WorldWideScience

Sample records for dioxide type anatase

  1. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  2. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  3. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  4. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    OpenAIRE

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformatio...

  5. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    NARCIS (Netherlands)

    Yuan, H.; Besselink, R.; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a

  6. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    Directory of Open Access Journals (Sweden)

    Donya Ramimoghadam

    2014-01-01

    Full Text Available Anatase titanium dioxide nanoparticles (TiO2-NPs were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis (TGA, ultraviolet visible spectra (UV-Vis, and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  7. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Po-I; Chung, Li-Ching; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Ma, Chen-Chi M.; Chang, Min-Chao

    2013-01-01

    The nanostructured anatase titanium dioxide/activated carbon composite material for capacitive deionization electrode was prepared in a short time by a lower temperature two-step microwave-assisted ionothermal (sol–gel method in the presence of ionic liquid) synthesis method. This method includes a reaction and a crystallization step. In the crystallization step, the ionic liquid plays a hydrothermal analogy role in driving the surface anatase crystallization of amorphous titanium dioxide nanoparticles formed in the reaction step. The energy dispersive spectroscopic study of the composite indicates that the anatase titanium dioxide nanoparticles are evenly deposited in the matrix of activated carbon. The electrochemical property of the composite electrode was investigated. In comparison to the pristine activated carbon electrode, higher specific capacitance was observed for the nanostructured anatase titanium dioxide/activated carbon composite electrode, especially when the composite was prepared with a molar ratio of titanium tetraisopropoxide/H 2 O equal to 1:15. Its X-ray photoelectron spectroscopic result indicates that it has the highest amount of Ti-OH. The Ti-OH group can enhance the wetting ability and the specific capacitance of the composite electrode. The accompanying capacitive deionization result indicates that the decay of electrosorption capacity of this composite electrode is insignificant after five cycle tests. It means that the ion electrosorption–desorption becomes a reversible process

  8. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  9. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E.

    2014-04-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  10. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment.

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E

    2014-04-03

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  11. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    International Nuclear Information System (INIS)

    Vu, Nam H; Le, Hieu V; Cao, Thi M; Pham, Viet V; Le, Hung M; Nguyen-Manh, Duc

    2012-01-01

    The anatase-rutile phase transformation of TiO 2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO 2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  13. Morphological and structural evolution of the anatase phase of silicon modified titanium dioxide obtained by Sol-gel; Evolucao estrutural e morfologica da fase anatase de dioxido de titanio modificada com silicio obtido pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, S.A.; Oliveira, C.T.; Ciola, R.A.; Cavalheiro, A.A., E-mail: silvanicelopes@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The photonic efficiency of the titanium dioxide photocatalyst is dependent on the crystalline structure and the anatase phase presents high efficiency in the border region between the UV-B and UV-A, with a redox potential sufficient to generate hydroxyl radicals and superoxide ion in order to oxidate organic compounds. In spite of the organic matter degradation effectiveness, the efficiency can be reduced substantially due to the presence of crystalline defects, which act as premature recombination centers of the electron-hole pair. The increasing of calcining temperature allows the elimination of most of these defects, but the structural ordering at temperatures around 600°C eventually leads to the phase transition toward rutile, which is not photoactive. In this work, it was demonstrated through FTIR and XRD that the silicon modifier presence stabilizes the anatase phase even at temperatures as high as 900°C. (author)

  14. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    Science.gov (United States)

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  15. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  16. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Saeko Tada-Oikawa

    2016-04-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2 cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm and rutile (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL of anatase (100 nm, rutile (50 nm, and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm TiO2 particles increased interleukin (IL-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  17. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-04-16

    Titanium dioxide (TiO₂) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO₂ nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO₂ nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO₂ particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO₂ particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO₂ particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO₂ particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO₂ particles also increased IL-8 expression. The results indicated that anatase TiO₂ nanoparticles induced inflammatory responses compared with other TiO₂ particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  18. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  19. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    Science.gov (United States)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  20. Direct formation of new, phase-stable, and photoactive anatase-type Ti1-2XNbXScXO2 solid solution nanoparticles by hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2008-01-01

    A new anatase phase of photoactive Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was directly formed as nanoparticles from precursor solutions of TiOSO 4 , NbCl 5 , and Sc(NO 3 ) 3 under mild hydrothermal conditions at 180 deg. C for 5 h using the hydrolysis of urea. With the increase of the content of niobium and scandium from X = 0 to 0.2, the lattice parameters a 0 and c 0 , the crystallite size, and the optical band gap of anatase gradually increased. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The anatase-type Ti 1-2X Nb X Sc X O 2 (X = 0.05) showed approximately two times and three times as high photocatalytic activity as those of the hydrothermal anatase-type pure TiO 2 and commercially available reference pure TiO 2 (ST-01), respectively. The anatase phase of Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) existed stably up to 900 deg. C during heat treatment in air. New rutile-type Ti 1-2X Nb X Sc X O 2 solid solutions are formed through the phase transformation. The starting temperature of anatase-to-rutile phase transformation for Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was delayed but its completing temperature was accelerated

  1. Anatase titanium dioxide nanoparticles in mice: evidence for induced structural and functional sperm defects after short-, but not long-, term exposure

    Directory of Open Access Journals (Sweden)

    Michelle A Smith

    2015-04-01

    Full Text Available Titanium dioxide (TiO 2 nanoparticles (TNPs are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg−1 body weight was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long- or 24, 48 or 120 h (short-term exposure. Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic germ (P = 0.002 and interstitial space cells (P = 0.04 were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001 increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC, and unreacted acrosomes in treated versus controls (dose-response relationship. A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001 and mitochondrial membrane potential (P < 0.05, and increased reactive oxygen species levels (P < 0.00001 in treated versus control sperm. These results indicate that at 4-8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection.

  2. Anatase titanium dioxide nanoparticles in mice: evidence for induced structural and functional sperm defects after short-, but not long-, term exposure

    Science.gov (United States)

    Smith, Michelle A; Michael, Rowan; Aravindan, Rolands G; Dash, Soma; Shah, Syed I; Galileo, Deni S; Martin-DeLeon, Patricia A

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg−1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4–8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection. PMID:25370207

  3. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  4. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel; Ould-Chikh, Samy; Sofack-Kreutzer, Julien; Abou-Hamad, Edy; Anjum, Dalaver H.; Lopatin, Sergei; Harb, Moussab; Cavallo, Luigi; Basset, Jean-Marie

    2018-01-01

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  5. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2018-05-16

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  6. Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors

    Science.gov (United States)

    Zhang, Yu Xin; Kuang, Min; Hao, Xiao Dong; Liu, Yan; Huang, Ming; Guo, Xiao Long; Yan, Jing; Han, Gen Quan; Li, Jing

    2014-12-01

    A facile and large-scale strategy of mesoporous birnessite-type manganese dioxide (MnO2) nanosheets on one-dimension (1D) H2Ti3O7 and anatase/TiO2 (B) nanowires (NWs) is developed for high performance supercapacitors. The morphological characteristics of MnO2 nanoflakes on H2Ti3O7 and anatase/TiO2 (B) NWs could be rationally designed with various characteristics (e.g., the sheet thickness, surface area). Interestingly, the MnO2/TiO2 NWs exhibit a more optimized electrochemical performance with specific capacitance of 120 F g-1 at current density of 0.1 A g-1 (based on MnO2 + TiO2) than MnO2/H2Ti3O7 NWs. An asymmetric supercapacitor of MnO2/TiO2//activated graphene (AG) yields a better energy density of 29.8 Wh kg-1 than MnO2/H2Ti3O7//AG asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic conductivity and high utilization of MnO2 nanosheets.

  7. Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors

    KAUST Repository

    Zhang, Yu Xin

    2014-12-01

    A facile and large-scale strategy of mesoporous birnessite-type manganese dioxide (MnO2) nanosheets on one-dimension (1D) H2Ti 3O7 and anatase/TiO2 (B) nanowires (NWs) is developed for high performance supercapacitors. The morphological characteristics of MnO2 nanoflakes on H2Ti 3O7 and anatase/TiO2 (B) NWs could be rationally designed with various characteristics (e.g., the sheet thickness, surface area). Interestingly, the MnO2/TiO2 NWs exhibit a more optimized electrochemical performance with specific capacitance of 120 F g-1 at current density of 0.1 A g-1 (based on MnO 2 + TiO2) than MnO2/H2Ti 3O7 NWs. An asymmetric supercapacitor of MnO 2/TiO2//activated graphene (AG) yields a better energy density of 29.8 Wh kg-1 than MnO2/H2Ti 3O7//AG asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic conductivity and high utilization of MnO2 nanosheets. © 2014 Elsevier B.V. All rights reserved.

  8. Influences of metallic doping on anatase crystalline titanium dioxide: From electronic structure aspects to efficiency of TiO2-based dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Nguyen, Thuy Trang; Tran, Van Nam; Bach, Thanh Cong

    2014-01-01

    In this work, we examined the influences of metallic X dopants (X = Be, Mg, Ca, Zn, Al, W and Nb) on the electronic structure of anatase TiO 2 in the framework of density functional theory (DFT). The dopant-induced electronic structure modifications are believed to directly change the photovoltaic (PV) behaviors of the X-doped TiO 2 based DSSCs. The dopants are shown to either directly inhibit the intrinsic Ti 3+ and oxygen vacancy surface defects of TiO 2 or enhance these defects depending on their valence states. These dopant-induced defect modifications, in turn, strongly affect the PV behaviors of the DSSCs. The combined effect of electronic structure and surface-defect modifications determined the photoelectric efficiency of the device. - Highlights: • Ca, Al and W dopants strongly distort the lattice and narrowed the band gap. • Nb negatively shifts while the others positive shift the conduction band bottom. • Nb and W dopants reduce Ti 4+ to Ti 3+ without forming oxygen vacancy. • Be, Mg, Ca, Zn and Al dopants induce oxygen vacancy without Ti 3+ . • Nb and W inhibit the surface defects while the others do the reversed manner

  9. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava

    2016-01-01

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO_2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC_5_0 of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC_5_0 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under

  10. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2016-09-15

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO{sub 2}) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC{sub 50} of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC{sub 50} values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest

  11. High-pressure phase transformations of fluorite-type dioxides

    International Nuclear Information System (INIS)

    Lin-Gun Liu

    1980-01-01

    Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)

  12. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.

    Science.gov (United States)

    Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh

    2017-07-15

    Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.

    Science.gov (United States)

    Zhang, Daoyu; Yang, Minnan; Dong, Shuai

    2015-11-21

    Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.

  14. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology of the c......The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...... sweep voltammetry, impedance measurements. The microstructure and surface morphology of the coating were similar irrespective of the nature of the substrate, while the photocatalytic behaviour was found to vary depending on the substrate type. In general the TiO2 coating on stainless steel was shown...

  15. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  16. Simultaneous synthesis of anatase colloidal and multiple-branched rutile TiO{sub 2} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trong Tung; Duong, Ngoc Huyen [School of Engineering Physics, Hanoi University of Science and Technology, Hanoi (Viet Nam); Mai, Xuan Dung [Dept. of Chemistry, Hanoi Pedagogical University No2, Vinh Phuc (Viet Nam)

    2017-03-15

    Facile synthesis of titanium dioxide (TiO{sub 2} ) nanostructures with controllability over their cystallinity, dimensions, and shape is in demand for diverse optoelectronic applications. Anatase colloidal particles and precipitates of rutile bundles were synthesized simultaneously using HCl catalyzed sol–gel process with titanium tetrachloride as Ti precursor. The crystallinity and the morphology of these two separable TiO{sub 2} phases were studied by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The results show that by varying HCl concentration during synthesis, dimensions of colloidal anatase can be tuned from spherical particles with a diameter of 2–5 nm to nanorods of dimension of 4 nm (width) × 14 nm (length). The rutile bundles whose size increased with aging time consisted of multiple branches with elongation along c-axis. Both anatase nanorods and rutile bundles can be applied as highly efficient photocatalysts or electron conduits.

  17. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  18. Preparation and Performance Validation of Nano-Perovskite Type for Carbon Dioxide Reforming of Methane.

    Science.gov (United States)

    Kim, Taegyu; Park, Daeil

    2018-02-01

    This paper describes the La0.8Sr0.2NiO3 perovskite-type catalysts supported on α-Al2O3 that were prepared by polyol method and used as a catalyst for the carbon dioxide reforming of methane. The effect of the molar concentration of polyvinyl-pyrrolidone (PVP) on the reducibility, structural properties and carbon deposition was characterized by XRD, and TGA. The carbon dioxide reforming of methane on the catalyst was performed at the different concentration of PVP. At the 1 M PVP, main characteristic peaks of perovskite structure were established without impurities, thus showing the highest catalytic activity; 87.7% and 92.1% in CH4 and CO2 conversion, respectively. After the reaction, carbon deposition was 0.4-0.6%, while 6.2% on the existing Ni catalyst, indicating the perovskite-type catalyst has a superior characteristic preventing it from the carbon deposition at the carbon dioxide reforming of methane.

  19. Chemical and electrochemical synthesis of nano-sized TiO{sub 2} anatase for large-area photon conversion

    Energy Technology Data Exchange (ETDEWEB)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A. [Hahn-Meitner-Institut, Div. of Solar Energy Research, Berlin (Germany)

    2006-05-15

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO{sub 2} particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO{sub 2} (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO{sub 2} with anatase-phase as well. (authors)

  20. Chemical and electrochemical synthesis of nano-sized TiO2 anatase for large-area photon conversion

    International Nuclear Information System (INIS)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A.

    2006-01-01

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO 2 particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO 2 (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO 2 with anatase-phase as well. (authors)

  1. Synthesis of anatase and rutile TiO{sub 2} nanostructures from natural ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuingsih, Sayekti, E-mail: sayekti@mipa.uns.ac.id; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya [Inorganic Materials Research Group, Faculty of Mathematic and Natural Science, Sebelas Maret University (Indonesia); Sulistiyono, Eko; Firdiyono, Florentinus [Metallurgy Extraction Laboratory, Central of Metallurgy Research LIPI, Serpong (Indonesia)

    2016-02-08

    Nanostructure anatase and rutile type TiO{sub 2} were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO{sub 2} and rutile TiO{sub 2} (high crystallinity) with the diameters of 20–100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO{sub 2} from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO{sub 2} from low cost material.

  2. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  3. Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Savić, Tatjana D.; Čomor, Mirjana I.; Abazović, Nadica D.; Šaponjić, Zoran V.; Marinović-Cincović, Milena T. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Veljković, Dušan Ž.; Zarić, Snežana D. [Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11058 Belgrade (Serbia); Janković, Ivana A., E-mail: ivanaj@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2015-05-05

    Highlights: • Formation of the charge-transfer complexes results in a red shift of the TiO{sub 2} absorption. • Extended aromatic ring systems reduce the effective bang gap. • For the CT complexes formed stability constants in the order 10{sup 3} M{sup −1} were determined. • Binding was found to be through bidentate binuclear-bridging complexes. • Ligands interact with different active sites on the TiO{sub 2} surface that express energetic heterogeneity. - Abstract: Sensitization of TiO{sub 2} crystals and nanoparticles with appropriately chosen organic molecules can lead to a significant shift of their absorption threshold from the UV to the visible, thus improving the absorption of the solar spectrum as well as the efficiency of photocatalytic and photovoltaic devices. Herein, the surface modification of nanocrystalline TiO{sub 2} particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 1-hydroxy-2-naphthoic acid and 1,4-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. From both absorption measurements and steady-state quenching measurements of modifier fluorescence upon binding to TiO{sub 2} in methanol/water = 90/10 solutions, stability constants in the order of 10{sup 3} M{sup −1} have been determined at pH 2. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO{sub 2} nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent charge-transfer (CT) complex. The binding structures were investigated by using FTIR spectroscopy. Thermal stability of CT-complexes was investigated by using TPD analysis (TG/DTA/MS). Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were compared

  4. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.

    Science.gov (United States)

    Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M

    2017-08-03

    While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

  5. Electronic hole localization in rutile and anatase TiO2 - Self-interaction correction in Delta-SCF DFT

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Jacobsen, Karsten Wedel; Rossmeisl, Jan

    2011-01-01

    We study electronic hole localization in rutile and anatase titanium dioxide by means of Δ-Self-Consistent Field Density Functional Theory. In order to compare stabilities of the localized and the delocalized hole states we introduce a simple correction to the wrong description of the localizatio...

  6. Sorption behaviour of uranium and thorium on cryptomelane-type hydrous manganese dioxide from aqueous solution

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Abdel-Hamid, M.M.; Aly, H.F.

    1993-01-01

    The kinetics of sorption of uranium and thorium from aqueous nitrate solutions on cryptomelane-type hydrous manganese dioxide (CRYMO) was studied. The exchange of uranium is particle diffusion controlled while that of thorium is chemical reaction at the exchange sites. Sorption of uranium and thorium by CRYMO has been also studied as a function of metal concentrations and temperature. The sorption of both cations is found to be an endothermic process and increases markedly with temperature between 30 and 60 degree C. The sorption results have been analysed by the langmuir adsorption isotherm over the entire range of uranium and thorium concentrations investigated. 35 refs., 8 figs., 5 tabs

  7. Influence of concentration of H2O2 on the phase stability of TiO2-anatase

    International Nuclear Information System (INIS)

    Montanhera, M.A.; Pereira, E.A.; Paula, F.R.; Spada, E.R.; Faria, R.M.

    2014-01-01

    Titanium dioxide (TiO 2 ) is a semiconductor what has attracted increasing attention because of its physical and chemical properties. In this work, we report the preparation of TiO 2 nanoparticles by dissolving of titanium oxysulfate (TiOSO 4 ) in aqueous solution containing hydrogen peroxide (H 2 O 2 ) and subsequent thermal treatment of the precipitated complex. The results of X-ray diffractometry showed that the first stage of heat treatment at 600°C generates the anatase phase at all concentrations of H 2 O 2 investigated. On the other hand, when treated at 825 deg C, prepared samples with lower concentrations of H 2 O 2 (0.009 and 0.017 mol/L) showed only the rutile phase and for concentrations starting from 0.088 mol/L, is obtained only anatase phase. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only for concentrations higher than 0.122 mol/L. The stability of the phase anatase is related to the crystallite size obtained of the first stage of heat treatment. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only at higher concentrations than 0.122 mol/L. The stability of the phase anatase is related to the crystallite sizes obtained in the first step of heat treatment. (author)

  8. Sol–gel synthesized mesoporous anatase titanium dioxide ...

    Indian Academy of Sciences (India)

    for dye sensitized solar cell (DSSC) applications. R GOVINDARAJ1,∗, M ... DSSC than rutile phase. In this work, we have synthesized hierarchically structured ... Hydrolysis and polycondensation reaction mechanism of sol–gel process. 2.

  9. TiO2-anatase modified by carbon as the photo catalyst under visible light

    International Nuclear Information System (INIS)

    Morawski, A.W.; Janus, M.; Tryba, B.; Kalucki, K.; Tryba, B.; Inagaki, M.

    2006-01-01

    The photo-catalytic oxidation of phenol in water under a visible light over anatase-type titanium dioxide (Tytanpol A11, Poland), modified by carbon deposited via n-hexane carbonization, was investigated. The catalysts, which had small (0-0.2 mass%) and high (0.69-0.85 mass%) contents of carbon showed a little lower catalytic photo-activity than pristine TiO 2 . However, the catalyst with high content of carbon (0.85 mass%) gave almost 14-times lower turbidity in the phenol solution after the photo-catalyst sedimentation. These two factors depend on the carbon content and have an influence on the 'practical efficiency' of the catalysts. The 'practical efficiency' of the catalyst under visible light, calculated from these two factors, was therefore 14-times higher for the catalyst containing 0.85 mass% carbon (whereas for UV radiation, it was found to be lower - 0.2 mass% -; this is the result of a previous work). The surface modification of the catalyst with 0.85% carbon seemed to be stable under visible light. The deposition of carbon on TiO 2 by carbonization of n-hexane was supposed to lead to obtain the catalyst, which could be easily used in a water-treatment system under visible light. (authors)

  10. The study of Ashby-type sintering diagrams for uranium dioxide

    International Nuclear Information System (INIS)

    Georgeoni, P.

    1980-01-01

    Computer modelling of binary and ternary Ashby-type sintering diagrams for stoechiometric and hyperstoechiometric uranium dioxide (in the range O/U = 2, 0-2, 10). Material data and mass transfer equations, selected from the literature, were used. Sintering isochronous curves were calculated and traced as well. Improvement of a modern dilatometric method by reading and processing experimental curves on a computer and by determining for them a criterion of proximity to the theoretical model equation. It was possible: to develop a reliable method of determination for the dominant mechanism, diffusion coefficient and real process activation energy; to draw up the real sintering diagram; to understand the quantitative and qualitative changes occuring during the actual sintering process of UO 2 , concerning massing and modification of pore shape; to recommend the technological parameters of the thermal regime concerning the elimination of lubricant and binder additives in order to obtain high quality sintered tablets. (author)

  11. Anatase nanoparticles from hydrated titania gels

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Boháček, Jaroslav; Šubrt, Jan; Szatmáry, Lórant; Bezdička, Petr; Murafa, Nataliya

    2011-01-01

    Roč. 161, č. 1 (2011), s. 84-90 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase particles Subject RIV: CA - Inorganic Chemistry Impact factor: 3.407, year: 2011

  12. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2

    Directory of Open Access Journals (Sweden)

    A. R. Zanatta

    2017-07-01

    Full Text Available Titanium-dioxide (TiO2 is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases − Rutile, Anatase and, less commonly, Brookite − and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.

  13. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells.

    Science.gov (United States)

    Gerloff, Kirsten; Fenoglio, Ivana; Carella, Emanuele; Kolling, Julia; Albrecht, Catrin; Boots, Agnes W; Förster, Irmgard; Schins, Roel P F

    2012-03-19

    Titanium dioxide has a long-standing use as a food additive. Micrometric powders are, e.g., applied as whiteners in confectionary or dairy products. Possible hazards of ingested nanometric TiO(2) particles for humans and the potential influence of varying specific surface area (SSA) are currently under discussion. Five TiO(2)-samples were analyzed for purity, crystallinity, primary particle size, SSA, ζ potential, and aggregation/agglomeration. Their potential to induce cytotoxicity, oxidative stress, and DNA damage was evaluated in human intestinal Caco-2 cells. Only anatase-rutile containing samples, in contrast to the pure anatase samples, induced significant LDH leakage or mild DNA damage (Fpg-comet assay). Evaluation of the metabolic competence of the cells (WST-1 assay) revealed a highly significant correlation between the SSA of the anatase samples and cytotoxicity. The anatase/rutile samples showed higher toxicity per unit surface area than the pure anatase powders. However, none of the samples affected cellular markers of oxidative stress. Our findings suggest that both SSA and crystallinity are critical determinants of TiO(2)-toxicity toward intestinal cells. © 2012 American Chemical Society

  14. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Costa, Carla; Sharma, Vyom; Kiliç, Gözde; Pásaro, Eduardo; Teixeira, João Paulo; Dhawan, Alok; Laffon, Blanca

    2013-07-01

    Titanium dioxide (TiO2) are among most frequently used nanoparticles (NPs). They are present in a variety of consumer products, including food industry in which they are employed as an additive. The potential toxic effects of these NPs on mammal cells have been extensively studied. However, studies regarding neurotoxicity and specific effects on neuronal systems are very scarce and, to our knowledge, no studies on human neuronal cells have been reported so far. Therefore, the main objective of this work was to investigate the effects of two types of TiO₂ NPs, with different crystalline structure, on human SHSY5Y neuronal cells. After NPs characterization, a battery of assays was performed to evaluate the viability, cytotoxicity, genotoxicity and oxidative damage in TiO₂ NP-exposed SHSY5Y cells. Results obtained showed that the behaviour of both types of NPs resulted quite comparable. They did not reduce the viability of neuronal cells but were effectively internalized by the cells and induced dose-dependent cell cycle alterations, apoptosis by intrinsic pathway, and genotoxicity not related with double strand break production. Furthermore, all these effects were not associated with oxidative damage production and, consequently, further investigations on the specific mechanisms underlying the effects observed in this study are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets

    Czech Academy of Sciences Publication Activity Database

    Lásková, Barbora; Zukalová, Markéta; Kavan, Ladislav; Chou, A.; Liska, P.; Wei, Z.; Bin, L.; Kubát, Pavel; Ghadiri, E.; Moser, J. E.; Grätzel, M.

    2012-01-01

    Roč. 16, č. 9 (2012), s. 2993-3001 ISSN 1432-8488 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR(CZ) GAP108/12/0814 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * anatase * dye-sensitized solar cell Subject RIV: CG - Electrochemistry Impact factor: 2.279, year: 2012

  16. Electron Kinetics in Dye Sensitized Solar Cells Employing Anatase with (1 0 1) and (0 0 1) Facets

    Czech Academy of Sciences Publication Activity Database

    Lásková, Barbora; Moehl, T.; Kavan, Ladislav; Zukalová, Markéta; Liu, X.; Yella, A.; Comte, P.; Zukal, Arnošt; Nazeeruddin, M. K.; Graetzel, M.

    2015-01-01

    Roč. 160, APR 2015 (2015), s. 296-305 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S; GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : Titanium dioxide anatase * dye-sensitized solar cells * electrochemical impedance spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  17. Preparation of anatase TiO{sub 2} thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Toshihiro [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)]. E-mail: tmiyata@neptune.kanazawa-it.ac.jp; Tsukada, Satoshi [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2006-02-01

    Anatase titanium dioxide (TiO{sub 2}) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO{sub 2} pellets as the source material. Highly transparent TiO{sub 2} thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O{sub 2}) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO{sub 2} thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO{sub 2} thin film with a resistivity of 2.6 x 10{sup -1} {omega} cm was prepared at a substrate temperature of 400 deg. C without the introduction of O{sub 2} gas.

  18. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  19. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  20. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  1. The isolated anatase for dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ilmi, Irfan, E-mail: irfan.ilmi149@gmail.com [Postgraduate Program, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Kartin, Indriana; Suyanta [Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Department of Chemistry,Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Ohtani, Bunsho; Wang, Kunlei [Graduate School of Environmental and Earth Science, Hokkaido University Japan (Japan)

    2015-09-30

    The isolation of crystallite anatase from commercial TiO{sub 2} P25 Degussa was investigated. The aim of this research was to study of isolated anatase based DSSC as an effort to develop industrial DSSC. The crystal phase, crystallite size and crystal shape both of original P25 and isolated anatase were characterized by XRD and TEM. By observing DSSC parameters such as FF, Jsc and Voc resulted in cell test, the efficiency of samples based DSSC was known. The isolation of anatase crystal was done by dissolving P25 in ammonia catalyzed hydrogen peroxide solution for 15 hours followed by washing and drying. DSSC cell performance was evaluated by applying the isolated anantase and original P25 as photoanode in the Gratzel cell system. The observation of cell efficiency was measured under 100 mW /cm{sup 2} with active area 1.5 cm{sup 2}. X-ray diffraction pattern showed obviously that no rutile contaminant in produced isolated anatase. TEM image shows typical anatase crystal with the particle size 21 nm. Surface area measurement exhibits that surface area of isolated anatase was 64.7m{sup 2}/g. I-V measurement showed that the efficiency of anatase based cell and P25 based cell is 0.79% and 0.51% respectively.

  2. The mechanism of hydrophilic and hydrophobic colloidal silicon dioxide types as glidants

    OpenAIRE

    Jonat, Stéphane

    2005-01-01

    AEROSIL® 200 is a hydrophilic highly disperse colloidal silicon dioxide (CSD) that is commonly used to improve flowability. This conventional CSD has low bulk and tapped densities and can produce dust if handled improperly. In order to improve its handling, special mechanical processes were developed for the homogeneous compaction of CSD. As a result, two new products have been recently introduced: AEROSIL® 200 VV and AEROSIL® R 972 V. AEROSIL® 200 VV is hydrophilic and chemically identical t...

  3. Carbon Dioxide and Methane Flux Related to Forest Type and Managed and Unmanaged Conditions in the Great Dismal Swamp, USA

    Science.gov (United States)

    Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.

    2017-12-01

    The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the

  4. Preparation and characterization of phase-pure anatase and rutile TiO2 powder by new chemistry route

    International Nuclear Information System (INIS)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R.; Spada, E.R.

    2014-01-01

    Titanium dioxide (TiO 2 ) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO 2 nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO 4 powder in H 2 O 2 solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO 2 nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO 2 as electron acceptor and as transport channels. (author)

  5. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  6. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  7. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  8. Correlation of lattice distortion with photocatalytic activity of titanium dioxide

    International Nuclear Information System (INIS)

    Wang Xia; Shui Miao; Li Rongsheng; Song Yue

    2008-01-01

    The photocatalytic activity of titanium dioxide dispersions on X-3B pigment degradation has been investigated. A variety of factors that would influence the photocatalytic activity such as crystallite size, lattice distortion, and anatase content are discussed in detail. It is found that lattice distortion is the most important one among these factors and is expected to inhibit the hole and electron pair recombination. It determines, to some extent, the photocatalytic efficiency of titanium dioxide dispersions

  9. Organocatalyzed Domino [3+2] Cycloaddition/Payne-Type Rearrangement using Carbon Dioxide and Epoxy Alcohols.

    Science.gov (United States)

    Kleij, Arjan Willem; Sopeña, Sergio; Cozzolino, Mariachiara; Escudero-Adán, Eduardo C; Martínez Belmonte, Marta; Maquilón, Cristina

    2018-05-09

    An unprecedented organocatalytic approach towards highly substituted cyclic carbonates from tri- and tetra-substituted oxiranes and carbon dioxide has been developed. The protocol involves the use of a simple and cheap superbase under mild, additive- and metal-free conditions towards the initial formation of a less substituted carbonate product that equilibrates to a tri- or even tetra-substituted cyclic carbonate under thermodynamic control. The latter are conveniently trapped in situ providing overall a new domino process for synthetically elusive heterocyclic scaffolds. Control experiments provide a rationale for the observed cascade reactions, which demonstrate high similarity with the well-known Payne rearrangement of epoxy alcohols. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Excess electrons in reduced rutile and anatase TiO2

    Science.gov (United States)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  11. The Chapman-type rearrangement in pseudosaccharins: The case of 3-(methoxy)-1,2-benzisothiazole 1,1-dioxide

    Science.gov (United States)

    Kaczor, A.; Proniewicz, L. M.; Almeida, R.; Gómez-Zavaglia, A.; Cristiano, M. L. S.; Matos Beja, A. M.; Ramos Silva, M.; Fausto, R.

