaningful for policymakers in the design the economic policies for decreasing unemployment.

  11. A Fault Tolerant Direct Control Allocation Scheme with Integral Sliding Modes

    Directory of Open Access Journals (Sweden)

    Hamayun Mirza Tariq

    2015-03-01

    Full Text Available In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.

  12. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well

  13. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....

  14. Direct integration of the S-matrix applied to rigorous diffraction

    International Nuclear Information System (INIS)

    Iff, W; Lindlein, N; Tishchenko, A V

    2014-01-01

    A novel Fourier method for rigorous diffraction computation at periodic structures is presented. The procedure is based on a differential equation for the S-matrix, which allows direct integration of the S-matrix blocks. This results in a new method in Fourier space, which can be considered as a numerically stable and well-parallelizable alternative to the conventional differential method based on T-matrix integration and subsequent conversions from the T-matrices to S-matrix blocks. Integration of the novel differential equation in implicit manner is expounded. The applicability of the new method is shown on the basis of 1D periodic structures. It is clear however, that the new technique can also be applied to arbitrary 2D periodic or periodized structures. The complexity of the new method is O(N 3 ) similar to the conventional differential method with N being the number of diffraction orders. (fast track communication)

  15. Extending Current Theories of Cross-Boundary Information Sharing and Integration: A Case Study of Taiwan e-Government

    Science.gov (United States)

    Yang, Tung-Mou

    2011-01-01

    Information sharing and integration has long been considered an important approach for increasing organizational efficiency and performance. With advancements in information and communication technologies, sharing and integrating information across organizations becomes more attractive and practical to organizations. However, achieving…

  16. Integrating remote sensing and forest inventory data for assessing forest blowdown in the boundary waters canoe area wilderness

    Science.gov (United States)

    Mark D. Nelson; W. Keith Moser

    2007-01-01

    The USDA Forest Service's Forest Inventory and Analysis (FIA) program conducts strategic inventories of our Nation's forest resources. There is increasing need to assess effects of forest disturbance from catastrophic events, often within geographic extents not typically addressed by strategic forest inventories. One such event occurred within the Boundary...

  17. Self-field calculation of CICC with fast direct Biot–Savart integration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Li, Yingxu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2014-04-15

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N{sup 2}) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable.

  18. Self-field calculation of CICC with fast direct Biot–Savart integration

    International Nuclear Information System (INIS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen; Zhou, Youhe

    2014-01-01

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N 2 ) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable

  19. Directions of Development of International Production Specialization Theory in Terms of Integration

    Directory of Open Access Journals (Sweden)

    Lidiya Aleksandrovna Pankova

    2016-06-01

    Full Text Available The article is devoted to the definition of directions of development of the theory of international production specialization in terms of integration based on new trends in various areas of international business. The author proposes a new concept of international industrial specialization in terms of integration. As a result of research the author came to the conclusion that in the current economic conditions the need for a free market constraints associated with the deepening global market failures is becoming more and more obvious. Therefore, in the process of international specialization of production in the conditions of integration of the country should be guided not by comparative advantage in the production of certain goods or services, but also by other criteria. These criteria are: financial criterion determining the financial situation in the country, the trade criterion, reflecting the possibility of benefiting from international trade, technological criterion, considering the technological security of the country in the field of specialization and the cyclical criterion, reflecting the situation in the world economy and the level of integration of the country. On the basis of these criteria, the author identifies three categories of countries according to their ability to benefit from an international industrial specialization in the integration process: effective export, export-neutral and export-inefficient countries.

  20. Solution of the advection-diffusion equation for a nonhomogeneous and nonstationary Planetary Boundary Layer by GILTT (Generalized Integral Laplace Transform Technique)

    International Nuclear Information System (INIS)

    Mello, Kelen Berra de

    2005-02-01

    In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)

  1. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  2. Integrating high dimensional bi-directional parsing models for gene mention tagging.

    Science.gov (United States)

    Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang

    2008-07-01

    Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene

  3. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  4. Nanoethics and the breaching of boundaries: a heuristic for going from encouragement to a fuller integration of ethical, legal and social issues and science : commentary on: "Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center".

    Science.gov (United States)

    Tuma, Julio R

    2011-12-01

    The intersection of ELSI and science forms a complicated nexus yet their integration is an important goal both for society and for the successful advancement of science. In what follows, I present a heuristic that makes boundary identification and crossing an important tool in the discovery of potential areas of ethical, legal, and social concern in science. A dynamic and iterative application of the heuristic can lead towards a fuller integration and appreciation of the concerns of ELSI and of science from both sides of the divide.

  5. China’s Foreign Direct Investments:Challenges of Due Diligence and Organizational Integration

    Institute of Scientific and Technical Information of China (English)

    ABDOL; S.SOOFI

    2015-01-01

    This paper critically reviews Chinese companies’ foreign direct investment practices of recent years. Using case studies involving overseas Greenfield as well as merger and acquisition(M&A;) of Chinese enterprises, we aim to draw lessons from these experiences. However, because of increasing importance of outbound acquisitions by Chinese companies, this paper focuses on Chinese M&A; activities. After presenting the theoretical discussions of post-acquisition organizational integration, this paper identifies factors that have contributed to less than expected performances of Chinese foreign investments. Three main factors are identified as the plausible causes of the less than satisfactory outcomes: inadequate due diligence, not considering political and country risks, and cultural differences. In all cases, inexperience of Chinese enterprises in foreign direct investment, either in Greenfield form or M&A;, has attributed to the problems. Therefore, summing the experiences of the Chinese enterprises that have foreign direct investment is essential for those Chinese investors that intend to invest overseas. Conduct of meaningful, in-depth due diligence before serious negotiations for investment or acquisition, inclusion of risk premium for political risk in cash flow analysis, and early post-merger integration planning are essential for avoidances of bitter outcomes many Chinese investors experienced overseas.

  6. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  7. An Integrative Biosensor Based on Contra-Directional Coupling Two-dimensional Photonic Crystal Waveguides

    International Nuclear Information System (INIS)

    Xiao-Yu, Mao; Di-Bi, Yao; Ling-Yun, Zhao; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    We propose an integrative biochemical sensor utilizing the dip in the transmission spectrum of a normal single-line defect photonic crystal (PC) waveguide, which has a contra-directional coupling with another PC waveguide. When the air holes in the PC slab are filled with a liquid analyte with different refractive indices, the dip has a wavelength shift By detecting the output power variation at a certain fixed wavelength, a sensitivity of 1.2 × 10 −4 is feasible. This structure is easy for integration due to its plane waveguide structure and omissible pump source. In addition, high signal to noise ratio can be expected because signal transmits via a normal single-line defect PC waveguide instead of the PC hole area or analyte

  8. Time integrated spectroscopy of turbid media based on the microscopic beer-lambert law: application to small-size phantoms having different boundary conditions.

    Science.gov (United States)

    Zhang, H; Urakami, T; Tsuchiya, Y; Lu, Z; Hiruma, T

    1999-01-01

    Continued work on time-integrated spectroscopy (TIS) is presented to quantify absorber concentrations in turbid media. We investigated the applicability of the TIS method to small-size media that have different boundary conditions by measuring two 20×20×50 mm3 cuboid liquid tissue-like phantoms at various absorption levels (absorption coefficients of the phantom from 2.5×10-3 to 4.4×10-2 mm-1 at 782 nm and from 3.1×10-3 to 2.7×10-2 mm-1 at 831 nm). The scattering and absorbing solution was filled into ordinary and black-anodized aluminum containers to provide different boundary conditions. By means of a single equation, the absorber concentrations have been recovered within errors of a few percent in both cases. This demonstrates that the TIS method can quantify absorbers in small-size media having different boundary conditions. © 1999 Society of Photo-Optical Instrumentation Engineers.

  9. The planned EC Directive on 'Integrated Pollution Prevention and Control' (IPC)

    International Nuclear Information System (INIS)

    Sellner, D.; Schnutenhaus, J.

    1993-01-01

    This EC Directive is intended to incorporate integrated pollution control as a mandatory obligation in the legal provisions governing industrial installations licensing within the EC. The article in hand presents an assessment of the Directive and discusses some possible impacts on the German national law in the field of pollution control, which hitherto has been defined on the basis of a preferably medium-oriented approach. A serious point of deviation from the German approach is seen in the fact that the draft's provisions relating to the licensing of industrial installations defines certain pre-conditions allowing a plant in a low-polluted area to be licensed, although the pollution control systems of the plant do not them come up to the state-of-the-art in pollution abatement technology. This is seen as a fact jeopardizing the principle of precantionary measures which has been firmly established in German pollution control law. (orig./HP) [de

  10. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  11. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    Science.gov (United States)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  12. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  13. Path integration of head direction: updating a packet of neural activity at the correct speed using axonal conduction delays.

    Science.gov (United States)

    Walters, Daniel; Stringer, Simon; Rolls, Edmund

    2013-01-01

    The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.

  14. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  15. New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.

    2017-12-01

    Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and

  16. Direct Problem-Based Learning (DPBL): A Framework for Integrating Direct Instruction and Problem-Based Learning Approach

    Science.gov (United States)

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…

  17. A comparison of response spectrum and direct integration analysis methods as applied to a nuclear component support structure

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.

    1992-01-01

    Seismic qualification of Class I nuclear components is accomplished using a variety of analytical methods. This paper compares the results of time history dynamic analyses of a heat exchanger support structure using response spectrum and time history direct integration analysis methods. Dynamic analysis is performed on the detailed component models using the two methods. A nonlinear elastic model is used for both the response spectrum and direct integration methods. A nonlinear model which includes friction and nonlinear springs, is analyzed using time history input by direct integration. The loads from the three cases are compared

  18. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  19. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  20. Pipeline integrity management in an urban environment supported by an External Corrosion Direct Assessment (ECDA) application

    Energy Technology Data Exchange (ETDEWEB)

    Dus, Pedro Luiz; Valente, Antonio Carlos Rodrigues [Companhia de Gas de Sao Paulo (COMGAS), Sao Paulo, SP (Brazil); Valdes, Alberto [GE Oil and Gas-PII Pipeline Solutions, Houston, TX (United States)

    2009-07-01

    COMGAS is the largest natural gas distributing company in Brazil, having more than 700,000 costumers. Gas delivery to this customer base is achieved through a network of high-pressure steel pipelines (17 and 35 bar) with around 1,100 km (690 miles) in length, the majority operating inside urban areas. The Integrity Management of this network is a particularly difficult task since neither pigging nor hydrostatic testing can be used to inspect the existing pipelines. Direct Assessment (DA) is the only assessment technique available at the moment. As an initial stage COMGAS has implemented an innovative project called SIA (Sistema de Integridade de Ativos). SIA combines functionality targeted for guiding and implementing an External Corrosion Assessment (ECDA) procedure, with full data alignment and integration, corporate policies on safety and dedicated reporting capabilities. Seamless interaction between SIA and the existing Operations GIS system was a key specification requirement for the construction of the system. This paper describes the lessons learned during the implementation of the ECDA module of the SIA, the first application experiences of the ECDA process with the support of the module and the initial benefits obtained from the use of the new Integrity Management System. (author)

  1. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Science.gov (United States)

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  2. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    Science.gov (United States)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  3. Direct Yaw Control of Vehicle using State Dependent Riccati Equation with Integral Terms

    Directory of Open Access Journals (Sweden)

    SANDHU, F.

    2016-05-01

    Full Text Available Direct yaw control of four-wheel vehicles using optimal controllers such as the linear quadratic regulator (LQR and the sliding mode controller (SMC either considers only certain parameters constant in the nonlinear equations of vehicle model or totally neglect their effects to obtain simplified models, resulting in loss of states for the system. In this paper, a modified state-dependent Ricatti equation method obtained by the simplification of the vehicle model is proposed. This method overcomes the problem of the lost states by including state integrals. The results of the proposed system are compared with the sliding mode slip controller and state-dependent Ricatti equation method using high fidelity vehicle model in the vehicle simulation software package, Carsim. Results show 38% reduction in the lateral velocity, 34% reduction in roll and 16% reduction in excessive yaw by only increasing the fuel consumption by 6.07%.

  4. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  5. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  6. Aggression in Tephritidae Flies: Where, When, Why? Future Directions for Research in Integrated Pest Management.

    Science.gov (United States)

    Benelli, Giovanni

    2014-12-30

    True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested.