    2008-12-01

    The thermal Chapman-type rearrangement of the pseudosaccharin 3-(methoxy)-1,2-benzisothiazole 1,1-dioxide (MBID) into 2-methyl-1,2-benzisothiazol-3(2 H)-one 1,1-dioxide (MBIOD) was investigated on the basis of computational models and knowledge of the structure of the reactant and product in the isolated and solid phases. X-ray diffraction was used to obtain the structure of the substrate in the crystalline phase, providing fundamental structural data for the development of the theoretical models used to investigate the reaction mechanism in the condensed phase. The intra- and different intermolecular mechanisms were compared on energetic grounds, based on the various developed theoretical models of the rearrangement reactions. The energetic preference ( ca. 3.2 kJ mol -1, B3LYP/6-31+G(d,p)) of inter- over intramolecular transfer of the methyl group is predicted for the " quasi-simultaneous" transfer of the methyl groups model, explaining the potential of MBID towards [1,3']-isomerization to MBIOD in the condensed phases. The predicted lower energy of MBIOD relative to MBID ( ca. 60 kJ mol -1), due to the lower steric hindrance in the MBIOD molecule, acts as a molecular motor for the observed thermal rearrangement.

  12. Functionalization of nanoparticle titanium dioxide with different bifunctional organic molecules and trimers of transition compounds for obtaining new materials

    International Nuclear Information System (INIS)

    Rivera Martinez, Maria Cinthya

    2012-01-01

    Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es

  13. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  14. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Science.gov (United States)

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  15. Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb_2O_5-doped-TiO_2

    International Nuclear Information System (INIS)

    Silva, Andre Luiz da; Hotza, Dachamir; Castro, Ricardo H.R.

    2017-01-01

    Highlights: • Anatase-rutile phase transition diagram was built for nano Nb_2O_5-doped-TiO_2. • Nb_2O_5-doping postpones the anatase-to-rutile transition. • The stability crossover for TiO_2 was 17.3 nm, for 2 mol% Nb_2O_5-doped-TiO_2 ∼30 nm. • The surface energy for Nb_2O_5-doped-TiO_2 decreases systematically with Nb concentration. - Abstract: Titanium dioxide nanoparticles are widely used for photocatalysis, and the relative fraction of titanium dioxide polymorph, i.e. anatase, rutile, or brookite, significantly affects the final performance. Even though conventional phase diagrams indicate a higher stability for the rutile polymorph, it is well established that nanosizes benefit the anatase phase due to its smaller surface energy. However, doping elements are expected to change this behavior, once changes in both surface and bulk energies may occur. Nb_2O_5 is commonly added to TiO_2 to allow property control. However, the effect of niobium on the relative stability of anatase and rutile phases is not well understood from the thermodynamic point of view. The objective of this work was to build a new predictive nanoscale phase diagram for Nb_2O_5-doped TiO_2. Water adsorption microcalorimetry and high temperature oxide melt solution were used to obtain the surface and bulk enthalpies. The phase diagram obtained shows the stable titania polymorph as a function of the composition and size.

  16. Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO 2

    Science.gov (United States)

    Song, Yan-Yan; Hildebrand, Helga; Schmuki, Patrik

    2010-02-01

    Experimental conditions were studied for optimized attachment of 3-aminopropyltriethoxysilane (APTES) onto amorphous, anatase and rutile titanium dioxide (TiO 2) surfaces. The attachment process and extent was characterized using X-ray photoelectron spectroscopy (XPS). In particular, the effect of attachment time, silane concentration, reaction temperature and the TiO 2 crystalline structure on the growth kinetics of the silane layers was studied. The measurements reveal that typically monolayers are more dense on amorphous than on crystalline TiO 2. The results show that critical experimental conditions exist where APTES attachment to the TiO 2 surface changes from a monolayer to a multilayer growth mode. The obtained results and parameters to produce optimized APTES layers are of a high practical relevance as APTES attachment often constitutes the initial step for organic modification of TiO 2 surface with biorelevant molecules such as proteins, enzymes or growth factors.

  17. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    Science.gov (United States)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  18. The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self-Cleaning Applications

    Directory of Open Access Journals (Sweden)

    Dejan Verhovšek

    2012-01-01

    Full Text Available We report on an improved sol-gel method for the production of highly photocatalytic titanium dioxide (TiO2 anatase nanoparticles which can provide appropriate control over the final characteristics of the nanoparticles, such as particle size, crystallinity, crystal structure, morphology, and also the degree of agglomeration. The synthesized anatase nanoparticles were characterized using various techniques, such as X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM, and were tested in coatings for self-cleaning glass and ceramic surfaces. The coatings were prepared using a soft chemistry route and are completely transparent to visible light and exhibit a high photocatalytic effect, which was determined by contact-angle measurements. Finally, it is worth mentioning that both the sol-gel synthesis method and the coating-preparation method are based on a wet chemical process, thus presenting no risk of handling the TiO2 anatase nanoparticles in their potentially hazardous powder form at any stage of our development. Low-price, easy-to-handle, and nontoxic materials were used. Therefore, our work represents an important contribution to the development of TiO2 anatase nanoparticle coatings that provide a high photocatalytic effect and can thus be used for numerous applications.

  19. Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors

    KAUST Repository

    Zhang, Yu Xin; Kuang, Min; Hao, Xiao Dong; Liu, Yan; Huang, Ming; Guo, Xiao Long; Yan, Jing; Han, Gen Quan; Li, Jing

    2014-01-01

    asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic

  20. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles.

    Science.gov (United States)

    Wormington, Alexis M; Coral, Jason; Alloy, Matthew M; Delmarè, Carmen L; Mansfield, Charles M; Klaine, Stephen J; Bisesi, Joseph H; Roberts, Aaron P

    2017-06-01

    Nano-titanium dioxide (TiO 2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO 2 is used in ultraviolet (UV) screening applications, whereas anatase TiO 2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO 2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO 2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO 2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO 2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO 2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC. © 2016 SETAC.

  1. Laser-assisted synthesis of ultra-small anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Tomko, J.; Naddeo, J.J.; Jimenez, R.; Bubb, D.M. [Department of Physics, Rutgers University, Camden, NJ 08102 (United States); Steiner, M.; Fitz-Gerald, J. [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); O’Malley, S.M., E-mail: omallese@camden.rutgers.edu [Department of Physics, Rutgers University, Camden, NJ 08102 (United States)

    2015-09-01

    Highlights: • Transformation of polymorphic TiO{sub 2} NPs to ultra-small particles via laser processing. • Bandgap shift explained by quantum confinement and the Brus model. • High-frequency shockwave ripples related to laser induced stress-wave reflections. • Visible light sensitization observed for LAL prepared polymorphic particles. - Abstract: Titanium dioxide is one of the most important materials today in terms of green technology. In this work, we synthesis ultra-small titanium dioxide nanoparticles (NPs) via a two step process involving infrared laser ablation of a bulk titanium target in DDI water and subsequent irradiation of the colloidal solution with visible light. The as-prepared NPs contain defect states related to oxygen vacancies which lead to visible light sensitization as observed by photodegradation of methylene blue. Irradiation of the colloidal TiO{sub 2} solution, with a 532 nm picosecond laser, lead to fragmentation and ultimate formation of ultra-small (<3 nm) anatase particles. Shadowgraph was utilized to capture shockwave and cavitation bubble propagation during both the ablation and fragmentation processes. High-frequency ripples within the primary shockwave are identified as coming from laser induced stress-wave reflections within the metal target. A blueshift of the bandgap, for the ultra-small NPs, is explained by quantum confinement effects and rationalized using the Brus model.

  2. High-pressure polymorphs of anatase TiO2

    DEFF Research Database (Denmark)

    Arlt, T.; Bermejo, M.; Blanco, M. A.

    2000-01-01

    The equation of state of anatase TiO2 has been determined experimentally-using polycrystalline as well as single-crystal material-and compared with theoretical calculations using the ab initio perturbed ion model. The results are highly consistent, the zero-pressure bulk modulus being 179(2) GPa ...

  3. Characterization of nanocrystalline anatase titania: an in situ HTXRD study

    International Nuclear Information System (INIS)

    Jagtap, Neelam; Bhagwat, Mahesh; Awati, Preeti; Ramaswamy, Veda

    2005-01-01

    Nanocrystalline titania was synthesized by the hydrolysis of titanium iso-propoxide using ultrasonication. The powder XRD patterns of the sample were recorded in static air and vacuum using a Philips X-pert Pro diffractometer equipped with a high-temperature attachment (HTK16) from room temperature (298 K) to 1173 K and were analyzed by the Rietveld refinement technique. The anatase to rutile phase transformation was observed at 1173 K for the data collected in static air. Only 3% of anatase titania transformed to rutile when the experiments were carried out at 1173 K in vacuum. The phase transformation from anatase to rutile is accompanied by a continuous increase in the crystallite size of the anatase phase from 9 nm at room temperature to 28 nm at 873 K and then to 50 nm at 1173 K in air while the process of crystallite growth was suppressed in vacuum. A linear increase in the unit cell parameters 'a' and 'c', and thus, an overall linear increase in the unit cell volume was observed as a function of temperature in static air as well as vacuum. The lattice and volume thermal expansion coefficients (TEC), α a , α c and α V at 873 K are 8.57 x 10 -6 , 8.71 x 10 -6 and 25.91 x 10 -6 K -1 in air and 18.01 x 10 -6 , 14.95 x 10 -6 and 51.13 x 10 -6 K -1 in vacuum, respectively

  4. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  5. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    Science.gov (United States)

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  6. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  7. Fabrication and characterization of nanostructured anatase TiO{sub 2} films prepared by electrochemical anodization and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yurddaskal, Metin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dikici, Tuncay, E-mail: tuncay.dikici@ikc.edu.tr [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Yildirim, Serdar [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Yurddaskal, Melis [Celal Bayar University, Department of Mechanical Engineering, Muradiye, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35390, Izmir (Turkey)

    2015-12-05

    In this study, nanostructured anatase titanium dioxide (TiO{sub 2}) films were fabricated by electrochemical anodization of titanium first, and then annealed at 500 °C for 2 h. Effect of electrolyte concentration, anodization time and electrolyte temperature on the surface morphology of the resulting TiO{sub 2} thin films were investigated. The phase structures, surface morphology and chemical composition were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the structure of nanostructured TiO{sub 2} films depended strongly on the anodization parameters. It was found that there were micro-scale pores (<10 μm) and nano-scale pores (diameter in the range from 40 to 70 nm) on the anodized titanium surfaces. This study indicated that structures, surface morphology, and surface area of the nanostructured anatase TiO{sub 2} films played an important role on their photocatalytic performance. The results clearly proved that nanostructured anatase TiO{sub 2} film prepared with optimum process parameters resulted in enhancement of the photocatalytic activity. - Highlights: • TiO{sub 2} thin films were prepared on titanium substrates by electrochemical anodization at 30 V. • Effect of various anodization parameters on the photocatalytic activity of titanium was investigated. • Micro- and nanoscale TiO{sub 2} pores formed on the titanium by anodizing. • Surface morphology of the TiO{sub 2} films plays an important role on the photocatalytic performance. • The sample anodized for 240 min showed the highest photocatalytic activity.

  8. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  9. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  10. Hydrothermal Preparation of Apatite Composite with Magnetite or Anatase

    International Nuclear Information System (INIS)

    Murakami, Setsuaki; Ishida, Emile H.; Ioku, Koji

    2006-01-01

    Microstructure designed porous hydroxyapatite (Ca10(PO4)6(OH)2) composites with magnetite (Fe3O4) particles or anatase (TiO2) dispersion were prepared by hydrothermal treatment. These composites had micro-pores of about 0.1-0.5 μm in size. Magnetite / Hydroxyapatite composites should be suitable for medical treatment of cancer, especially in bones, because HA can bond to bones directly and magnetite can generate heat. They must be used for hyperthermia therapies of cancer in bones. Meanwhile, anatase / Hydroxyapatite composite should be suitable for environmental purification, because HA rod-shape particles expose the specific crystal face, which adsorbs organic contaminants and so on

  11. Preparation and characterization of phase-pure anatase and rutile TiO{sub 2} powder by new chemistry route; Preparacao e caracterizacao de nanoparticulas de TiO{sub 2} nas fases anatase e rutila por uma nova rota quimica

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R., E-mail: sevlarede2@yahoo.com.br [Universidade Estadual Paulista Julio de Mesquista Filho (UNESP), Ilha Soltiera, SP (Brazil). Faculdade de Engenharia. Departameinto de Fisica e Quimica; Spada, E.R. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Institutlo de Fisica

    2014-07-01

    Titanium dioxide (TiO{sub 2}) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO{sub 2} nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO{sub 4} powder in H{sub 2}O{sub 2} solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO{sub 2} nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO{sub 2} as electron acceptor and as transport channels. (author)

  12. Synthesis of anatase nanopowders by sol-gel method and influence of temperatures of calcination to their photocatalitic properties

    Directory of Open Access Journals (Sweden)

    Golubović A.

    2015-01-01

    Full Text Available The titanium dioxide (TiO2 nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor, varying the temperature оf calcination (from 500 to 550°C with the step of 10 °C. XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase. The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results and added the presence of small amount of highly disordered brookite phase in all samples. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 1.5 and 4.5 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16. The sample calcined at temperature of 510°C showed the best photocatalytic performance. [Projekat Ministarstva nauke Republike Srbije, br. III45018 i br. OI171032

  13. Electrical conductivity studies of anatase TiO2 with dominant highly reactive {0 0 1} facets

    International Nuclear Information System (INIS)

    Pomoni, K.; Sofianou, M.V.; Georgakopoulos, T.; Boukos, N.; Trapalis, C.

    2013-01-01

    Highlights: ► Anatase TiO 2 with reactive {0 0 1} facets were synthesized by a solvothermal method. ► The structure and the electrical conductivity were studied. ► Different conduction mechanisms act at different temperature regions. ► Environment and calcination influence significantly the conductivity. - Abstract: Nanostructured powders of titanium dioxide anatase nanoplates with dominant highly reactive {0 0 1} facets were fabricated using a solvothermal method. Two kinds of samples, as prepared and calcinated at 600 °C, were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrical conductivity in vacuum and in air. The dependence of the conductivity versus the inverse of temperature in the temperature range 150–440 K indicated the contribution of at least two conduction mechanisms in vacuum. The electron transport was controlled by partially depleted of charge carriers grains and adiabatic small polaron conduction in the high temperature regime and by Mott variable-range hopping (VRH) at lower temperatures. The environment was found from the experimental results to influence significantly the electrical conductivity values and its temperature dependence. A decrease with temperature in air is observed in the ranges 290–370 and 285–330 K for the as prepared and the calcinated sample respectively. Potential barriers caused by partial depletion of carriers at grain boundaries control the electrical conductivity behavior in air at high temperatures and VRH in the lower temperature regime.

  14. Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth

    Science.gov (United States)

    Cemin, Felipe; Tsukamoto, Makoto; Keraudy, Julien; Antunes, Vinícius Gabriel; Helmersson, Ulf; Alvarez, Fernando; Minea, Tiberiu; Lundin, Daniel

    2018-06-01

    High power impulse magnetron sputtering (HiPIMS) has already demonstrated great potential for synthesizing the high-energy crystalline phase of titanium dioxide (rutile TiO2) due to large quantities of highly energetic ions present in the discharge. In this work, it is shown that the metastable anatase phase can also be obtained by HiPIMS. The required deposition conditions have been identified by systematically studying the phase formation, microstructure and chemical composition as a function of mode of target operation as well as of substrate temperature, working pressure, and peak current density. It is found that films deposited in the metal and transition modes are predominantly amorphous and contain substoichiometric TiO x compounds, while in compound mode they are well-crystallized and present only O2‑ ions bound to Ti4+, i.e. pure TiO2. Anatase TiO2 films are obtained for working pressures between 1 and 2 Pa, a peak current density of ~1 A cm‑2 and deposition temperatures lower than 300 °C. Rutile is favored at lower pressures (2 A cm‑2), while amorphous films are obtained at higher pressures (5 Pa). Microstructural characterization of selected films is also presented.

  15. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    Science.gov (United States)

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  16. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  17. Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation

    Directory of Open Access Journals (Sweden)

    E. H. Alsharaeh

    2017-05-01

    Full Text Available Abstract: A simple microwave-assisted (MWI wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2 nanoparticles (NPs is reported here using titanium tetrachloride (TiCl4 as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modification of the anatase TiO2 NPs was carried out by incorporating plasmonic silver (Ag NPs and graphene oxide (GO in order to enhance the visible light absorption. The photocatalytic activities of the anatase TiO2, Ag/TiO2, and Ag/TiO2/GO nanocomposites were evaluated under both ultraviolet (UV and visible light irradiation using phenol as a model contaminant. The presence of Ag NPs was found to play a significant role to define the photocatalytic activity of the Ag/TiO2/GO nanocomposite. It was found that the Ag performed like a sink under UV excitation and stored photo-generated electrons from TiO2, whereas, under visible light excitation, the Ag acted as a photosensitizer enhancing the photocatalytic activity of the nanocomposite. The detailed mechanism was studied based on photocatalytic activities of Ag/TiO2/GO nanocomposites. Therefore, the as-prepared Ag/TiO2/GO nanocomposite was used as photocatalytic materials under both UV and visible light irradiation toward degradation of organic molecules.

  18. TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Guerrero, M.; Castillo, N.; Soto, A.B.; Fragoso, R.; Cabanas-Moreno, J.G.

    2005-01-01

    Titanium dioxide thin films were deposited on crystalline silicon (100) and fused quartz substrates by spray pyrolysis (SP) of an aerosol, generated ultrasonically, of titanium diisopropoxide. The evolution of the crystallization, studied by X-ray diffraction (XRD), atomic force (AFM) and scanning electron microscopy (SEM), reflection and transmission spectroscopies, shows that the deposition process is nearly close to the classical chemical vapor deposition (CVD) technique, producing films with smooth surface and good crystalline properties. At deposition temperatures below 400 deg. C, the films grow in amorphous phase with a flat surface (roughness∼0.5 nm); while for equal or higher values to this temperature, the films develop a crystalline phase corresponding to the TiO 2 anatase phase and the surface roughness is increased. After annealing at 750 deg. C, the samples deposited on Si show a transition to the rutile phase oriented in (111) direction, while for those films deposited on fused quartz no phase transition is observed

  19. Thermally Oxidized C, N Co-Doped ANATASE-TiO2 Coatings on Stainless Steel for Tribological Properties

    Science.gov (United States)

    Wang, Hefeng; Shu, Xuefeng; Li, Xiuyan; Tang, Bin; Lin, Naiming

    2013-07-01

    Ti(C, N) coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. Carbon-nitrogen co-doped titanium dioxide (C-N-TiO2) coatings were fabricated by oxidative of the Ti(C, N) coatings in air. The prepared C-N-TiO2 coatings were characterized by SEM, XPS and XRD. Results reveal that the SS substrates were entirely shielded by the C-N-TiO2 coatings. The C-N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The tribological behavior of the coatings was tested with ball-on-disc sliding wear and compared with substrate. Such a C-N-TiO2 coatings showed good adhesion with the substrate and tribological properties of the SS in terms of much reduced friction coefficient and increased wear resistance.

  20. Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition

    International Nuclear Information System (INIS)

    McDaniel, M.D.; Posadas, A.; Wang, T.; Demkov, A.A.; Ekerdt, J.G.

    2012-01-01

    Epitaxial anatase titanium dioxide (TiO 2 ) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO 2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225–250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10 −7 Pa) for 1–2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO 2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO 2 growth. X-ray diffraction revealed that the TiO 2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO 2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: ► Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). ► Four unit cells of SrTiO 3 on silicon create a stable template for ALD. ► TiO 2 thin films have a compressed c-axis and an expanded a-axis. ► Up to 100 nm thick TiO 2 films remain highly ordered in the (001) direction.

  1. Growth of anatase and rutile phase TiO{sub 2} nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Amita, E-mail: amita-chaturvedi@rrcat.gov.in [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Joshi, M.P. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai – 400094 (India); Mondal, P.; Sinha, A.K.; Srivastava, A.K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2017-02-28

    Highlights: • Ablations of Ti metal target were carried out in DI water and in 0.001 M SDS solution for different times using PLAL process. • Different characterization studies have been carried out to confirm the growth of TiO{sub 2} nanoparticles in both the liquid mediums. • Anatase phase TiO{sub 2} nanoparticles were obtained in DI water and rutile phase in 0.001 M SDS aqueous solution. • In surfactant solution, longer time ablation leads depletion of SDS molecules causes growth of anatase phase for 90 min. • Our studies confirmed the role of liquid ambience conditions variation over the different phase formations of nanoparticles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO{sub 2} nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO{sub 2} were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO{sub 2} nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO{sub 2} nanoparticles for all

  2. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  3. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  4. TiO{sub 2} Processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Reli, Martin, E-mail: martin.reli@vsb.cz [Institute of Environmental Technology, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic); Kobielusz, Marcin [Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków (Poland); Matějová, Lenka [Institute of Environmental Technology, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic); Daniš, Stanislav [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Macyk, Wojciech [Centre ENET, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic); Obalová, Lucie [Institute of Environmental Technology, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic); Kuśtrowski, Piotr; Rokicińska, Anna [Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków (Poland); Kočí, Kamila [Institute of Environmental Technology, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic); Centre ENET, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava (Czech Republic)

    2017-01-01

    Highlights: • Synthesis of anatase-brookite TiO{sub 2} photocatalysts has been described. • The materials photocatalyze carbon dioxide reduction to methane. • The photoactivity of the synthesized composites has been compared with the activity of anatase-rutile material (P25). • The influence of electronic structure on photocatalytic activity has been discussed. - Abstract: Anatase-brookite TiO{sub 2} photocatalysts were prepared by the sol-gel process controlled within reverse micelles and processing by pressurized hot solvents–water/methanol/water (TiO{sub 2}(M)) and water/ethanol/water (TiO{sub 2}(E)), as an unconventional alternative to common calcination. The main goal of this work was to prepare anatase-brookite mixtures by processing by two different alcohols (methanol and ethanol) and evaluate the influence of the alcohol on the photocatalytic activity. Prepared photocatalysts were characterized by organic elemental analysis, nitrogen physisorption, XRD, UV–vis, photoelectrochemical and spectroelectrochemical measurements and XPS. The prepared photocatalysts efficiency was tested on the photocatalytic reduction of carbon dioxide and compared with commercial TiO{sub 2} Evonik P25. Both prepared nanocomposites were more efficient towards methane production but Evonik P25 was the most efficient towards hydrogen generated through water splitting. The higher performance of anatase-brookite mixture towards methane production can be explained by (i) a higher photocatalytic activity of brookite than rutile; (ii) a large surface area of anatase-brookite composites enabling better carbon dioxide adsorption; (iii) the photoinduced electron transfer from the brookite conduction band to the anatase conduction band. On the other hand, a higher production of hydrogen in the presence of Evonik P25 is caused by a better charge separation in anatase-rutile than anatase-brookite phase compositions. TiO{sub 2}(M) appeared more active than TiO{sub 2}(E) in the

  5. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  6. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  7. Synthesis and Characterization of Anatase TiO_2 Powder using a Homogeneous Precipitation Method

    International Nuclear Information System (INIS)

    Choi, Soon Ok; Cho, Jee Hee; Lim, Sung Hwan; Chung, Eun Young

    2011-01-01

    This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of TiOSO_4(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

  8. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Gurr, J.-R.; Wang, Alexander S.S.; Chen, C.-H.; Jan, K.-Y.

    2005-01-01

    Ultrafine titanium dioxide (TiO 2 ) particles have been shown to exhibit strong cytotoxicity when exposed to UVA radiation, but are regarded as a biocompatible material in the absence of photoactivation. In contrast to this concept, the present results indicate that anatase-sized (10 and 20 nm) TiO 2 particles in the absence of photoactivation induced oxidative DNA damage, lipid peroxidation, and micronuclei formation, and increased hydrogen peroxide and nitric oxide production in BEAS-2B cells, a human bronchial epithelial cell line. However, the treatment with anatase-sized (200 and >200 nm) particles did not induce oxidative stress in the absence of light irradiation; it seems that the smaller the particle, the easier it is for the particle to induce oxidative damage. The photocatalytic activity of the anatase form of TiO 2 was reported to be higher than that of the rutile form. In contrast to this notion, the present results indicate that rutile-sized 200 nm particles induced hydrogen peroxide and oxidative DNA damage in the absence of light but the anatase-sized 200 nm particles did not. In total darkness, a slightly higher level of oxidative DNA damage was also detected with treatment using an anatase-rutile mixture than with treatment using either the anatase or rutile forms alone. These results suggest that intratracheal instillation of ultrafine TiO 2 particles may cause an inflammatory response

  9. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  10. Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Laursen, Anders B.; Jacobsen, Karsten Wedel

    2012-01-01

    Understanding the nature of photogenerated carriers in a photocatalyst is central to understanding its photocatalytic performance. Based on density functional theory calculation we show that for TiO2, the most popular photo-catalyst, the electron hole self-trapping leads to band gap states which...... position is dependent on the type of surface termination. Such variations in hole state energies can lead to differences in photocatalytic activity among rutile and anatase surface facets. We find that the calculated hole state energies correlate with photo-deposition and photo-etching rates. We...

  11. Direct laser writing of nanorough cell microbarriers on anatase/Si and graphite/Si

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y.C. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Martínez-Martínez, R.M. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Torres-Costa, V. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Madrid (Spain); Agulló-Rueda, F. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Manso-Silván, M., E-mail: miguel.manso@uam.es [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-09-01

    The formation of hierarchical structures consisting of microstripe barriers decorated with nanorough ablated materials prepared by direct laser writing is described. Linear features of circa 25 μm width and 12 μm height are achieved on amorphous and crystalline titania and graphitic carbon films deposited on silicon. Ablated protrusions build up barriers decorated by nanoscale Si-film reconstructions, as indicated by EDX maps and micro-Raman spectroscopy. Wettability tests show a dramatic change in water contact angle, which leads to almost full wetting after irradiation, irrespective of the original film composition. Fluorescence microscopy images of human mesenchymal stem cells cultured on 1D and 2D structures demonstrate the short term biocompatibility of the ablated surfaces. It is shown that cells adhere, extend and polarize on feature edges, independently of the type of surface, thus suggesting that the created nanoroughness is at the origin of the antifouling behavior. In particular, irradiated anatase and graphite surfaces demonstrate an increased performance of crystalline films for the creation of cell guiding and trapping devices. The results suggest that such laser processing of films may serve as a time-and-cost-efficient method for the design of few-cells analytical surfaces. - Graphical abstract: Response of human mesenchymal stem cells to the microbarriers grown by direct laser writing on anatase/Si. Microbarriers show low colonization and high induction of cellular polarization on the feature edges. Display Omitted - Highlights: • Hierarchical microbarriers by direct IR laser writing on thin films. • Complex reconstruction of irradiated materials includes nanorough features. • Ablated areas become fully wettable. • Short term biocompatibility of the grown hierarchical structures confirmed. • Particular designs functional for cell guiding or trapping.

  12. Direct laser writing of nanorough cell microbarriers on anatase/Si and graphite/Si

    International Nuclear Information System (INIS)

    Xiang, Y.C.; Martínez-Martínez, R.M.; Torres-Costa, V.; Agulló-Rueda, F.; García-Ruiz, J.P.; Manso-Silván, M.

    2016-01-01

    The formation of hierarchical structures consisting of microstripe barriers decorated with nanorough ablated materials prepared by direct laser writing is described. Linear features of circa 25 μm width and 12 μm height are achieved on amorphous and crystalline titania and graphitic carbon films deposited on silicon. Ablated protrusions build up barriers decorated by nanoscale Si-film reconstructions, as indicated by EDX maps and micro-Raman spectroscopy. Wettability tests show a dramatic change in water contact angle, which leads to almost full wetting after irradiation, irrespective of the original film composition. Fluorescence microscopy images of human mesenchymal stem cells cultured on 1D and 2D structures demonstrate the short term biocompatibility of the ablated surfaces. It is shown that cells adhere, extend and polarize on feature edges, independently of the type of surface, thus suggesting that the created nanoroughness is at the origin of the antifouling behavior. In particular, irradiated anatase and graphite surfaces demonstrate an increased performance of crystalline films for the creation of cell guiding and trapping devices. The results suggest that such laser processing of films may serve as a time-and-cost-efficient method for the design of few-cells analytical surfaces. - Graphical abstract: Response of human mesenchymal stem cells to the microbarriers grown by direct laser writing on anatase/Si. Microbarriers show low colonization and high induction of cellular polarization on the feature edges. Display Omitted - Highlights: • Hierarchical microbarriers by direct IR laser writing on thin films. • Complex reconstruction of irradiated materials includes nanorough features. • Ablated areas become fully wettable. • Short term biocompatibility of the grown hierarchical structures confirmed. • Particular designs functional for cell guiding or trapping.

  13. Synthesis of anatase nanoparticles with extremely wide solid solution range and ScTiNbO6 with α-PbO2 structure

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2009-01-01

    Anatase-type nanoparticles Sc X Ti 1-2X Nb X O 2 with wide solid solution range (X=0-0.35) were hydrothermally formed at 180 deg. C for 5 h. The lattice parameters a 0 and c 0 , and the optical band gap of anatase gradually and linearly increased with the increase of the content of niobium and scandium from X=0 to 0.35. Their photocatalytic activity and adsorptivity by the measurement of the concentration of methylene blue (MB) that remained in the solution in the dark or under UV-light irradiation were evaluated. The anatase phase existed stably up to 900 deg. C for the samples with X=0.25-0.30 and 750 deg. C for that with X=0.35 during heat treatment in air. The phase with α-PbO 2 structure and the rutile phases coexisted in the samples with X=0.25-0.30 after heated at temperatures above 900-950 deg. C. The α-PbO 2 structure having composition ScTiNbO 6 with possibly some cation order similar to that seen in wolframite existed as almost completely single phase after heat treatment at temperatures 900-1500 deg. C through phase transformation from anatase-type ScTiNbO 6 . - Graphical abstract: Anatase-type Sc X Ti 1-2X Nb X O 2 solid solutions with wide solid solution range (X=0-0.35) were hydrothermally formed as nanoparticles from the precursor solutions of Sc(NO 3 ) 3 , TiOSO 4 , NbCl 5 at 180 deg. C for 5 h using the hydrolysis of urea. Anatase-type ScTiNbO 6 was synthesized under hydrothermal condition. ScTiNbO 6 having α-PbO 2 structure with possibly some cation order similar to that seen in wolframite was formed through phase transformation above 900 deg. C.

  14. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  15. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  16. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  18. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  19. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  20. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.

    Science.gov (United States)

    Spreafico, Clelia; VandeVondele, Joost

    2014-12-21

    The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.

  1. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  2. Excess electrons at anatase TiO2 surfaces and interfaces: insights from first principles simulations

    Science.gov (United States)

    Selçuk, Sencer; Selloni, Annabella

    2017-07-01

    TiO2 is an important technological material with widespread applications in photocatalysis, photovoltaics and self-cleaning surfaces. Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in the properties of TiO2 that are relevant to its energy-related applications. The picture of excess and photoexcited electrons in TiO2 is based on the polaron model, where the electron forms a localized state that is stabilized by an accompanying lattice distortion. Here, we focus on excess and photoexcited electrons in anatase, the TiO2 polymorph most relevant to photocatalysis and solar energy conversion. For anatase, evidence of both small and large electron polarons has been reported in the literature. In addition, several studies have revealed a remarkable dependence of the photocatalytic activity of anatase on the crystal surface. After an overview of experimental studies, we briefly discuss recent progress in the theoretical description of polaronic states in TiO2, and finally present a more detailed account of our computational studies on the trapping and dynamics of excess electrons near the most common anatase surfaces and aqueous interfaces. The results of these studies provide a bridge between surface science experiments under vacuum conditions and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between different anatase facets can help enhance the photocatalytic activity of this material.