  7. A robust direct-integration method for rotorcraft maneuver and periodic response

    Science.gov (United States)

    Panda, Brahmananda

    1992-01-01

    The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.

  8. GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening

    Science.gov (United States)

    Maureira-Fredes, Cristián; Amaro-Seoane, Pau

    2018-01-01

    A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.

  9. Counting and integrating microelectronics development for direct conversion X-ray imaging

    International Nuclear Information System (INIS)

    Kraft, E.

    2008-02-01

    A novel signal processing concept for X-ray imaging with directly converting pixelated semiconductor sensors is presented. The novelty of this approach compared to existing concepts is the combination of charge integration and photon counting in every single pixel. Simultaneous operation of both signal processing chains extends the dynamic range beyond the limits of the individual schemes and allows determination of the mean photon energy. Medical applications such as X-ray computed tomography can benefit from this additional spectral information through improved contrast and the ability to determine the hardening of the tube spectrum due to attenuation by the scanned object. A prototype chip in 0.35-micrometer technology has been successfully tested. The pixel electronics are designed using a low-swing differential current mode logic. Key element is a configurable feedback circuit for the charge sensitive amplifier which provides continuous reset, leakage current compensation and replicates the input signal for the integrator. The thesis focusses on the electronic characterization of a second generation prototype chip and gives a detailed discussion of the circuit design. (orig.)

  10. Counting and integrating microelectronics development for direct conversion X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.

    2008-02-15

    A novel signal processing concept for X-ray imaging with directly converting pixelated semiconductor sensors is presented. The novelty of this approach compared to existing concepts is the combination of charge integration and photon counting in every single pixel. Simultaneous operation of both signal processing chains extends the dynamic range beyond the limits of the individual schemes and allows determination of the mean photon energy. Medical applications such as X-ray computed tomography can benefit from this additional spectral information through improved contrast and the ability to determine the hardening of the tube spectrum due to attenuation by the scanned object. A prototype chip in 0.35-micrometer technology has been successfully tested. The pixel electronics are designed using a low-swing differential current mode logic. Key element is a configurable feedback circuit for the charge sensitive amplifier which provides continuous reset, leakage current compensation and replicates the input signal for the integrator. The thesis focusses on the electronic characterization of a second generation prototype chip and gives a detailed discussion of the circuit design. (orig.)

  11. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    Science.gov (United States)

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  12. The Integral Theory System Questionnaire: an anatomically directed questionnaire to determine pelvic floor dysfunctions in women.

    Science.gov (United States)

    Wagenlehner, Florian Martin Erich; Fröhlich, Oliver; Bschleipfer, Thomas; Weidner, Wolfgang; Perletti, Gianpaolo

    2014-06-01

    Anatomical damage to pelvic floor structures may cause multiple symptoms. The Integral Theory System Questionnaire (ITSQ) is a holistic questionnaire that uses symptoms to help locate damage in specific connective tissue structures as a guide to reconstructive surgery. It is based on the integral theory, which states that pelvic floor symptoms and prolapse are both caused by lax suspensory ligaments. The aim of the present study was to psychometrically validate the ITSQ. Established psychometric properties including validity, reliability, and responsiveness were considered for evaluation. Criterion validity was assessed in a cohort of 110 women with pelvic floor dysfunctions by analyzing the correlation of questionnaire responses with objective clinical data. Test-retest was performed with questionnaires from 47 patients. Cronbach's alpha and "split-half" reliability coefficients were calculated for inner consistency analysis. Psychometric properties of ITSQ were comparable to the ones of previously validated Pelvic Floor Questionnaires. Face validity and content validity were approved by an expert group of the International Collaboration of Pelvic Floor surgeons. Convergent validity assessed using Bayesian method was at least as accurate as the expert assessment of anatomical defects. Objective data measurement in patients demonstrated significant correlations with ITSQ domains fulfilling criterion validity. Internal consistency values ranked from 0.85 to 0.89 in different scenarios. The ITSQ proofed accurate and is able to serve as a holistic Pelvic Floor Questionnaire directing symptoms to site-specific pelvic floor reconstructive surgery.

  13. The integration of Chinese and European renewable energy markets: The role of Chinese foreign direct investments

    International Nuclear Information System (INIS)

    Lv, Ping; Spigarelli, Francesca

    2015-01-01

    In the renewable energy (RE) sectors, foreign direct investments are becoming an important mean of regional integration between China and Europe, as a result of the combined effect of Europe–China dialog on energy issues; Chinese energy policy; and Chinese Go Global policy. Using a firm level data set from the Chinese Ministry of Commerce, we perform an analysis on location choice by Chinese RE firms from 2004 to 2013, within Europe. We depict a map of “where to where” (home province vs. host country) and “who to where” (firm level characteristics vs. host country), to find out how characteristics of home and host regions affecting the integration of Chinese and European RE markets. Main results are the following. Investment pairs in RE sectors reflect a duality: firms tend to seek countries with similar institutional environment, compared with their origin regions. Countries with weak and immature institutions are attractive for immature and inexperienced Chinese firms. Main features of Chinese investors are the following: private, non-listed firms, entering through greenfield, focusing on sales. Market-seeking investors tend to enter countries with both well-developed institutional environment and industry development base. R&D-oriented investments are more likely to flow to countries with well-developed institutional environment. -- Highlights: •A map of Where to Where of Chinese investments in Europe is depicted. •Characteristics of home and host regions affect Chinese integration in Europe. •Investment pairs in renewable energy sectors reflect a duality. •Chinese firms localize in EU countries with similar institutional environment. •Through a Who to Where analysis, key features of Chinese investors are outlined

  14. Defining species boundaries in the Merodon avidus complex (Diptera, Syrphidae using integrative taxonomy, with the description of a new species

    Directory of Open Access Journals (Sweden)

    Jelena Ačanski

    2016-10-01

    Full Text Available Several recent studies have detected and described complexes of cryptic and sibling species in the genus Merodon (Diptera, Syrphidae. One representative of these complexes is the Merodon avidus complex that contains four sibling species, which have proven difficult to distinguish using traditional morphological characters. In the present study, we use two geometric morphometric approaches, as well as molecular characters of the 5’-end of the mtDNA COI gene, to delimit sibling taxa. Analyses based on these data were used to strengthen species boundaries within the complex, and to validate the status of a previously-recognized cryptic taxon from Lesvos Island (Greece, here described as Merodon megavidus Vujić & Radenković sp. nov. Geometric morphometric results of both wing and surstylus shape confirm the present classification for three sibling species-M. avidus (Rossi, 1790, M. moenium Wiedemann in Meigen, 1822 and M. ibericus Vujić, 2015-and, importantly, clearly discriminate the newly-described taxon Merodon megavidus sp. nov. In addition to our geometric morphometric results, supporting characters were obtained from molecular analyses of mtDNA COI sequences, which clearly differentiated M. megavidus sp. nov. from the other members of the M. avidus complex. Molecular analyses revealed that the earliest divergence of M. ibericus occurred around 800 ky BP, while the most recent separation happened between M. avidus and M. moenium around 87 ky BP.

  15. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei; Ma, Yanwei; Wang, Qingxiao; Li, Kun; Zhang, Xixiang; Qi, Yanpeng; Gao, Zhaoshun; Zhang, Xianping; Wang, Dongliang; Yao, Chao; Wang, Chunlei

    2011-01-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while

  16. Study on resources and environmental data integration towards data warehouse construction covering trans-boundary area of China, Russia and Mongolia

    Science.gov (United States)

    Wang, J.; Song, J.; Gao, M.; Zhu, L.

    2014-02-01

    The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online.

  17. Study on resources and environmental data integration towards data warehouse construction covering trans-boundary area of China, Russia and Mongolia

    International Nuclear Information System (INIS)

    Wang, J; Song, J; Gao, M; Zhu, L

    2014-01-01

    The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online

  18. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  19. Directions of development of road in terms of interregional integration in Russia

    Science.gov (United States)

    Seleznev, Alexander; Mottaeva, Angela; Andreeva, Larisa; Izmaylova, Svetlana

    2017-10-01

    The article is aimed at disclosure of the theoretical foundations of the development of transport infrastructure in the region. Sustainable transport and transport links allow to determine the direction of development of modern economy in the regions. Ensuring the availability of strategically important resources for many economic entities is one of the priorities of economic development of regions. the article presents the author’s approach to determination of perspective directions of development of relations of economic systems of regions and regional infrastructure. Important role in the processes of spatial integration of the regions transport infrastructure plays, which, on the one hand, determines the level of development of intra-regional production of goods and services, the availability of social welfare for the entire population, on the other hand, helps to establish strong intra-regional ties, thereby bringing together the socio-economic situation of neighbouring regions. Technological solutions for the transportation may be different in Russia, the developed network of Railways, efficiently functioning system of inter-regional pipelines, experiencing a rebirth water transport, however, a special place is occupied by road transportation.

  20. The evolution of phenotypic integration: How directional selection reshapes covariation in mice.

    Science.gov (United States)

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-10-01

    Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  1. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  2. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  3. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  4. Theoretical research relating to excitation spectrum of furan. Application of integral direct coupled cluster linear response (direct CCLR) method; Furan no reiki supekutoru ni kansuru ronriteki kenkyu. Integral-direct Coupled Cluster Linear Response (direct CCLR) ho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, Yasuhiro. [Nagasaki Industrial Technology Center, Nagasaki (Japan)

    1999-07-01

    heoretical researches relating to excitation spectrum of furan have been carried out for many years, and they reveal the problems that should be solved in order to predict highly reliable excitation energy. In general, it is difficult to uniformly obtain highly reliable calculation results for all excitation states since different excitation states show different electronic correlative effects. Means for obtaining the electron states in ground state and excited state and calculating the energy difference thereof is the mainstream of the theoretical calculation of the excitation energy. CASSCF/CASPT 2 developed by Roos et al. is a typical method excellent in quantitative description. Recently, the comparison between direct CCLR and CASSCF/CASPT 2 as examples for calculating the excitation spectrum of furan was carried out by using the same ground function. For Rydberg excitation, CC3, CAS, CASPT 2 show good agreement with each other. (NEDO)

  5. Hot Press as a Sustainable Direct Recycling Technique of Aluminium: Mechanical Properties and Surface Integrity.

    Science.gov (United States)

    Yusuf, Nur Kamilah; Lajis, Mohd Amri; Ahmad, Azlan

    2017-08-03

    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (T s = 430, 480, and 530 °C) and holding times (t s = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at T s = 530 °C and t s = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.

  6. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  7. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  8. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium

    Science.gov (United States)

    Yurkin, Maxim A.; Mishchenko, Michael I.

    2018-04-01

    We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.

  9. Direct integral linear least square regression method for kinetic evaluation of hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Shuke, Noriyuki

    1991-01-01

    In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)

  10. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    Science.gov (United States)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  11. Aggression in Tephritidae Flies: Where, When, Why? Future Directions for Research in Integrated Pest Management

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2014-12-01

    Full Text Available True fruit flies (Diptera: Tephritidae include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested.

  12. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  13. Integrating Financial Aid and Financial Policies: Case Studies from Five States. Changing Direction: Integrating Higher Education Financial Aid and Financing Policies.

    Science.gov (United States)

    Western Interstate Commission for Higher Education, Boulder, CO.

    This report is a collection of five state case studies comprising a major component of the first phase of the project, "Changing Direction: Integrating Higher Education Financial Aid and Financing Policies." The project explored state-level strategies to better align financing and financial aid policies and support more informed decision…

  14. Three-dimensional geometric morphometric analysis of the nasopharyngeal boundaries and its functional integration with the face and external basicranium among extant hominoids.