  3. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  4. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  5. Comparison of anti-inflammatory activity of extracts with supercritical carbon dioxide from radiation mutant perilla frutescens(L.) Britton and wild-type

    Energy Technology Data Exchange (ETDEWEB)

    Park, Han Chul; So, Yang Kang; Kim, Jin Baek; Jin, Chang Hyun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yuk, Hong Sun [Dept. of Food and Nutrition, Chungnam National University Daejeon (Korea, Republic of)

    2016-11-15

    In previous study, the radiation mutant Perilla frutescens (L.) Britton with a higher anti-inflammatory activity was selected. The extracts were obtained from the mutant and wildtype using a supercritical carbon dioxide technique. This study aimed to compare the antiinflammatory activities between the mutant supercritical extract (MSE) and wild-type supercritical extract (WSE). The contents of isoegomaketone (IK) of MSE and WSE were measured through an HPLC analysis. MSE contained IK contents approximately 7-fold higher than those of WSE. To compare the anti-inflammatory activities of MSE and WSE, the expression levels of the mRNA and protein of pro-inflammatory mediators were measured in lipopolysaccharide (LPS)-induced RAW264.7 cells. As a result, MSE inhibited the expression levels of the mRNA and protein of pro-inflammatory mediators, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) to a much greater extent than did WSE. Taken together, MSE had more IK contents and higher antiinflammatory activities than WSE. Therefore, MSE is proposed based on its therapeutic potential in the prevention of inflammatory disease.

  6. Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors

    Science.gov (United States)

    Liu, Ying; Yan, De; Zhuo, Renfu; Li, Shuankui; Wu, Zhiguo; Wang, Jun; Ren, Pingyuan; Yan, Pengxun; Geng, Zhongrong

    2013-11-01

    MnO2-graphene hybrid with a unique structure of porous birnessite-type manganese dioxide (MnO2) nanosheets on graphene has been designed and synthesized by a simple hydrothermal method. The formation mechanism of the hybrid is discussed based on a series of time-dependent experiments. Electrochemical measurements reveal that the MnO2-graphene electrode exhibits much higher specific capacitance (315 F g-1 at a current density of 0.2 A g-1) and better rate capability (even 193 F g-1 at 6 A g-1) compared with both the graphene and MnO2 electrodes. Moreover, the capacitance of MnO2-graphene electrode is still 87% retained after 2000 cycles at a charging rate of 3 A g-1. The superior capacitive performance of the hybrid is attributed to its unique structure, which provides good electronic conductivity, fast electron and ion transport, and high utilization of MnO2.

  7. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  8. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  9. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Liu, Bitao; Jin, Chunhua; Ju, Yue; Peng, Lingling; Tian, Liangliang; Wang, Jinbiao; Zhang, Tiejun

    2014-01-01

    Graphical abstract: - Highlights: • Football-like TiO 2 synthesized by a facile hydrothermal method. • The formation mechanism of football-like TiO 2 was investigated. • The DSSC efficiency assembled by football-like TiO 2 is 23.3% higher than P25. - Abstract: Uniform football-like anatase TiO 2 particles exposed by {0 0 1} facets were successfully synthesized by an environment-friendly, facile and low-temperature hydrothermal method in water solution without any additional capping agent. The crystallographic structure and the growth mechanism of anatase TiO 2 particles were investigated systematically by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS), respectively. The formation mechanism of football-like anatase TiO 2 particles exposed by {0 0 1} facets is investigated. It was found that there existed a selective adsorption of F − ions on different facets by analyzed with the density functional theory (DFT) computer simulation results, and it would lead to a selective nucleation and crystal growth of anatase football-like TiO 2 particles. Additionally, this type of exposed {0 0 1} facets football-like TiO 2 microspheres were used as a scattering overlayer on a transparent P25 film for fabrication of photoanodes for dye-sensitized solar cells (DSSCs). The results showed that an overall light conversion efficiency of this film was 6.31%, which is higher than that of the overall efficiency (5.13%) obtained from the P25 photoanode owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {0 0 1} facets

  10. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO{sub 2} microspheres with exposed {0 0 1} facets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bitao [Chongqing Research institute for new material technology, Chongqing University of Arts and Science, Chongqing 402160 (China); Department of Research Center for Materials Interdisciplinary Science, Chongqing PR China (China); Jin, Chunhua; Ju, Yue [Department of Research Center for Materials Interdisciplinary Science, Chongqing PR China (China); Peng, Lingling [Chongqing Research institute for new material technology, Chongqing University of Arts and Science, Chongqing 402160 (China); Tian, Liangliang [Chongqing Research institute for new material technology, Chongqing University of Arts and Science, Chongqing 402160 (China); Department of Research Center for Materials Interdisciplinary Science, Chongqing PR China (China); Wang, Jinbiao [Chongqing Research institute for new material technology, Chongqing University of Arts and Science, Chongqing 402160 (China); Zhang, Tiejun, E-mail: liubitao007@163.com [Chongqing Research institute for new material technology, Chongqing University of Arts and Science, Chongqing 402160 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Football-like TiO{sub 2} synthesized by a facile hydrothermal method. • The formation mechanism of football-like TiO{sub 2} was investigated. • The DSSC efficiency assembled by football-like TiO{sub 2} is 23.3% higher than P25. - Abstract: Uniform football-like anatase TiO{sub 2} particles exposed by {0 0 1} facets were successfully synthesized by an environment-friendly, facile and low-temperature hydrothermal method in water solution without any additional capping agent. The crystallographic structure and the growth mechanism of anatase TiO{sub 2} particles were investigated systematically by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS), respectively. The formation mechanism of football-like anatase TiO{sub 2} particles exposed by {0 0 1} facets is investigated. It was found that there existed a selective adsorption of F{sup −} ions on different facets by analyzed with the density functional theory (DFT) computer simulation results, and it would lead to a selective nucleation and crystal growth of anatase football-like TiO{sub 2} particles. Additionally, this type of exposed {0 0 1} facets football-like TiO{sub 2} microspheres were used as a scattering overlayer on a transparent P25 film for fabrication of photoanodes for dye-sensitized solar cells (DSSCs). The results showed that an overall light conversion efficiency of this film was 6.31%, which is higher than that of the overall efficiency (5.13%) obtained from the P25 photoanode owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {0 0 1} facets.

  11. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

    Science.gov (United States)

    Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela

    2018-01-01

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318

  12. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain.

    Science.gov (United States)

    Grissa, Intissar; Guezguez, Sabrine; Ezzi, Lobna; Chakroun, Sana; Sallem, Amira; Kerkeni, Emna; Elghoul, Jaber; El Mir, Lassaad; Mehdi, Meriem; Cheikh, Hassen Ben; Haouas, Zohra

    2016-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO 2 NPs is still limited. In our study, we investigate the effects of anatase TiO 2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO 2 NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO 2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO 2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.

  13. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    Science.gov (United States)

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  14. Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation.

    Science.gov (United States)

    Silva, Cláudia Gomes; Faria, Joaquim Luís

    2009-05-01

    Titanium dioxide (TiO(2)) powder, a semiconductor material typically used as a photocatalyst, is prepared following an acid-catalyzed sol-gel method starting from titanium isopropoxide. The xerogel calcination temperature is used to control surface and morphological properties of the material. Materials are extensively characterized by spectroscopic, micrographic and calorimetric techniques. The different TiO(2) catalysts are used in the visible-light-driven photocatalytic degradation of clofibric acid, a lipid regulator drug. The photoefficiency of TiO(2) catalysts, quantified in terms of kinetic rate constant, total organic carbon removal and initial quantum yield, increases with calcination temperature up to 673 K. A further increase in the calcination temperature leads to a decline in the photoefficiency of the catalysts, which is associated with the phase transformation from anatase to rutile concomitant with an increase in crystallite dimensions. The photochemical and photocatalytic oxidation of clofibric acid follows a pseudo-first order kinetic rate law. 4-Chlorophenol, isobutyric acid, hydroquinone, benzoquinone and 4-chlorocatechol are detected as main intermediates.

  15. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  16. Quantification of rutile in anatase by X-ray diffraction

    International Nuclear Information System (INIS)

    Chavez R, A.

    2001-01-01

    Nowadays the discovering of new and better materials required in all areas of the industry has been lead to the human being to introduce him to this small and great world. The crystalline materials, have properties markedly directional. When it is necessary to realize a quantitative analysis to these materials the task is not easy. The main objective of this work is the research of a real problem, its solution and perfecting of a technique involving the theoretical and experimental principles which allow the quantification of crystalline phases. The chapter 1 treats about the study of crystalline state during the last century, by means of the X-ray diffraction technique. The chapter 2 studies the nature and production of X-rays, the chapter 3 expounds the principles of the diffraction technique which to carry out when it is satisfied the Bragg law studying the powder diffraction method and its applications. In the chapter 4 it is explained how the intensities of the beams diffracted are determined by the atoms positions inside of the elemental cell of the crystal. The properties of the crystalline samples of anatase and rutile are described in the chapter 5. The results of this last analysis are the information which will be processed by means of the auxiliary software: Diffrac AT, Axum and Peakfit as well as the TAFOR and CUANTI software describing this part with more detail in the chapters 6 and 7 where it is mentioned step by step the function of each software until to reach the quantification of crystalline phases, objective of this work. Finally, in the chapter 8 there are a results analysis and conclusions. The contribution of this work is for those learned institutions of limited resources which can tackle in this way the characterization of materials. (Author)

  17. First-principles study of Mn-S codoped anatase TiO2

    Science.gov (United States)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  18. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  19. Titanium Dioxide Nanoparticles as Radiosensitisers: An In vitro and Phantom-Based Study.

    Science.gov (United States)

    Youkhana, Esho Qasho; Feltis, Bryce; Blencowe, Anton; Geso, Moshi

    2017-01-01

    Objective: Radiosensitisation caused by titanium dioxide nanoparticles (TiO 2 -NPs) is investigated using phantoms (PRESAGE ® dosimeters) and in vitro using two types of cell lines, cultured human keratinocyte (HaCaT) and prostate cancer (DU145) cells. Methods: Anatase TiO 2 -NPs were synthesised, characterised and functionalised to allow dispersion in culture-medium for in vitro studies and halocarbons (PRESAGE ® chemical compositions). PRESAGE ® dosimeters were scanned with spectrophotometer to determine the radiation dose enhancement. Clonogenic and cell viability assays were employed to determine cells survival curves from which the dose enhancement levels "radiosensitisation" are deduced. Results: Comparable levels of radiosensitisation were observed in both phantoms and cells at kilovoltage ranges of x-ray energies (slightly higher in vitro) . Significant radiosensitisation (~67 %) of control was also noted in cells at megavoltage energies (commonly used in radiotherapy), compared to negligible levels detected by phantoms. This difference is attributed to biochemical effects, specifically the generation of reactive oxygen species (ROS) such as hydroxyl radicals ( • OH), which are only manifested in aqueous environments of cells and are non-existent in case of phantoms. Conclusions: This research shows that TiO 2 -NPs improve the efficiency of dose delivery, which has implications for future radiotherapy treatments. Literature shows that Ti 2 O 3 -NPs can be used as imaging agents hence with these findings renders these NPs as theranostic agents.

  20. Effect of Fe2+ and Fe3+ substitution on the crystal structure, optical and magnetic properties of anatase Ti1-δ (δ %Fe2+)O2 nanoparticles

    International Nuclear Information System (INIS)

    Wisnu Ari Adi; Adel Fisli

    2018-01-01

    Recently electromagnetic wave absorber materials are becoming a very interesting study to be studied more deeply because it is unique in terms of its interaction with electromagnetic waves itself. The main requirement to be met as an electromagnetic wave absorber material is that the material must have the characteristics of dielectric loss and magnetic loss are high. Anatase TiO 2 is a good dielectric material but these material is diamagnetic. Fe substitution was expected to manipulate the magnetic properties of this material. Modification of anatase TiO 2 was prepared by the precipitation method through the procedure as follows: 25 ml of iron salt solution containing 0.3 M Fe 2+ and 0.3 M Fe 3+ (mol ratio of 2 : 1) respectively mixed into 50 ml of 3 M TiCl 4 . The mixture solution of titanium and iron was added to a 150 ml solution of 2.5 M ammonia with drop wise rate 3 ml/min. After that the precipitate was washed then heated in an oven and calcined at 500 °C for 3 hours. There are two types of samples obtained namely anatase Ti 1-δ (δ %Fe 3+ ) Ti 1-δ (δ %Fe 2+ ) where (δ =0, 0.5, 1, and 5 wt %). Phase identification was measured by X-ray diffraction and crystal structure was analyzed by using the Rietveld method. Refinement result indicates that the sample has tetragonal crystal structure a single phase of anatase TiO 2 . Fe atoms have been successfully substituted into Ti without changing the crystal structure of this material. While based on the results of the analysis of optical and magnetic properties showed that the substitution effect of both Fe 2+ and Fe 3+ has managed to reduce energy of band gap and can transform this magnetic phase of this material from diamagnetic becomes paramagnetic at room temperature. It was concluded that it has successfully carried out material engineering of anatase TiO 2 with a substitution of up to 5 wt % of either Fe 2+ or Fe 3+ into ion Ti 4+ by the precipitation method. (author)

  1. Synthesis and characterization of anatase-TiO2 thin films

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Lux-Steiner, M.Ch.; Ennaoui, A.

    2005-01-01

    A new and effective method for the preparation of nanocrystalline TiO 2 (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO 2 (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO 2 (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV

  2. Synthesis and characterization of anatase-TiO 2 thin films

    Science.gov (United States)

    Sankapal, B. R.; Lux-Steiner, M. Ch.; Ennaoui, A.

    2005-01-01

    A new and effective method for the preparation of nanocrystalline TiO 2 (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO 2 (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO 2 (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV.

  3. Synthesis and characterization of anatase-TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Lux-Steiner, M.Ch.; Ennaoui, A

    2005-01-15

    A new and effective method for the preparation of nanocrystalline TiO{sub 2} (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO{sub 2} (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO{sub 2} (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV.

  4. Structural dependence of threshold displacement energies in rutile, anatase and brookite TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, M., E-mail: marc.robinson@curtin.edu.au [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Marks, N.A. [Discipline of Physics and Astronomy, Curtin University, Perth, WA 6845 (Australia); Lumpkin, G.R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2014-09-15

    Systematic molecular dynamics simulations of low energy cascades have been performed to examine how threshold displacement events are effected by changes in crystal structure. Exploiting the structural proximity of the rutile, anatase and brookite polymorphs of TiO{sub 2}, a quantitative examination of defect production has been carried out including detailed defect analysis and the determination of values of the threshold displacement energy (E{sub d}). Across all polymorphs comparable values of E{sub d} are reported for oxygen at around 20 eV, with the value for Ti in rutile (73 ± 2 eV) significantly higher than that in brookite (34 ± 1 eV) and anatase (39 ± 1 eV). Quantifying defect formation probability as a function of Primary Knock-on Atom (PKA) energy, simulations in rutile indicate a consistent reduction in defect formation at energies higher than E{sub d} relative to anatase and brookite. Defect cluster analysis reveals a significant proportion of di-Frenkel pairs in anatase at Ti PKA energies around E{sub d}. These clusters, which are stabilised by the localisation of two Frenkel pairs, are associated with a recombination barrier of approximately 0.19 eV. As such, annihilation is likely under typical experimental conditions which suggests an expected increase in the measured Ti value of E{sub d}. Identical O defect populations produced at the threshold by the O PKA in both rutile and anatase explain the comparable values of E{sub d}. At higher O PKA energies, the commencement of defect production on both sublattices in anatase is observed in contrast to the confinement of defects to the O sublattice in rutile. The overall trends reported are consistent with in-situ irradiation experiments and thermal spike simulations, suggesting the contrasting radiation response of the polymorphs of TiO{sub 2} is apparent during the initial stages of defect production. - Highlights: • Systematic calculation of threshold displacement energies (E{sub d

  5. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    Science.gov (United States)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  6. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  7. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    Science.gov (United States)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  8. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, W.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom)); Neat, R.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom))

    Performance data on two polymorphs of titanium dioxide (anatase and rutile) operating in a lithium polymer electrolyte cell at 120 C are presented. On the first discharge lithium ions can be electrochemically inserted into both forms to an approximate composition LiTiO[sub 2]. However, only the rutile material cycles with a significant capacity ([proportional to] 0.5 Li/TiO[sub 2]) with an average cell voltage of 1.73 V corresponding to a theoretical energy density of [proportional to] 290 W h kg[sup -1]. Our results are in contrast to earlier work reported on the intercalation of lithium into these phases at room temperature, where only the anatase form was found to intercalate lithium. X-ray diffraction data indicate that the rutile form undergoes a structural change during the first discharge resulting in the formation of a hexagonal form of LiTiO[sub 2].

  9. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter

    2012-01-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  10. Synthesis of Titanium Dioxide nanoparticles via sucrose ester micelle-mediated hydrothermal processing route

    International Nuclear Information System (INIS)

    Anwar, N.S.; Kassim, A.; Lim, H.N.; Zakarya, S.A.; Huang, N.M.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photo catalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photo reactor. The as-synthesized nanoparticles exhibited higher photo catalytic performance as compared to the commercial counterpart. (author)

  11. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, J E; Enache-Pommer, E; Aydil, E S [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455 (United States)], E-mail: aydil@umn.edu

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes through hydrothermal oxidation in NaOH. Next, the Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes by ion exchange. Finally, the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} sheets, which exfoliate and spiral into nanotubes. The Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes are immersed in HCl solution to replace the Na{sup +} ions with H{sup +} ions. During the topotactic transformation of H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes to anatase TiO{sub 2} nanowires, the sheets made of edge bonded TiO{sub 6} octahedra in the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO{sub 2} nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  12. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  13. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

    International Nuclear Information System (INIS)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T.; Lee, Kwang Yeol; Kim, Keun Chong

    2004-01-01

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O i Pr) 2 (CH 3 COCHCONEt 2 ) 2 (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and 1 H/ 13 C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt 2 ), trans(COCH 3 ) configuration (1a) in a distorted octahedral environment. Variable-temperature 1 H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d 8 solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method

  14. Multifunctional response of anatase nanostructures based on 25 nm mesocrystal-like porous assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tartaj, Pedro; Amarilla, Jose M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Campus Universitario de Cantoblanco, Madrid (Spain)

    2011-11-09

    Ultrasmall porous anatase mesocrystals show good electrochemical performance and good capabilities for enzyme immobilization and photocatalytic degradation of contaminants. These materials are potential candidates for energy storage devices, photocatalysis, enzyme immobilization, and, when properly functionalized, could be used for photoelectrochemistry and healthcare applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Association of anatase (TiO2) and microbes: unusual fossilization effect or a potential biosignature?

    Science.gov (United States)

    Glamoclija, Mihaela; Andrew Steele,; Marc Fries,; Juergen Schieber,; Voytek, Mary A.; Charles S. Cockell,

    2015-01-01

    We combined microbial paleontology and molecular biology methods to study the Eyreville B drill core from the 35.3-Ma-old Chesapeake Bay impact structure,Virginia, USA. The investigated sample is a pyrite vein collected from the 1353.81-1353.89 m depth interval, located within a section of biotite granite. The granite is a pre-impact rock that was disrupted by the impact event. A search for inorganic (mineral) biosignatures revealed the presence of micron-size rod morphologies of anatase (TiO2) embedded in chlorite coatings on pyrite grains. Neither the Acridine Orange microbial probe nor deoxyribonucleic acid (DNA) extraction followed by polymerase chain reaction (PCR) amplifi cation showed the presence of DNA or ribonucleic acid (RNA) at the location of anatase rods, implying the absence of viable cells in the investigated area. A Nile Red microbial probe revealed the presence of lipids in the rods. Because most of the lipids are resistant over geologic time spans, they are good biomarkers, and they are an indicator of biogenicity for these possibly 35-Ma-old microbial fossils. The mineral assemblage suggests that rod morphologies are associated with low-temperature (<100 °C) hydrothermal alteration that involved aqueous fl uids. The temporal constraints on the anatase fossils are still uncertain because pre-impact alteration of the granite and postimpact heating may have provided identical conditions for anatase precipitation and microbial preservation.

  16. Soft-Template Synthesis of Mesoporous Anatase TiO2 Nanospheres and Its Enhanced Photoactivity

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2017-11-01

    Full Text Available Highly crystalline mesoporous anatase TiO2 nanospheres with high surface area (higher than P25 and anatase TiO2 are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2% than Degussa P25. The rate constant of the mesoporous anatase TiO2 (0.024 min−1 reported here is 364% higher than that of P25 (0.0066 min−1, for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS scavengers indicated that mesoporous anatase TiO2 generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO2 arises from the following synergistic effects in the reported sample: (i high surface area; (ii improved crystallinity; (iii narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material; and (iv greater ROS generation under UV-light.

  17. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    Science.gov (United States)

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  18. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro.

    Science.gov (United States)

    Dehkourdi, Elahe Hashemi; Mosavi, Mousa

    2013-11-01

    Nano priming is a new method for the increase of seedling vigor and improvement of germination percentage and seedling growth. The experiments to evaluate the effect of different concentrations of nano-anatase on germination parameters of parsley as a completely randomized design with five replications were performed in a tissue culture laboratory of the Department of Horticulture, Shahid Chamran University of Ahvaz. In addition, nano-anatase at four concentrations (10, 20, 30, and 40 mg/ml) was added to the Murashige and Skoog medium. At the end of the experiment, the percentage of germination, germination rate index, root and shoot length, fresh weight of seedlings, vigor index, and chlorophyll content were evaluated. The results showed that an increase in the concentration of nano-anatase caused a significant increase in the percentage of germination, germination rate index, root and shoot length, fresh weight, vigor index, and chlorophyll content of seedlings. The best concentration of nano-anatase was 30 mg/ml.

  19. Effect of oxygen vacancies on Li-storage of anatase TiO2 (001 ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... (a–d) Top and side views of the optimum structure of anatase TiO2 (001) surfaces adsorbing a single Li .... Rate capability is an important requirement for a promis- .... tific Research Foundation of Hunan Provincial Education.

  20. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx

  1. Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Almeida, A.R.; Almeida, Ana R.; Moulijn, Jacob A.; Mul, Guido

    2010-01-01

    A systematic study is presented on the effect of crystallite size of Anatase (Hombikat, Sachtleben), varied by calcination at different temperatures up to 800 °C, on photocatalytic activity in cyclohexane selective oxidation. Two different reactors were used to test the materials: a top illumination

  2. How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Yang, Chieh-Chao; Moma, John A.; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    Gold deposition on Hombikat UV100 was found to negatively affect the activity of this Anatase catalyst in selective photo-oxidation of cyclohexane. By ammonia TPD and DRIFT spectroscopy it was determined that the Au deposition procedure leads to a significant decrease in OH-group density (mol m−2

  3. Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Mul, Guido

    2009-01-01

    Time resolved microwave conductivity (TRMC) measurements show that the presence of Au on anatase Hombikat UV100 significantly reduces the lifetime of mobile electrons formed by photo-excitation of this photocatalyst at 300 nm, providing evidence for the widely acclaimed electron localization effect

  4. Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them

    Czech Academy of Sciences Publication Activity Database

    Setvín, M.; Daniel, B.; Mansfeldová, Věra; Kavan, Ladislav; Scheiber, P.; Fidler, M.; Schmid, M.; Diebold, U.

    2014-01-01

    Roč. 626, AUG 2014 (2014), s. 61-67 ISSN 0039-6028 R&D Projects: GA ČR GA13-07724S Grant - others: COST (XE) CM1104 Institutional support: RVO:61388955 Keywords : TiO2 * anatase * sample preparation Subject RIV: CG - Electrochemistry Impact factor: 1.925, year: 2014

  5. Highly photoactive anatase foams prepared from lyophilized aqueous colloids of peroxo-polytitanic acid

    Czech Academy of Sciences Publication Activity Database

    Pližingrová, Eva; Volfová, Lenka; Svora, Petr; Labhsetwar, N.; Klementová, Mariana; Szatmáry, Lórant; Šubrt, Jan

    2015-01-01

    Roč. 240, FEB (2015), s. 107-113 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA14-20744S Institutional support: RVO:61388980 Keywords : Anatase * Lyophilization * Photocatalysis * Hydroxyl radical * Peroxo-polytitanic acid foams Subject RIV: CA - Inorganic Chemistry Impact factor: 4.312, year: 2015

  6. Gel–sol synthesis and aging effect on highly crystalline anatase ...

    Indian Academy of Sciences (India)

    Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder .... −1 in static air. To identify the gel-phase, it was mixed with D2O to form sample solution ... Ti(OH)4 chemical composition is produced this way: Ti3. [. (OC2H4)3 N. ].

  7. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  8. Photocatalytic Activity of Nanostructured Titanium Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Zdenek Michalcik

    2012-01-01

    Full Text Available The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.

  9. Azo dyes decomposition on new nitrogen-modified anatase TiO{sub 2} with high adsorptivity

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M., E-mail: mjanus@ps.pl [Szczecin University of Technology, Department of Sanitary Engineering, al. Piastow 50, 70-310 Szczecin (Poland); Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland); Choina, J.; Morawski, A.W. [Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland)

    2009-07-15

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO{sub 2} (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 {sup o}C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm{sup -1} attributed to the bending vibrations of NH{sub 4}{sup +} and at 1535 cm{sup -1} associated with NH{sub 2} groups or NO{sub 2} and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO{sub 2} surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO{sub 2} was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO{sub 2}/N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO{sub 2} and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO{sub 2} by Langmuir model. The presence of nitrogen at the surface of TiO{sub 2} significantly increased adsorption capacity of TiO{sub 2} as well as OH{center_dot} radicals formation under visible radiation.

  10. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Science.gov (United States)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  11. Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro.

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L; Soto, Enrique

    2016-07-26

    Cytotoxicity of titanium dioxide (TiO₂) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO₂ thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO₂ films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO₂ films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO₂ thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO₂ thin films, the number of CHO-K1 cells on the control substrate and on all TiO₂ thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO₂ films annealed at 800 °C. These results indicate that TiO₂ thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO₂ thin films in biomedical science.

  12. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  13. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  14. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments

    International Nuclear Information System (INIS)

    Liu, Xuyang; Chen, Gexin; Erwin, Justin G.; Su, Chunming

    2014-01-01

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO 2 ) nanoparticles (NPs) in water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting effect on TiO 2 NP transformation in aqueous solutions. The release of Si increased from 2 h to 19 d at three pHs with the order: pH 11.2 ≥ pH 2.4 > pH 8.2. The Si release process followed parabolic kinetics which is similar to diffusion controlled dissolution of minerals, and the release magnitude followed the order: 10 × 40 nm rutile > 50 nm anatase > 30 × 40 nm rutile. FTIR data indicated preferential dissolving of less polymerized Si species on NP surface. Surface potential and particle size of TiO 2 NPs remained almost constant during the 42-day monitoring, implying the unaffected stability and transport of these NPs by the incongruent dissolution of impurities. Highlights: • Si impurity may affect the colloid stability, reactivity, and toxicity of TiO 2 NPs. • Si impurity gradually released during 2 h – 19 d following a parabolic curve. • FTIR data indicated less polymerized Si species dissolved from TiO 2 NPs. • Surface potential and size of TiO 2 remained constant during impurity release. • NP production needs to consider ion release and environmental transformation. -- The incongruent dissolution of surface charge determining Si impurity did not significantly affect the surface potential and aggregation status of TiO 2 nanoparticles in aqueous solutions

  15. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  16. RBS analysis of substoichiometric TiO{sub 2}-anatase thin films for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ager, F.J. [Depto. Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, C. Virgen de Africa 7, E-41011 Sevilla (Spain) and Centro Nacional de Aceleradores, Av. Thomas A. Edison, E-41092 Sevilla (Spain)]. E-mail: fjager@us.es; Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Gerbasi, R. [Istituto di Chimica Inorganica e delle Superficie, Corso Stati Uniti 4, I-35127 Padova (Italy); Battiston, G.A. [Istituto di Chimica Inorganica e delle Superficie, Corso Stati Uniti 4, I-35127 Padova (Italy); McSporran, N. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); CFATA-UNAM, Juriquilla, Queretaro, C.P. 76230 Queretaro (Mexico)

    2006-08-15

    The anatase phase of TiO{sub 2} is the most promising photocatalyst for organic pollutants degradation. However, due to the large anatase band gap energy the possibility of using visible sunlight as energy source for the photocalatysis activation is ruled out and ultraviolet (UV) radiation with a wave length below the critical limit is thus required. Inducing defects in the anatase crystalline structure in the form of oxygen substoichiometry may theoretically reduce this large band gap energy. This paper focuses on the determination of the stoichiometry of TiO{sub 2} thin films and its influence on the photodegradation properties.

  17. Anatase TiO{sub 2} nanowires functionalized by organic sensitizers for solar cells: A screened Coulomb hybrid density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Ünal, Hatice; Mete, Ersen, E-mail: emete@balikesir.edu.tr [Deparment of Physics, Balikesir University, Balikesir 10145 (Turkey); Gunceler, Deniz [Deparment of Physics, Cornell University, Ithaca, New York 14853 (United States); Gülseren, Oğuz [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Ellialtioğlu, Şinasi [Basic Sciences, TED University, Ankara 06420 (Turkey)

    2015-11-21

    The adsorption of two different organic molecules cyanidin glucoside (C{sub 21}O{sub 11}H{sub 20}) and TA-St-CA on anatase (101) and (001) nanowires has been investigated using the standard and the range separated hybrid density functional theory calculations. The electronic structures and optical spectra of resulting dye–nanowire combined systems show distinct features for these types of photochromophores. The lowest unoccupied molecular orbital of the natural dye cyanidin glucoside is located below the conduction band of the semiconductor while, in the case of TA-St-CA, it resonates with the states inside the conduction band. The wide-bandgap anatase nanowires can be functionalized for solar cells through electron-hole generation and subsequent charge injection by these dye sensitizers. The intermolecular charge transfer character of Donor-π-Acceptor type dye TA-St-CA is substantially modified by its adsorption on TiO{sub 2} surfaces. Cyanidin glucoside exhibits relatively stronger anchoring on the nanowires through its hydroxyl groups. The atomic structures of dye–nanowire systems re-optimized with the inclusion of nonlinear solvation effects showed that the binding strengths of both dyes remain moderate even in ionic solutions.