    Science.gov (United States)

    Pagano, Anthony S; Laitman, Jeffrey T

    2015-01-01

    The nasopharynx is a centrally located but understudied upper respiratory tract component. This study tested hypotheses related to the functional integration of the nasopharyngeal boundaries with the facial skeleton and external basicranium over the course of development in humans and nonhuman hominoids. It was hypothesized that facial morphology (width, length, and kyphosis) is related to nasopharyngeal width and choanal morphology, whereas relative external basicranial proportions are related to nasopharyngeal depth. Human infants were used as models of extreme orthognathy and external basicranial retroflexion, whereas nonhuman hominoids were used to model greater relative prognathism and external basicranial retroflexion. Both of these groups were contrasted against adult humans, who exhibit both extreme orthognathy and external basicranial flexion. Three-dimensional landmark coordinate data were collected from age-graded series of Homo, Pan, Gorilla, Pongo, and Hylobates. Generalized Procrustes Analysis was performed, and multivariate shape differences were evaluated via principal components analysis. Additionally, linear measures were extracted from the Procrustes-corrected sets of landmark data. Results indicate that human adults are indeed distinct from all groups in possessing a relatively shallow nasopharyngeal roof and shorter, more flexed external basicranial axis. Human adults and infants both exhibit greater relative choanal and nasopharyngeal width. Nonhuman hominoid faces tended to become airorhynch into adulthood, whereas humans exhibited the opposite trend. When pooling all the hominoids, facial width and palate length were strongly correlated with choanal and nasopharyngeal width, whereas facial kyphosis was strongly correlated with choanal orientation. The hypotheses were supported as the results indicated a morphologic relationship among nasopharyngeal boundaries, the facial skeleton, and the external basicranium. © 2014 Wiley Periodicals, Inc.

  15. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  16. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  17. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2010-09-01

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two ''off the shelf'' units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow

  18. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  19. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and

  20. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    Science.gov (United States)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  1. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  2. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  3. Information dynamics of boundary perception

    DEFF Research Database (Denmark)

    Kragness, Haley; Hansen, Niels Christian; Vuust, Peter

    It has long been noted that expert musicians lengthen notes at phrase boundaries in expressive performance. Recently, we have extended research on this phenomenon by showing that undergraduates with no formal musical training and children as young as 3 years lengthen phrase boundaries during self...... uncertain than low-entropy contexts. Because phrase boundaries tend to afford high-entropy continuations, thus generating uncertain expectations in the listener, one possibility is that boundary perception is directly related to entropy. In other words, it may be hypothesized that entropy underlies...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....

  4. Do organizational practices matter in role stress processes? A study of direct and moderating effects for marketing-oriented boundary spanners

    NARCIS (Netherlands)

    J. Singh (Jagdip); W.J.M.I. Verbeke (Willem); G.K. Rhoads (Gary)

    1996-01-01

    textabstractPrevious research and meta-analyses suggest that the influence of organizational variables on boundary role stress processes is weak and marginal. Using the emerging work in organizational practices and configurations, the authors reexamine this relationship by addressing three critical

  5. Devonian/Carboniferous boundary glacioeustatic fluctuations in a platform-to-basin direction: A geochemical approach of sequence stratigraphy in pelagic settings

    Czech Academy of Sciences Publication Activity Database

    Bábek, O.; Kumpan, T.; Kalvoda, J.; Matys Grygar, Tomáš

    2016-01-01

    Roč. 337, MAY (2016), s. 81-99 ISSN 0037-0738 Institutional support: RVO:61388980 Keywords : Element geochemistry * Hangenberg event * Glacioeustasy * Devonian/Carboniferous boundary * Sedimentation rate Subject RIV: DD - Geochemistry Impact factor: 2.373, year: 2016

  6. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.

    2016-06-02

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.

  7. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  8. InP integrated photonics : state of the art and future directions

    NARCIS (Netherlands)

    Williams, Kevin

    2017-01-01

    InP integrated circuits enable transceiver technologies with more than 200Gb/s per wavelength and 2Tb/s per fiber. Advances in monolithic integration are poised to reduce energy. remove assembly complexity, and sustain future year-on-year performance increases.

  9. INTEGRATION OF MEANS OF MEDIA EDUCATION IN TEACHING THE UKRAINIAN LANGUAGE (FOR PROFESSIONAL DIRECTION TO FUTURE TEACHERS

    Directory of Open Access Journals (Sweden)

    Larysa M. Derkach

    2017-06-01

    Full Text Available The article considers possibilities of integration of some Media Literacy topics with the Ukrainian Language curriculum topics (the Ukrainian Language is viewed here as an academic discipline for professional direction. Different possibilities of the use of certain Media Literacy topics during the Ukrainian Language classes are analyzed. Efficiency of such integration is investigated. It is proved that due to integration students learn skills that help them to understand and evaluate complex messages they receive from mass media, identify bias, misinformation and lies, and recognize what the media maker wants them to believe or do. Research results show that integration of Media Literacy with the Ukrainian Language as an academic discipline facilitates better understanding of media messages and prevents manipulation of students’ consciousness.

  10. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  11. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  12. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  13. Basurto-IGPP. A manual-directed approach of integrative group psychotherapy in psychosis.

    Science.gov (United States)

    Ruiz-Parra, Eduardo; González-Torres, M A; Eguiluz, I; de la Sierra, E; Trojaola, B; Catalán, A

    2010-01-01

    A manual on Integrative Group Psychotherapy for outpatients with schizophrenia and other psychoses (Basurto-PGIP) is presented. The model takes into account group specific therapeutic factors. It integrates influences from other integrative psychotherapeutic models, interpersonal group therapy, group analysis and recent developments in cognitive behavioural therapy for psychotic symptoms. The manual is structured in levels of different complexity that can be applied in a progressive manner. The intervention tries to adapt to patients features, therapists ability and training, and centres resources. It can be applied in two possible settings: a short term closed group and a long term open group. Advantages and disadvantages of the model are described.

  14. Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis

    Directory of Open Access Journals (Sweden)

    Turnbull Arran K

    2012-08-01

    Full Text Available Abstract Background Affymetrix GeneChips and Illumina BeadArrays are the most widely used commercial single channel gene expression microarrays. Public data repositories are an extremely valuable resource, providing array-derived gene expression measurements from many thousands of experiments. Unfortunately many of these studies are underpowered and it is desirable to improve power by combining data from more than one study; we sought to determine whether platform-specific bias precludes direct integration of probe intensity signals for combined reanalysis. Results Using Affymetrix and Illumina data from the microarray quality control project, from our own clinical samples, and from additional publicly available datasets we evaluated several approaches to directly integrate intensity level expression data from the two platforms. After mapping probe sequences to Ensembl genes we demonstrate that, ComBat and cross platform normalisation (XPN, significantly outperform mean-centering and distance-weighted discrimination (DWD in terms of minimising inter-platform variance. In particular we observed that DWD, a popular method used in a number of previous studies, removed systematic bias at the expense of genuine biological variability, potentially reducing legitimate biological differences from integrated datasets. Conclusion Normalised and batch-corrected intensity-level data from Affymetrix and Illumina microarrays can be directly combined to generate biologically meaningful results with improved statistical power for robust, integrated reanalysis.

  15. Calcareous nannofossil and ammonite integrated biostratigraphy across the Jurassic - Cretaceous boundary strata of the Kopanitsa composite section (West Srednogorie Unit, southwest Bulgaria)

    Science.gov (United States)

    Stoykova, Kristalina; Idakieva, Vyara; Ivanov, Marin; Reháková, Daniela

    2018-04-01

    Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic-Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.

  16. Calcareous nannofossil and ammonite integrated biostratigraphy across the Jurassic – Cretaceous boundary strata of the Kopanitsa composite section (West Srednogorie Unit, southwest Bulgaria

    Directory of Open Access Journals (Sweden)

    Stoykova Kristalina

    2018-04-01

    Full Text Available Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic–Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.

  17. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  18. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  19. Curriculum Currency: Integrating Direct and Interactive Marketing Content in Introductory Marketing Courses

    Science.gov (United States)

    Spiller, Lisa D.; Scovotti, Carol

    2008-01-01

    This study investigates the extent to which educators address direct and interactive marketing concepts in undergraduate introductory marketing courses. As practitioners seek more accountability from their marketing efforts, so too must academia respond with more relevant content. Results from textbook content analysis suggest that direct and…

  20. Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Daniela Serien

    2018-01-01

    Full Text Available Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writing allows the construction of microcomponents made of photosensitive polymer inside closed microfluidic structures. Here, we expand this technology to integrate proteinaceous two-dimensional (2D and three-dimensional (3D microstructures with the aid of photo-induced cross-linking into glass microchannels. The concept is demonstrated with bovine serum albumin and enhanced green fluorescent protein, each mixed with photoinitiator (Sodium 4-[2-(4-Morpholino benzoyl-2-dimethylamino] butylbenzenesulfonate. Unlike the polymer integration, fabrication over the entire channel cross-section is challenging. Two proteins are integrated into the same channel to demonstrate multi-protein patterning. Using 50% w/w glycerol solvent instead of 100% water achieves almost the same fabrication resolution for in-channel fabrication as on-surface fabrication due to the improved refractive index matching, enabling the fabrication of 3D microstructures. A glycerol-water solvent also reduces the risk of drying samples. We believe this technology can integrate diverse proteins to contribute to the versatility of microfluidics.

  1. Integrated (one-stop shop) youth health care: best available evidence and future directions.

    Science.gov (United States)

    Hetrick, Sarah E; Bailey, Alan P; Smith, Kirsten E; Malla, Ashok; Mathias, Steve; Singh, Swaran P; O'Reilly, Aileen; Verma, Swapna K; Benoit, Laelia; Fleming, Theresa M; Moro, Marie Rose; Rickwood, Debra J; Duffy, Joseph; Eriksen, Trissel; Illback, Robert; Fisher, Caroline A; McGorry, Patrick D

    2017-11-20

    Although mental health problems represent the largest burden of disease in young people, access to mental health care has been poor for this group. Integrated youth health care services have been proposed as an innovative solution. Integrated care joins up physical health, mental health and social care services, ideally in one location, so that a young person receives holistic care in a coordinated way. It can be implemented in a range of ways. A review of the available literature identified a range of studies reporting the results of evaluation research into integrated care services. The best available data indicate that many young people who may not otherwise have sought help are accessing these mental health services, and there are promising outcomes for most in terms of symptomatic and functional recovery. Where evaluated, young people report having benefited from and being highly satisfied with these services. Some young people, such as those with more severe presenting symptoms and those who received fewer treatment sessions, have failed to benefit, indicating a need for further integration with more specialist care. Efforts are underway to articulate the standards and core features to which integrated care services should adhere, as well as to further evaluate outcomes. This will guide the ongoing development of best practice models of service delivery.

  2. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Science.gov (United States)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  3. Integrated study on the topographic and shallow subsurface expression of the Grote Brogel Fault at the boundary of the Roer Valley Graben, Belgium

    Science.gov (United States)

    Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas; Vanneste, Kris

    2018-01-01

    The Grote Brogel Fault (GBF) is a major WNW-ESE striking normal fault in Belgium that diverges westward from the NW-SE striking western border fault system of the Roer Valley Graben. The GBF delimits the topographically higher Campine Block from the subsiding Roer Valley Graben, and is expressed in the Digital Terrain Model (DTM) by relief gradients or scarps. By integrating DTM, Electrical Resistivity Tomography (ERT), Cone Penetration Test (CPT) and borehole data, we studied the Quaternary activity of the GBF and its effects on local hydrogeology. In the shallow subsurface (< 50 m) underneath these scarps, fault splays of the GBF were interpreted on newly acquired ERT profiles at two investigation sites: one on the eastern section and the other on the western section, near the limit of the visible surface trace of the fault. Borehole and CPT data enabled stratigraphic interpretations of the ERT profiles and thereby allowed measuring vertical fault offsets at the base of Pleistocene fluvial deposits of up to 12 m. Groundwater measurements in the boreholes and CPTs indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hangingwall, resulting in hydraulic head differences of up to 12.7 m. For the two investigation sites, the hydraulic head changes correlate with the relief gradient, which in turn correlates with the Quaternary vertical offset of the GBF. ERT profiles at the eastern site also revealed a local soft-linked stepover in the shallow subsurface, which affects groundwater levels in the different fault blocks, and illustrates the complex small-scale geometry of the GBF.