  18. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-01-01

    Highlights: • Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO 2 NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO 2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO 2 NSs possess high surface area up to 378 m 2 g −1 . The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO 2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO 2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  19. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Science.gov (United States)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  20. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Larue, C; Carriere, M [Laboratoire de Structure et Dynamique par Resonance Magnetique UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Khodja, H [Laboratoire d' Etude des Elements Legers, UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Herlin-Boime, N [Laboratoire Francis Perrin URA 2453 CEA-CNRS-IRAMIS, 91191 Gif-sur-Yvette (France); Brisset, F [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR8182 CNRS-University Paris sud, Orsay (France); Flank, A M [LUCIA beamline, SOLEIL synchrotron, Saint-Aubin (France); Fayard, B [Laboratoire de Physique du solide, Orsay, France and ID21 beamline, ESRF, Grenoble (France); Chaillou, S, E-mail: marie.carriere@cea.fr [Unite de Nutrition Azotee des Plantes, INRA, Versailles (France)

    2011-07-06

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO{sub 2}-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO{sub 2}-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-{mu}-XRF) imaging and micro-particle induced X-ray emission ({mu}-PIXE) imaging. Moreover, the impact of TiO{sub 2}-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO{sub 2}-NPs. These results show that TiO{sub 2}-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  1. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    International Nuclear Information System (INIS)

    Larue, C; Carriere, M; Khodja, H; Herlin-Boime, N; Brisset, F; Flank, A M; Fayard, B; Chaillou, S

    2011-01-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO 2 -NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO 2 -NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO 2 -NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO 2 -NPs. These results show that TiO 2 -NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  2. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-08-01

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001

  3. Strontium ruthenate–anatase titanium dioxide heterojunctions from first-principles: Electronic structure, spin, and interface dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Naheed; Ertekin, Elif, E-mail: ertekin@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois 61801 (United States)

    2016-07-21

    The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO{sub 3} and the wide band gap semiconductor TiO{sub 2}, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO{sub 3}, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO{sub 3}, the interface is found to be rectifying with a Schottky barrier of ≈1.3–1.6 eV, in good agreement with experiment. In the minority spin, SrRuO{sub 3} exhibits a Schottky barrier alignment with TiO{sub 2} and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO{sub 3} recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.

  4. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: sandrogranado02@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  5. Comparative studies of photoelectrochemical behaviours of rutile and anatase electrodes prepared by OMCVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, H; Nasu, M; Takahashi, Y

    1985-10-01

    Photoelectrochemical behaviours of two kinds of polymorphic form of TiO2, rutile and anatase, prepared by the organometallic chemical vapour deposition from isopropyl titanate have been comparatively studied. Photoelectrochemical characteristics of these TiO2 electrodes depend strongly upon the crystal structure and the deposition temperature. Their bandgap energies have been determined to be 3.0 eV and 3.2 eV, respectively, by the analysis of the photocurrent action spectra. The conduction band-edge and the valence band-edge of the anatase electrode, which have been estimated from photocurrent-potential curves, locate at the energy level about 0.1 eV higher and lower, respectively, than those of the rutile electrode. (orig.).

  6. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  7. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  8. Photocatalysis in the visible range of sub-stoichiometric anatase films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Garcia, G. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: gemma@icmab.es; Battiston, G.A. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Gerbasi, R. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ager, F. [CNA/CSIC Parque Tecnologico Cartuja 93, Avda Thomas A, Edison, 41092 Sevilla (Spain); Guerra, M. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Caixach, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Pardo, J.A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Rivera, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Instituto de Fisica, UNAM, Campus UNAM Juriquilla, 76230 Queretaro (Mexico)

    2005-08-25

    Anatase phase of titanium oxide is the most promising photocatalyst material for organic pollutant degradation. However, due to its large band gap energy (3.2 eV) it is not viable to use sunlight as an energy source for the photocatalysis activation, and so, ultraviolet (UV) radiation below the wavelength of 380 nm is required. This paper focuses on the experimental demonstration of the reduction of this large band gap energy by inducing defects in the anatase structure under the form of oxygen sub-stoichiometry. TiO{sub 2} thin films were prepared in a metal organic chemical vapour deposition (MOCVD) reactor. The samples stoichiometry was measured by the Rutherford backscattering spectrometry (RBS) technique. Optical characterisation was also performed and the photodegradation activity in the visible range was tested using nonylphenol, which is one of the most harmful pollutants present in waste waters.

  9. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  10. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  11. Photocatalytic and magnetic properties of anatase doped with V.theoretical study swig DFT

    International Nuclear Information System (INIS)

    Cabeza, Gabriela F; Castellani, Norberto J

    2008-01-01

    The electronic properties and the presence of ferromagnetism in TiO 2 (anatase) doped with vanadium are investigated using calculations of first principles based on the theory of functional density. This work has a double purpose. First, to establish a relationship between the chemical nature of the doping element and the catalytic properties of the volume. Many studies state that anatase is an excellent photocatalytic semiconductor with possible applications in environmental purification and in the photodegradation of organic components. Anatase has a band width of ∼ 3eV, which can be excited only in the presence of ultraviolet light. Doping with transition metals will reduce this and facilitate excitation with visible light. Second, the effect of doping with V on the presence of magnetism in the substrate is clarified. The magnetic moment for an atom isolated from V is known to be 3 mB, while a volume of V is paramagnetic. Studies show that anatase doped with V displays ferromagnetism at room temperature, converting it into a potential diluted magnetic semiconductor (DMS) that may be used in spintronic instruments. The results obtained show that the presence of V produces a narrowing of 27% in the width of the gap favoring the adsorption at greater wave longitudes. Based on an analysis of the states density, the Fermi level does not cross any state indicating that it is an insulant. There are 3d states of the V located in the band width. The spin-up states are next to the Fermi level and the spin-down states are close to the conduction band. The imbalance between both states implies the presence of ferromagnetism. The magnetic moment found is ∼ 1 mB according to the experimental results obtained from the literature

  12. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  13. Seed-assisted sol-gel synthesis and characterization of nanoparticular V2O5/anatase

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Riisager, Anders

    2009-01-01

    -ray powder diffraction, transmission electron microscopy and nitrogen physisorption. The synthesized high-surface area anatase particles allowed a loading of up to 15 wt.% vanadia without exceeding monolayer coverage of V2O5 in contrast to typical analogous industrial catalysts which only can accommodate 3......-5 wt.% vanadia. These materials are promising candidates for improved catalysts for, e.g., oxidation reactions and selective catalytic reduction of NO (X) in flue gases....

  14. XAFS Study of Epitaxial CoxTi1-xO2-x Anatase

    International Nuclear Information System (INIS)

    Heald, S.M.; Chambers, S.A.; Droubay, T.

    2009-01-01

    Co doped TiO 2 -anatase is a promising candidate for a room-temperature ferromagnetic semiconductor. XAFS measurements have been used to investigate the local Co environment and Co valence for several Co-anatase films. The samples were grown on LaAlO 3 (001) by oxygen plasma assisted molecular beam epitaxy and on SrTiO 3 by atomic oxygen assisted MBE. Co concentrations were about 5%. The measurements were made at the PNC-CAT bending magnet and undulator beamlines at the Advanced Photon Source. For the films on LaAlO 3 , the near edge clearly shows the presence of only Co(2+), and no evidence for metallic Co, while the films on SrTiO 3 showed significant metallic Co. Analysis of the extended fine structure for the LaAlO 3 films finds that the Co substitutes for Ti with some distortion of the lattice. Both in-plane and out-of-plane Co-O bonds are expanded from the Ti-O bonds in anatase. The in-plane bonds are expanded approximately twice as much. A deficit in the oxygen coordination number suggests a correlation of oxygen vacancies with Co sites.

  15. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    Science.gov (United States)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  16. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  17. Production and Characterization of (004) Oriented Single Anatase TiO2 Films

    Science.gov (United States)

    Atay, Ferhunde; Akyuz, Idris; Cergel, Muge Soyleyici; Erdogan, Banu

    2018-02-01

    Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet-visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78-300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

  18. Effect of annealing temperature on the anatase and rutile TiO2 nano tubes formation

    International Nuclear Information System (INIS)

    Zainovia Lockman; Kit, C.H.; Srimala Sreekantan

    2009-01-01

    Herein, we report on the optimum condition for TiO 2 titania nano tubes formation and the effect of annealing on the formation of anatse and rutile titania. Anodic oxidation was carried out in two electrodes bath consisting of 5 wt % NH 4 F ions. The anode was a 0.1 mm thick Ti foil and the cathode was Pt electrode. Anodization was conducted at 20 V. The anodised foils were subjected to morphological and structural characterizations. As-anodised foil was found to be amorphous or weakly crystalline. When the oxide was heat treated, x-ray diffraction analysis revealed the presence of (101) anatase at annealing temperature from 400 - 500 degree Celsius. This indicates that the transformation occurs at this range of temperatures. Raman spectroscopy analysis showed the diminishing of anatase peaks for samples annealed at 500 degree Celsius. At above 600 degree Celsius, x-ray diffraction pattern shows a peak belonging to the rutile peak. Transformation from anatase to rutile is thought to occur at about 500 degree Celsius with a more complete transformation at higher temperature. Annealing at higher than 600 degree Celsius induces thickening of the nano tubes wall and at above 700 degree Celsius, the nano tubes structure has completely disappeared. (author)

  19. Carrier compensation mechanism in heavily Nb-doped anatase Ti{sub 1-x}Nb{sub x}O{sub 2+{delta}} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nogawa, H; Chikamatsu, A; Hirose, Y; Hasegawa, T [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Nakao, S [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, H; Oshima, M, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan)

    2011-09-14

    We investigated the electronic structures of anatase Ti{sub 1-x}Nb{sub x}O{sub 2+{delta}} (TNO) thin films as a function of Nb concentration x using photoemission spectroscopy (PES) measurements to elucidate the origin of the abrupt decrease in carrier activation in heavily Nb-doped regime. The existing intensity ratio of Nb{sup 5+} evaluated from Nb 3d core-level PES spectra maintained a constant value of {approx}0.8 at x = 0.06-0.3, implying that electron carriers generated by Nb doping are compensated by p-type defects. Ti 2p-3d and O1s-2p resonant PES measurements of x = 0.06-0.3 films revealed that the in-gap states positioned {approx}1 eV below the Fermi level (E{sub F}) have a mixed character of Ti 3d and O 2p orbitals, whereas the states at E{sub F} mainly have a Ti 3d nature. We proposed a carrier compensation mechanism that interstitial oxygen atoms strongly combined with surrounding Nb atoms kill conduction electrons in heavily Nb-doped anatase TiO{sub 2}.

  20. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  1. Room temperature growth of nanocrystalline anatase TiO{sub 2} thin films by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preetam, E-mail: preetamphy@gmail.co [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kaur, Davinder [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO{sub 2} thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO{sub 2} film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO{sub 2} films for device applications with different refractive index, by changing the deposition parameters.

  2. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Cui Longzhe; Chen Shulin; Li Mei

    2011-01-01

    Graphical abstract: The prepared anatase TiO 2 from TiOF 2 shows very high thermal stability (up to 1000 o C) and the 700 o C-calcined sample showed the highest photocatalytic activity. Display Omitted Research highlights: → TiOF 2 was prepared by a simple microwave assisted hydrothermal rout. → Anatase TiO 2 prepared by calcination of TiOF 2 shows high thermal stability. → F - play an important role in the improvement thermal stability of anatase TiO 2 . → The 700 o C-calcined sample shows the highest photocatalytic activity. - Abstract: Preparation of anatase TiO 2 with high themal stability is of great importance for its environmental application. In this work, TiOF 2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 o C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 o C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N 2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF 2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF 2 to anatase TiO 2 occurred at about 300 o C. The prepared anatase TiO 2 from TiOF 2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 o C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO 2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 o C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.

  3. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  4. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    Science.gov (United States)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  6. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    Science.gov (United States)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  7. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell

    Science.gov (United States)

    Lazim, Haidar Gazy; Ajeel, Khalid I.; Badran, Hussain A.

    2015-06-01

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively.

  8. Physico-Chemical Characterization and Interfacial Electrochemical Properties of Nanoparticles of Anatase-TiO2 Prepared by the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Ikram Daou

    2013-07-01

    Full Text Available In this work, we prepared by the sol-gel method titanium dioxide nanoparticles having a large specific area (SBET = 218 m2/g. The isotherm of N2 adsorption-desorption at 77K revealed that it concerns a mesoporous solid with a maximum pore diameter of 43 Å. The X-ray diffraction showed that the solid is constituted of the anatase phase. The transmission electron microscopy revealed us that the synthesized grains of TiO2 are of nanometric sizes (diameter between 8 and 20 nm and manifest under agglomerated shape. The study of its solubility in dispersing phase, by conductometric titrations, showed that the prepared solid is totally insoluble in all the domain of the studied pH. The measured inter-facial electrochemical properties, based on the isotherms of ionic adsorption and the conductometric titrations, are: the point of zero charge found equal to 6,2±0,1, the total number of sites of surface found equal to 5,8 OH/nm2 and the nature of action of the dispersed phase on the dispersing phase which is found organizer of the structure of water. Besides, the difference of the ionizationconstants pK is found superior to 4 for all the adsorbed ions and the constants of surface complexation are independent from the nature of the adsorbed ion.

  9. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell.

    Science.gov (United States)

    Lazim, Haidar Gazy; Ajeel, Khalid I; Badran, Hussain A

    2015-06-15

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3,000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  11. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    Science.gov (United States)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  12. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  13. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  14. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  15. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......) catalysts reported in the literature in the examined temperature range of 200-400 degrees C. The catalysts showed very high resistivity towards potassium poisoning maintaining a 15-30 times higher activity than the equally poisoned industrial reference catalyst, upon impregnation by 280 mu mole potassium....../g of catalyst. (C) 2011 Elsevier Inc. All rights reserved....

  16. TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Asagoe, K; Suzuki, Y; Ngamsinlapasathian, S; Yoshikawa, S

    2007-01-01

    TiO 2 anatase nanowires have been prepared by a hydrothermal process followed by post-heat treatment in air. TiO 2 nanoparticle/TiO 2 nanowire composite electrodes were prepared for dye-sensitized solar cells (DSC) in order to improve light-to-electricity conversion efficiency. The TiO 2 NP/TiO 2 NW composite cells showed higher DSC performance than ordinary nanoparticle cells and fully nanowire cells: efficiency (η = 6.53 % for DSC with 10% nanowire, whereas 5.59% for 0% nanowire, and 2.42% for 100% nanowire

  17. Volume versus surface-mediated recombination in anatase TiO2 nanoparticles

    Science.gov (United States)

    Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Faso, Valentina; Baldi, Giovanni

    2009-09-01

    We present an experimental study of the radiative recombination dynamics in size-controlled anatase TiO2 nanoparticles in the range 20-130 nm. From time-integrated photoluminescence spectra and picosecond time-resolved experiments as a function of the nanoparticle size, excitation density, and temperature, we show that photoluminescence comes out from a bulk and a surface radiative recombination. The spectral shift and the different time dynamics provide a clear distinction between them. Moreover, the intrinsic nature of the emission is also proven, providing a quantitative evaluation of volume and surface contributions.

  18. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    Science.gov (United States)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  19. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun

    2016-01-01

    Full Text Available In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  20. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals

    Science.gov (United States)

    Morita, Kazuki; Yasuoka, Kenji

    2018-03-01

    Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.

  1. A one-step thermal decomposition method to prepare anatase TiO{sub 2} nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Shang, Chunli; Li, Xue, E-mail: chm_lix@ujn.edu.cn

    2015-12-01

    Highlights: • Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO{sub 2} NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO{sub 2} NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO{sub 2} NSs possess high surface area up to 378 m{sup 2} g{sup −1}. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO{sub 2} NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO{sub 2} NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  2. Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method

    International Nuclear Information System (INIS)

    Leyva-Porras, C.; Toxqui-Teran, A.; Vega-Becerra, O.; Miki-Yoshida, M.; Rojas-Villalobos, M.; García-Guaderrama, M.

    2015-01-01

    The synthesis of anatase TiO 2 nanoparticles by an acid-assisted sol–gel method at 25 and 80 °C is described. Specifically, acetic acid (AA) was used and the evolution of the anatase phase with the amount of AA was observed. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) both showed that a pure anatase phase was obtained with particle size smaller than 5 nm. Structural refinements and quantitative determination of phase composition was achieved by using the Rietveld method. The particle size distribution became slightly narrower as the amount of AA was increased. Raman spectroscopy showed that when the amount of AA was increased a small amount of brookite was present at the contamination level. The anatase phase was studied by differential thermal analysis (DTA), providing phase stability up to 600 °C. These and other results were discussed in terms of particle size and structure. Likewise, the formation of the anatase phase under these synthesis conditions was explained. - Highlights: • Synthesis of anatase TiO 2 nanoparticles by an acid assisted sol–gel method at mild conditions. • Microstructure characterization by XRD, TEM and Raman spectroscopy. • Observation of the formation and evolution of the anatase phase as acetic acid was increased. • Anatase thermal stability up to 600 °C and band gap range between 3.2 and 3.5 eV. • A simplified method which can be considered as a green chemistry process

  3. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  4. Mechanism of the toxic action of sulfur dioxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Miroshnikova, A T; Firger, V V; Belokrylova, L M

    1975-01-01

    Experiments were performed to determine the effects of sulfur dioxide on U CO2 metabolism and photosynthesis in fescue and timothy grass and in maple and barberry branches. The free radical inhibitors, ascorbic acid and thiourea, were found to decrease the damaging effects of the sulfur dioxide. These results indicated that the processes involved are of the free-radical chain type. Even at low sulfur dioxide concentrations, photosphosphorylation and carbon dioxide assimilation were inhibited. In addition, starch and protein as well as the formation of polymeric substances were also inhibited.

  5. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    Science.gov (United States)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments

  6. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell.

    Science.gov (United States)

    Li, Landong; Sun, Xiaohong; Yang, Yali; Guan, Naijia; Zhang, Fuxiang

    2006-11-20

    We report a novel, green hydrothermal-synthesis route to well-dispersed anatase TiO2 nanoparticles with particle sizes of 9-16 nm in the presence of beta-CD (beta-cyclodextrin). During the synthesis process, the CD-containing synthesis mixture assembled in both longitudinal and latitudinal directions. Driven by the interaction between molecules, the beta-CDs assembled in the longitudinal direction to form long-chain compounds, whereas in the latitudinal direction, they tended to form regular aggregates through coordination with the Ti species from the hydrolysis of tetrabutyl titanate. In view of the effect of the coordination and the steric hindrance of beta-CDs as a supramolecular shell, homogeneous nuclei and slow growth of TiO2 crystals during the synthesis process was observed, which was responsible for the formation of uniform TiO2 nanoparticles. The low beta-CD dosage and the high product yield (>90%) demonstrated well the potential of this synthesis route in the large-scale industrial production of anatase nanoparticles.

  7. A structure study of copper oxide for monolayer dispersion of anatase supported

    International Nuclear Information System (INIS)

    Zi Fenlan; Yu Xiaofeng; Guo Hongyou; Cai Xiaohai; Yang Pengcheng; Wu Nianzu; Xie Yaning; Zang Jing; Hu Tiandou

    2002-01-01

    The monolayer dispersion of copper oxide on the surface of anatase and its effect on the properties have been studied by X-ray photoelectron spectroscopy (XPS) and X-ray extended absorption fine structure (EXAFS). XPS results give an utmost dispersion capacity of 7.2 mg/gTiO 2 . Strong interactions between copper oxide and anatase can be seen from EXAFS results. The structure of the supported CuO species is strongly dependent on the amount of CuO loading. When the content of CuO loading is below the utmost dispersion capacity, the surface of CuO/TiO 2 is dominated by the highly dispersed CuO species having no -Cu-O-Cu- chains. The copper ion is located in an octahedral coordination environment, and the Cu-O coordination distance is much longer than that in pure crystalline CuO. When CuO loading is exceeds the utmost dispersion capacity, crystalline CuO is formed on the surface of CuO/TiO 2 . From the result of the structure study, it is Cu-O octahedral coordination and coordination distance change in comparison with pure crystalline CuO on the surface CuO/TiO 2 that have catalytic activity

  8. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT-D2 study

    Science.gov (United States)

    Saqlain, Muhammad Adnan; Hussain, Akhtar; Siddiq, Muhammad; Leitão, Alexandre A.

    2018-03-01

    With the help of DFT-D2 methodology, we have investigated the adsorption of water on clean anatase(001) and Au/anatase(001). In the former case, adsorption energies of H2O differ to small extent computed employing GGA = PW91 and DFT-D2 methods. While the GGA = PW91 predicts that water would desorb close to 650 K on the TiO2 surface, the DFT-D2 predicts that desorption is most likely to occur above 700 K. A comparison of water adsorption on TiO2 and Au/TiO2 surfaces shows that the TiO2 prefers dimer adsorption whereas the Au/TiO2 prefers monomer adsorption. We found that the diffusion of surface hydroxyls on to the Au cluster from the Au/TiO2 periphery is unlikely and it seems that the CO oxidation would occur at the Au/TiO2 boundary. The results show that water dissociation and CO oxidation steps occur easily on Au/TiO2 indicating that this could be good alternative catalyst for water gas shift reaction industry.

  9. Novel transparent conducting oxide: Anatase Ti1-xNb xO2

    International Nuclear Information System (INIS)

    Furubayashi, Yutaka; Hitosugi, Taro; Yamamoto, Yukio; Hirose, Yasushi; Kinoda, Go; Inaba, Kazuhisa; Shimada, Toshihiro; Hasegawa, Tetsuya

    2006-01-01

    Single-crystalline Ti 1-x Nb x O 2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO 3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti 1-x Nb x O 2 films with x ≥ 0.03 is 2-3 x 10 -4 Ω cm at room temperature. The carrier density of Ti 1-x Nb x O 2 , which is almost proportional to the Nb concentration, can be controlled in a range of 1 x 10 19 to 2 x 10 21 cm -3 . Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti 1-x Nb x O 2 is one of the promising candidates for the practical TCOs

  10. Visible Light Induced Green Transformation of Primary Amines to Imines Using a Silicate Supported Anatase Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sifani Zavahir

    2015-01-01

    Full Text Available Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  11. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    Science.gov (United States)

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  12. NH3 adsorption on anatase-TiO2(101)

    Science.gov (United States)

    Koust, Stig; Adamsen, Kræn C.; Kolsbjerg, Esben Leonhard; Li, Zheshen; Hammer, Bjørk; Wendt, Stefan; Lauritsen, Jeppe V.

    2018-03-01

    The adsorption of ammonia on anatase TiO2 is of fundamental importance for several catalytic applications of TiO2 and for probing acid-base interactions. Utilizing high-resolution scanning tunneling microscopy (STM), synchrotron X-ray photoelectron spectroscopy, temperature-programmed desorption (TPD), and density functional theory (DFT), we identify the adsorption mode and quantify the adsorption strength on the anatase TiO2(101) surface. It was found that ammonia adsorbs non-dissociatively as NH3 on regular five-fold coordinated titanium surface sites (5f-Ti) with an estimated exothermic adsorption energy of 1.2 eV for an isolated ammonia molecule. For higher adsorbate coverages, the adsorption energy progressively shifts to smaller values, due to repulsive intermolecular interactions. The repulsive adsorbate-adsorbate interactions are quantified using DFT and autocorrelation analysis of STM images, which both showed a repulsive energy of ˜50 meV for nearest neighbor sites and a lowering in binding energy for an ammonia molecule in a full monolayer of 0.28 eV, which is in agreement with TPD spectra.

  13. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  14. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment; Sintese e caracterizacao de dioxido de titanio preparado por precipitacao e tratamento hidrotermico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter, E-mail: vussui@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  15. Preparation of Anatase TiO{sub 2} Thin Films with (O{sup i}Pr){sub 2}Ti(CH{sub 3}COCHCONEt{sub 2}){sub 2} Precursor by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kwang Yeol [Korea University, Seoul (Korea, Republic of); Kim, Keun Chong [Hong-Ik University, Chochiwon (Korea, Republic of)

    2004-11-15

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O{sup i}Pr){sub 2}(CH{sub 3}COCHCONEt{sub 2}){sub 2} (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and {sup 1}H/{sup 13}C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt{sub 2}), trans(COCH{sub 3}) configuration (1a) in a distorted octahedral environment. Variable-temperature {sup 1}H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d{sub 8} solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method.

  16. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    Science.gov (United States)

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  17. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    Science.gov (United States)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-08-01

    The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500-900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m-3) and low UV-A irradiance (180 μW cm-2). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  18. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study

    Science.gov (United States)

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-01-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845

  19. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Science.gov (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass

    International Nuclear Information System (INIS)

    Yamada, Naoomi; Kasai, Junpei; Hitosugi, Taro; Hoang, Ngoc Lam Huong; Nakao, Shoichiro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2009-01-01

    This paper proposes a novel sputter-based method for the direct growth of transparent conducting Ti 1-x Nb x O 2 (TNO) polycrystalline films on glass, without the need for any postdeposition treatments, by the use of an initial seed-layer. Anatase TNO epitaxial films grown on LaAlO 3 (100) substrates under a reducing atmosphere exhibited a low resistivity (ρ) of (3-6)x10 -4 Ω cm. On glass, however, highly resistive rutile phase polycrystalline films (ρ∼100 Ω cm) formed preferentially under the same conditions. These results suggest that epitaxial stabilization of the oxygen-deficient anatase phase occurs on lattice-matched substrates. To produce a similar effect on a glass surface, we deposited a seed-layer of anatase TNO with excellent crystallinity under an increased oxygen atmosphere. As a result, anatase phase TNO polycrystalline films could be grown even under heavily reducing atmospheres. An optimized film exhibited ρ=1.1x10 -3 Ω cm and optical absorption lower than 10% in the visible region. This ρ value is more than one order of magnitude lower than values reported for directly deposited TNO polycrystalline films. This indicates that the seed-layer method has considerable potential for producing transparent conducting TNO polycrystalline films on glass.

  1. Clarification of the interaction between Au atoms and the anatase TiO2 (112) surface using density functional theory

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-04-01

    A model (112) surface slab of anatase TiO2 (112) was optimized, and the adsorption of Au atoms onto the (112) surface was investigated by first-principles calculations based on DFT (density functional theory) with the generalized gradient approximation (GGA). Furthermore, the results were compared with those of Au/anatase TiO2 (101) system. The (112) surface has a ridge and a groove (zig-zag structure). The Au atoms were strongly adsorbed in the grooves but became unstable as they climbed toward the ridges, and the promotion of electrons in the 5d orbitals to the 6s and 6p orbitals in the absorbed Au atom occurred. At the Au/anatase TiO2 interface, the Au-Ti4+ coordinate bond in the (112) system is stronger than that in the (101) system because the promotion of electrons is greater in the former interaction than the latter. The results suggest that Au/anatase TiO2 catalysts with a higher dispersion of Au nanoparticles could be prepared when the (112) surface is preferentially exposed.

  2. XRD Analysis of Nanocrystalline Anatase Powders Prepared by Various Chemical Routes: Correlations between Micro-structure and Crystal Structure Parameters

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Matějová, Lenka; Kužel, R.

    2013-01-01

    Roč. 28, Suppl. 2 (2013), s. 161-183 ISSN 0885-7156 Grant - others:UK(CZ) UNCE 204023/2012; MŠk(CZ) GAP108/11/1539 Institutional support: RVO:67985858 Keywords : anatase * crystallite size * lattice parameters * XRD * vacancies * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.586, year: 2013

  3. MSINDO quantum chemical modeling study of water molecule adsorption at nano-sized anatase TiO2 surfaces

    International Nuclear Information System (INIS)

    Wahab, Hilal S.; Bredow, Thomas; Aliwi, Salah M.

    2008-01-01

    In this work, we studied the adsorption of water molecule onto the (1 0 0), (0 1 0) and (0 0 1) surfaces of nano-sized anatase TiO 2 with semiempirical SCF MO method, MSINDO. The anatase TiO 2 particles are modeled with free clusters (TiO 2 ) n, where n = 20-80. Whereas, the surfaces have been modeled with two saturated clusters, Ti 21 O 58 H 32 and Ti 36 O 90 H 36 . The surface lattice fivefold coordinated titanium atoms (Ti 5C ), which represent the Lewis acid sites, are selected as adsorption centers. We also investigated the effect of TiO 2 cluster size on the computed band gap energy. Results reveal that the electronic properties of a cluster in the lowest excited state differ from that of the ground state. Furthermore, the MSINDO band gap energies of 3.68-3.77 eV for the anatase TiO 2 are in a fair accordance with other literature data. In agreement with other computational and experimental studies, the dissociated form of water molecule adsorption on anatase TiO 2 surfaces is always more stabilized than the molecular form

  4. An effective method for the preparation of high temperature stable anatase TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E. [Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); Pillai, Suresh C., E-mail: pillai.suresh@itsligo.ie [Nanotechnology Research Group, Department of Environmental Sciences, Institute of Technology Sligo (Ireland); Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo (Ireland)

    2016-05-15

    Highlights: • A rapid preparation method for the N, F codoped TiO{sub 2} is reported. • Anatase stability was achieved by using N, F doping and a microwave process. • High temperature stable anatase up to 1200 °C is reported. • Production of ammonium oxofluorotitanates (NH{sub 4}TiOF{sub 3}) intermediate is reported. - Abstract: An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH{sub 4}F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV–vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO{sub 2}: NH{sub 4}F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO{sub 2} being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH{sub 4}TiOF{sub 3}) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min{sup −1}) was three times more active than the undoped sample (0.0076 min{sup −1}) and over seven times faster than the commercial TiO{sub 2} photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min{sup −1}). The formation of intermediate compounds, oxofluorotitanates, was identified as the major

  5. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri [Centre for Nanobiotechnology, VIT University, Vellore (India); Chandrasekaran, Prathna Thanjavur [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Bhalerao, Gopalkrishna M.; Chakravarty, Sujoy [UGC-DAE CSR, Kalpakkam Node, Kokilamedu (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2015-04-15

    Highlights: • Toxicity of two crystalline phases of titania NPs on freshwater microalgae studied. • (Anatase, Rutile) mixture showed additive and antagonistic effect on microalgae. • Rutile had more colloidal stability than anatase and binary mixtures. • ROS generation varied with the crystallinity of the NPs. • Ultrastructural damages observed in TEM images. - Abstract: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 ± 35.01 nm, 555.74 ± 19.93 nm, and 1620.24 ± 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary

  6. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr{sup 4+} organic salts

    Energy Technology Data Exchange (ETDEWEB)

    Strini, Alberto, E-mail: alberto.strini@itc.cnr.it [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy); Sanson, Alessandra; Mercadelli, Elisa [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Bendoni, Riccardo [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Dipartimento di Scienze e Tecnologie Chimiche e Centro NAST - Università di Roma Tor Vergata, via della Ricerca Scientifica, I-00133 Roma (Italy); Marelli, Marcello; Dal Santo, Vladimiro [CNR–Istituto di Scienze e Tecnologie Molecolari, via Golgi, 19, I-20133 Milano (Italy); Schiavi, Luca [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy)

    2015-08-30

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr{sup 4+} organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr{sup 4+} organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m{sup −3}) and low UV-A irradiance (180 μW cm{sup −2}). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  7. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    International Nuclear Information System (INIS)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-01-01

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr 4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr 4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m −3 ) and low UV-A irradiance (180 μW cm −2 ). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation

  8. Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12

    International Nuclear Information System (INIS)

    Gharagozlou, Mehrnaz; Bayati, R.