  4. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio; Scorpio, Michelangelo

    2014-01-01

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from both environmental and economic point of views. • The proposed system was compared with a conventional supply system. • The proposed system reduces the environmental impact under heat-led operation. • The proposed system reduces the operating costs whatever the control logic is. - Abstract: This work examines the performance of a residential building-integrated micro-cogeneration system during the winter by means of a whole building simulation software. The cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the transmittance values of both walls and windows suggested by the Italian Law; a stratified combined tank for both heating purposes and domestic hot water production was also used for storing heat. Simulations were performed considering the transient nature of the building and occupant driven loads as well as the part-load characteristics of the cogeneration unit. This system was described in detail and analyzed from an energy point of view in the companion paper. In this paper the simulation results were evaluated in terms of both carbon dioxide equivalent emissions and operating costs; detailed analyses were performed in order to estimate the influence of the most significant boundary conditions on both environmental and economic performance of the proposed system: in particular, three volumes of the hot water storage, four climatic zones corresponding to four Italian cities, two electric demand profiles, as well as two control strategies micro-cogeneration unit were considered. The assessment of environmental impact was performed by using the standard emission factors approach, neglecting the effects of local pollutants. The operating costs due to both natural gas and electric energy consumption were evaluated in detail, whereas both the capital and maintenance costs were

  5. Economic Integration and Foreign Direct Investment: Review of Main Theoretical Concepts

    Directory of Open Access Journals (Sweden)

    Adam MARSZK

    2014-10-01

    Full Text Available The objective of the article is to present key theoretical relationships between economic integration and FDI flows. The research method used is a comprehensive literature review. Most influential publications, including books, articles, working papers, etc. contributing to the subject were identified. The review consists of two essential parts: theory of FDI, and theoretical relationships between economic integration and FDI flows. Finally, the outlined publications were discussed and critiqued, including the empirical context, i.e. empirical verification of the presented links.

  6. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  7. Integration of main directions of development of preschool children in innovative successive educational system “World of Music”

    Directory of Open Access Journals (Sweden)

    Baklanova Tatiana I.

    2016-01-01

    Full Text Available This article describes an innovative education system of pre-school music education “Music world” byT. I. Baklanova, and G. P. Novikova included in a new system of Russian preschool education “Paths”.The education system “Music world” consists of an author’s concept, an integrated programme of musical education, training, development and improvement of health of children of preschool age (3-7 years, two grants for children, methodical recommendations for tutors and musical directors of preschool educational organizations. This education system is developed on a successive basis with a set of textbooks “Music” of T.I. Baklanova (“Planet of Knowledge” series.The integrated approach to five main directions of development and education of children included in the new Federal state educational standards of preschool education is applied in the education system “Music world” for the first time. It is social and communicative, informative, speech, art and esthetic and physical development. These directions are realized in “Music world” in several interconnected interdisciplinary contexts: axiological, cultural and historical, ethnocultural, etc. Polycontextual approach to development of maintenance of preschool music education in combination with integration in him all directions of development and education of preschool children causes scientific novelty, practical importance and efficiency of the education system “Music world”.

  8. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  9. Direct correlation between potentiometric and impedance biosensing of antibody-antigen interactions using an integrated system

    Science.gov (United States)

    Tsai, Meng-Yen; Creedon, Niamh; Brightbill, Eleanor; Pavlidis, Spyridon; Brown, Billyde; Gray, Darren W.; Shields, Niall; Sayers, Ríona; Mooney, Mark H.; O'Riordan, Alan; Vogel, Eric M.

    2017-08-01

    A fully integrated system that combines extended gate field-effect transistor (EGFET)-based potentiometric biosensors and electrochemical impedance spectroscopy (EIS)-based biosensors has been demonstrated. This integrated configuration enables the sequential measurement of the same immunological binding event on the same sensing surface and consequently sheds light on the fundamental origins of sensing signals produced by FET and EIS biosensors, as well as the correlation between the two. Detection of both the bovine serum albumin (BSA)/anti-BSA model system in buffer solution and bovine parainfluenza antibodies in complex blood plasma samples was demonstrated using the integrated biosensors. Comparison of the EGFET and EIS sensor responses reveals similar dynamic ranges, while equivalent circuit modeling of the EIS response shows that the commonly reported total impedance change (ΔZtotal) is dominated by the change in charge transfer resistance (Rct) rather than surface capacitance (Csurface). Using electrochemical kinetics and the Butler-Volmer equation, we unveil that the surface potential and charge transfer resistance, measured by potentiometric and impedance biosensors, respectively, are, in fact, intrinsically linked. This observation suggests that there is no significant gain in using the FET/EIS integrated system and leads to the demonstration that low-cost EGFET biosensors are sufficient as a detection tool to resolve the charge information of biomolecules for practical sensing applications.

  10. Measurement of integrated healthcare delivery: a systematic review of methods and future research directions

    Directory of Open Access Journals (Sweden)

    Martin Strandberg-Larsen

    2009-02-01

    Full Text Available Background: Integrated healthcare delivery is a policy goal of healthcare systems. There is no consensus on how to measure the concept, which makes it difficult to monitor progress. Purpose: To identify the different types of methods used to measure integrated healthcare delivery with emphasis on structural, cultural and process aspects. Methods: Medline/Pubmed, EMBASE, Web of Science, Cochrane Library, WHOLIS, and conventional internet search engines were systematically searched for methods to measure integrated healthcare delivery (published – April 2008. Results: Twenty-four published scientific papers and documents met the inclusion criteria. In the 24 references we identified 24 different measurement methods; however, 5 methods shared theoretical framework. The methods can be categorized according to type of data source: a questionnaire survey data, b automated register data, or c mixed data sources. The variety of concepts measured reflects the significant conceptual diversity within the field, and most methods lack information regarding validity and reliability. Conclusion: Several methods have been developed to measure integrated healthcare delivery; 24 methods are available and some are highly developed. The objective governs the method best used. Criteria for sound measures are suggested and further developments should be based on an explicit conceptual framework and focus on simplifying and validating existing methods.

  11. Integrating Theory, Research, and Practice in Vocational Psychology: Current Status and Future Directions

    Science.gov (United States)

    Sampson, James P., Jr., Ed.; Bullock-Yowell, Emily, Ed.; Dozier, V. Casey, Ed.; Osborn, Debra S., Ed.; Lenz, Janet G., Ed.

    2017-01-01

    This publication is based on the 2016 Society for Vocational Psychology (SVP) Biennial Conference, that was held at the Florida State University on May 16-17, 2016. The conference theme was "Integrating Theory, Research, and Practice in Vocational Psychology." The conference content and the resulting edited book are based on the…

  12. Understanding Adoptive Families: An Integrative Review of Empirical Research and Future Directions for Counseling Psychology

    Science.gov (United States)

    O'Brien, Karen M.; Zamostny, Kathy P.

    2003-01-01

    Contrary to societal stereotypes about adoption, this integrative review of published empirical research on adoptive families noted several positive and few negative out-comes with regard to satisfaction with the adoption, familial functioning, and parent-child communication. The critical analysis of 38 studies on adoptive families revealed a…

  13. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  14. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.

    Science.gov (United States)

    Walters, D M; Stringer, S M

    2010-07-01

    A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

  15. Integration of a High Sensitivity MEMS Directional Sound Sensor With Readout Electronics

    Science.gov (United States)

    2012-12-01

    Capacitive Transimpedance Amplifier Analysis ............................ 15   3.   Low Pass Filter and Output Buffer Analysis...GUI Graphical User Interface HV16 High Voltage (16V) Hz Hertz IAMP Capacitive Transimpedance Amplifier IC Integrated Circuit K&S Kulicke & Soffa... Transimpedance Amplifier (IAMP), a low-pass filter, and an output buffer. The functionality of the MS3110 can best be understood by first considering the

  16. Integrating Environmental and Human Health Databases in the Great Lakes Basin: Themes, Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Kate L. Bassil

    2015-03-01

    Full Text Available Many government, academic and research institutions collect environmental data that are relevant to understanding the relationship between environmental exposures and human health. Integrating these data with health outcome data presents new challenges that are important to consider to improve our effective use of environmental health information. Our objective was to identify the common themes related to the integration of environmental and health data, and suggest ways to address the challenges and make progress toward more effective use of data already collected, to further our understanding of environmental health associations in the Great Lakes region. Environmental and human health databases were identified and reviewed using literature searches and a series of one-on-one and group expert consultations. Databases identified were predominantly environmental stressors databases, with fewer found for health outcomes and human exposure. Nine themes or factors that impact integration were identified: data availability, accessibility, harmonization, stakeholder collaboration, policy and strategic alignment, resource adequacy, environmental health indicators, and data exchange networks. The use and cost effectiveness of data currently collected could be improved by strategic changes to data collection and access systems to provide better opportunities to identify and study environmental exposures that may impact human health.

  17. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl [California Inst. for Energy and the Environment, Berkeley, CA (United States); Vossos, Vagelis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kloss, Margarita [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for an ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.

  18. Integrating Direct and Inquiry-Based Instruction in the Teaching of Critical Thinking: An Intervention Study

    Science.gov (United States)

    Ku, Kelly Y. L.; Ho, Irene T.; Hau, Kit-Tai; Lai, Eva C. M.

    2014-01-01

    Critical thinking is a unifying goal of modern education. While past research has mostly examined the efficacy of a single instructional approach to teaching critical thinking, recent literature has begun discussing mixed teaching approaches. The present study examines three modes of instruction, featuring the direct instruction approach and the…

  19. Direct-drive electromagnetic active suspension system with integrated eddy current damping for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.

    2011-01-01

    A direct-drive electromagnetic active suspension system is considered which consists of a tubular permanent magnet actuator in parallel with a coil spring. This system has the ability of improving the ride comfort while maintaining optimum handling and stability. Since safety is of major concern,

  20. Integration of Multi-Tension Permeametry and Photogrammetric Textural Segmentation for Estimating Directional Permeability

    Science.gov (United States)

    2010-04-01

    conditions. Direct push optical methods could easily provide real-time high- resolution images useful for differentiating soil characteristics based on...Kozeny J. 1927. Uber Kapillare Leitung Des Wassers Im Boden. Sitz. Akad. Wissensh, 136:271–306. Lowry, W, N. Mason, And D. Merewether. 1999

  1. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; van den Berg, Albert

    2004-01-01

    The direct measurement of lithium in whole blood is described. Using microchip capillary electrophoresis (CE) with defined sample loading and applying the principles of column coupling, alkali metals were determined in a drop of whole blood. Blood collected from a finger stick was mixed with

  2. Three semi-direct sum Lie algebras and three discrete integrable couplings associated with the modified K dV lattice equation

    International Nuclear Information System (INIS)

    Yu Zhang; Zhang Yufeng

    2009-01-01

    Three semi-direct sum Lie algebras are constructed, which is an efficient and new way to obtain discrete integrable couplings. As its applications, three discrete integrable couplings associated with the modified K dV lattice equation are worked out. The approach can be used to produce other discrete integrable couplings of the discrete hierarchies of soliton equations.

  3. The boundary value problems of magnetotail equilibrium

    International Nuclear Information System (INIS)

    Birn, J.

    1991-01-01

    The equilibrium problem for the Earth's magnetotail is discussed under the assumption that the boundary of the tail can be prescribed or derived from the force balance with the solar wind. A general solution of this problem is presented for the two-dimensional case, where the dependence on the γ coordinate and the presence of Β gamma are neglected. These solutions are further generalized to include the γ dependence (but no Β gamma ) and an open magnetopause. In this formulation, a solution can be obtained by integration when the magnetopause boundary α(x,y), the total pressure function p(x), and the magnetic flux distribution A b (x,y) at the magnetopause are prescribed. Certain restrictions, however, may limit the free choice of these functions to yield physically reasonable, real solutions. When the interaction with the solar wind is included, the boundary location can no longer be chosen freely but follows from the force balance of the magnetotail with the solar wind. For a simplified description of this force balance a differential equation for the boundary location is derived, which generalizes an earlier result by Coroniti and Kennel (1972). It is shown that solutions of this differential equation are bounded by a maximum tail width if the plasma sheet thickness is limited. Several explicit solutions are presented, illustrating cases with and without tail flaring in the z direction, and including the restrictions of the force balance with the solar wind and of the conservation laws of adiabatic convection in a steady configuration

  4. Functional integration processes underlying the instruction-based learning of novel goal-directed behaviors.

    Science.gov (United States)

    Ruge, Hannes; Wolfensteller, Uta

    2013-03-01

    How does the human brain translate symbolic instructions into overt behavior? Previous studies suggested that this process relies on a rapid control transition from the lateral prefrontal cortex (LPFC) to the anterior striatum (aSTR) and premotor cortex (PMC). The present fMRI study investigated whether the transfer from symbolic to pragmatic stimulus-response (S-R) rules relies on changes in the functional coupling among these and other areas and to which extent action goal representations might get integrated within this symbolic-pragmatic transfer. Goal integration processes were examined by manipulating the contingency between actions and differential outcomes (i.e. action goals). We observed a rapid strengthening of the functional coupling between the LPFC and the basal ganglia (aSTR and putamen) and orbitofrontal cortex (OFC) as well as between the LPFC and the anterior dorsal PMC (pre-PMd), the anterior inferior parietal lobule (aIPL), and the posterior superior parietal lobule (pSPL). Importantly, only some of these functional integration processes were sensitive to the outcome contingency manipulation, including LPFC couplings with aSTR, OFC, aIPL, and pre-PMd. This suggests that the symbolic-pragmatic rule transfer is governed by principles of both, instrumental learning (increasingly tighter coupling between LPFC and aSTR/OFC) and ideomotor learning (increasingly tighter coupling between LPFC and aIPL/pre-PMd). By contrast, increased functional coupling between LPFC and putamen was insensitive to outcome contingency possibly indicating an early stage of habit formation under instructed learning conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A novel technique for optimal integration of active steering and differential braking with estimation to improve vehicle directional stability.

    Science.gov (United States)

    Mirzaeinejad, Hossein; Mirzaei, Mehdi; Rafatnia, Sadra

    2018-06-11

    This study deals with the enhancement of directional stability of vehicle which turns with high speeds on various road conditions using integrated active steering and differential braking systems. In this respect, the minimum usage of intentional asymmetric braking force to compensate the drawbacks of active steering control with small reduction of vehicle longitudinal speed is desired. To this aim, a new optimal multivariable controller is analytically developed for integrated steering and braking systems based on the prediction of vehicle nonlinear responses. A fuzzy programming extracted from the nonlinear phase plane analysis is also used for managing the two control inputs in various driving conditions. With the proposed fuzzy programming, the weight factors of the control inputs are automatically tuned and softly changed. In order to simulate a real-world control system, some required information about the system states and parameters which cannot be directly measured, are estimated using the Unscented Kalman Filter (UKF). Finally, simulations studies are carried out using a validated vehicle model to show the effectiveness of the proposed integrated control system in the presence of model uncertainties and estimation errors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode....... The reverse-boost mode is more relevant here since most renewable sources and energy storages have lower voltages than the grid. The eventual VMC developed uses an alternative nine-switch converter, rather than usual six-switch voltage-source converter, for providing six input terminals in total. One three...

  7. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  8. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  9. Direct containment heating integral effects tests in geometries of European nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Leonhard; Albrecht, Giancarlo; Caroli, Cataldo; Ivanov, Ivan

    2009-01-01

    The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P'4, the VVER-1000 and the German Konvoi plant. A high-temperature iron-alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified. The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.

  10. Direct containment heating integral effects tests in geometries of European nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Leonhard [Forschungszentrum Karlsruhe (FZK), Postfach 3640, 76021 Karlsruhe (Germany)], E-mail: meyer@iket.fzk.de; Albrecht, Giancarlo [Forschungszentrum Karlsruhe (FZK), Postfach 3640, 76021 Karlsruhe (Germany); Caroli, Cataldo [Institut de Radioprotection et de Surete Nucleaire, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Ivanov, Ivan [Technical University of Sofia, BG-1797 Sofia (Bulgaria)

    2009-10-15

    The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P'4, the VVER-1000 and the German Konvoi plant. A high-temperature iron-alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified. The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.

  11. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  12. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  13. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  14. Research Integrity and Peer Review-past highlights and future directions.

    Science.gov (United States)

    Boughton, Stephanie L; Kowalczuk, Maria K; Meerpohl, Joerg J; Wager, Elizabeth; Moylan, Elizabeth C

    2018-01-01

    In May 2016, we launched Research Integrity and Peer Review , an international, open access journal with fully open peer review (reviewers are identified on their reports and named reports are published alongside the article) to provide a home for research on research and publication ethics, research reporting, and research on peer review. As the journal enters its third year, we reflect on recent events and highlights for the journal and explore how the journal is faring in terms of gender and diversity in peer review. We also share the particular interests of our Editors-in-Chief regarding models of peer review, reporting quality, common research integrity issues that arise during the publishing process, and how people interact with the published literature. We continue to encourage further research into peer review, research and publication ethics and research reporting, as we believe that all new initiatives should be evidence-based. We also remain open to constructive discussions of the developments in the field that offer new solutions.

  15. Total integrated performance excellence system (TIPES): A true north direction for a clinical trial support center.

    Science.gov (United States)

    Sather, Mike R; Parsons, Sherry; Boardman, Kathy D; Warren, Stuart R; Davis-Karim, Anne; Griffin, Kevin; Betterton, Jane A; Jones, Mark S; Johnson, Stanley H; Vertrees, Julia E; Hickey, Jan H; Salazar, Thelma P; Huang, Grant D

    2018-03-01

    This paper presents the quality journey taken by a Federal organization over more than 20 years. These efforts have resulted in the implementation of a Total Integrated Performance Excellence System (TIPES) that combines key principles and practices of established quality systems. The Center has progressively integrated quality system frameworks including the Malcom Baldrige National Quality Award (MBNQA) Framework and Criteria for Performance Excellence, ISO 9001, and the Organizational Project Management Maturity Model (OPM3), as well as supplemental quality systems of ISO 15378 (packaging for medicinal products) and ISO 21500 (guide to project management) to systematically improve all areas of operations. These frameworks were selected for applicability to Center processes and systems, consistency and reinforcement of complimentary approaches, and international acceptance. External validations include the MBNQA, the highest quality award in the US, continued registration and conformance to ISO standards and guidelines, and multiple VA and state awards. With a focus on a holistic approach to quality involving processes, systems and personnel, this paper presents activities and lessons that were critical to building TIPES and establishing the quality environment for conducting clinical research in support of Veterans and national health care.

  16. Total integrated performance excellence system (TIPES: A true north direction for a clinical trial support center

    Directory of Open Access Journals (Sweden)

    Mike R. Sather

    2018-03-01

    Full Text Available This paper presents the quality journey taken by a Federal organization over more than 20 years. These efforts have resulted in the implementation of a Total Integrated Performance Excellence System (TIPES that combines key principles and practices of established quality systems. The Center has progressively integrated quality system frameworks including the Malcom Baldrige National Quality Award (MBNQA Framework and Criteria for Performance Excellence, ISO 9001, and the Organizational Project Management Maturity Model (OPM3, as well as supplemental quality systems of ISO 15378 (packaging for medicinal products and ISO 21500 (guide to project management to systematically improve all areas of operations. These frameworks were selected for applicability to Center processes and systems, consistency and reinforcement of complimentary approaches, and international acceptance. External validations include the MBNQA, the highest quality award in the US, continued registration and conformance to ISO standards and guidelines, and multiple VA and state awards. With a focus on a holistic approach to quality involving processes, systems and personnel, this paper presents activities and lessons that were critical to building TIPES and establishing the quality environment for conducting clinical research in support of Veterans and national health care.

  17. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  18. Prospects for direct social perception: A multi-theoretical integration to further the science of social cognition

    Directory of Open Access Journals (Sweden)

    Travis J. Wiltshire

    2015-01-01

    Full Text Available In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.

  19. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition

    Science.gov (United States)

    Wiltshire, Travis J.; Lobato, Emilio J. C.; McConnell, Daniel S.; Fiore, Stephen M.

    2015-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience. PMID:25709572

  20. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition.

    Science.gov (United States)

    Wiltshire, Travis J; Lobato, Emilio J C; McConnell, Daniel S; Fiore, Stephen M

    2014-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others' mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.

  1. Risk assessment concept in the new approach directives and its integration in the Enterprise Risk Management (ERM

    Directory of Open Access Journals (Sweden)

    Đapić Mirko

    2012-03-01

    Full Text Available In the nineties years of the previous century, the European Union achieved, through introducing the New and Global Approach to technical harmonization and standardization, a significant improvement in the approach to conformity assessment of products, by integrating the requirements for technical products safety into the process of its designing. This was achieved by preventive analyzing and quantifying of risk levels in the design process with the objective of determining the scope of the needed safety systems. On the other hand, we have witnessed a rapid development and implementation of holistic approaches to risks management in enterprises, unified in the modern business practice by the name of Enterprise Risk Management (ERM. Going along that line, the paper presents, through the basis of the EU New and Global Approach, the concept of risk assessment in the New Approach directives (Machinery, Lifts, ATEX, etc and provides the concept of its integration into the holistic approach of risks management in enterprises, such as ERM.

  2. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  3. Spanning organizational boundaries to manage creative processes:

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Kragh, Hanne; Lettl, Christopher

    2013-01-01

    In order to continue to be innovative in the current fast-paced and competitive environment, organizations are increasingly dependent on creative inputs developed outside their boundaries. The paper addresses the boundary spanning activities that managers undertake to a) select and mobilize...... creative talent, b) create shared identity, and c) combine and integrate knowledge in innovation projects involving external actors. We study boundary spanning activities in two creative projects in the LEGO group. One involves identifying and integrating deep, specialized knowledge, the other focuses...... actors, and how knowledge is integrated across organizational boundaries. We discuss implications of our findings for managers and researchers in a business-to-business context...

  4. Impact of Foreign Direct Investment and Barriers to MNC Supply Chain Integration in Vietnam

    Directory of Open Access Journals (Sweden)

    Bilici Hamdi

    2017-04-01

    Full Text Available The Vietnamese economy has been progressing to become a supplier to many multinational corporations (MNC. However, barriers presently exist that prevent Vietnamese firms from fully integrating into the supply chain of these global actors. Weak FDI overflow and block trading has government officials and business executives troubled that Vietnamese firms are still on the periphery of these global supply networks. Even as MNCs operating in Vietnam import many semi-finished products from other countries, Vietnamese firms are not benefiting from the opportunities to incorporate into the supply chain because of the lack of global experience, FDI, an educated workforce and outdated facilities. Vietnamese firms must upgrade their facilities and equip their labor forces to acquire MNC contracts and find global partners who can supply financing and knowhow.

  5. Characterisation of micro direct methanol fuel cells with silicon plate supported integrated ionomer membranes

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Kallesee, C.

    2013-01-01

    This work deals with the investigation and fabrication of Micro Direct Methanol Fuel Cells (μDMFC). They are investigated as a possible alternative for zinc-air batteries in small size consumer devices such as hearing aids. In such devices the conventional rechargeable batteries such as lithium......-ion batteries have insufficiently low energy density in the range 240 Wh/L to 300 Wh/L Methanol is a promising fuel for such devices due to the high energy density, with pure methanol having an energy density of 4400 Wh/L. Using a liquid fuel also allows refueling, which can be achieved much faster than battery...

  6. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least...... the range 1.49-1.65 mu m, and low differential chromatic dispersion). The overall performance exceeds that of similar components currently used for astronomical research. This result, combined with the fast-prototyping ability of UV writing, opens up new possibilities for the realization of highly optimized...

  7. Re-inventing electromagnetics - Supercomputing solution of Maxwell's equations via direct time integration on space grids

    International Nuclear Information System (INIS)

    Taflove, A.

    1992-01-01

    This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs

  8. Biomedical text mining for research rigor and integrity: tasks, challenges, directions.

    Science.gov (United States)

    Kilicoglu, Halil

    2017-06-13

    An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.

  9. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization 1. Direct contact between fresh and saltwater

    Science.gov (United States)

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a basic study in generalized terms that originates from two needs: (1) to understand the major mechanisms involved in the mineralization of groundwater of the Great Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock formation, and (2) to develop simple, robust tools that can readily be used for local assessment and management activities in the salt-affected region. A simplified basic conceptual model is adopted, incorporating two horizontal layers of porous medium which come into contact at a specific location within the model domain. The top layer is saturated with freshwater, and the bottom layer is saturated with saltwater. The paper considers various stages of approximation which can be useful for simplified simulation of the build-up of the transition zone (TZ) between the freshwater and the saltwater. The hierarchy of approximate approaches leads to the development of the top specified boundary layer (TSBL) method, which is the major tool used in this study for initial characterization of the development of the TZ. It is shown that the thickness of the TZ is mainly determined by the characteristic dispersivity. The build-up of the TZ is completed after a time period equal to the time needed to advect a fluid particle along the whole extent of the TZ. Potential applications and the effects of natural recharge and pumpage on salinity transport in the domain are discussed and evaluated in the context of demonstrating the practicality of the TSBL approach.

  10. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, F.; Abouabdellah, A.