    2015-01-01

    Highlights: • Anatase TiO 2 /B 12 hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B 12 -anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO 2 . XRD and Raman studies revealed formation of a single-phase anatase TiO 2 where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO 2 nanoparticles with vitamin B 12 . TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B 12 and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility

  9. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-01-01

    Full Text Available Abstract A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs is presented. Anatase TiO2 nanoparticles (NPs with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  10. Quantification of rutile in anatase by means of X-ray diffraction technique

    International Nuclear Information System (INIS)

    Macias B, L.R.; Palacios G, J.; Garcia C, R.M.

    1999-01-01

    In this work, making use of the X-ray diffraction technique, it was determined the quantification of two phases which are mixed in a crystalline sample of rutile and anatase also it is indicated the method to proceed in its evaluation, so that in the end it will be had as result of a semi-quantitative analysis of the phases that are found in the sample. The conclusion is that this method performs in samples which are presented as powders and since the different parameters with which they must be fulfilled then this should not be called quantitative but semi-quantitative and it has a margin of error in its evaluation. (Author)

  11. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions

    International Nuclear Information System (INIS)

    Sayilkan, Funda; Erdemoglu, Sema; Asiltuerk, Meltem; Akarsu, Murat; Sener, Sadiye; Sayilkan, Hikmet; Erdemoglu, Murat; Arpac, Ertugrul

    2006-01-01

    Photocatalytic performance of a hydrothermally synthesized pure anatase TiO 2 with 8 nm average crystallite size for decomposition of Reactive Red 141 was examined by investigating the effects of UV-light irradiation time, irradiation power, amount of TiO 2 and initial dye concentration. Change in the UV absorbance of the dye during irradiation was monitored. One wt.% TiO 2 in 30 mg/l Reactive Red 141 aqueous solution was found adequate for complete decolorization in 70 min at 770 W/m 2 irradiation power. It was realized that, compared to Degussa P-25, the synthesized nano-TiO 2 can be repeatedly used as a new catalyst. The results also proved that Reactive Red 141 is decomposed catalytically due to the pseudo first-order reaction kinetics

  12. Beneficiation of titanium concentrate (anatase) by HCl/H2O2 leaching of impurities

    International Nuclear Information System (INIS)

    Trindade, R.B.E.; Teixeira, L.A.C.

    1988-01-01

    The HCl/H 2 O 2 leaching of impurities from a Brazilian anatase (TiO 2 ) concentrate has been investigated by factorial experimentations. The effects of the following variables were investigated: temperature (50-90 0 C), redox potential (with and without oxidizing agent-H 2 O 2 ) and HCl concentration (4-18,5%). The conclusions were based on the analyses of Fe, Ca, P, Al, Si, Th,Ce, La, U and Ti in the beneficiated concentrates. The final results recommended the following optimum operational conditions, in a four stage countercurrent leaching: in the 4 th reactor (discharge of beneficiated concentrate): HCl fed at 18.5%, T=75 0 C, and addition of H 2 O 2 at a potential (eH) of 850 mV; in the first three reactors: T=90 0 C; with no oxidizing agent. (author) [pt

  13. Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage

    Science.gov (United States)

    Zhang, Weifeng; Lan, Tongbin; Ding, Tianli; Wu, Nae-Lih; Wei, Mingdeng

    2017-08-01

    Nanoporous anatase TiO2 mesocrystals with tunable architectures and crystalline phases were successfully fabricated in the presence of the butyl oleate and oleylamine. Especially, the introduced surfactants served as a carbon source, bring a uniform carbon layer (about 2-8 nm) for heightening the electronic conductivity. The carbon coated TiO2 mesocrystals assembled from crystalline tiny subunits have more space sites for sodium-ion storage. When the material was applied as an electrode material in rechargeable sodium-ion batteries, it exhibited a superior capacity of about 90 mA h g-1 at 20 C (1 C = 168 mA g-1) and a highly reversible capacity for 5000 cycles, which is the longest cycle life reported for sodium storage in TiO2 electrodes.

  14. Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2

    Science.gov (United States)

    Bupu, A.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.

  15. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets

    International Nuclear Information System (INIS)

    Shan Guobin; Demopoulos, George P

    2010-01-01

    Aqueous well-dispersed and phase-pure anatase TiO 2 truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl 4 ) in ethylene glycol at 240 deg. C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl 4 to produce TiO 2 and HCl-the latter promoting TiO 2 colloid peptization. TiO 2 truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO 2 NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed ∼1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO 2 NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO 2 NPLs are well crystallized and that the SAED patterns of the single TiO 2 NPL changes with its size and shape. XRD patterns showed that the TiO 2 NPLs are phase-pure anatase and the percentage of the {101} plane in the TiO 2 NPLs to be only 18%-a structural feature that renders the TiO 2 NPLs with enhanced UV absorption and reactivity properties.

  16. Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern France

    Directory of Open Access Journals (Sweden)

    J.-C. Calvet

    2008-01-01

    Full Text Available The sensitivity of an operational CO2-responsive land surface model (the ISBA-A-gs model of Météo-France to the atmospheric CO2 concentration, (CO2, is investigated for 3 vegetation types (winter wheat, irrigated maize, coniferous forest. Past (1960 and future (2050 scenarios of (CO2 corresponding to 320 ppm and 550 ppm, respectively, are explored. The sensitivity study is performed for 4 annual cycles presenting contrasting conditions of precipitation regime and air temperature, based on continuous measurements performed on the SMOSREX site near Toulouse, in southwestern France. A significant CO2-driven reduction of canopy conductance is simulated for the irrigated maize and the coniferous forest. The reduction is particularly large for maize, from 2000 to 2050 (−18%, and triggers a drop in optimum irrigation (−30 mm y−1. In the case of wheat, the response is more complex, with an equal occurrence of enhanced or reduced canopy conductance.

  17. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  18. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  19. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  20. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  1. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  2. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  3. Carbon Dioxide Sensor Technology.

    Science.gov (United States)

    1983-04-01

    second gas permeable membrane separates a compartment containing the non-aqueous " solvent dimethylsulfoxide , ( DMSO ), from the aqueous solution...compartment. In DMSO carbon dioxide can be irreversibly reduced electrochemically to * non-interfering products...current due to its reduction in the DMSO solution is proportional to the partial pressure of CO2 in the gas phase. Overall, the linear response and

  4. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  5. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  6. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  7. Nanostructured titanium dioxide: a control of crystallite size and content of polymorphic phases

    International Nuclear Information System (INIS)

    Boery, Mirella N. de O.; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2010-01-01

    TiO 2 (titanium dioxide) powders and nanoparticles have been largely used in toners and cosmetics. Nowadays, they are mainly focused in photocatalysis, antibacterial coatings, dye-sensitized solar cells, etc. The efficiency is related to photocatalytic properties of TiO 2 nanoparticles, such as crystallite size and phase (anatasio/rutile). In this research, flame aerosol method was used to synthesize TiO 2 nanoparticles by hydrolysis and oxidation of TiCl 4 (titanium tetrachloride). The oxy-hydrogen flame was provided by a five concentric nozzle silica burner. X-ray diffraction was used to identify each TiO 2 nanoparticles phase and scanning electron microscopy was used to observe the size and morphology of nanoparticles. Pure anatase was obtained with H 2 /O 2 ratio ≤ 1.0, and up to 52 wt% of rutile was obtained with H 2 /O 2 ratio > 2.0. Anatase crystal grain size varied from 25 to 38 nm, estimated by Scherrer formula.(author)

  8. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Balamurugan, M., E-mail: chem.muruga@gmail.com [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Lippitz, A. [Bundesanstalt für Materialforschung und -prüfung, 6.8 Oberflächenanalytik und Grenzflächenchemie Unter den Eichen 44 – 46, 12203, Berlin (Germany); Fonda, E.; Swaraj, S. [Synchrotron SOLEIL, L’ormes des merisiers, Saint Aubin BP-48, 91192, Gif-Sur-Yvette Cedex (France)

    2016-12-15

    The preparation and characterization of a Titanium dioxide (TiO{sub 2}) by a simple, cost effective, facile and eco-friendly green synthesis method using Peltophorum pterocarpum plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO{sub 2} NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO{sub 2} phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO{sub 2} NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase: rutile phase ratio can be obtained by controlling the experimental conditions.

  9. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    Science.gov (United States)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  10. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    International Nuclear Information System (INIS)

    Babitha, S; Korrapati, Purna Sai

    2013-01-01

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO 2 nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO 2 NPs with average size 2 nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO 2 NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO 2 NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO 2 NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO 2 NPs from the metal oxide enriched effluent sample for future biological applications

  11. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Babitha, S; Korrapati, Purna Sai, E-mail: purnasaik.clri@gmail.com

    2013-11-15

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  12. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  13. Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry

    International Nuclear Information System (INIS)

    Bojinova, A.; Kralchevska, R.; Poulios, I.; Dushkin, C.

    2007-01-01

    The present study is directed to clarify the influence of the ratio of anatase to rutile phase, containing in the TiO 2 samples, on their activity as photocatalysts in slurry. A series of samples corresponding to different percentages of anatase is prepared from commercial anatase and rutile TiO 2 brands (KRONOS). The crystalline phase composition of the samples is characterized by X-ray diffraction. The photocatalytic action of the mixtures is tested in photodegradation of the commercial organic dyes Malachite Green Hydrochloride and Orange II in aqueous solutions under UV irradiation. Comparative tests with Degussa P-25 are performed. The apparent rate constants of the process are determined from the kinetic curves using appropriate models. They generally increase with the anatase ratio, being always larger for Malachite Green than for Orange II

  14. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  15. Aggregation and composition effects on absorption and scattering properties of dye-sensitized anatase TiO{sub 2} particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, William E. [Centro de Investigacion en Ciencia e Ingenieria de Materiales and Escuela de Fisica, Universidad de Costa Rica, 2060 San Jose (Costa Rica)], E-mail: vargasc@cariari.ucr.ac.cr

    2008-06-15

    A transition matrix approach is used to compute the scattering and absorption cross sections, as well as phase functions, asymmetry factors and forward scattering ratios, of clusters of spherical particles. In order to approach the local structure and composition of the nanosized active layer of photoelectrochemical solar cells, some clusters consist of homogeneous non-absorbing anatase spherical pigments, others have anatase particles coated with a monolayer of absorbing dye molecules, and others can consist of both uncoated and dye-coated anatase particles. Orientation average values of the volumetric scattering and absorption cross sections are computed in terms of the size of the spherical particles in the clusters and their number. The degree of scattering and absorption when considering dye-coated anatase particles in the clusters is characterized. The effect of dependent scattering on the average angular distribution of the scattered radiation is also considered.

  16. Classification of titanium dioxide; Clasificacion del dioxido de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Garcia C, R.M.; Maya M, M.E. [Secretaria de Hacienda y Credito Publico de Mexico, Mexico (Mexico); Ita T, A. De [Universidad Autonoma Metropolitana Azcapotzalco, Mexico (Mexico); Palacios G, J. [Instituto Politecnico Nacional (Mexico)

    2002-07-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO{sub 2}. The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  17. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats.

    Science.gov (United States)

    Warheit, D B; Boatman, R; Brown, S C

    2015-12-01

    Six different commercial forms and sizes of titanium dioxide particles were tested in separate developmental toxicity assays. The three pigment-grade (pg) or 3 ultrafine (uf)/nanoscale (anatase and/or rutile) titanium dioxide (TiO2) particle-types were evaluated for potential maternal and developmental toxicity in pregnant rats by two different laboratories. All studies were conducted according to OECD Guideline 414 (Prenatal Developmental Toxicity Study). In addition, all test materials were robustly characterized. The BET surface areas of the pg and uf samples ranged from 7 to 17 m(2)/g and 50-82 m(2)/g respectively (see Table 1). The test substances were formulated in sterile water. In all of the studies, the formulations were administered by oral gavage to time-mated rats daily beginning around the time of implantation and continuing until the day prior to expected parturition. In 3 of the studies (uf-1, uf-3, & pg-1), the formulations were administered to Crl:CD(SD) rats beginning on gestation day (GD) 6 through GD 20. In 3 additional studies (uf-2, and pg-2, pg-3 TiO2 particles), the formulations were administered to Wistar rats beginning on GD 5 through 19. The dose levels used in all studies were 0, 100, 300, or 1000 mg/kg/day; control group animals were administered the vehicle. During the in-life portions of the studies, body weights, food consumption, and clinical observations before and after dosing were collected on a daily basis. All dams were euthanized just prior to expected parturition (GD 21 for Crl:CD(SD) rats and GD 20 for Wistar rats). The gross necropsies included an examination and description of uterine contents including counts of corpora lutea, implantation sites, resorptions, and live and dead fetuses. All live fetuses were sexed, weighed, and examined externally and euthanized. Following euthanasia, fresh visceral and head examinations were performed on selected fetuses. The fetal carcasses were then processed and examined for skeletal

  18. Low-temperature synthesis and characterization of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Leyva-Porras, C. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Toxqui-Teran, A.; Vega-Becerra, O. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Miki-Yoshida, M. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120, Parque Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Rojas-Villalobos, M.; García-Guaderrama, M. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); and others

    2015-10-25

    The synthesis of anatase TiO{sub 2} nanoparticles by an acid-assisted sol–gel method at 25 and 80 °C is described. Specifically, acetic acid (AA) was used and the evolution of the anatase phase with the amount of AA was observed. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) both showed that a pure anatase phase was obtained with particle size smaller than 5 nm. Structural refinements and quantitative determination of phase composition was achieved by using the Rietveld method. The particle size distribution became slightly narrower as the amount of AA was increased. Raman spectroscopy showed that when the amount of AA was increased a small amount of brookite was present at the contamination level. The anatase phase was studied by differential thermal analysis (DTA), providing phase stability up to 600 °C. These and other results were discussed in terms of particle size and structure. Likewise, the formation of the anatase phase under these synthesis conditions was explained. - Highlights: • Synthesis of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method at mild conditions. • Microstructure characterization by XRD, TEM and Raman spectroscopy. • Observation of the formation and evolution of the anatase phase as acetic acid was increased. • Anatase thermal stability up to 600 °C and band gap range between 3.2 and 3.5 eV. • A simplified method which can be considered as a green chemistry process.

  19. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical processing of carbon dioxide.

    Science.gov (United States)

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  1. Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review

    Directory of Open Access Journals (Sweden)

    Sakae Tanemura, Lei Miao, Wilfried Wunderlich, Masaki Tanemura, Yukimasa Mori, Shoichi Toh and Kenji Kaneko

    2005-01-01

    Full Text Available This review article summarizes briefly some important achievements of our recent reserach on anatase and/or rutile TiO2 thin films, fabricated by helicon RF magnetron sputtering, with good crystal quality and high density, and gives the-state-of-the-art of the knowledge on systematic interrelationship for fabrication conditions, crystal structure, composition, optical properties, and bactericidal abilities, and on the effective surface treatment to improve the optical reactivity of the obtained films.

  2. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  3. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, T.J.; Lammertink, Rob G H

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, ...

  4. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  5. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  6. Spontaneous and Photoinduced Conversion of CO2 on TiO2 Anatase (001)/(101) Surfaces

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kavan, Ladislav; Zukalová, Markéta; Zukal, Arnošt; Klementová, Mariana; Civiš, Svatopluk

    2014-01-01

    Roč. 118, č. 46 (2014), s. 26845-26850 ISSN 1932-7447 R&D Projects: GA ČR(CZ) GAP108/12/0814; GA MŠk LD14115; GA MŠk(CZ) LD13060 Grant - others:COST(XE) CM1104 Institutional support: RVO:61388955 ; RVO:61388980 ; RVO:68081707 Keywords : TiO2 * FT-IR spectroscopy * nanocrystalline anatase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  7. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    International Nuclear Information System (INIS)

    Tachikawa, Takashi

    2012-01-01

    We demonstrate control of the carrier density of single phase anatase TiO 2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO 2 samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  8. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  9. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  10. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  11. Sol-gel synthesis of anatase nanopowders for efficient photocatalytic degradation of herbicide Clomazone in aqueous media

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2017-01-01

    Full Text Available TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH42SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM. The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH42SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45018

  12. Novel (1 × 1)-reconstructions and native defects of TiO{sub 2} anatase (101) surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qinggao, E-mail: wangqinggao1984@126.com [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Department of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan Province 455000 (China); Ren, Fengzhu [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Dong, Huafeng [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Yuanxu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2017-05-31

    Highlights: • Acceptor energy levels are induced by O interstitials; corresponding to a transition of indirect-to-direct band gap and a narrowing of band gap. • The Fermi levels of defected and reconstructed TiO{sub 2} anatse (101) can be modulated in a wide range. - Abstract: In this paper, reconstructions and native defects of TiO{sub 2} anatase (101) surface are studied using the state-of-the-art theoretical method. We find that O interstitials are dominated defects at an oxidization environment. These O interstitials induce acceptor energy levels, corresponding to an indirect-direct band transition and a bandgap narrowing. And thus, the experimental result that an O-rich anatase TiO{sub 2} has the higher photocatalytic activity can be understood. The formation of O vacancies and Ti interstitials becomes feasible at a reduced condition, and reconstructed TiO{sub 2} anatase (101)-(1 × 1) structures present with increasing reduction degree. Furthermore, the Fermi levels of defected and reconstructed TiO{sub 2} anatse (101) can be modulated in a wide range (i.e., nearly the whole band gap), which are different from those of TiO{sub 2} rutile (110).

  13. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Jitputti, Jaturong; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2008-01-01

    Mesoporous anatase TiO 2 nanopowder was synthesized by hydrothermal method at 130 deg. C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m 2 /g. Mesoporous anatase TiO 2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO 2 , nanofibers TiO 2 mesoporous TiO 2 , and commercial TiO 2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO 2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm 2 , the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm 2 , Voc of 0.704 V and ff of 0.649

  14. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals

    Directory of Open Access Journals (Sweden)

    Kazuki Morita

    2018-03-01

    Full Text Available Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.

  15. Preparation of TiO2 thin films from autoclaved sol containing needle-like anatase crystals

    International Nuclear Information System (INIS)

    Ge Lei; Xu Mingxia; Fang Haibo; Sun Ming

    2006-01-01

    A new inorganic sol-gel method was introduced in this paper to prepare TiO 2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO 4 ) and peroxide (H 2 O 2 ) as starting materials. The transparent anatase TiO 2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO 2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO 2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO 2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO 2 films are transparent and their maximal light transmittances exceed 80% under visible light region

  16. Low temperature N,N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania

    Energy Technology Data Exchange (ETDEWEB)

    Estruga, M; Domenech, X; Ayllon, J A [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, E-08193 Bellaterra (Spain); Domingo, C [Institut de Ciencia dels Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Spain)], E-mail: joseantonio.ayllon@uab.es, E-mail: mestruga@qf.uab.cat

    2009-03-25

    Anatase and rutile biphasic nanostructured titania (TiO{sub 2}) has been synthesized via hydrolysis of titanium tetraisopropoxide in an aqueous solution of hydrobromic acid (HBr) and N,N-dimethylformamide (DMF) at 80 deg. C for 16 h. The presence of DMF, which was partially hydrolyzed during the process, determined the formation of a biphasic material. Powder x-ray diffraction showed the presence of both anatase and rutile titania phases in a ratio of approx. 1:1. Transmission electron microscope analysis showed that rutile was present as radial flower-like nanorods, which were surrounded by anatase spherical nanoparticles of 5 nm diameter. Low temperature nitrogen adsorption-desorption analysis showed the characteristic hysteresis loop of a mesoporous material. Specific surface area reached a value of 120 m{sup 2} g{sup -1} and the average pore diameter was 50 A. X-ray photoelectron spectroscopic analysis revealed that interstitial nitrogen was incorporated (0.35 at.%) during the annealing process. According to ultraviolet (UV)-visible diffuse reflectance spectroscope characterization, the N-doping caused a bandgap reduction from 3.0 to 2.9 eV. Photocatalytic activity of the material was tested for the degradation of methylene blue, methyl orange and 4-nitrophenol under near-UV and visible light radiation.

  17. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  18. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  19. SU-G-TeP3-15: Radiation Dose Enhancement by Anatase TiO2NPs

    Energy Technology Data Exchange (ETDEWEB)

    Youkhana, E; Geso, M; Feltis, B [RMIT University, Melbourne, VIC (Australia)

    2016-06-15

    Purpose: This work investigates radiation dose enhancement caused by TiO2 nanoparticles covering entire X-ray energy ranges used in radiation therapy. Methods: Anatase TiO2NPs crystal were synthesised and modified as hydrophilic and hydrophobic to disperse in culture-medium and halocarbons (PRESAGE chemical composition) respectively. TiO2NPs were characterised using TEM, XPS, XRD, TGA and FTIR. Various Concentrations have been utilised for determination of radiation-dose enhancement. This investigation is carried out in two ways; one using PRESAGE dosimeter/phantom and the other is radiobiological and based on in vitro study using two types of cell lines, Human Keratinocyte (HaCaT) and prostate cancer cell lines. The x-ray used are both kilovoltage and megavoltage separately. The prepared PRESAGE dosimeters were scanned using optical CT scanner. Clonogenic and MTS assays were employed for cell cytotoxicity and viability measurements for determination of the levels of dose enhancement. Results: Significant about (50%, 45%) dose enhancement by TiO2-NPs for kV x-rays is measured in both ways (Presage and Cells study). Slightly more is detected with the cells. However, the dose enhancement with megavoltage beams was insignificant using Presage and under same conditions the cells survival curves indicates around 20% which is relatively high. This difference can only be attributed to some biochemical effects. Such as generation of reactive oxygen species (ROS), this can affect the cells while it can’t be detected by Presage. Elevation of hydroxyl radicals (•OH) of many orders is observed with the inclusion of TiO2-NPs in cells-medium. Conclusion: Dose enhancement inflicted by TiO2-NPs is proven to be significant with megavoltage beams and minimal with kV. The high dose enhancements obtained can be attributed to higher levels of ROS generated. Since MV beams are most commonly used, this research proves potential value for more efficient beam delivery. This has

  20. Titanium dioxide thin films for high temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.ed

    2010-10-29

    Titanium dioxide (TiO{sub 2}) thin film gas sensors were fabricated via the sol-gel method from a starting solution of titanium isopropoxide dissolved in methoxyethanol. Spin coating was used to deposit the sol on electroded aluminum oxide (Al{sub 2}O{sub 3}) substrates forming a film 1 {mu}m thick. The influence of crystallization temperature and operating temperature on crystalline phase, grain size, electronic conduction activation energy, and gas sensing response toward carbon monoxide (CO) and methane (CH{sub 4}) was studied. Pure anatase phase was found with crystallization temperatures up to 800 {sup o}C, however, rutile began to form by 900 {sup o}C. Grain size increased with increasing calcination temperature. Activation energy was dependent on crystallite size and phase. Sensing response toward CO and CH{sub 4} was dependent on both calcination and operating temperatures. Films crystallized at 650 {sup o}C and operated at 450 {sup o}C showed the best selectivity toward CO.

  1. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  2. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Nikkanen, J-P; Heinonen, S; Saarivirta, E Huttunen; Honkanen, M; Levänen, E

    2013-01-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO 2 ) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO 2 was coagulated with magnetite particles using FeCl 3 ·6 H 2 O at a fixed pH value. Magnetic separation of coagulated TiO 2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO 2 powder. The magnetic separation of TiO 2 –magnetite coagulate from solution proved to be efficient around pH:8

  3. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  4. Titanium di-oxide films using a less hygroscopic colloidal precursor

    Energy Technology Data Exchange (ETDEWEB)

    Vandana,, E-mail: vandana1@nplindia.org; Batra, Neha; Kumar, Praveen; Sharma, Pooja; Singh, P.K., E-mail: pksingh@nplindia.org

    2014-04-01

    We report the study of titanium dioxide films (TiO{sub 2}) using titanium di-isopropoxyl di-2ethyl hexanoate Ti(OC{sub 3}H{sub 7}){sub 2} (C{sub 7}H{sub 15}COO){sub 2} colloidal precursor. This compound is less hygroscopic in nature and easy to use with processes like spin or dip coating. Thin films of TiO{sub 2} are made on silicon substrates and their structural and optical properties are studied. The effect of Ti content in the precursor, sintering temperature and its duration on film thickness and refractive index are investigated. Refractive index shows an increasing trend with the rise in the sintering temperature but remains unchanged with the time. The film thickness decreases with both sintering temperature and time and increases with Ti content in the precursor. Reflectivity measurements show marked reduction in the reflection losses compared to bare silicon surface wherein the film thickness is altered by spin speed. XRD results show anatase phase in the samples sintered at lower temperature (<680 °C), however, a mix of anatase, brookite and rutile phases is seen above this temperature. In the samples sintered above 1100 °C, rutile phase is dominant. These results are supported by the X-ray photoelectron spectroscopy. Atomic force microscopy reveals larger grain size at higher sintering temperature. The titanium dioxide films of desirable thickness and refractive index could be used as an antireflection coating on solar cells. - Highlights: • TiO{sub 2} films are made using titanium di-isopropoxyl di-2ethyl hexanoate precursor. • Effect of Ti content in the precursor, sintering temperature and time is studied. • Refractive index (μ) increases with sintering temperature but is independent of time. • Films of desired thickness and μ could be used as an antireflection coating. • XRD results show that rutile phase dominates in samples sintered above 1100 °C.

  5. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-01-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO 2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO 2 NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ ac ) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO 2

  6. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  7. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  8. The Simplest Way to Iodine-Doped Anatase for Photocatalysts Activated by Visible Light

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2011-01-01

    Full Text Available Iodine-doped TiO2 was prepared by thermal hydrolysis of aqueous solutions of the titanium peroxo-complex, which includes no organic solvents or organometallic compounds. The synthesized samples were characterized by X-ray diffraction (XRD, Raman spectroscopy (RS, infrared spectroscopy (IR, specific surface area (BET, and porosity determination (BJH. The morphology and particle size was determined by high-resolution transmission electron microscopy (HRTEM and selected area electron diffraction (SAED. All prepared samples have a red-shifted band-gap transition, well crystalline anatase structure, and porous particles with a 100–200 m2 g−1 specific surface area. The photocatalytic activity of iodine-doped titania samples was determined by decomposition of Orange II dye during irradiation at 365 nm and 400 nm. Iodine doping promotes the titania photocatalytic activity very efficiently under visible light irradiation. The titania sample with 0.32 wt.% I has the highest catalytic activity during the photocatalyzed degradation of Orange II dye in an aqueous suspension in the UV and visible regions.

  9. Mo-doped Gray Anatase TiO2: Lattice Expansion for Enhanced Sodium Storage

    International Nuclear Information System (INIS)

    Liao, Hanxiao; Xie, Lingling; Zhang, Yan; Qiu, Xiaoqing; Li, Simin; Huang, Zhaodong; Hou, Hongshuai; Ji, Xiaobo

    2016-01-01

    Gray-colored Mo 6+ -doped anatase TiO 2 is prepared uniformly with particle size of 10–20 nm, and is firstly employed as anode material in sodium-ion batteries (SIBs), presenting excellent electrochemical performances. It delivered reversible specific capacities of 231.8 mAh g −1 at 0.1 C (33.5 mA g −1 ) after 100 cycles and 108.3 mAh g −1 at 5 C (1.68 A g −1 ), comparing to 170.5 mAh g −1 at 0.1 C and only 41.7 mAh g −1 at 5C for the bare TiO 2 . The improved electrochemical performances might be beneficial from the doping of Mo 6+ , which can effectively enhance the conductivity of TiO 2 resulting from induced conduction band electrons, interstitial oxygen defects and vacancies. In addition, the doping can also lead to the lattice expansion, which can facilitate the diffusion of Na + . In combination with natural abundance and environmental benignity, Mo 6+ -doped TiO 2 can be expected to be utilized as an anode material for enhanced sodium storage.

  10. Synthesis of Co-Electrospun Lead Selenide Nanostructures within Anatase Titania Nanotubes for Advanced Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2015-06-01

    Full Text Available Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells, including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2 nanotube heterostructure material for photovoltaic applications. Herein, PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high connectivity for highly efficient charge carrier flow and electron-hole pair separation. This material has been characterized by transmission electron microscopy (TEM, electron diffraction, energy dispersive X-ray spectroscopy (EDX to show the morphology and material composition of the synthesized nanocomposite. Photovoltaic characterization has shown this newly synthesized proof-of-concept material can easily produce a photocurrent under solar illumination, and, with further refinement, could reveal a new direction in photovoltaic materials.