    2016-07-01

    Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Network modeling by combining Petri and Bayesian network. Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Demands are independent from returns. Model can only be used on nonperishable products. Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Bayesian network with a cycle combined with the Petri Network. (Author)

  11. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  12. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Directory of Open Access Journals (Sweden)

    Faycal Mimouni

    2016-04-01

    Full Text Available Purpose: Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Design/methodology/approach: Network modeling by combining Petri and Bayesian network. Findings: Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Research limitations/implications: Demands are independent from returns. Practical implications: Model can only be used on nonperishable products. Social implications: Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Originality/value: Bayesian network with a cycle combined with the Petri Network.

  13. Advances in prenatal screening for Down syndrome: II first trimester testing, integrated testing, and future directions.

    Science.gov (United States)

    Benn, Peter A

    2002-10-01

    The acceptability of prenatal screening and diagnosis of Down syndrome is dependent, in part, on the gestational age at which the testing is offered. First trimester screening could be advantageous if it has sufficient efficacy and can be effectively delivered. Two first trimester maternal serum screening markers, pregnancy-associated plasma protein-A (PAPP-A) and free beta-human chorionic gonadotropin (beta-hCG), are useful for identifying women at increased risk for fetal Down syndrome. In addition, measurement of an enlarged thickness of the subcutaneous fluid-filled space at the back of the neck of the developing fetus (referred to as nuchal translucency or NT) has been demonstrated to be an indicator for these high-risk pregnancies. When these three parameters are combined, estimates for Down syndrome efficacy exceed those currently attainable in the second trimester. Women who are screen-positive in the first trimester can elect to receive cytogenetic testing of a chorionic villus biopsy. The first trimester tests could also, theoretically, be combined with the second trimester maternal serum screening tests (integrated screening) to obtain even higher levels of efficacy. There are, however, several practical limitations to first trimester and integrated screening. These include scheduling of testing within relatively narrow gestational age intervals, availability of appropriately trained ultrasonographers for NT measurement, risks associated with chorionic villus biopsy, and costs. There is also increasing evidence that an enlarged NT measurement is indicative of a high risk for spontaneous abortion and for fetal abnormalities that are not detectable by cytogenetic analysis. Women whose fetuses show enlarged NT, therefore, need first trimester counseling regarding their Down syndrome risks and the possibility of other adverse pregnancy outcomes. Follow-up ultrasound and fetal echocardiography in the second trimester are also indicated. First trimester

  14. Transparent Flexible Electronics By Directed Integration of Inorganic Micro and Nanomaterials

    Science.gov (United States)

    Cole, Jesse J.

    This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials. Our approaches involved local adjustment of electrostatics at the surfaces to control material flux. Templating of surface electrostatics was implemented differently for three broad concepts resulting in control over nanomaterial synthesis, deposition, and printing. These three general concepts are: (A) Tailored ZnO nanowire synthesis and integration out of the liquid phase; (B) Arc discharge synthesis and continuous nanocluster deposition from the gas phase; (C) Contact electrification and xerographic printing of nanoparticles from the gas phase. Concept (A): We report a method to fabricate and transfer crystalline ZnO with control over location, orientation, size, and shape. The process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium-doped GaN substrates to define narrow nucleation regions and attachment points with 100 nanometer scale dimensions. Lateral epitaxial overgrowth follows nucleation to produce single crystalline ZnO which were fabricated into LEDs and photovoltaic cells. Concept (B): We report a gas phase nanoparticle deposition system which shares characteristics with liquid phase electrodeposition. Clusters of charged nanoparticles selectively deposit onto electrically grounded surfaces. Similar to electroplating, the continued deposition of Au nanoparticles onto underlying resistive traces increased overall line conductivity. Alternatively, semiconducting ZnO and Ge nanomaterial sequentially deposited between interdigitated electrodes and served as addressable sensor active areas. Concept (C): We report patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO 2). Forced

  15. Direct and indirect effects of multilingualism on novel language learning: An integrative review.

    Science.gov (United States)

    Hirosh, Zoya; Degani, Tamar

    2017-05-25

    Accumulated recent research suggests that prior knowledge of multiple languages leads to advantages in learning additional languages. In the current article, we review studies examining potential differences between monolingual and multilingual speakers in novel language learning in an effort to uncover the cognitive mechanisms that underlie such differences. We examine the multilingual advantage in children and adults, across a wide array of languages and learner populations. The majority of this literature focused on vocabulary learning, but studies that address phonology, grammar, and literacy learning are also discussed to provide a comprehensive picture of the way in which multilingualism affects novel language learning. Our synthesis indicates two avenues to the multilingual advantage including direct transfer of prior knowledge and prior skills as well as indirect influences that result from multilingual background and include more general changes to the cognitive-linguistic system. Finally, we highlight topics that are in need of future systematic research.

  16. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  17. Work/Life Boundary Management in an Integrative Environment: A Study of Residence Life Professionals who Live at Their Place of Work

    Science.gov (United States)

    Rankin, Pressley Robinson, IV

    2013-01-01

    How individuals manage work/life boundaries when they live at the place they work, as opposed to working from home, is a gap in both work/life literature and in higher education literature. An obvious example from higher education is the resident life professional that lives in the residential facility that she or he oversees. Living in a…

  18. A Community-Directed Integrated Strongyloides Control Program in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Miller

    2018-05-01

    Full Text Available This paper describes two phases of a community-directed intervention to address strongyloidiasis in the remote Aboriginal community of Woorabinda in central Queensland, Australia. The first phase provides the narrative of a community-driven ‘treat-and-test’ mass drug administration (MDA intervention that was co-designed by the Community Health Service and the community. The second phase is a description of the re-engagement of the community in order to disseminate the key factors for success in the previous MDA for Strongyloides stercoralis, as this information was not shared or captured in the first phase. During the first phase in 2004, there was a high prevalence of strongyloidiasis (12% faecal examination, 30% serology; n = 944 community members tested that resulted in increased morbidity and at least one death in the community. Between 2004–2005, the community worked in partnership with the Community Health Service to implement a S. stercoralis control program, where all of the residents were treated with oral ivermectin, and repeat doses were given for those with positive S. stercoralis serology. The community also developed their own health promotion campaign using locally-made resources targeting relevant environmental health problems and concerns. Ninety-two percent of the community residents participated in the program, and the prevalence of strongyloidiasis at the time of the ‘treat-and-test’ intervention was 16.6% [95% confidence interval 14.2–19.3]. The cure rate after two doses of ivermectin was 79.8%, based on pre-serology and post-serology tests. The purpose of this paper is to highlight the importance of local Aboriginal leadership and governance and a high level of community involvement in this successful mass drug administration program to address S. stercoralis. The commitment required of these leaders was demanding, and involved intense work over a period of several months. Apart from controlling strongyloidiasis

  19. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    Energy Technology Data Exchange (ETDEWEB)

    Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  20. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  1. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    Science.gov (United States)

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  2. SUSTAINABLE STRATEGIC DIRECTIONS OF REGIONAL DEVELOPMENT IN ROMANIA IN THE CONTEXT OF EUROPEAN INTEGRATION

    Directory of Open Access Journals (Sweden)

    Cristina Gabriela DUMITRU

    2015-09-01

    Full Text Available Sustainable development represents an equitable development model for which the main concern is achieving a balance between economic growth and raising the quality of life through the use of natural resources within the planet’s tolerable limits. The sustainable development of community spaces is in the pursuit of preserving the right to access resources for future generations through their equitable use, keeping the excavation rate lower than the regeneration rate for renewable resources, and the excavation rate of non-renewable resources not exceeding their substitution rate. On the other hand, regional development implies the diversification of economic activities by supporting investments in the private sector with the purpose of lowering the unemployment rate towards increasing quality of life using different measures in field like: developing the small and medium-sized enterprises sector, the transfer of knowledge and education, rural development, quality of the surrounding environment, health and infrastructure. The regional development policy encourages the stimulation of a balanced growth of our territory by lowering the existing imbalance between regions at the current moment and by reducing the possibility for it to appear. Furthermore, the regional and rural growth of Romania in the context of sustainable development is a short term process. Due to the specificity of Romanian agriculture, predominantly subsistence farming, the inadequate structure and main factor that limits agricultural competitive growth, it implies a closer look over the social sector. Therefore, two major action plans are asserted, firstly developing connective activities in the rural space and the integration into the labour market of the people engaged into agriculture, and secondly the growth of agribusinesses by supporting measures that target the creation of associations towards increasing the efficiency of Romanian agriculture.

  3. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    Directory of Open Access Journals (Sweden)

    Christa Rhiner

    2006-01-01

    Full Text Available Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs, which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

  4. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan

    2015-02-01

    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  6. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  7. Easy boundary definition for EGUN

    International Nuclear Information System (INIS)

    Becker, R.

    1989-01-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.)

  8. Easy boundary definition for EGUN

    Science.gov (United States)

    Becker, R.

    1989-06-01

    The relativistic electron optics program EGUN [1] has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN.

  9. Easy boundary definition for EGUN

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Angewandte Physik)

    1989-06-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.).

  10. Removing Boundary Layer by Suction

    Science.gov (United States)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  11. OPERATOR-RELATED FORMULATION OF THE EIGENVALUE PROBLEM FOR THE BOUNDARY PROBLEM OF ANALYSIS OF A THREE-DIMENSIONAL STRUCTURE WITH PIECEWISE-CONSTANT PHYSICAL AND GEOMETRICAL PARAMETERS ALONGSIDE THE BASIC DIRECTION WITHIN THE FRAMEWORK OF THE DISCRETE-CON

    Directory of Open Access Journals (Sweden)

    Akimov Pavel Alekseevich

    2012-10-01

    Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.

  12. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    Science.gov (United States)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  13. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  14. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  15. Direct Support Professionals and Reversed Integration of People With Intellectual Disabilities : Impact of Attitudes, Perceived Social Norms, and Meta-Evaluations

    NARCIS (Netherlands)

    Venema, Eleonora; Otten, Sabine; Vlaskamp, Carla

    Direct support professionals (DSPs) play an important role in the process of integration of people with intellectual disabilities. Nevertheless, little is currently known about what determines the level of effort exerted by DSPs to enable the social integration of their clients. The aim of this

  16. Accelerated Homology-Directed Targeted Integration of Transgenes in Chinese Hamster Ovary Cells Via CRISPR/Cas9 and Fluorescent Enrichment

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Grav, Lise Marie; Pedersen, Lasse Ebdrup

    2016-01-01

    Targeted gene integration into site-specific loci can be achieved in Chinese hamster ovary (CHO) cells via CRISPR/Cas9 genome editing technology and the homology-directed repair (HDR) pathway. The low efficiency of HDR often requires antibiotic selection, which limits targeted integration...

  17. Tricritical Ising model with a boundary

    International Nuclear Information System (INIS)

    De Martino, A.; Moriconi, M.

    1998-03-01

    We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)

  18. A novel integrated approach for path following and directional stability control of road vehicles after a tire blow-out

    Science.gov (United States)

    Wang, Fei; Chen, Hong; Guo, Konghui; Cao, Dongpu

    2017-09-01

    The path following and directional stability are two crucial problems when a road vehicle experiences a tire blow-out or sudden tire failure. Considering the requirement of rapid road vehicle motion control during a tire blow-out, this article proposes a novel linearized decoupling control procedure with three design steps for a class of second order multi-input-multi-output non-affine system. The evaluating indicators for controller performance are presented and a performance related control parameter distribution map is obtained based on the stochastic algorithm which is an innovation for non-blind parameter adjustment in engineering implementation. The analysis on the robustness of the proposed integrated controller is also performed. The simulation studies for a range of driving conditions are conducted, to demonstrate the effectiveness of the proposed controller.

  19. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  20. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    Science.gov (United States)

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  1. Representation of boundary conditions in thermal reactor global analysis by diffusion theory employing finite difference approximation

    International Nuclear Information System (INIS)

    Paul, O.P.K.