  11. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    International Nuclear Information System (INIS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-01-01

    Graphical abstract: ZnO nanorod array being prepared by an in situ method on the QCM coated with Au film via hydrothermal process and surface modification with coated TiO 2 by sol–gel methods to form a superhydrophobic TiO 2 /ZnO composite film the anatase TiO 2 /ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO 2 /ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules. - Highlights: • This work combines, for the first time, the advantage of the TiO 2 /ZnO composite film on photocatalysis and reversible super-hydrophobic and super-hydrophilic transition, and puts forward a solution to satisfy weatherability of quartz crystal microbalance in long-term application. • The anatase TiO 2 /ZnO nanorod composite film with pencil structure exhibit excellent super-hydrophobicity (water contact angle can reach 155°), no-sticking water properties and self-cleaning property under UV irradiation. • The photocatalysis and reversible super-hydrophobic and super-hydrophilic transition of the TiO 2 /ZnO nanorod composite film is stable in long-term application. - Abstract: The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO 2 /ZnO composite film is synthesized by surface modification with TiO 2 via sol–gel methods. Results show the anatase TiO 2 /ZnO nanorod

  12. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO{sub 2}(B)/anatase mixed-phase nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); State Key Laboratory Cultivation Base for Gas Geology and Gas Control, School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003 (China); Yang, Juan, E-mail: yangjuanhpu@yahoo.com [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); Wang, Xiaohan; Zhang, Lei; Li, Yingjie [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China)

    2015-09-15

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO{sub 2} catalysts and mixed-phase TiO{sub 2}(B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO{sub 2}. • Photocatalytic activities are greatly affected by the crystal structure of TiO{sub 2} nanowires. • Mixed-phase TiO{sub 2}(B)/anatase exhibits higher catalytic activity than single-phase TiO{sub 2}. • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO{sub 2}(B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2}, bare anatase TiO{sub 2} and TiO{sub 2}(B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO{sub 2}(B) and anatase TiO{sub 2} toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO{sub 2}(B) and 35% anatase. The difference in photocatalytic activities of TiO{sub 2} samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO{sub 2}(B) and anatase TiO{sub 2}. Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to

  13. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires

    International Nuclear Information System (INIS)

    Dai, Jun; Yang, Juan; Wang, Xiaohan; Zhang, Lei; Li, Yingjie

    2015-01-01

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO 2 catalysts and mixed-phase TiO 2 (B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO 2 . • Photocatalytic activities are greatly affected by the crystal structure of TiO 2 nanowires. • Mixed-phase TiO 2 (B)/anatase exhibits higher catalytic activity than single-phase TiO 2 . • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO 2 (B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO 2 (B)/anatase TiO 2 , bare anatase TiO 2 and TiO 2 (B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO 2 (B)/anatase TiO 2 catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO 2 (B) and anatase TiO 2 toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO 2 (B) and 35% anatase. The difference in photocatalytic activities of TiO 2 samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO 2 (B) and anatase TiO 2 . Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO 2 (B)/anatase TiO 2 catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to amines, reusability and facile separation of nanowires catalysts

  14. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  15. Mesoporous anatase TiO_2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chu, Liang; Qin, Zhengfei; Zhang, Qiaoxia; Chen, Wei; Yang, Jian; Yang, Jianping; Li, Xing’ao

    2016-01-01

    Graphical abstract: The photoelectrodes of DSSCs consisted of mesoporous anatase TiO_2 microspheres with interconnected nanoparticles. The interconnected nanoparticles enhance dye-loading capacity and charge transport. - Highlights: • The mesoporous anatase TiO_2 microspheres were synthesized by a template-free, one-step fast solvothermal process. • The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles have the advantages of large surface area and connected-structure for electron transfer. • The mesoporous anatase TiO_2 microspheres were further utilized as efficient photoelectrodes for dye-sensitized solar cells. - Abstract: Mesoporous anatase TiO_2 microspheres with interconnected nanostructures meet both large surface area and connected-structure for electron transfer as ideal nano/micromaterials for application in solar cells, energy storage, catalysis, water splitting and gas sensing. In this work, mesoporous anatase TiO_2 microspheres consisting of interconnected nanoparticles were synthesized by template-free, one-step fast solvothermal process, where urea was used as capping agent to control phase and promote oriented growth. The morphology was assembled by nucleation-growth-assembly-mechanism. The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles were further utilized as efficient photoelectrodes of dye-sensitized solar cells (DSSCs), which were beneficial to capacity of dye loading and charge transfer. The power conversion efficiency (PCE) based on the optimized thickness of TiO_2 photoelectrodes was up to 7.13% under standard AM 1.5 G illumination (100 mW/cm"2).

  16. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  17. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    Science.gov (United States)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  18. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  19. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  1. Ab initio atomic thermodynamics investigation on oxygen defects in the anatase TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhijun [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Tingyu, E-mail: liutyyxj@163.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Chenxing; Gan, Haixiu [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Jianyu [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Feiwu [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Three typical oxygen defects under the different annealing conditions have been studied. Black-Right-Pointing-Pointer The oxygen vacancy is easier to form at the surface than in the bulk. Black-Right-Pointing-Pointer The adsorption of O{sub 2} whose orientation is parallel to the surface should be more favorable. Black-Right-Pointing-Pointer The reduction reaction may firstly undertake at the surface during the annealing treatment. Black-Right-Pointing-Pointer The interstitial oxygen has important contribution to lead to the reduction of the band gap. - Abstract: In the framework of the ab initio atomic thermodynamics, the preliminary analysis of the oxygen defects in anatase TiO{sub 2} has been done by investigating the influence of the annealing treatment under representative conditions on three typical oxygen defects, that is, oxygen vacancy, oxygen adsorption and oxygen interstitial. Our results in this study agree well with the related experimental results. The molecular species of the adsorbed O{sub 2} is subject to the ratio of the number of the O{sub 2} to that of the vacancy, as well as to the initial orientation of O{sub 2} relative to the surface (101). Whatever the annealing condition is, the oxygen vacancy is easier to form at the surface than in the bulk indicating that the reduction reaction may firstly undertake at the surface during the annealing treatment, which is consistent with the phase transformation experiments. The molecular ion, peroxide species, caused by the interstitial oxygen has important contribution to the top of the valence band and lead to the reduction of the band gap.

  2. Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Naseem, Swaleha; Khan, Wasi; Khan, Shakeel; Husain, Shahid; Ahmad, Abid

    2018-02-01

    In the present work, nanocrystalline samples of Ti1-xCrxO2 (x = 0, 0.02, 0.04, 0.06 and 0.08) were synthesized in anatase phase through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO2 host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size in case of Cr doped TiO2 as compared to undoped TiO2 nanoparticles (NPs). Energy dispersive x-ray spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (ε‧), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO2 samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange mechanism. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO2 nanoparticles for spintronics application.

  3. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application

    International Nuclear Information System (INIS)

    Bai, Xue; Zhang, Xiaoyuan; Hua, Zulin; Ma, Wenqiang; Dai, Zhangyan; Huang, Xin; Gu, Haixin

    2014-01-01

    Highlights: • Uniform distributed TiO 2 nanoparticles on graphene by a modified method. • Reduced recombination rate of photogenerated electron–hole pairs. • Effective charge transfer from TiO 2 to graphene. • Better photocatalytic activity upon UV and visible irradiation. • A mechanism of bisphenol A degradation process is proposed. - Abstract: Graphene (GR)/TiO 2 nanocomposites are successfully synthesized using a simple and efficient hydrothermal method. Even-sized anatase TiO 2 nanoparticles are uniformly distributed on GR. The GR/TiO 2 nanocomposites exhibit an extended light absorption range and decreased electron–hole recombination rates. The photocatalytic activity of the as-prepared GR/TiO 2 nanocomposites for bisphenol A (BPA) degradation is investigated under UV (λ = 365 nm) and visible (λ ⩾ 400 nm) light irradiation. The results show that GR/TiO 2 nanocomposites have significantly higher photocatalytic activity than P25 (pure TiO 2 ). The large increase in photocatalytic activity is mostly attributed to effective charge transfer from TiO 2 nanoparticles to GR, which suppresses charge recombination during the photocatalytic process. After five successive cycles, the photodegradation activity of the GR/TiO 2 nanocomposites shows no significant decrease, which indicates that the nanocomposites are stable under UV and visible light. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonds of GR/TiO 2 nanocomposites before and after degradation to determine the degradation intermediate products of BPA under irradiation. A proposed degradation reaction pathway of BPA is also established. This study provides new insights into the fabrication and practical application of high-performance photocatalysts in wastewater treatment

  4. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  5. Determination of Crystallite Size Distribution Histogram in Nanocrystalline Anatase Powders by XRD

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Matějová, Lenka; Novotný, F.; Drahokoupil, Jan; Kužel, R.

    2011-01-01

    Roč. 1, - (2011), s. 87-92 [European Powder Diffraction Conference EPDIC 12 /12./. Darmstadt, 27.08.2010-30.08.2010] R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100520 Keywords : titanium dioxide * crystallite size * crystallite size distribution Subject RIV: CA - Inorganic Chemistry http://www.oldenbourg-link.com/ toc /zkpr/current

  6. The Simplest Way to Iodine-Doped Anatase for Photocatalysts Activated by Visible Light

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Grygar, Tomáš

    2011-01-01

    Roč. 2011, - (2011), 685935-1-685935-13 ISSN 1110-662X R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : titanium-dioxide * aqueous-solution * orange-II * TiO2 photocatalysts * Raman spectroscopy * optical - properties Subject RIV: CA - Inorganic Chemistry Impact factor: 1.769, year: 2011

  7. Preparation of anatase TiO{sub 2} thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hongche [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun, E-mail: seongoh@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Im, Seung Soon, E-mail: imss007@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    Highlights: • Anatase thin film of TiO{sub 2} was prepared by low temperature annealing. • Anatase TiO{sub 2} colloidal solution was obtained from amorphous form through solvothermal process. • Anatase TiO{sub 2} colloidal solution was used to prepare thin film on ITO glass. • Polymer solar cell fabricated on anatase TiO{sub 2} thin film showed 2.6% of PCE. - Abstract: To prepare the anatase TiO{sub 2} thin films on ITO glass, amorphous TiO{sub 2} colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO{sub 2} colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO{sub 2} film (for device A). For other TiO{sub 2} films, amorphous TiO{sub 2} colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO{sub 2} colloidal solution. This anatase TiO{sub 2} colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO{sub 2} colloidal solution was about 1.0 nm and that of anatase TiO{sub 2} colloidal solution was 10 nm. The thickness of TiO{sub 2} films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO{sub 2} films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO{sub 2} films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO{sub 2} films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  8. Preliminary study of varietal susceptibility to sulfur dioxide

    International Nuclear Information System (INIS)

    Miller, J.E.; Xerikos, P.B.

    1976-01-01

    The injury response of plants to air pollutants, such as sulfur dioxide, is known to vary in severity and type for different varieties or cultivars of a species. Differences in the susceptibility of soybean varieties to sulfur dioxide have previously been noted, but sufficient information is not available concerning the sulfur dioxide resistance of varieties commonly grown in the Midwest. Results are reported from preliminary experiments concerning acute sulfur dioxide effects on 12 soybean varieties. The injury symptoms ranged from cream colored necrotic lesions (generally on younger leaves) to a reddish brown necrotic stipling (on older leaves). Differences in the severity of symptom development for the varieties was evident on both the younger and older leaves. No injury was apparent with three of the varieties

  9. Assembling porous carbon-coated TiO2(B)/anatase nanosheets on reduced graphene oxide for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Shang; Wang, Runwei; Pang, Mingjun; Wang, Hongbin; Zeng, Shangjing; Yue, Xinzheng; Ni, Ling; Yu, Yanru; Dai, Jinyu; Qiu, Shilun; Zhang, Zongtao

    2015-01-01

    Highlights: • Porous carbon-coated mixed-phase Titanium dioxide nanosheets/reduced graphene oxide composites are successfully fabricated. • Carbon coating has been achieved from organic components. • Mesopores are uniformly distributed throughout the whole TiO 2 @C nanosheet. • Excellent cycling stability: the reversible capacity of 158.6 mAh g −1 is achieved at the current density of 800 mA g −1 after 500 cycles. - Abstract: Novel porous carbon-coated mixed-phase porous TiO 2 (TiO 2 (B)/anatase) nanosheets/reduced graphene oxide composites (TiO 2 @C/RGO) are successfully prepared through a facile one-pot solvothermal process followed by subsequent heat treatment in H 2 /Ar. The as-formed composites have a hierarchical porous structure, involving an average pore size of 28.56 nm, a large pore volume of 0.589 cm 3 g −1 and a desired surface area (136.19 m 2 g −1 ). When used as an anode material in LIBs, TiO 2 @C/RGO exhibits stable cycling performance with a reversible capacity of 272.9 mAh g −1 (with the second capacity retention of 151.1%) after 500 cycles at a current density of 100 mA g −1 , much higher than that of TiO 2 @C (177.6 mAh g −1 , 123.9% of the discharge capacity in second cycle) and TiO 2 (75.1 mAh g −1 , corresponding to 96.5% of the original capacity). More impressively, the capacity of TiO 2 @C/RGO can reach 158.6 mAh g −1 after 500 cycles even at 800 mA g −1 with Coulombic efficiency above 99.0%. The superior electrochemical performance of TiO 2 @C/RGO may be attributed to its unique 3D hierarchical porous structures, the existence of carbon, large surface area and extremely reduced diffusion length.

  10. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.

    Science.gov (United States)

    Wang, Ping; Zhai, Yueming; Wang, Dejun; Dong, Shaojun

    2011-04-01

    The construction of reduced graphene oxide or graphene oxide with semiconductor has gained more and more attention due to its unexpected optoelectronic and electronic properties. The synthesis of reduced graphene oxide (RGO) or graphene oxide-semiconductor nanocomposite with well-dispersed decorated particles is still a challenge now. Herein, we demonstrate a facile method for the synthesis of graphene oxide-amorphous TiO(2) and reduced graphene oxide-anatase TiO(2) nanocomposites with well-dispersed particles. The as-synthesized samples were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. The photovoltaic properties of RGO-anatase TiO(2) were also compared with that of similar sized anatase TiO(2) by transient photovoltage technique, and it was interesting to find that the combination of reduced graphene oxide with anatase TiO(2) will significantly increase the photovoltaic response and retard the recombination of electron-hole pairs in the excited anatase TiO(2).

  11. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film

    Science.gov (United States)

    Cho, Hsun-Wei; Liao, Kuo-Lun; Yang, Jih-Sheng; Wu, Jih-Jen

    2018-05-01

    Photoelectrochemical (PEC) performances of the anatase TiO2 films hydrothermally grown on the seeded fluorine-doped tin oxide (FTO) substrates are examined in this work. Structural characterizations of the TiO2 films were conducted using Raman scattering spectroscopy. Although there is no obvious rutile peak appearing, an asymmetrical peak centered at ∼399 cm-1 was observed in the Raman spectra of the TiO2 films deposited either on the low-temperature-formed seed layers or with low concentrations of Ti precursor. The asymmetrical Raman shift can be deconvoluted into the B1g mode of anatase and Eg mode of rutile TiO2 peaks centered at ∼399 cm-1 and ∼447 cm-1, respectively. Therefore, a minute quantity of rutile phase was inspected in the anatase film using Raman scattering spectroscopy. With the same light harvesting ability, we found that the PEC performance of the anatase TiO2 film was significantly enhanced as the minute quantity of rutile phase existing in the film. It is ascribed to the formation of the anatase/rutile heterojunction which is beneficial to the charge separation in the photoanode.

  12. Biofilm formation on titanium alloy and anatase-Bactercline® coated titanium healing screws: an in vivo human study

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2013-03-01

    Full Text Available Aim Bacterial adherence to implants is considered to be an important event in the pathogenesis of bacterial infections. In fact, this infection process is a first stage of peri-implant mucositis and peri-implantitis, and a positive correlation has been found between oral hygiene and marginal bone loss around implants in the edentulous mandible. Surface properties of transgingival implant components are important determinants in bacterial adhesion. The purpose of this study was to characterize the biofilm formation, in vivo, on healing screws made of titanium alloy or coated with a combination of anatase and Bactercline® product. Materials and methods Twenty-five patients, between 21- 37 years, in excellent systemic health, participated in this study. In each of the 25 participants, one anatase-Bactercline® coated healing screw (Test and one titanium alloy (TI6Al4V healing screw (Control were adapted to two different implants. Quantitative and qualitative biofilm formation on healing abutments was analyzed by culture method.Results Bacterial adherence to the two different healing screws used in this study were compared. Statistically significant differences were found between the Control and the Test group for both aerobic and anaerobic bacterial counts (p<0,05. The microflora consisted both of Gram-positive and Gram-negative bacteria, and displayed a high variability. The anaerobic S. intermedius, potentially “pathogenic”, was isolated only from the Control group. Both healing screws harbored primarily Gram-positive rods as Actinomyces spp, A. naeslundii, A. viscosus and the Gram-negative rods (Fusobacterium spp, Prevotella spp, Capnocythophaga spp were mostly found on the Control healing screws.Conclusion Anatase-Bactercline® coated healing screws reduce the number of initially adhering bacteria, formed mainly of Gram-positive microorgnisms, while, on the contrary, the microflora covering the titanium alloy healing screws was, for the

  13. Hydrothermal synthesis of fluorinated anatase TiO_2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    International Nuclear Information System (INIS)

    Luo, Lijun; Yang, Ye; Zhang, Ali; Wang, Min; Liu, Yongjun; Bian, Longchun; Jiang, Fengzhi; Pan, Xuejun

    2015-01-01

    Graphical abstract: - Highlights: • F–TiO_2–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F"− and RGO improve the photocatalytic activity of TiO_2 synergistically. • The F–TiO_2–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO_2/reduced graphene oxide nanocomposites (denoted as F–TiO_2–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO_2 particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F"− ion adsorbed on the surface of TiO_2–RGO surface can enhance photocatalytic activity of F–TiO_2–RGO. The photocatalytic activities of F–TiO_2–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO_2–10RGO (0.01501 min"−"1) was 3.41 times than that over P25 (0.00440 min"−"1). The result indicated that the enhanced photocatalytic activity of F–TiO_2–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO_2–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  14. High pressure phase behaviour of the binary mixture for the 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Choi, Min-Yong

    2007-01-01

    Experimental data of high pressure phase behaviour for binary mixtures of {carbon dioxide + 2-hydroxyethyl methacrylate (HEMA)}, {carbon dioxide + 2-hydroxypropyl acrylate (HPA)}, and {carbon dioxide + 2-hydroxypropyl methacrylate (HPMA)} were determined using a static type with the variable-volume cell at temperatures from (313.2 to 393.2) K and pressures up to 27.10 MPa. Among these binary experimental data, the bubble-point data were correlated with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule containing two interaction parameters (k ij and η ij ). The (carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems exhibit type-I phase behaviour. At constant pressure, the solubility of HEMA, HPA, and HPMA for the (Carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems increases as the temperature increases

  15. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, T; Minohara, M.; Nakanishi, Y.; Hikita, Y.; Yoshita, M.; Akiyama, H.; Bell, C.; Hwang, H.Y.

    2012-06-21

    We demonstrate control of the carrier density of single phase anatase TiO{sub 2} thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO{sub 2} samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  16. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning

    Czech Academy of Sciences Publication Activity Database

    Motola, M.; Satrapinskyy, L.; Roch, T.; Šubrt, Jan; Kupčík, Jaroslav; Klementová, Mariana; Jakubičková, M.; Peterka, F.; Plesch, G.

    2017-01-01

    Roč. 287, JUN (2017), s. 59-64 ISSN 0920-5861. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) /9./. Strasbourg, 13.06.2016-17.06.2016] R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Titanium mesh * Anatase nanotubes array * Liquid state deposition * NOx removal * Photocatalysis Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  17. Size-controllable synthesis of nanosized-TiO2 anatase using porous Vycor glass as template

    International Nuclear Information System (INIS)

    Mazali, I.O.; Filho, A.G. Souza; Viana, B.C.; Filho, J. Mendes; Alves, O.L.

    2006-01-01

    In this paper we report the synthesis and characterization of TiO 2 nanocrystal dispersed into a porous Vycor glass. We have obtained very small TiO 2 nanocrystals in the anatase form. The nanocrystal size is controlled via the mass increment only thus preventing the growth through the coalescence process. The nanocrystal size was monitored through transmission electron microscope and Raman scattering. The coalescence control is attributed due to the obtention of nanocrystals dispersed into the host and to the terminal bonds present in the porous which act as an anchor thus resulting in a low diffusion of the nanocrystals through the porous network

  18. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  19. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  20. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  2. Processing and characterization of titanium dioxide grown on titanium foam for potential use as Li-ion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyelim; Park, Hyeji [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of); Um, Ji Hyun [Integrated Energy Center for Fostering Global Creative Researcher, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Won-Sub [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choe, Heeman, E-mail: heeman@kookmin.ac.kr [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of)

    2017-07-31

    Highlights: • Successful formation of anatase TiO{sub 2} on the surface of Ti foam. • Successful application of TiO{sub 2}/Ti foam anode to lithium ion battery. • TiO{sub 2}/Ti foam anode shows remarkably stable capacity retention. - Abstract: This study investigates the processing and potential application of Ti foams to the anode of lithium-ion batteries (LIBs). Ti foam is successfully synthesized using a water-based freeze-casting process, and anatase titanium dioxide (TiO{sub 2}) is formed on the surface of the Ti foam for application to the anode of LIB. The metallic Ti foam acts as a current collector “platform” with increased surface area and the TiO{sub 2} surface coating acts as an active anode material. Coin-cell test results show that the unique combination of the Ti foam and the TiO{sub 2} coating anode has highly stable cycling properties and can thus be considered promising for use as an advanced anode for LIBs that require high safety and stability. It is anticipated that the use of the unique Ti-foam-based electrode design will not only be limited to LIBs but also will be applied to other energy and environmental areas as a catalyst or filter.

  3. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  4. Fluorine- and iron-modified hierarchical anatase microsphere photocatalyst for water cleaning: facile wet chemical synthesis and wavelength-sensitive photocatalytic reactivity.

    Science.gov (United States)

    Liu, Shaohong; Sun, Xudong; Li, Ji-Guang; Li, Xiaodong; Xiu, Zhimeng; Yang, He; Xue, Xiangxin

    2010-03-16

    High photocatalytic efficiency, easy recovery, and no biological toxicity are three key properties related to the practical application of anatase photocatalyst in water cleaning, but seem to be incompatible. Nanoparticles-constructed hierarchical anatase microspheres with high crystallinity and good dispersion prepared in this study via one-step solution processing at 90 degrees C under atmospheric pressure by using ammonium fluotitanate as the titanium source and urea as the precipitant can reconcile these three requirements. The hierarchical microspheres were found to grow via an aggregative mechanism, and contact recrystallization occurred at high additions of the FeCl(3) electrolyte into the reaction system. Simultaneous incorporation of fluorine and iron into the TiO(2) matrix was confirmed by combined analysis of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Surface structure and morphology changes of the microspheres induced by high-temperature annealing were clearly observed by field-emission scanning electron microscopy, especially for the phase-transformed particles. The original nanoparticles-constructed rough surfaces partially became smooth, resulting in a sharp drop in photocatalytic efficiency. Interestingly, iron loading has detrimental effects on the visible-light photocatalytic activity of both the as-prepared and the postannealed anatase microspheres but greatly enhances the photocatalytic activity of the as-prepared anatase microspheres under UV irradiation. No matter under UV or visible-light irradiation, the fluorine-loaded anatase microspheres and especially the postannealed ones show excellent photocatalytic performance. The underlying mechanism of fluorine and iron loading on the photocatalytic efficacy of the anatase microspheres was discussed in detail. Beyond photocatalytic applications, this kind of material is of great importance to the assembling of

  5. Anatase TiO2 single crystals with dominant {0 0 1} facets: Synthesis, shape-control mechanism and photocatalytic activity

    Science.gov (United States)

    Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin

    2018-06-01

    Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.

  6. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals

    Science.gov (United States)

    Raghunath, P.; Huang, W. F.; Lin, M. C.

    2013-04-01

    Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub

  7. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  8. Porous (001-faceted anatase TiO2 nanorice thin film for efficient dye-sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Shah Athar Ali

    2016-01-01

    Full Text Available Anatase TiO2 structures with nanorice-like morphology and high exposure of (001 facet has been successfully synthesized on an ITO surface using ammonium Hexafluoro Titanate and Hexamethylenetetramine as precursor and capping agent, respectively, under a microwave-assisted liquid-phase deposition method. These anatase TiO2 nanoparticles were prepared within five minutes of reaction time by utilizing an inverter microwave system at a normal atmospheric pressure. The morphology and the size (approximately from 6 to 70 nm of these nanostructures can be controlled. Homogenous, porous, 5.64 ± 0.002 μm thick layer of spongy-nanorice with facets (101 and (001 was grown on ITO substrate and used as a photo-anode in a dye-sensitized solar cell (DSSC. This solar cell device has emerged out with 4.05 ± 0.10% power conversion efficiency (PCE and 72% of incident photon-to-current efficiency (IPCE under AM1.5 G illumination.

  9. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.

    Science.gov (United States)

    Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong

    2013-07-14

    The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.

  10. Proportion of influence phases anatase and rutile TiO_2 in the photoluminescence 538 nm emission wavelength

    International Nuclear Information System (INIS)

    Araujo, D.S.; Diniz, V.C.S.; Araujo, P.M.A.G.; Costa, A.C.F.M.; Viana, R.S.; Junior, S.A.

    2016-01-01

    TiO2 is one of the most studied materials in the technology area, especially in photoluminescent applications involving catalysts from the biosensor. Therefore, we propose to obtain the Pechini method TiO_2 molar ratio of citric acid/metal ions of 3:1 and 4:1 in order to investigate the influence of the proportion of anatase and rutile phases with the photoluminescence excitation wavelength of 538nm emission. The samples were characterized by X-ray diffraction, thermal analysis and excitation spectroscopy. The results indicate the presence of two phases, with a proportion of 78.99 and 83.58 and 21.01% of anatase and rutile 16.42%, density 3.82 and 3.70 g/cm"3 and excitement in length wave emission 538nm with maximum intensity 91289.2 and 71880,7 cps for samples 3:1 and 4:1, respectively. Sample 3:1 with the highest percentage of rutile phase favored photoluminescence. (author)

  11. Benign Synthesis of Black Microspheres of Anatase TiO2 with Paramagnetic Oxygen Vacancies through NH3 Treatment.

    Science.gov (United States)

    Maqbool, Qysar; Srivastava, Aasheesh

    2017-10-09

    Coloured TiO 2 is coveted for its ability to extract energy from the visible region of electromagnetic spectrum. Here a facile synthesis of black anatase titania microspheres (B-TiO 2 ) through a two-step process is reported. In the first step, amorphous white TiO 2 microspheres (W-TiO 2 ) are obtained by hydrolysing titanium tetraisopropoxide by ammonia vapours in ethanol. In the second step, the W-TiO 2 is thermally annealed at 500 °C to obtain B-TiO 2 . The diffuse reflectance analysis showed that B-TiO 2 absorbs across visible spectrum with absorption extending well into NIR region. Raman scattering together with EPR analysis showed compelling evidence of the existence of oxygen deficiency within the crystal in B-TiO 2 that induces black colouration in the sample. The defects present in the black anatase sample were confirmed to be single-electron-trapped (or paramagnetic) oxygen vacancies (V o ⋅) by XPS and EPR studies. The magnetic susceptibility studies showed existence of antiferromagnetic interactions between these unpaired electron spins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  13. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation

    International Nuclear Information System (INIS)

    Dong Dianbo; Li Peijun; Li Xiaojun; Zhao Qing; Zhang Yinqiu; Jia Chunyun; Li Peng

    2010-01-01

    Photocatalytic degradation of pyrene on soil surfaces was investigated in the presence of nanometer anatase TiO 2 under a variety of conditions. After being spiked with pyrene, soil samples loaded with different amounts of TiO 2 (0%, 1%, 2%, 3%, and 4%, w/w) were exposed to UV irradiation for 25 h. The results indicated that the photocatalytic degradation of pyrene followed pseudo-first-order kinetics. TiO 2 accelerated the degradation of pyrene generally as indicated by the half-life reduction from 45.90 to 31.36 h, corresponding to the TiO 2 amounts from 0% to 4%, respectively. The effects of H 2 O 2 , light intensity and humic acids on the degradation of pyrene were also investigated. The degradation of pyrene increased along with increasing the concentration of H 2 O 2 , light intensity and the concentration of humic acids. All results indicated that the photocatalytic method in the presence of nanometer anatase TiO 2 was an advisable choice for the treatments of PAHs polluted soil in the future.

  14. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    Science.gov (United States)

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of solution composition on anatase to rutile transformation of sprayed TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert Owino, E-mail: albert.juma@ttu.ee [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn (Estonia); Acik, Ilona Oja [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn (Estonia); Mikli, Valdek [Chair of Semiconductor Materials Technology, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn (Estonia); Mere, Arvo; Krunks, Malle [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn (Estonia)

    2015-11-02

    Acetylacetone is used as a chelating agent for titanium(IV) isopropoxide to inhibit hydrolysis and stabilize the precursor solution. The effect of the molar ratio between titanium(IV) isopropoxide and acetylacetone of 1:1, 1:2, 1:3 and 1:4 in the precursor solution on the morphological, structural and optical properties of TiO{sub 2} thin film was investigated. These properties were studied using Fourier transformed infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, X-ray diffraction and UV–vis spectroscopy as a function of the molar ratios for the as-deposited thin films and films annealed at temperatures of 700, 800 and 950 °C. Mixed anatase and rutile phases were detected after annealing at 800 °C for 1:1 and 1:2 molar ratios and at 700 °C for 1:3 and 1:4 molar ratios. The optical band gap decreased from 3.45 to 3.02 eV with an increase in the annealing temperature in agreement with corresponding structural changes. - Highlights: • The grain sizes of TiO{sub 2} thin films could be varied over the range of 20 to 210 nm. • TTIP and AcacH ratio affects the transformation process from anatase to rutile. • TiO{sub 2} bandgap decreased from 3.45 to 3.02 eV with an increase in annealing temperature.

  16. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    Graphical abstract: - Highlights: • A novel Ag-loading and TiO 2 -coating technique was used to prepare samples. • The photocatalytic activity of the product was evaluated by removing of Rh B. • The as-synthesized samples showed an excellent photocatalytic activity. - Abstract: A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5–10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO 2 nanocrystals

  17. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  18. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  19. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  20. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  1. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  2. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  3. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles.

    Science.gov (United States)

    Warheit, D B; Brown, S C; Donner, E M

    2015-10-01

    Data generated using standardized testing protocols for toxicity studies generally provide reproducible and reliable results for establishing safe levels and formulating risk assessments. The findings of three OECD guideline-type oral toxicity studies of different duration in rats are summarized in this publication; each study evaluated different titanium dioxide (TiO2) particles of varying sizes and surface coatings. Moreover, each study finding demonstrated an absence of any TiO2 -related hazards. To briefly summarize the findings: 1) In a subchronic 90-day study (OECD TG 408), groups of young adult male and female rats were dosed with rutile-type, surface-coated pigment-grade TiO2 test particles (d50 = 145 nm - 21% nanoparticles by particle number criteria) by oral gavage for 90 days. The no-adverse-effect level (NOAEL) for both male and female rats in this study was 1000 mg/kg bw/day, the highest dose tested. The NOAEL was determined based on a lack of TiO2 particle-related adverse effects on any in-life, clinical pathology, or anatomic/microscopic pathology parameters; 2) In a 28-day repeated-dose oral toxicity study (OECD TG 407), groups of young adult male rats were administered daily doses of two rutile-type, uncoated, pigment-grade TiO2 test particles (d50 = 173 nm by number) by daily oral gavage at a dose of 24,000 mg/kg bw/day. There were no adverse effects measured during or following the end of the exposure period; and the NOAEL was determined to be 24,000 mg/kg bw/day; 3) In an acute oral toxicity study (OECD TG 425), female rats were administered a single oral exposure of surface-treated rutile/anatase nanoscale TiO2 particles (d50 = 73 nm by number) with doses up to 5000 mg/kg and evaluated over a 14-day post-exposure period. Under the conditions of this study, the oral LD50 for the test substance was >5000 mg/kg bw. In summary, the results from these three toxicity studies - each with different TiO2 particulate-types, demonstrated an absence of

  4. The effect of titanium dioxide nanoparticles on antioxidant gene expression in tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Varela-Valencia, Ruth; Gómez-Ortiz, Nikte; Oskam, Gerko; de Coss, Romeo; Rubio-Piña, Jorge; del Río-García, Marcela; Albores-Medina, Arnulfo; Zapata-Perez, Omar

    2014-04-01

    The reactivity of nanoparticles (NPs) in biological systems is well recognized, but there are huge gaps in our understanding of NP toxicity in fish, despite a number of recent ecotoxicity studies. Therefore, the aim of this research was to evaluate the effect of titanium dioxide NPs (TiO2-NPs) on antioxidant gene expression in the tilapia, Oreochromis niloticus. First, different sizes, shapes, and phases of TiO2-NPs were synthesized and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Fish were injected intraperitoneally with different concentrations (0.1, 1.0, 10.0 mg/L), sizes (7, 14, and 21 nm), and phases (anatase and rutile) of TiO2-NPs, and sacrificed 3, 6, 12, and 24 h after injection, when their livers were removed. Total RNA was extracted, and expression of the catalase ( CAT), glutathione- S-transferase ( GST), and superoxide dismutase ( SOD) genes was assessed by real-time polymerase chain reaction (RT-PCR). The results showed that injection of 1.0 mg/L TiO2-NPs induced an initial mild increase in CAT, GST, and SOD gene expression in tilapia, after which transcript levels decreased. Fish injected with 7 and 14 nm TiO2-NPs showed an increase in antioxidant transcript levels 6 h after treatment. Finally, the rutile form generated stronger induction of the GST gene than anatase TiO2-NPs during the first 6 h after injection, which suggests that exposure to rutile causes higher levels of reactive oxygen species to be produced.

  5. Titanium dioxide (TIO2) thin film and plasma properties in RF magnetron sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2013-01-01

    Lately, titanium dioxide (TiO 2 ) films with anatase crystalline property received numerous attentions as unique material properties. There are wide applications of TiO 2 thin film such as for photocatalytic application in solar cell. In the present study, radio frequency (RF) magnetron sputtering technique has been used to produce high dense, homogeneously controllable film layer at low deposition temperature using titanium (Ti) target. The diameter of the Ti target is 3 inch with fixed discharge power of 400W. Magnetron sputtering plasma has been produced in high purity 99.99% Argon (Ar) and 99.99% Oxygen (O 2 ) environment pressure ranging from 5 to 20 mTorr. The TiO2 were growth on silicon and glass substrates. Substrate temperature during deposition was kept constant at 400°C. The distance between target and substrate holder was maintain at 14 cm with rotation of 10 rotation-per-minutes. Our X-ray diffraction result, shows anatase crystalline successfully formed with characterization peaks of plane (101) at 2θ = 25.28°, plane (202) at 2θ = 48.05° and plane (211) at 2θ = 55.06°. In addition, it is our interest to study the plasma properties and optical spectrum of Ti, Ti+ , O- , ArM and Ar+ in the chamber during the deposition process. Result of emission line intensities, electron density and temperature from optical spectroscope and Langmuir probe will be discuss further during the workshop. This works were supported by Graduate Incentive Scheme of Universiti Tun Hussein Onn Malaysia (UTHM) and Fundamental Research Grant Scheme of Ministry of Higher Education, Malaysia. (author)

  6. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantum chemical elucidation of the mechanism for hydrogenation of TiO{sub 2} anatase crystals

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, P.; Huang, W. F.; Lin, M. C. [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2013-04-21

    Hydrogenation of TiO{sub 2} is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO{sub 2} hydrogenation through H and/or H{sub 2} diffusion from the surface into subsurface layers of anatase TiO{sub 2} (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H{sub 2} molecules can migrate from the crystal surface into TiO{sub 2} near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H{sub 2} on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H{sub 2} migration from the first layer of the subsurface O{sub sub1} to the 2nd layer of the subsurface oxygen O{sub sub2} requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H{sub 2} penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H{sub 2} from the cage by increasing its escaping barrier energy. The H{sub 2} molecule inside a cage can readily dissociate and form 2HO-species exothermically ({Delta}H =-31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H{sub 2}O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H{sub 2} molecule. H{sub 2}O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H{sub 2}, and H{sub 2}O appear prominently within the TiO{sub 2} band gap; in addition, the former induces a shift of the

  8. Screened coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2

    KAUST Repository

    Harb, Moussab

    2013-01-01

    The origin of the enhanced visible-light optical absorption in Te-doped bulk anatase TiO2 is investigated in the framework of DFT and DFPT within HSE06 in order to ensure accurate electronic structure and optical transition predictions. Various

  9. Green Strategy to Single Crystalline Anatase TiO 2 Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery

    KAUST Repository

    Ming, Hai; Kumar, Pushpendra; Yang, Wenjing; Fu, Yu; Ming, Jun; Kwak, Won Jin; Li, Lain-Jong; Sun, Yang Kook; Zheng, Junwei

    2015-01-01

    A green hydrothermal strategy starting from the Ti powders was developed to synthesis a new kind of well dispersed anatase TiO nanosheets (TNSTs) with dominant (001) facets, successfully avoiding using the HF by choosing the safe substitutes of Li

  10. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    Science.gov (United States)

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  11. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Lizhen [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China); Chen, Qirong [Beijing Center for Physical and Chemical Analysis (BCPCA) (China); Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu, E-mail: xfmeng@cnu.edu.cn [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China)

    2015-05-15

    High-temperature phase-stable rice-like anatase TiO{sub 2} nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N{sub 2} adsorption–desorption isotherms. The results showed that TiO{sub 2} nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m{sup 2}/g. Unexpectedly, the rice-like TiO{sub 2} nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO{sub 2} nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO{sub 2} nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  12. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  13. Understanding the synergistic effects, optical and electronic properties of ternary Fe/C/S-doped TiO2 anatase within the DFT 1 U approach

    CSIR Research Space (South Africa)

    Opoku, F

    2017-09-01

    Full Text Available property of TiO2doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows...

  14. Photodegradation of phenol by N-Doped TiO{sub 2} anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamad Azuwa [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Salleh, W.N.W., E-mail: hayati@petroleum.utm.my [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2015-07-15

    N-doped TiO{sub 2} anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu){sub 4} as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO{sub 2} nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO{sub 2} lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO{sub 2} at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO{sub 2} nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO{sub 2} nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO{sub 2} anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO{sub 2} Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO{sub 3} as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation.

  15. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Mohamed, Mohamad Azuwa; Salleh, W.N.W.; Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad

    2015-01-01

    N-doped TiO 2 anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu) 4 as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO 2 nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO 2 lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO 2 at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO 2 nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO 2 nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO 2 anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO 2 Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO 3 as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation. • The optimum calcination temperature is 400 °C for

  16. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  17. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  18. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  19. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells

    Directory of Open Access Journals (Sweden)

    Chen Eric Y

    2012-01-01

    Full Text Available Abstract Background Histamine released from mast cells, through complex interactions involving the binding of IgE to FcεRI receptors and the subsequent intracellular Ca2+ signaling, can mediate many allergic/inflammatory responses. The possibility of titanium dioxide nanoparticles (TiO2 NPs, a nanomaterial pervasively used in nanotechnology and pharmaceutical industries, to directly induce histamine secretion without prior allergen sensitization has remained uncertain. Results TiO2 NP exposure increased both histamine secretion and cytosolic Ca2+ concentration ([Ca2+]C in a dose dependent manner in rat RBL-2H3 mast cells. The increase in intracellular Ca2+ levels resulted primarily from an extracellular Ca2+ influx via membrane L-type Ca2+ channels. Unspecific Ca2+ entry via TiO2 NP-instigated membrane disruption was demonstrated with the intracellular leakage of a fluorescent calcein dye. Oxidative stress induced by TiO2 NPs also contributed to cytosolic Ca2+ signaling. The PLC-IP3-IP3 receptor pathways and endoplasmic reticulum (ER were responsible for the sustained elevation of [Ca2+]C and histamine secretion. Conclusion Our data suggests that systemic circulation of NPs may prompt histamine release at different locales causing abnormal inflammatory diseases. This study provides a novel mechanistic link between environmental TiO2 NP exposure and allergen-independent histamine release that can exacerbate manifestations of multiple allergic responses.

  20. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  1. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  2. Anatase-TiO{sub 2} nanocoating of Li{sub 4}Ti{sub 5}O{sub 12} nanorod anode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-ming, E-mail: chmm@tju.edu.cn; Sun, Xin; Qiao, Zhi-jun; Ma, Qian-qian; Wang, Cheng-yang

    2014-07-15

    Highlights: • TiO{sub 2}-coated LTO was in-situ prepared via a microemulsion-assisted hydrothermal route. • Anatase-TiO{sub 2} coating layer enhances the electrochemical performance of Li{sub 4}Ti{sub 5}O{sub 12}. • The as-prepared sample presents high-rate capability and cyclic stability. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} nanorod coated by anatase-TiO{sub 2} is in situ synthesized via a microemulsion-assisted hydrothermal method followed by heat treatment at 550 °C in air. Compared with pure Li{sub 4}Ti{sub 5}O{sub 12}, Li{sub 4}Ti{sub 5}O{sub 12} nanorod coated by anatase-TiO{sub 2} presents much improved electrochemical characteristics in terms of high specific capacity, excellent rate capability and cyclic stability (96.0% of initial capacity at a current density of 1.75 A g{sup −1} up to 100 cycles). Acting as a perfect nanocoating layer, anatase-TiO{sub 2} contributes some capacity and gives an enhanced performance to the Li{sub 4}Ti{sub 5}O{sub 12} electrode. All the results suggest that Li{sub 4}Ti{sub 5}O{sub 12} nanorod coated by anatase-TiO{sub 2} could be suitable for use as a high-rate anode material for lithium-ion batteries.

  3. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    Science.gov (United States)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  4. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir [Department of Nanomaterials and Nanotechnology, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Bayati, R. [Intel Corporation, IMO-SC, SC2, Santa Clara, CA 95054 (United States)

    2015-01-15

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Raman studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.

  5. Fabrication of TiO{sub 2} hierarchical architecture assembled by nanowires with anatase/TiO{sub 2}(B) phase-junctions for efficient photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yong; Ouyang, Feng, E-mail: ouyangfh@hit.edu.cn

    2017-05-01

    Highlights: • H-titanate nanowires hierarchical architectures (TNH) were prepared by a hydrothermal method. • Calcinations of TNH leads to the formation of anatase/TiO{sub 2}(B) phase-junctions. • The hierarchical architecture offered enhanced light harvesting and large specific surface area. • The 1D nanowires and anatase/TiO{sub 2}(B) phase-junctions both can enhance the separation of photoinduced electron-hole. • The products calcined at the optimum conditions (450 °C) exhibited a maximum hydrogenproduction rate of 7808 μmol g{sup −1} h{sup −1}. - Abstract: TiO{sub 2} hierarchical architecture assembled by nanowires with anatase/TiO{sub 2}(B) phase-junctions was prepared by a hydrothermal process followed by calcinations. The optimum calcination treatment (450 °C) not only led to the formation of anatase/TiO{sub 2}(B) phase-junctions, but also kept the morphology of 1D nanowire and hierarchical architecture well. The T-450 load 0.5 wt% Pt cocatalysts showed the best photocatalytic hydrogen production activity, with a maximum hydrogen production rate of 7808 μmol g{sup −1} h{sup −1}. The high photocatalytic activity is ascribed to the combined effects of the following three factors: (1) the hierarchical architecture exhibits better light harvesting; (2) the larger specific surface area provides more surface active sites for the photocatalytic reaction; (3) the 1D nanowires and anatase/TiO{sub 2}(B) phase-junctions both can enhance the separation of photoinduced electron-hole pairs and inhibit their recombination.

  6. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  7. Evolution of nanostructures of anatase TiO2 thin films grown on (001) LaAlO3

    International Nuclear Information System (INIS)

    Ciancio, Regina; Vittadini, Andrea; Selloni, Annabella; Arpaia, Riccardo; Aruta, Carmela; Miletto Granozio, Fabio; Scotti di Uccio, Umberto; Rossi, Giorgio; Carlino, Elvio

    2013-01-01

    Combining reflection high-energy electron diffraction, high-resolution transmission electron microscopy, and high-angle annular dark field scanning transmission electron microscopy we unveil the existence of a peculiar transition from a three-dimensional to a two-dimensional growth mode in anatase TiO 2 /LaAlO 3 heterostructures. Such a growth dynamics is accompanied by Al interdiffusion from substrate to the growing film up to a critical thickness of 20 nm. With the extra support of ab initio calculations, we show that the crossover between the two growth modes corresponds to the formation of two distinct regions characterized by (103)- and (101)-oriented crystallographic shear superstructures, occurring in the upmost film region and in proximity of the film/substrate interface, respectively.

  8. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  9. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M. Stiller

    2016-12-01

    Full Text Available The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  10. Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate

    International Nuclear Information System (INIS)

    Hitosugi, T.; Ueda, A.; Nakao, S.; Yamada, N.; Furubayashi, Y.; Hirose, Y.; Konuma, S.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We report on transparent conducting properties of anatase Ti 0.94 Nb 0.06 O 2 (TNO) polycrystalline films on glass substrate, and discuss the role of grain crystallinity and grain boundary on resistivity. Thin films of TNO were deposited using pulsed laser deposition at substrate temperature ranging from room temperature to 350 deg. C, with subsequent H 2 -annealing at 500 deg. C. Polycrystalline TNO films showed resistivity of 4.5 x 10 -4 Ω cm and 1.5 x 10 -3 Ω cm for films prepared at substrate temperature of room temperature and 250 deg. C, respectively. X-ray diffraction measurements and transmission electron microscopy reveal that grain crystallinity and grain boundary play key roles in conductive films

  11. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  12. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Science.gov (United States)

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  13. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Directory of Open Access Journals (Sweden)

    Mahdiar Ghadiry

    Full Text Available Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH causes the cladding refractive index (RI to increase due to cladding water absorption. However, if graphene oxide (GO is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time of the device, reveals a great linearity in a wide range of RH (35% to 98% and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  14. Spherical anatase TiO2 covered with nanospindles as dual functional scatters for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang

    2014-01-01

    Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs

  15. Hierarchical (0 0 1) facet anatase/rutile TiO2 heterojunction photoanode with enhanced photoelectrocatalytic performance

    International Nuclear Information System (INIS)

    Tian, Hongyi; Zhao, Guohua; Zhang, Ya-nan; Wang, Yanbin; Cao, Tongcheng

    2013-01-01

    Highlights: ► (0 0 1) facet TiO 2 photoanode with large surface area is reported for the first time. ► Ordered heterojunction further improves light absorption in (0 0 1) facet TiO 2 system. ► (0 0 1) facet TiO 2 photoanode possesses promoted photoelectrocatalytic performance. ► Photoelectrical enhancement mechanism is clarified by electrochemical methods. ► Photogenerated carrier and lifetime are remarkably enhanced by ingenious design. -- Abstract: A hierarchical heterojunction TiO 2 photoanode with large surface/body ratio is reported to exhibit high oxidation activity due to the constructing of anatase TiO 2 with exposed (0 0 1) facets. The mixed-phase photoanode is fabricated through surfactant-assisted anchoring ultrathin anatase nanosheets on vertically ordered rutile nanorod arrays. This cactaceae-like TiO 2 possesses high-exposed (0 0 1) facets outer layer, large specific surface area (375 m 2 g −1 ), efficient photo-to-current conversion (8.2%) and excellent photocatalytic ability to degrade bisphenol A. The greatly promoted photoelectric and photocatalytic performance results from the synergetic effects of the architecture design of high-active (0 0 1) facets and hierarchical heterojunctions. The mechanism analysis reveals that the remarkable increase of photogenerated carrier concentration (2.40 × 10 22 cm −3 ) improves photocatalytic activity, by virtue of constructing staggered energy levels, suppressing the recombination of electrons and holes, and extending the electron lifetime (133 ms)

  16. Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes.

    Science.gov (United States)

    Jo, Wan-Kuen

    2013-01-18

    This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO₂ powder baked at 450 °C. Although the LED-irradiated TiO₂ system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO₂ system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO₂ system when applied to the cleaning of TCE and 2-propanol at indoor air levels.

  17. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  18. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  19. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  20. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  1. Carbon Dioxide Embolism during Laparoscopic Surgery

    Science.gov (United States)

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  2. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    International Nuclear Information System (INIS)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues

    2016-01-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO 2 -OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO 2 -OPM from metallic titanium (TiO 2 -Met), and titanium isopropoxide (TiO 2 -Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO 2 -Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO 2 -Iso, resulting in an increase of peroxo groups on the surface, making the TiO 2 -Iso route

  3. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues, E-mail: estelamelare@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO{sub 2}-OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO{sub 2}-OPM from metallic titanium (TiO{sub 2}-Met), and titanium isopropoxide (TiO{sub 2}-Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO{sub 2}-Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO{sub 2}-Iso, resulting in an increase of peroxo groups on the surface, making

  4. Optical and structural characterization of titanium dioxide films growth by the r f-sputtering technique; Caracterizacion optica y estructural de peliculas de dioxido de titanio crecidas por la tecnica de rf-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Florido C, A.; Calderon, A. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Mendoza A, J.G.; Becerril, M.; Zelaya A, O. [CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2007-07-01

    Full text: The elaboration of a series of grown films of TiO on Corning glaze substrates, as well as silicon, by means of the rf-sputtering technique using one power of 160 watts, with the objective of obtaining the anatase phase which one presents better activity for applications in photo catalysis. In the process of growth it was used a temperature in the range from 300 to 600 C and a separation distance among the target and the substrate of 3.5 cm. The used atmosphere was a mixture of argon and oxygen. It was carried out the characterization of the films obtained by means of UV-vis spectrophotometry, and photoluminescence (FL). The microstructure analysis was carried out by means of X-ray diffraction (XRD), micro-Raman (MR), and atomic force microscopy (AFM). By means of the diffractographs it was determined the grain size. Our results show that in our films they are present the anatase and rutile phases of the titanium dioxide. The analysis of the results of optical spectra shows a forbidden band of the titanium dioxide around 3.2 eV. (Author)

  5. Hodgkin's disease following thorium dioxide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, A I; Kirk, M E [McGill Univ., Montreal, Quebec (Canada). Dept. of Pathology; Hutchison, J L [Montreal General Hospital, Quebec (Canada)

    1976-09-04

    Hodgkin's disease occurred in a 53-year-old man who, 25 years previously, had undergone cerebral angiography, for which thorium dioxide suspension (Thorotrast) was used. Deposits of thorium dioxide were noted in reticuloendothelial cells in various locations. An association between thorium dioxide administration and the subsequent development of malignant tumours and neoplastic hematologic disorders has previously been reported.

  6. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  7. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  8. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  9. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  10. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  11. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  12. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  13. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  14. Thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    Pillai, C.G.S.; George, A.M.

    1993-01-01

    The thermal conductivity of uranium dioxide of composition UO 2.015 was measured from 300 to 1400 K. The phonon component of the conductivity is found to be quantitatively accounted for by the theoretical expression of Slack derived by modifying the Leibfried-Schlomann equation. (orig.)

  15. Dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface – The effect of oxygen vacancy and presence of Ag cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sowmiya, M.; Senthilkumar, K., E-mail: ksenthil@buc.edu.in

    2016-12-15

    Highlights: • This study elucidates the dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface. • N{sub 2}O is decomposed into N{sub 2} and O on reduced TiO{sub 2} even in the presence of Ag cluster. • Excess charge in reduced TiO{sub 2} surface is transferred to the adsorbed N{sub 2}O molecule. • The vibrational frequency analysis also performed to study the dissociation of N{sub 2}O. • Anatase TiO{sub 2} with oxygen vacancies is a suitable catalyst for decomposition of N{sub 2}O. - Abstract: The increase in concentration of nitrous oxide (N{sub 2}O) in the atmosphere is one of the major contributors to the greenhouse effect, ozone depletion and climate change. Therefore, it is important to decompose harmful N{sub 2}O molecule into harmless N{sub 2}. In the present work, we have studied the decomposition of N{sub 2}O on anatase TiO{sub 2} (001) surface using first principle calculations. The results indicates that the N{sub 2}O molecule is physisorbed on perfect TiO{sub 2} surface without any dissociation, and is dissociated into N{sub 2} and oxygen on the reduced TiO{sub 2} surface. In addition, it has been found that the interaction between N{sub 2}O and TiO{sub 2} is augmented by the presence of Ag cluster on anatase (001) surface. On the basis of Bader charge analysis and electron density difference plot, it has been found that the excess charge in the reduced anatase TiO{sub 2} (001) surface is transferred to the adsorbed N{sub 2}O molecule, which results the weakening of N–O bond of N{sub 2}O followed by the decomposition of N{sub 2}O into N{sub 2} and O. Vibrational frequency analysis also performed to confirm the decomposition of N{sub 2}O molecule. From the pathway for N{sub 2}O dissociation on reduced TiO{sub 2} and Ag/TiO{sub 2} surfaces, it has been observed that the dissociation reaction of N{sub 2}O on TiO{sub 2} surface is highly exothermic with activation energy barrier of 0.25 eV. The results presented in this work show that the

  16. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  17. Adaptation to carbon dioxide tax in shipping

    International Nuclear Information System (INIS)

    Olsen, Kristian

    2000-01-01

    This note discusses the consequences for the sea transport sector between Norway and continental Europe of levying a carbon dioxide tax on international bunker. The influence of such a tax on the operational costs of various types of ship and various transport routes is calculated. The profit obtainable from the following ways of adapting to an increased tax level is assessed: (1) Reducing the speed, (2) Rebuilding the engine to decrease fuel consumption, (3) Changing the design speed for new ships. It is found that a carbon dioxide tax of NOK 200 per tonne of CO 2 will increase the transport costs by 3 - 15 percent. In the long run much of this may be transferred to the freight rates since so much of the sea transport are in segments in which the demand for the service is not sensitive to the prices. Even if the freight rates are not changed, a tax this size will not make it necessary to reduce the speed of the existing fleet. The income lost by taking fewer trips will exceed the costs saved in reducing the speed. However, the optimum design speed for new ships may be somewhat reduced (0.5 knots). Rebuilding engines to reduce the fuel consumption would pay off were it not for the fact that the remaining life of the present fleet is probably too short for this to be interesting

  18. Geologic map showing springs rich in carbon dioxide or or chloride in California

    Science.gov (United States)

    Barnes, Ivan; Irwin, William P.; Gibson, H.A.

    1975-01-01

    Carbon dioxide- and chloride-rich springs occur in all geologic provinces in California, but are most abundant in the Coast Ranges and the Great Valley. The carbon-dioxide-rich springs issue mainly from Franciscan terrane; they also are rich in boron and are of the metamorphic type (White, 1957). Based on isotopic data, either the carbon dioxide or the water, or both, may be of metamorphic origin. Because of high magnesium values, the water of many of the carbon-dioxide-rich springs is thought to have passed through serpentinite. The chloride-rich waters are most common in rocks of the Great Valley sequence. Nearly all are more dilute than present-day sea water. The similarity in isotopic compositions of the metamorphic carbon-dioxide-rich water and the chloride-rich water may indicate a similar extent of water-rock interaction.

  19. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide

    Science.gov (United States)

    Tan, Lling-Lling; Ong, Wee-Jun; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-11-01

    Photocatalytic reduction of carbon dioxide (CO2) into hydrocarbon fuels such as methane is an attractive strategy for simultaneously harvesting solar energy and capturing this major greenhouse gas. Incessant research interest has been devoted to preparing graphene-based semiconductor nanocomposites as photocatalysts for a variety of applications. In this work, reduced graphene oxide (rGO)-TiO2 hybrid nanocrystals were fabricated through a novel and simple solvothermal synthetic route. Anatase TiO2 particles with an average diameter of 12 nm were uniformly dispersed on the rGO sheet. Slow hydrolysis reaction was successfully attained through the use of ethylene glycol and acetic acid mixed solvents coupled with an additional cooling step. The prepared rGO-TiO2 nanocomposites exhibited superior photocatalytic activity (0.135 μmol gcat -1 h-1) in the reduction of CO2 over graphite oxide and pure anatase. The intimate contact between TiO2 and rGO was proposed to accelerate the transfer of photogenerated electrons on TiO2 to rGO, leading to an effective charge anti-recombination and thus enhancing the photocatalytic activity. Furthermore, our photocatalysts were found to be active even under the irradiation of low-power energy-saving light bulbs, which renders the entire process economically and practically feasible.

  20. Nanostructured titanium dioxide: a control of crystallite size and content of polymorphic phases; Nanoestrutura de dioxido de titanio: controle do tamanho de cristalitos e teor das fases polimorficas

    Energy Technology Data Exchange (ETDEWEB)

    Boery, Mirella N. de O.; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K., E-mail: miboery@fem.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    TiO{sub 2} (titanium dioxide) powders and nanoparticles have been largely used in toners and cosmetics. Nowadays, they are mainly focused in photocatalysis, antibacterial coatings, dye-sensitized solar cells, etc. The efficiency is related to photocatalytic properties of TiO{sub 2} nanoparticles, such as crystallite size and phase (anatasio/rutile). In this research, flame aerosol method was used to synthesize TiO{sub 2} nanoparticles by hydrolysis and oxidation of TiCl{sub 4} (titanium tetrachloride). The oxy-hydrogen flame was provided by a five concentric nozzle silica burner. X-ray diffraction was used to identify each TiO{sub 2} nanoparticles phase and scanning electron microscopy was used to observe the size and morphology of nanoparticles. Pure anatase was obtained with H{sub 2}/O{sub 2} ratio {<=} 1.0, and up to 52 wt% of rutile was obtained with H{sub 2}/O{sub 2} ratio > 2.0. Anatase crystal grain size varied from 25 to 38 nm, estimated by Scherrer formula.(author)

  1. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  2. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  3. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation.

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-05-21

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  4. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-04-01

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  5. Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Baek, Seung-Hyun; Byun, Hun-Soo

    2016-01-01

    Highlights: • Phase behaviours for the (CO_2 + propargyl (meth)acrylate) systems by static method were measured. • (P, x) isotherms is obtained at pressures up to 19.14 MPa and at temperature of (313.2 to 393.2) K. • The (CO_2 + propargyl acrylate) and (CO_2 + propargyl methacrylate) systems exhibit type-I behaviour. - Abstract: Acrylate and methacrylate (acrylic acid type) are compounds with weak polarity which show a non-ideal behaviour. Phase behaviour of these systems play a significant role as organic solvents in industrial processes. High pressure phase behaviour data were reported for binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. The bubble-point curves for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) mixtures were measured by static view cell apparatus at temperature range from 313.2 K to 393.2 K and at pressures below 19.14 MPa. The (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems exhibit type-I phase behaviour. The (carbon dioxide + (meth)acrylate) systems had continuous critical mixture curves with maximums in pressure located between the critical temperatures of carbon dioxide and propargyl acrylate or carbon dioxide and propargyl methacrylate. The solubility behaviour of propargyl (meth)acrylate in the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl acrylate) systems increases as the temperature increases at a fixed pressure. The experimental results for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule. The critical properties of propargyl acrylate and propargyl methacrylate were predicted with the Joback–Lyderson group contribution and Lee–Kesler method.

  6. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods

    International Nuclear Information System (INIS)

    Medina-Valtierra, Jorge; Garcia-Servin, Josafat; Frausto-Reyes, Claudio; Calixto, Sergio

    2006-01-01

    Anatase thin films ( 2 were prepared by sol-gel method. TiO 2 -anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO 2 was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones

  7. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO{sub 2} particles deposited on glass microrods

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Valtierra, Jorge [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: jormeval@yahoo.com; Garcia-Servin, Josafat [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: josgaser@yahoo.com.mx; Frausto-Reyes, Claudio [Centro de Investigaciones en Optica, A.C., Unidad Aguascalientes, Prol. Constitucion No. 607, Reserva de Loma Bonita, Aguascalientes, Ags., 20200 (Mexico)]. E-mail: cfraus@cio.mx; Calixto, Sergio [Centro de Investigaciones en Optica, A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, Leon, Gto., 37150 (Mexico)]. E-mail: scalixto@cio.mx

    2006-03-15

    Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO{sub 2} were prepared by sol-gel method. TiO{sub 2}-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO{sub 2} was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.

  8. Anatase TiO2 as a Cheap and Sustainable Buffering Filler for Silicon Nanoparticles in Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Maroni, Fabio; Carbonari, Gilberto; Croce, Fausto; Tossici, Roberto; Nobili, Francesco

    2017-12-08

    The design of effective supporting matrices to efficiently cycle Si nanoparticles is often difficult to achieve and requires complex preparation strategies. In this work, we present a simple synthesis of low-cost and environmentally benign aAnatase TiO 2 nanoparticles as buffering filler for Si nanoparticles (Si@TiO 2 ). The average anatase TiO 2 crystallite size was approximately 5 nm. A complete structural, morphological, and electrochemical characterization was performed. Electrochemical test results show very good specific capacity values of up to 1000 mAh g -1 and cycling at several specific currents, ranging from 500 to 2000 mA g -1 , demonstrating a very good tolerance to high cycling rates. Postmortem morphological analysis shows very good electrode integrity after 100 cycles at 500 mA g -1 specific current. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Li-ion batteries from LiFePO{sub 4} cathode and anatase/graphene composite anode for stationary energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vish V.; Wang, Wei; Nie, Zimin; Zhang, Ji-Guang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352 (United States); Bae, In-Tae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Duong, Tien [US Departments of Energy, 1000 Independence Ave., Washington, DC 20858 (United States)

    2010-03-15

    Li-ion batteries made from LiFePO{sub 4} cathode and anatase TiO{sub 2}/graphene composite anode were investigated for potential application in stationary energy storage. Fine-structured LiFePO{sub 4} was synthesized by a novel molten surfactant approach whereas anatase TiO{sub 2}/graphene nanocomposite was prepared via self-assembly method. The full cell that operated at 1.6 V demonstrated negligible fade even after more than 700 cycles at measured 1 C rate. While with relative lower energy density than traditional Li-ion chemistries interested for vehicle applications, the Li-ion batteries based on LiFePO{sub 4}/TiO{sub 2} combination potentially offers long life and low cost, along with safety, all which are critical to the stationary applications. (author)

  10. Visible active nanocrystalline N-doped anatase TiO{sub 2} particles for photocatalytic mineralization studies

    Energy Technology Data Exchange (ETDEWEB)

    Barkul, R.P. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Koli, V.B.; Shewale, V.B. [Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Patil, M.K. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Delekar, S.D., E-mail: sddelekar7@rediffmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 30306-4390, FL (United States)

    2016-04-15

    Nitrogen-doped TiO{sub 2} nanoparticles (N–TiO{sub 2} NPs) with anatase phase were synthesized by sol–gel method using a single precursor containing titanium (IV) terbutoxide, glacial acetic acid, sodium dodecyl sulphate, ammonia, and urea. X-ray diffraction (XRD) reveals the nanocrystalline nature with anatase phase of all the samples. The particle size of all samples was found in the range of 5–12 nm using transmission electron microscopy (TEM). UV–visible absorption measurements examined that the optical band gap of the doped samples decrease with increase in dopant concentration from 0.0 to 7.0 mol%. Field-emission scanning electron microscopy (FESEM) with energy dispersive atomic X-ray (EDAX) spectroscopy was employed to analyse the morphology and chemical composition of these N–TiO{sub 2} NPs. The photocatalytic activity of bare/doped TiO{sub 2} samples was demonstrated for the degradation of Rhodamine B (RhB) dye under direct sunlight irradiation. The photocatalytic degradation was monitored by measuring the kinetic parameters based on UV–visible spectroscopy as well as the chemical oxygen demand (COD) during the course of the reaction. The effect of dye concentration and pH of the solution on the photocatalytic degradation reaction in the presence of colloidal bare/doped TiO{sub 2} were also studied. The N–TiO{sub 2} catalyst, with a nitrogen concentration of 7.0 mol%, showed the highest activity for photocatalytic mineralization of dye at acidic or alkaline medium than neutral condition under solar light irradiation directly. - Highlights: • Nitrogen doped TiO{sub 2} nanoparticles where synthesized by using simple sol–gel method at room temperature. • N–TiO{sub 2} nanoparticles shows red shift. • Hydroxylation on the surface of TiO{sub 2} increase with increasing nitrogen concentration. • In presence of sunlight N–TiO{sub 2} shows enhancement in degradation of RhB dye.