    1978-01-01

    An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)

  2. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  3. SU-G-TeP4-06: An Integrated Application for Radiation Therapy Treatment Plan Directives, Management, and Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Matuszak, M; Anderson, C; Lee, C; Vineberg, K; Green, M; Younge, K; Moran, J; Mayo, C [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: With electronic medical records, patient information for the treatment planning process has become disseminated across multiple applications with limited quality control and many associated failure modes. We present the development of a single application with a centralized database to manage the planning process. Methods: The system was designed to replace current functionalities of (i) static directives representing the physician intent for the prescription and planning goals, localization information for delivery, and other information, (ii) planning objective reports, (iii) localization and image guidance documents and (iv) the official radiation therapy prescription in the medical record. Using the Eclipse Scripting Application Programming Interface, a plug-in script with an associated domain-specific SQL Server database was created to manage the information in (i)–(iv). The system’s user interface and database were designed by a team of physicians, clinical physicists, database experts, and software engineers to ensure usability and robustness for clinical use. Results: The resulting system has been fully integrated within the TPS via a custom script and database. Planning scenario templates, version control, approvals, and logic-based quality control allow this system to fully track and document the planning process as well as physician approval of tradeoffs while improving the consistency of the data. Multiple plans and prescriptions are supported along with non-traditional dose objectives and evaluation such as biologically corrected models, composite dose limits, and management of localization goals. User-specific custom views were developed for the attending physician review, physicist plan checks, treating therapists, and peer review in chart rounds. Conclusion: A method was developed to maintain cohesive information throughout the planning process within one integrated system by using a custom treatment planning management application that

  4. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    Science.gov (United States)

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  5. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT. First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  6. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the water framework directive approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartzke, Mariana [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Dept. Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig (Germany); Delov, Vera [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Ecotoxicology, Fraunhofer Inst. for Molecular Biology and Applied Ecology IME, Aachen (Germany); Stahlschmidt-Allner, Petra; Allner, Bernhard [Gobio GmbH, Aarbergen/Kettenbach (Germany); Oehlmann, Joerg [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany)

    2010-04-15

    Purpose: The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD. Materials and methods sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6. Results and discussion The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality clements at the sampling sites. Conclusions The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment. (orig.)

  7. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  8. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  9. Nonlinear streak computation using boundary region equations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)

    2012-08-01

    The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)

  10. Working with boundaries in systems psychodynamic consulting

    Directory of Open Access Journals (Sweden)

    Henk Struwig

    2012-03-01

    Research purpose: The purpose of the research was to produce a set of theoretical assumptions about organisational boundaries and boundary management in organisations and, from these, to develop a set of hypotheses as a thinking framework for practising consulting psychologists when they work with boundaries from a systems psychodynamic stance. Motivation for the study: The researcher used the belief that organisational boundaries reflect the essence of organisations. Consulting to boundary managers could facilitate a deep understanding of organisational dynamics. Research design, approach and method: The researcher followed a case study design. He used systems psychodynamic discourse analysis. It led to six working hypotheses. Main findings: The primary task of boundary management is to hold the polarities of integration and differentiation and not allow the system to become fragmented or overly integrated. Boundary management is a primary task and an ongoing activity of entire organisations. Practical/managerial implications: Organisations should work actively at effective boundary management and at balancing integration and differentiation. Leaders should become aware of how effective boundary management leads to good holding environments that, in turn, lead to containing difficult emotions in organisations. Contribution/value-add: The researcher provided a boundary-consulting framework in order to assist consultants to balance the conceptual with the practical when they consult.

  11. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  12. Microlocal methods in the analysis of the boundary element method

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...

  13. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  14. Effects of freestream on the characteristics of thermally-driven boundary layers along a heated vertical flat plate

    International Nuclear Information System (INIS)

    Abedin, Mohammad Zoynal; Tsuji, Toshihiro; Lee, Jinho

    2012-01-01

    Highlights: ► A time-developing direct numerical simulations are done for water along a heated vertical plate. ► The objective is to see the effects of free streams on the combined-convection boundary layers. ► There are no reports for water with direct numerical simulation in this regards. ► An experiment is also conducted on the transitional and turbulent boundary layer in water. ► This is to collect informations on the integral thickness of the velocity boundary layer. - Abstract: Time-developing thermally-driven boundary layers created by imposing aiding and opposing freestreams on the natural-convection boundary layer in water along a heated vertical flat plate have been examined with a direct numerical simulation to clarify their transition and turbulence behaviors. The numerical results for aiding flow reveal that the transition begins at a thick laminar boundary layer due to the delay of the transition and large-scale vortexes centering on the spanwise direction are followed, while, for opposing flow, the transition begins at a thin laminar boundary layer due to the quickening of the transition and relatively small-scale vortexes are generated with the progress of transition. To improve the significance of the present numerical results, the association of turbulence statistics between time- and space-developing flows has been investigated. Consequently, the numerical results for time-developing flow are converted to those for space-developing flow through the integral thickness of the velocity boundary layer for pure natural convection, and thus the regimes of boundary layer flows can be quantitatively assessed. Moreover, the turbulence statistics and the flow structures in the thermally-driven boundary layers are also presented.

  15. Social integration in a reversed integration neighbourhood? : Perspectives of neighbours, family members, and direct support professionals and the role of formal and informal support

    NARCIS (Netherlands)

    Venema, Eleonora

    2016-01-01

    This research focused on the social integration of people with intellectual disabilities who live in a reversed integration neighbourhood. Reversed integration means that the grounds of the residential facility is turned into a regular neighbourhood wherein people with and without intellectual

  16. QED on curved background and on manifolds with boundaries: Unitarity versus covariance

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1994-11-01

    Some recent results show that the covariant path integral and the integral over physical degrees of freedom give contradicting results on curved background and on manifolds with boundaries. This looks like a conflict between unitarity and covariance. We argue that this effect is due to the use of non-covariant measure on the space of physical degrees of freedom. Starting with the reduced phase space path integral and using covariant measure throughout computations we recover standard path integral in the Lorentz gauge and the Moss and Poletti BRST-invariant boundary conditions. We also demonstrate by direct calculations that in the approach based on Gaussian path integral on the space of physical degrees of freedom some basic symmetries are broken. (author). 39 refs

  17. Use of integrated technology in team sports: a review of opportunities, challenges, and future directions for athletes.

    Science.gov (United States)

    Dellaserra, Carla L; Gao, Yong; Ransdell, Lynda

    2014-02-01

    Integrated technology (IT), which includes accelerometers, global positioning systems (GPSs), and heart rate monitors, has been used frequently in public health. More recently, IT data have been used in sports settings to assess training and performance demands. However, the impact of IT in sports settings is yet to be evaluated, particularly in field-based team sports. This narrative-qualitative review provides an overview of the emerging impact of IT in sports settings. Twenty electronic databases (e.g., Medline, SPORTdiscus, and ScienceDirect), print publications (e.g., Signal Processing Magazine and Catapult Innovations news releases), and internet resources were searched using different combinations of keywords as follows: accelerometers, heart rate monitors, GPS, sport training, and field-based sports for relevant articles published from 1990 to the present. A total of 114 publications were identified, and 39 that examined a field-based team sport using a form of IT were analyzed. The articles chosen for analysis examined a field-based team sport using a form of IT. The uses of IT can be divided into 4 categories: (a) quantifying movement patterns (n = 22), (b) assessing the differences between demands of training and competition (n = 12), (c) measuring physiological and metabolic responses (n = 16), and (d) determining a valid definition for velocity and a sprint effort (n = 8). Most studies used elite adult male athletes as participants and analyzed the sports of Australian Rules football, field hockey, cricket, and soccer, with sample sizes between 5 and 20 participants. The limitations of IT in a sports setting include scalability issues, cost, and the inability to receive signals within indoor environments. Integrated technology can contribute to significant improvements in the preparation, training, and recovery aspects of field-based team sports. Future research should focus on using IT with female athlete populations and developing resources to use IT

  18. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  19. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  20. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.

    1994-01-01

    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  1. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  2. Predictive Direct Torque Control Application-Specific Integrated Circuit of an Induction Motor Drive with a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Guo-Ming Sung

    2017-06-01

    Full Text Available This paper proposes a modified predictive direct torque control (PDTC application-specific integrated circuit (ASIC of a motor drive with a fuzzy controller for eliminating sampling and calculating delay times in hysteresis controllers. These delay times degrade the control quality and increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage, and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and predictive scheme. The Verilog hardware description language was used to implement the hardware architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company through a 0.18-μm 1P6M CMOS process that involved a cell-based design method. The measurements revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.

  3. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    Science.gov (United States)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  4. Experimental Investigation of an Automobile Air-Conditioning System using Integrated Brushless Direct Current Motor Rotary Compressor

    Directory of Open Access Journals (Sweden)

    Sukri M.F.

    2016-01-01

    Full Text Available The present study presents an experimental investigation on the effect of condenser air inlet temperature and dimensionless parameter of X on the performance of automobile air-conditioning (AAC system using integrated brushless direct current motor-rotary compressor and electronic expansion valve. The other components of AAC system are from original component of AAC system used for medium size passenger car. The experimental results showed that the increment of the condenser air inlet temperature and X caused an increase in condensing temperature, cooling capacity and compressor work, while decreasing the coefficient of performance (COP. Meanwhile, the evaporating temperature increase with the increment of condenser air inlet temperature, but decrease with decrement of X. In general, AAC system have to work at higher value of X in order to produce more cooling capacity, thereby increment in compressor work also occurs due to energy balance. However, at higher value of X, the COP of the system dropped due to dominant increase in compressor power, as opposed to a rise in cooling capacity. Due to this reason, the best operation of this compressor occurs at X = 4.96 for constant T5 (35ºC, or at T5 = 30ºC for constant X (4.96.

  5. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    Science.gov (United States)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  6. Integrating petroleum and sulfur data to map the Guadalupian-Ochoan (Middle to Upper Permian) Boundary of the Delaware Basis, Trans-Pecos, Texas

    Science.gov (United States)

    Dishron, Joseph B.

    2011-12-01

    The Delaware Basin of the Permian Basin is a classic intra-cratonic basin of West Texas and Southeast New Mexico. Hydrocarbon exploration and production have occurred in the region since the early 1920s, and, as a result, the formations related to these oil and gas reserves have been studied in great detail. Some formations in the Delaware Basin, however, have not been studied in such detail, and this thesis examines one, lesser-known unit that could have economic potential. The Lamar Limestone (Lamar Lime) of the Bell Canyon Formation has commonly been dismissed as a production interval; rather, it has been described as a source and seal rock for the Ramsey Sand of the lower Bell Canyon Formation. However, recent studies found that the Lamar Lime was contributing to production, and it has been described by Trentham (2006) as a potentia "mini Barnett" reservoir. The depths of these deposits are in a range that is ideal for oil accumulation. This study made use of data from wells and test holes drilled in the western Delaware Basin, Culberson County, Texas. Many oil and gas wells have been drilled in the western Delaware Basin, but they are concentrated in the north and east portions of Culberson County. In addition, sulfur wells were drilled in the area in the late 1960s and early 1970s. Analyses of the well logs of these wells and of core and outcrop studies were completed to gain a better understanding of the distribution and economic potential of the Lamar. Both datasets were combined to provide information not readily available in the oil and gas dataset. The Lamar Lime is an excellent marker bed because it underlies thick evaporites. The evaporite sequences are Ochoan in age, and, therefore, the contact of the Lamar Lime (Bell Canyon Formation) and the Castile Formation is the approximate boundary for the Guadalupian-Ochoan Series. The Castile Formation, the Salado Formation, and the Rustler Formation (from oldest to youngest) are the evaporite units that

  7. Legal boundary conditions for direct marketing of 'green current' according to EEG 2012; Rechtliche Rahmenbedingungen fuer die Direktvermarktung von ''Gruenstrom'' nach dem EEG 2012

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Daniel [Landgericht Koeln (Germany); Osborne Clarke, Koeln (Germany). Bereich Energierecht

    2012-07-01

    The new direct marketing regime of the EEG 2012 provides incentives for operators of renewables-based systems to leave the fixed reimbursement scheme and integrate their systems in the markets, especially in the context of marketing of regulating power. However, it remains to be seen if this will reduce the cost of regulating energy supply, or at least keep it at the current level. In any case, plant operators should be careful in choosing their direct marketers and other partners and consultants. Simultaneous supply of regulating power is attractive especially for controllable and in some cases also for fluctuating renewable energy sources. This does comply with the priority principle and also with the prohibition of double marketing as is clearly stated in SEction 8 No. 3a.

  8. Deformation induced dislocation boundaries: Alignment and effect on mechanical properties

    DEFF Research Database (Denmark)

    Winther, G.; Juul Jensen, D.

    1997-01-01

    The dislocation boundaries formed during cold-rolling of FCC metals have been reported to have a preferred macroscopic direction with respect to the sample axes. However, boundaries have also been reported to form on crystallographic slip planes. The directions of the boundaries formed on crystal...

  9. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  10. One-dimensional integral equations for a system of three identical particles in the boundary condition models and the possibility of changing the off-shell behaviour of the two-particle t-matrix

    International Nuclear Information System (INIS)

    Efimov, V.N.; Schulz, H.

    1976-01-01

    It is shown that in the framework of the boundary condition models (BCM) for the two-particle interaction the Schroedinger equation for the system of three identical bosons can be reduced to the one-dimensional integral equation in an exact way. The method used for obtaining such an equation is based on a special consideration of the two-particle off-shell wave functions. The binding energy of the simple three-particle system is calculated. It is indicated that by means of the equation obtained it is possible to change the off-shell behaviour of the two-particle t-matrix and therefore to simulate three particle effects. (Auth.)

  11. The management of metastatic radioiodine-refractory differentiated thyroid cancer requires an integrated approach including both directed and systemic therapies.

    Science.gov (United States)

    Cooray, Shamil D; Topliss, Duncan J

    2017-01-01

    A 58-year-old man with metastatic radioiodine-refractory differentiated thyroid cancer (DTC) presented with left thigh and right flank numbness. He had known progressive and widespread bony metastases, for which he received palliative radiotherapy, and multiple bilateral asymptomatic pulmonary metastases. CT scan and MRI of the spine revealed metastases at right T10-L1 vertebrae with extension into the central canal and epidural disease at T10 and T11 causing cord displacement and canal stenosis but retention of spinal cord signal. Spinal surgery was followed by palliative radiotherapy resulting in symptom resolution. Two months later, sorafenib received approval for use in Australia and was commenced and up-titrated with symptomatic management of mild adverse effects. Follow-up CT scan three months after commencement of sorafenib revealed regression of pulmonary metastases but no evident change in most bone metastases except for an advancing lesion eroding into the right acetabulum. The patient underwent a right total hip replacement, intra-lesional curettage and cementing. After six months of sorafenib therapy, CT scanning showed enlarging liver lesions with marked elevation of serum thyroglobulin. Lenvatinib was commenced and sorafenib was ceased. He now has stable disease with a falling thyroglobulin more than 5 years after metastatic radioiodine-refractory DTC was diagnosed. In DTC, 5% of distant metastases become radioiodine-refractory, resulting in a median overall survival of 2.5-3.5 years. Tyrosine kinase inhibitor (TKI) therapy has recently been demonstrated to increase progression-free survival in these patients but poses some unique management issues and is best used as part of an integrated approach with directed therapy. Directed therapies may have greater potential to control localised disease and related symptoms when compared to systemic therapies.Consider TKI therapy in progressive disease where benefits outweigh risks.Active surveillance and

  12. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  13. Switching moving boundary models for two-phase flow evaporators and condensers

    Science.gov (United States)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  14. Key directions of the Russian economy innovative development with the innovative activity practice of the integrated corporate structures

    Directory of Open Access Journals (Sweden)

    F. I. Shamhalov

    2016-01-01

    Full Text Available The article deals with the problems and the key directions of The article deals with the problems and key directions of innovative development of the Russian industry in connection with the need to reduce the dependence of the national economy on the situation on world commodity markets, as well as to create the conditions and incentives for the introduction and modern technologies development, improving energy and environmental efficiency of the economy and productivity for the development of economic sectors and industries, producing goods with high added value for the implementation of innovative projects and in general - to upgrade the socio-economic system of the country.The following statement is given: the development of innovative high-tech and knowledge-intensive industries must ensure import substitution products at the first stage, primarily in the militaryindustrial complex, and in the future - export-oriented competitive product.The article analyzes the experience of innovative activity of the integrated corporate structures with the participation of the state in the following areas: the integration of the industrial and financial capital; the concentration of capital (through the merger and acquisition of enterprises, strategic alliances; diversification of forms and fields of activity; globalization of activities (creation of subsidiaries in the most attractive countries and working on promising markets; capital internationalization (through the creation of transnational companies.On the basis of generalization of global corporate management experience in the state corporations the article analyzes key conditions and factors that determine the efficiency of the state-owned companies as a whole: a clear statement of goals and objectives of the state as the owner, whose interests go beyond the usual business purposes; fixing of these goals and objectives in the regulations, in the concepts and programs of long-term socioeconomic

  15. Consistent boundary conditions for open strings

    International Nuclear Information System (INIS)

    Lindstroem, Ulf; Rocek, Martin; Nieuwenhuizen, Peter van

    2003-01-01

    We study boundary conditions for the bosonic, spinning (NSR) and Green-Schwarz open string, as well as for (1+1)-dimensional supergravity. We consider boundary conditions that arise from (1) extremizing the action, (2) BRST, rigid or local supersymmetry, or κ(Siegel)-symmetry of the action, (3) closure of the set of boundary conditions under the symmetry transformations, and (4) the boundary limits of bulk Euler-Lagrange equations that are 'conjugate' to other boundary conditions. We find corrections to Neumann boundary conditions in the presence of a bulk tachyon field. We discuss a boundary superspace formalism. We also find that path integral quantization of the open string requires an infinite tower of boundary conditions that can be interpreted as a smoothness condition on the doubled interval; we interpret this to mean that for a path-integral formulation of open strings with only Neuman boundary conditions, the description in terms of orientifolds is not just natural, but is actually fundamental

  16. Integrating Public Health and Health Promotion Practice in the Medical Curriculum: A Self-Directed Team-Based Project Approach

    Directory of Open Access Journals (Sweden)

    Geraldine Kershaw

    2017-08-01

    Full Text Available Preparing health professionals in health promotion (HP and disease prevention is essential for improvement of population health, community HP, and better health care for individuals. The aim of this article is to describe an HP project in the form of a major self-directed project-based learning task integrated within the curriculum in the second year of the medical degree program at United Arab Emirates University. The project introduces students to public health and HP practice and develops students’ literature searching, writing, presentation skills, and team work. Students learn the principles underlying behavioral change, and the design of HP programs and materials, through a lecture format. Small groups of students each choose a specific health topic for their project. Over 11 weeks, students obtain information about their topic from appropriate sources (library, PubMed, Google Scholar, credible health sources such as World Health Organization. Using the principles learned in the lectures, they develop appropriate materials for their target audience: for example, posters, a pamphlet, social media content, or a video or radio message. Students seek advice from specialist faculty as needed. In week 12, each team presents their project background, rationale, and materials to their colleagues in a seminar format open to all faculty. They then submit the materials they developed for assessment. Group marks are assigned for presentations and materials. Key concepts are assessed by multiple choice questions in comprehensive course examinations. By participation in the HP project, many students develop a solid background in prevention. The information retrieval, writing, and presentation skills, as well as experience of team work, are valuable both for the remaining years of their training and their future careers.

  17. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  18. Impact of Integrated Care Model (ICM) on Direct Medical Costs in Management of Advanced Chronic Obstructive Pulmonary Disease (COPD).

    Science.gov (United States)

    Bandurska, Ewa; Damps-Konstańska, Iwona; Popowski, Piotr; Jędrzejczyk, Tadeusz; Janowiak, Piotr; Świętnicka, Katarzyna; Zarzeczna-Baran, Marzena; Jassem, Ewa

    2017-06-12

    BACKGROUND Chronic obstructive pulmonary disease (COPD) is a commonly diagnosed condition in people older than 50 years of age. In advanced stage of this disease, integrated care (IC) is recommended as an optimal approach. IC allows for holistic and patient-focused care carried out at the patient's home. The aim of this study was to analyze the impact of IC on costs of care and on demand for medical services among patients included in IC. MATERIAL AND METHODS The study included 154 patients diagnosed with advanced COPD. Costs of care (general, COPD, and exacerbations-related) were evaluated for 1 year, including 6-months before and after implementing IC. The analysis included assessment of the number of medical procedures of various types before and after entering IC and changes in medical services providers. RESULTS Direct medical costs of standard care in advanced COPD were 886.78 EUR per 6 months. Costs of care of all types decreased after introducing IC. Changes in COPD and exacerbation-related costs were statistically significant (p=0.012492 and p=0.017023, respectively). Patients less frequently used medical services for respiratory system and cardiovascular diseases. Similarly, the number of hospitalizations and visits to emergency medicine departments decreased (by 40.24% and 8.5%, respectively). The number of GP visits increased after introducing IC (by 7.14%). CONCLUSIONS The high costs of care in advanced COPD indicate the need for new forms of effective care. IC caused a decrease in costs and in the number of hospitalization, with a simultaneous increase in the number of GP visits.

  19. Spherical and plane integral operators for PDEs construction, analysis, and applications

    CERN Document Server

    Sabelfeld, Karl K

    2013-01-01

    The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.

  20. Boundary management and integration framework for a joint cyber defence capability for military forces: analysis and synthesis from a through-life capability management perspective

    CSIR Research Space (South Africa)

    Roodt, JHS

    2010-04-01

    Full Text Available friendly use. Psychological Operations (PO). Psychological activities, including political, economic and military actions, in peace, military operations other than war, and war, directed to an enemy and/or foreign friendly and neutral audiences... into information/intelligence presented in the form of situation pictures to decision makers at different levels and positions (C2 nodes) throughout the organisation. These layers are capped by the cognitive layer, which as the name suggests, addresses...

  1. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  2. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  3. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  4. An analysis of the direct and mediated effects of employee commitment and supply chain integration on organisational performance

    OpenAIRE

    Alfalla-Luque, Rafaela; Marín García, Juan Antonio; Medina-Lopez, Carmen

    2015-01-01

    This paper focuses on the interrelationships among the different dimensions of supply chain integration. Specifically, it examines the relationship between employee commitment and supply chain integration dimensions to explain several performance measures, such as flexibility, delivery, quality, inventory and customer satisfaction. Very little research has been conducted onto this topic, since employee commitment is rarely included as an antecedent of the effect of supply chain integration on...

  5. Performance/Design Requirements and Detailed Technical Description for a Computer-Directed Training Subsystem for Integration into the Air Force Phase II Base Level System.

    Science.gov (United States)

    Butler, A. K.; And Others

    The performance/design requirements and a detailed technical description for a Computer-Directed Training Subsystem to be integrated into the Air Force Phase II Base Level System are described. The subsystem may be used for computer-assisted lesson construction and has presentation capability for on-the-job training for data automation, staff, and…

  6. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...

  7. Generalizability of Multiple Measures of Treatment Integrity: Comparisons among Direct Observation, Permanent Products, and Self-Report

    Science.gov (United States)

    Gresham, Frank M.; Dart, Evan H.; Collins, Tai A.

    2017-01-01

    The concept of treatment integrity is an essential component to databased decision making within a response-to-intervention model. Although treatment integrity is a topic receiving increased attention in the school-based intervention literature, relatively few studies have been conducted regarding the technical adequacy of treatment integrity…

  8. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.; Smołka, M.; Cortes, Adriano Mauricio; Paszyński, M.; Schaefer, R.

    2016-01-01

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme

  9. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  10. Boundary layer flow past a circular cylinder in axial flow

    International Nuclear Information System (INIS)

    Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.

    1985-01-01

    This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer

  11. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  12. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  13. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  14. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  15. Boundary as Bridge: An Analysis of the Educational Neuroscience Literature from a Boundary Perspective

    Science.gov (United States)

    Beauchamp, Catherine; Beauchamp, Miriam H.

    2013-01-01

    Within the emerging field of educational neuroscience, concerns exist that the impact of neuroscience research on education has been less effective than hoped. In seeking a way forward, it may be useful to consider the problems of integrating two complex fields in the context of disciplinary boundaries. Here, a boundary perspective is used as a…

  16. The Effect of Recessions on Firms’ Boundaries

    DEFF Research Database (Denmark)

    Knudsen, Eirik Sjåholm; Foss, Kirsten

    2014-01-01

    The economic theory of the firm offers conflicting predictions of how the two major effects of recessions, changes in demand and access to credit, affect firm boundaries. Using data on Norwegian firms in the recent recession, we find support for both increased and reduced vertical integration...... explanation for the conflicting theoretical predictions regarding vertical integration in response to demand and credit shocks....

  17. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    Science.gov (United States)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion

  18. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  19. Optimization of boundary controls of string vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-12-31

    For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.

  20. A general design strategy for block copolymer directed self-assembly patterning of integrated circuits contact holes using an alphabet approach.

    Science.gov (United States)

    Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip

    2015-02-11

    Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.