  11. Fabrikasi Dye Sensitized Solar Cell (DSSC) Berdasarkan Fraksi Volume TiO2 Anatase-Rutile Dengan Garcinia Mangostana Dan Rhoeo Spathacea Sebagai Dye Fotosensitizer

    OpenAIRE

    Agustini, Sustia

    2013-01-01

    Sejak pertama kali dikembangkan, USAha untuk meningkatkan efisiensi Dye Sensitized Solar Cell (DSSC) terus dilakukan. Mulai dari pemilihan bahan pewarna, jenis semikonduktor yang digunakan, desain counter elektroda, struktur sandwich atau yang lainnya. Anatase dan rutile adalah fase dari TiO2 yang sering digunakan untuk fabrikasi DSSC. Penelitian ini menggunakan kulit manggis dan Rhoeo spathacea yang diekstrak menggunakan ethanol sebagai pewarna alami yang mengandung antosianin. Pewarna terse...

  12. Fabrikasi Dye Sensitized Solar Cell (DSSC) Berdasarkan Fraksi Volume TiO2 Anatase-Rutile dengan Garcinia mangostana dan Rhoeo Spathacea sebagai Dye Fotosensitizer

    OpenAIRE

    Sustia Agustini

    2013-01-01

    Sejak pertama kali dikembangkan, usaha untuk meningkatkan efisiensi Dye Sensitized Solar Cell (DSSC) terus dilakukan. Mulai dari pemilihan bahan pewarna, jenis semikonduktor yang digunakan, desain counter elektroda, struktur sandwich atau yang lainnya. Anatase dan rutile adalah fase dari TiO2 yang sering digunakan untuk fabrikasi DSSC. Penelitian ini menggunakan kulit manggis dan Rhoeo spathacea yang diekstrak menggunakan ethanol sebagai pewarna alami yang mengandung antosianin. Pewarna terse...

  13. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  14. Three-dimensional self-branching anatase TiO_2 nanorods with the improved carrier collection for SrTiO_3-based perovskite solar cells

    International Nuclear Information System (INIS)

    Hu, Yajing; Wang, Chen; Tang, Ying; Huang, Lu; Fu, Jianxun; Shi, Weimin; Wang, Linjun; Yang, Weiguang

    2016-01-01

    The organic–inorganic perovskite solar cells based on ternary oxide SrTiO_3 shows a higher Voc, attributed to its slightly higher conduction band edge and better morphology of absorber material. However, its less efficient carrier collection and limited overall interfacial areas between the absorber material and the electron-transport layer (ETL), dramatically reducing the Jsc. Here, By adjusting the concentrations of the Ti(OBu)_4, we successfully prepared the three-dimensional (3D) self-branching anatase TiO_2 nanorod/SrTiO_3 nanocomposites, and slightly tuned the particle size of SrTiO_3. With the incorporation of the three-dimensional (3D) self-branching anatase TiO_2 nanorod, the Jsc of the device based on SrTiO_3 was highly boosted. The best performing solar cell we obtained exhibited a PCE of 9.99% with a Jsc of 19.48 mA/cm"2. The excellent performance could be ascribed to the improvement of charge carrier collection of SrTiO_3, better surface coverage and crystallinity of CH_3NH_3PbI_3, and enhanced light scattering ability caused by 3D self-branching anatase TiO_2 nanorods. - Highlights: • The three-dimensional (3D) self-branching anatase TiO_2 nanorod/SrTiO_3 nanocomposites were prepared. • The particle sizes of SrTiO_3 can be slightly tuned. • The best performing solar cell we obtained exhibited a PCE of 9.99% with the Jsc of 19.48 mA/cm"2.

  15. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping

    International Nuclear Information System (INIS)

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G.L.; Wang, Ting; Li, Fan; Guan, Yidong

    2016-01-01

    Highlights: • TNS composed of anatase and titanate synthesized via a facile one-step method. • Cr(VI) and 4-CP can be simultaneously removed by TNS through photocatalysis. • Photocatalytic efficiencies of Cr(VI) and 4-CP greatly enhanced when coexisting. • Synergetic promotion effect occurs due to separation of electron-hole pairs. • Autosynchronous doping after Cr(III) adsorption leads to narrowed energy gap. - Abstract: Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k_1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120 min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment.

  16. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wen, E-mail: wzl0025@auburn.edu [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Sun, Weiling [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Borthwick, Alistair G.L. [School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL (United Kingdom); Wang, Ting [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Li, Fan [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Guan, Yidong, E-mail: yidongguan@nuist.edu.cn [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States)

    2016-11-05

    Highlights: • TNS composed of anatase and titanate synthesized via a facile one-step method. • Cr(VI) and 4-CP can be simultaneously removed by TNS through photocatalysis. • Photocatalytic efficiencies of Cr(VI) and 4-CP greatly enhanced when coexisting. • Synergetic promotion effect occurs due to separation of electron-hole pairs. • Autosynchronous doping after Cr(III) adsorption leads to narrowed energy gap. - Abstract: Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k{sub 1}) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120 min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment.

  17. Metal dioxides as analogue of SiO2 under strong compression studied by synchrotron XRD and simulations

    Science.gov (United States)

    Liu, H.; Liu, L. L.

    2017-12-01

    The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).

  18. Precipitated nanosized titanium dioxide for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, S.A. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine); Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Lisnycha, T.V. [Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Chernukhin, S.I. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine)

    2011-02-15

    Two types of titanium dioxide samples precipitated from aqueous solutions of titanium tetrachloride are investigated. Crystalline materials are obtained by means of neutralization of TiCl{sub 4} with the solution of an alkali metal hydroxide. The change of the order of mixing leads to amorphous materials. The evolution of the samples upon the thermal treatment is characterized using XRD, SEM, TEM and porosity studies. The application of crystalline TiO{sub 2} as an electrode material in lithium-ion 2016 sample cells enable one to yield specific currents up to 3350 mA g{sup -1}. On the other hand, the thermal treatment of initially amorphous materials does not lead to complete crystallization, and the presence of amorphous TiO{sub 2} is well seen as the so-called capacity behavior of cyclic voltammetry curves. (author)

  19. Fabrikasi Dye Sensitized Solar Cell (DSSC Berdasarkan Fraksi Volume TiO2 Anatase-Rutile dengan Garcinia mangostana dan Rhoeo Spathacea sebagai Dye Fotosensitizer

    Directory of Open Access Journals (Sweden)

    Sustia Agustini

    2013-09-01

    Full Text Available Sejak pertama kali dikembangkan, usaha untuk meningkatkan efisiensi Dye Sensitized Solar Cell (DSSC terus dilakukan. Mulai dari pemilihan bahan pewarna, jenis semikonduktor yang digunakan, desain counter elektroda, struktur sandwich atau yang lainnya. Anatase dan rutile adalah fase dari TiO2 yang sering digunakan untuk fabrikasi DSSC. Penelitian ini menggunakan kulit manggis dan Rhoeo spathacea yang diekstrak menggunakan ethanol sebagai pewarna alami yang mengandung antosianin. Pewarna tersebut dikarakterisasi menggunakan UV-Vis dan FTIR, dan menunjukkan absorpsi pada panjang gelombang 392 nm untuk kulit manggis dan 413 nm untuk Rhoeo spathacea. TiO2 disintesis menggunakan metode co-precipitation. Ukuran partikel yang dihasilkan adalah 11 nm untuk anatase and 54,5 nm untuk rutile dengan menggunakan persamaan Scherrer. DSSC difabrikasi dengan variasi fraksi volume TiO2 anatase dan rutile. DSSC diuji dibawah cahaya matahari dengan daya sebesar 17 mW/cm2. Kurva arus-tegangan (I-V DSSC yang dihasilkan fraksi volume 75%:25% memperlihatkan hasil terbaik dibanding yang lain. Efisiensi tertinggi adalah 0.037% dan 0.013% dihasilkan oleh DSSC dengan pewarna alami dari kulit manggis dan Rhoeo spathacea.

  20. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries

    Science.gov (United States)

    Xing, Yalan; Wang, Shengbin; Fang, Baizeng; Song, Ge; Wilkinson, David P.; Zhang, Shichao

    2018-05-01

    N-doped hollow urchin-like anatase TiO2 spheres (HUTSs) with carbon coating (HUTS@C) are prepared through a facile and scalable hydrothermal reaction followed by coating of polypyrrole and carbonization. The HUTS is composed of radially grown anatase nanorods and possesses an enhanced percentage of exposed {001} facets compared with P25 TiO2 nanoparticles. After the carbon coating, the HUTS@C retains the hollow nanostructure although covered with an N-doped carbon layer. As an anode for Li-ion batteries, the HUTS@C delivers a higher capacity of 165.1 mAh g-1 at 1C after 200 cycles and better rate capability (111.7 mAh g-1 at 10C) than the HUTS. Further electrochemical studies reveal that the HUTS@C has a better electrochemical reversibility, lower charge-transfer resistance, and higher Li-ion diffusion coefficient due to its unique nanosctructure including the hollow core, anatase phase of TiO2 microspheres with high exposed {001} facets and the N-doped carbon layer, which facilitates mass transport and enhances electrical conductivity.

  1. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO{sub 2}:Co films produced by cobalt ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, O. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Cornelius, S.; Hübner, R.; Potzger, K. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Smekhova, A.; Zykov, G.; Gan' shina, E. A.; Granovsky, A. B. [Lomonosov Moscow State University (MSU), Faculty of Physics, 119991 Moscow (Russian Federation); Bähtz, C. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-05-14

    Amorphous, polycrystalline anatase and epitaxial anatase TiO{sub 2} films have been implanted with 5 at. % Co{sup +}. The magnetic and structural properties of different microstructures of TiO{sub 2}:Co, along with the local coordination of the implanted Co atoms within the host lattice are investigated. In amorphous TiO{sub 2}:Co film, Co atoms are in the (II) oxidation state with a complex coordination and exhibit a paramagnetic response. However, for the TiO{sub 2}:Co epitaxial and polycrystalline anatase films, Co atoms have a distorted octahedral (II) oxygen coordination assigned to a substitutional environment with traces of metallic Co clusters, which gives a rise to a superparamagnetic behavior. Despite the incorporation of the implanted atoms into the host lattice, high temperature ferromagnetism is absent in the films. On the other hand, it is found that the concentration and size of the implantation-induced nanoclusters and the magnetic properties of TiO{sub 2}:Co films have a strong dependency on the initial microstructure of TiO{sub 2}. Consequently, metallic nanocluster formation within ion implantation prepared transition metal doped TiO{sub 2} can be suppressed by tuning the film microstructure.

  2. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  3. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  4. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  5. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  6. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  7. Manufacture of uranium dioxide powder

    International Nuclear Information System (INIS)

    Becker, M.

    1976-01-01

    Uranium dioxide powder is prepared by the AUC (ammonium uranyl carbonate) method. Supplementing the known process steps, the AUC, after separation from the mother liquor, is washed with an ammonium hydrogen carbonate or an NH 4 OH solution and is subsequently post-treated with a liquid which reduces the surface tension of the residual water in an AUC. Such a liquid is, for instance, alcohol

  8. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  9. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  10. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  11. Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition.

    Science.gov (United States)

    Niu, Ping; Wu, Tingting; Wen, Lei; Tan, Jun; Yang, Yongqiang; Zheng, Shijian; Liang, Yan; Li, Feng; Irvine, John Ts; Liu, Gang; Ma, Xiuliang; Cheng, Hui-Ming

    2018-03-30

    Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO 2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO 2 (TiO 2- x C x ) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO 2 . Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge-discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  13. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India); Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Ahmad, Shabbir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  14. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  15. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    Science.gov (United States)

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-03

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Furubayashi, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hirose, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Shimada, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2007-10-07

    Nb{sub 0.06}Sn{sub x}Ti{sub 0.94-x}O{sub 2} (x {<=} 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of {lambda} = 500 nm is estimated to be 12.4% for Nb{sub 0.06}Sn{sub 0.3} Ti{sub 0.64}O{sub 2} thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO{sub 2}. Low resistivity on the order of 10{sup -4} {omega} cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb{sub 0.06}Sn{sub x} Ti{sub 0.94-x}O{sub 2} thin films (x {<=} 0.2). Optical and transport analyses demonstrate that doping Sn into Nb{sub 0.06} Ti{sub 0.94}O{sub 2} can reduce the refractivity while maintaining low resistivity and high transparency.

  17. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    International Nuclear Information System (INIS)

    Chen, T L; Furubayashi, Y; Hirose, Y; Hitosugi, T; Shimada, T; Hasegawa, T

    2007-01-01

    Nb 0.06 Sn x Ti 0.94-x O 2 (x ≤ 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb 0.06 Sn 0.3 Ti 0.64 O 2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO 2 . Low resistivity on the order of 10 -4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb 0.06 Sn x Ti 0.94-x O 2 thin films (x ≤ 0.2). Optical and transport analyses demonstrate that doping Sn into Nb 0.06 Ti 0.94 O 2 can reduce the refractivity while maintaining low resistivity and high transparency

  18. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  19. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  20. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods

    Directory of Open Access Journals (Sweden)

    Aleksandra Wypych

    2014-01-01

    Full Text Available We made comparison of titanium dioxide powders obtained from three syntheses including sol-gel and precipitation methods as well as using layered (tetramethylammonium titanate as a source of TiO2. The obtained precursors were subjected to step annealing at elevated temperatures to transform into rutile form. The transformation was determined by Raman measurements in each case. The resulting products were characterised using Raman spectroscopy and dynamic light scattering. The main goal of the studies performed was to compare the temperature of the transformation in three titania precursors obtained by different methods of soft chemistry routes and to evaluate dielectric properties of rutile products by means of broadband dielectric spectroscopy. Different factors affecting the electrical properties of calcinated products were discussed. It was found that sol-gel synthesis provided rutile form after annealing at 850°C with the smallest particles size about 20 nm, the highest value of dielectric permittivity equal to 63.7, and loss tangent equal to 0.051 at MHz frequencies. The other powders transformed to rutile at higher temperature, that is, 900°C, exhibit lower value of dielectric permittivity and had a higher value of particles size. The correlation between the anatase-rutile transformation temperature and the size of annealed particles was proposed.

  1. Low-Temperature Reverse Microemulsion Synthesis, Characterization, and Photocatalytic Performance of Nanocrystalline Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Liu

    2012-01-01

    Full Text Available Nanocrystalline titanium dioxide (TiO2 was synthesized in microemulsions by using cetyltrimethylammonium bromide (CTAB as surfactant. In order to investigate the crystal transformation and photoactivity at low temperature, the as-prepared precipitates were aged at 65°C or calcined at various temperatures. Analyses using powder X-ray diffraction (XRD and Fourier transform infrared microscopy (FT-IR showed that precursors without aging or calcination were noncrystal and adsorbed by surfactant. After aging for 6 h, the amorphous TiO2 began to change into anatase. The obtained catalysts, which were synthesized in microemulsions with weight ratios of n-hexanol/CTAB/water as 6 : 3 : 1 and calcined at 500°C, presented the highest photocatalytic degradation rate on methyl orange (MO, while the catalysts, which were aged at 65°C for 90 h, also exhibited an outstanding photocatalytic performance and a little higher than that of the commercial titania photocatalyst Degussa P25.

  2. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    Science.gov (United States)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  3. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats.

    Science.gov (United States)

    Pujalté, Igor; Dieme, Denis; Haddad, Sami; Serventi, Alessandra Maria; Bouchard, Michèle

    2017-01-04

    This study focused on the generation of aerosols of titanium dioxide (TiO 2 ) nanoparticles (NPs) and their disposition kinetics in rats. Male Sprague-Dawley rats were exposed by inhalation to 15mg/m 3 of anatase TiO 2 NPs (∼20nm) during 6h. Rats were sacrificed at different time points over 14days following the onset of inhalation. Ti levels were quantified by ICP-MS in blood, tissues, and excreta. Oxidative damages were also monitored (MDA). Highest tissue levels of Ti were found in lungs; peak values were reached only at 48h followed by a progressive decrease over 14days, suggesting a persistence of NPs at the site-of-entry. Levels reached in blood, lymph nodes and other internal organs (including liver, kidney, spleen) were circa one order of magnitude lower than in lungs, but the profiles were indicative of a certain translocation to the systemic circulation. Large amounts were recovered in feces compared to urine, suggesting that inhaled NPs were eliminated mainly by mucociliary clearance and ingested. TiO 2 NPs also appeared to be partly transferred to olfactory bulbs and brain. MDA levels indicative of oxidative damage were significantly increased in lungs and blood at 24h but this was not clearly reflected at later times. Translocation and clearance rates of inhaled NPs under different realistic exposure conditions should be further documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility.

    Science.gov (United States)

    Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei

    2014-09-15

    In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  6. Mesoporous electrode material from alumina-stabilized anatase TiO.sub.2./sub. for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Attia, Adel; Zukalová, Markéta; Rathouský, Jiří; Zukal, Arnošt; Kavan, Ladislav

    2005-01-01

    Roč. 9, č. 3 (2005), s. 134-145 ISSN 1432-8488 R&D Projects: GA ČR(CZ) GA203/03/0824 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * alumina * lithium battery * mesoporous materials Subject RIV: CG - Electrochemistry Impact factor: 1.158, year: 2005

  7. Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma

    International Nuclear Information System (INIS)

    Asanuma, T.; Matsutani, T.; Liu, C.; Mihara, T.; Kiuchi, M.

    2004-01-01

    Titanium dioxide (TiO 2 ) thin films were deposited on unheated quartz (SiO 2 ) substrates in 'pure oxygen' plasma by reactive radio-frequency (rf) magnetron sputtering. The structural and optical properties of deposited films were systematically studied by changing the deposition parameters, and it was very recently found that crystalline TiO 2 films grew effectively in pure O 2 atmosphere. For TiO 2 films deposited at a rf power P rf of 200 W, x-ray diffraction patterns show the following features: (a) no diffraction peak was observed at a total sputtering pressure p tot of 1.3 Pa; (b) rutile (110) diffraction was observed at 4.0 Pa, (c) the dominant diffraction was from anatase (101) planes, with additional diffraction from (200), under p tot between 6.7 and 13 Pa. For the deposition at 140 W, however, crystalline films with mixed phases were observed only between 4.0 and 6.7 Pa. The peaks of both the deposition rate and the anatase weight ratio for the films produced at 140 W were found at p tot of approximately 6.7 Pa. This suggests that the nucleation and growth of TiO 2 films were affected by the composition, density, and kinetic energy of the particles impinging on the substrate surface. The optical absorption edge analysis showed that the optical band gap E g and the constant B could sensitively detect the film growth behavior, and determine the film structure and optical absorption. The change in the shape of the fundamental absorption edge is considered to reflect the variation of density and the short-range structural modifications

  8. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    Science.gov (United States)

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  9. First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles

    International Nuclear Information System (INIS)

    Liu Juan; Liu Qin; Fang Pengfei; Pan Chunxu; Xiao Wei

    2012-01-01

    The adsorption of a NO molecule on 72 atom N-doped TiO 2 nanoparticles has been studied by first principles calculations. Two types of adsorption are considered in the calculations. In one type of the adsorption, the NO molecule forms one bond with the particle, while in the other type of adsorption, the NO molecule forms two bonds with the particle. The second type of adsorption is more energetic favorable. The adsorption energies, bond lengths, density of the states (DOSs), and the difference of the charge density are calculated to investigate the adsorption. In the adsorption process, the unpaired electron of the NO molecule transfers to the empty state of the particle, making the Fermi levels lower. As a result, the electrons of the N-doped system occupy lower energy states, making the system energy lower than that of the undoped particle. Since the adsorption of a NO molecule on N-doped nanoparticles is stronger than that on undoped particles, N-doped particles can adsorb more NO molecules on their surfaces than the undoped particles do. Meanwhile, there are more adsorption sites on the N-doped particles, on which the adsorption energies are much higher than that of the undoped particle, some of them are even higher than the highest adsorption energy of the undoped particle. It suggests that N-doped particles are more active and they can adsorb more small toxic gas molecules in the air. So, the doping method can be used to remove NO molecules for the air pollution control through the surface adsorption strategy.

  10. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  11. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  12. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  13. A METHOD OF PREPARING URANIUM DIOXIDE

    Science.gov (United States)

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  14. Phase behaviour for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems at temperatures from (313.2 to 393.2) K and pressures from (5 to 31) MPa

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Jang, Yoon-Seok; Yoo, Ki-Pung

    2010-01-01

    The solubility curves for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems were determined by a static view cell apparatus at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2) K as well as pressures up to 31.43 MPa. Two {carbon dioxide + (meth)acrylate} systems had continuous critical mixture curves with maxima in pressure located between the critical temperatures of carbon dioxide and 2-phenoxyethyl (meth)acrylate. The solubility of 2-phenoxyethyl (meth)acrylate in the {carbon dioxide + 2-phenoxyethyl (meth)acrylate} systems increases as the temperature increases at a fixed pressure. The (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems exhibit type-I phase behaviour. The experimental results for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems correlate with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule including two adjustable parameters. The critical properties of 2-phenoxyethyl acrylate and 2-phenoxyethyl methacrylate were predicted with the Joback and Lee-Kesler method.

  15. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  16. Experimental nitrogen dioxide poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Cutlip, R C

    1966-01-01

    Experimental nitrogen dioxide inhalation has been reported to produce signs and lesions typical of field cases of bovine pulmonary adenomatosis (BPA) as described by Monlux et al, and Seaton. Similar lesions have been produced in mice and guinea pigs. These studies were conducted because of the similarities between silo-filler's disease of man, caused by nitrogen dioxide, and BPA. Since previous studies involved inadequate numbers of cattle, a more critical evaluation of the effects of nitrogen dioxide was needed. This project was designed to study the clinical and pathologic alterations induced in cattle by repeated exposure to nitrogen dioxide gas.

  17. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  18. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  19. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode

    International Nuclear Information System (INIS)

    Du, Pingfan; Song, Lixin; Xiong, Jie; Li, Ni; Wang, Lijun; Xi, Zhenqiang; Wang, Naiyan; Gao, Linhui; Zhu, Hongliang

    2013-01-01

    Highlights: ► TiO 2 /multi-walled carbon nanotubes (MWCNTs) hybrid nanofibers are prepared via electrospinning. ► Dye-sensitized solar cells (DSSCs) are assembled using TiO 2 /MWCNTs nanofibers film as photoanode. ► Energy conversion efficiency of DSSCs is greatly dependent on the content of MWCNTs. ► Moderate MWCNTs incorporation can substantially enhance the performance of DSSCs. - Abstract: Anatase TiO 2 /multi-walled carbon nanotubes (TiO 2 /MWCNTs) hybrid nanofibers (NFs) film was prepared via a facile electrospinning method. Dye-sensitized solar cells (DSSCs) based on TiO 2 /MWCNTs composite NFs photoanodes with different contents of MWCNTs (0, 0.1, 0.3, 0.5, 1 wt.%) were assembled using N719 dye as sensitizer. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Raman spectrometer were used to characterize the TiO 2 /MWCNTs electrode films. The photocurrent–voltage (I–V) characteristic, incident photo-to-current conversion efficiency (IPCE) spectrum, and electrochemical impedance spectroscopy (EIS) measurements were carried out to evaluate the photoelectric properties of the DSSCs. The results reveal that the energy conversion efficiency is greatly dependent on the content of MWCNTs in the composite NFs film, and a moderate incorporation of MWCNTs can substantially enhance the performance of DSSCs. When the electrode contains 0.3 wt.% MWCNTs, the corresponding solar cell yield the highest efficiency of 5.63%. This efficiency value is approximately 26% larger than that of the unmodified counterpart.

  20. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  1. Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Knížek, Antonín; Kubelík, Petr; Kavan, Ladislav; Zukalová, Markéta

    2016-01-01

    Roč. 56, JUN 2016 (2016), s. 80-83 ISSN 0925-3467 R&D Projects: GA MŠk LD14115; GA ČR GA13-07724S; GA ČR(CZ) GA14-12010S Grant - others:COST(XE) CM1104 Institutional support: RVO:61388955 Keywords : methane * titanium dioxide * acidic catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.238, year: 2016

  2. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  3. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR.

    Science.gov (United States)

    Misra, S K; Andronenko, S I; Tipikin, D; Freed, J H; Somani, V; Prakash, Om

    2016-03-01

    Detailed EPR investigations on as-grown and annealed TiO 2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120-300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti 3+ , O - , adsorbed oxygen (O 2 - ) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O 2 - ) and the Fe 3+ ions in both Ti 4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O - and O 2 - ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn 2+ and Mn 4+ ions in anatase.

  4. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo

    2016-01-01

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method

  5. Carbon dioxide capture from exhaust gases by selective adsorption on porous solids

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry

    2007-07-01

    The metal-organic frameworks Cu{sub 3}(BTC){sub 2}, MIL-53 and MIL-96 were synthesized and characterized by powder X-ray diffraction, scanning electron microscopy and nitrogenphysisorption. The adsorption isotherms for carbon dioxide at temperatures of 20, 40 and 60 C and pressures up to 1000 mbar on this new type of microporous solids were measured by a static volumetric method. For comparison, experiments with zeolite NaX (13X) were also included. High adsorption capacities for carbon dioxide were found for the adsorbents investigated in this study. The breakthrough curves for the adsorption of a mixture of nitrogen and carbon dioxide on Cu{sub 3}(BTC){sub 2} reveal a high affinity of this material for the adsorption of carbon dioxide in the presence of nitrogen. (orig.)

  6. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  7. Increasing carbon dioxide and the response of plants to this challenge

    International Nuclear Information System (INIS)

    Bazzaz, F.A.; Fajer, E.D.

    1992-01-01

    Discussed are the effects that increasing carbon dioxide concentrations in the air tend to have on the various types of plant. In the so-called C 3 group of plants globally elevated carbon dioxide levels may lead to increases in the rate of photosynthesis, even though these often appear to be only of a transient nature. The C 4 group of plants, however, clearly are at a disadvantage here. The attendant agricultural problems and resulting dangers to complete ecosystems including animals are described. Mention is also made of the possibility of using plants as carbon dioxide repositories. The urgent need for measures leading to a reduction of carbon dioxide emissions is strongly pointed out. (MG) [de

  8. Delignification of softwood kraft pulp by chlorine dioxide in a laboratory bleaching liquor displacement reactor

    International Nuclear Information System (INIS)

    Hamzeh, Y.; Izadyar, S.

    2008-01-01

    The chlorine dioxide delignification efficiency of softwood kraft pulp in the laboratory liquor displacement reactor (fixed bed reactor) was investigated and compared with conventional batch reactor. The comparison of two reactors was made based on the effective efficiency and overall efficiency of chlorine dioxide. Effective efficiency corresponds to the oxidizing capacity of chlorine dioxide which consumed by organic materials. Comparison of two reactors based on the effective efficiency showed that the selectivity of delignification significantly enhanced in the displacement reactor in which the primary reaction products are eliminated from reaction zone by displacing flow. On the other hand, the formation of high amounts of chlorate in the reaction zone of displacement reactor reduces the overall efficiency of chlorine dioxide delignification stage. Thus, in spite of significant decrease in useless secondary reactions, this type of reactor would not be cost effective in the industrial scale

  9. Carbon Dioxide for pH Control

    Energy Technology Data Exchange (ETDEWEB)

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  10. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  11. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  12. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  13. Process for the preparation of uranium dioxide

    International Nuclear Information System (INIS)

    Watt, G.W.; Baugh, D.W. Jr.

    1981-01-01

    A method for the preparation of actinide dioxides using actinide nitrate hexahydrates as starting materials is described. The actinide nitrate hexahydrate is reacted with sodium dithionite, and the product is heated in the absence of oxygen to obtain the dioxide. Preferably, the actinide is uranium, plutonium or neptunium. (LL)

  14. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  15. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  16. Hydrothermal synthesis of fluorinated anatase TiO{sub 2}/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lijun [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Biotechnology, Yunnan MinZu University, Kunming, 650500 (China); Yang, Ye [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Zhang, Ali [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Wang, Min; Liu, Yongjun; Bian, Longchun [Advanced Analysis and Measurement Center, Yunnan University, Kunming, 650091 (China); Jiang, Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Pan, Xuejun [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China)

    2015-10-30

    Graphical abstract: - Highlights: • F–TiO{sub 2}–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F{sup −} and RGO improve the photocatalytic activity of TiO{sub 2} synergistically. • The F–TiO{sub 2}–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO{sub 2}/reduced graphene oxide nanocomposites (denoted as F–TiO{sub 2}–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO{sub 2} particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F{sup −} ion adsorbed on the surface of TiO{sub 2}–RGO surface can enhance photocatalytic activity of F–TiO{sub 2}–RGO. The photocatalytic activities of F–TiO{sub 2}–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO{sub 2}–10RGO (0.01501 min{sup −1}) was 3.41 times than that over P25 (0.00440 min{sup −1}). The result indicated that the enhanced photocatalytic activity of F–TiO{sub 2}–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO{sub 2}–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  17. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  18. Effects of reductive annealing on insulating polycrystalline thin films of Nb-doped anatase TiO2: recovery of high conductivity

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2016-01-01

    We studied the effects of reductive annealing on insulating polycrystalline thin films of anatase Nb-doped TiO 2 (TNO). The insulating TNO films were intentionally fabricated by annealing conductive TNO films in oxygen ambient at 400 °C. Reduced free carrier absorption in the insulating TNO films indicated carrier compensation due to excess oxygen. With H 2 -annealing, both carrier density and Hall mobility recovered to the level of conducting TNO, demonstrating that the excess oxygen can be efficiently removed by the annealing process without introducing additional scattering centers. (paper)

  19. Surface Properties of Titanium dioxide and its Structural Modifications by Reactions with Transition Metals

    Science.gov (United States)

    Halpegamage, Sandamali

    Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators. TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions. TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same

  20. Forest response to carbon dioxide

    International Nuclear Information System (INIS)

    Pitelka, L.

    1992-01-01

    It has been suggested that planting trees could help slow the buildup of carbon dioxide in the atmosphere. Since elevated levels of CO 2 are known to enhance photosynthesis and growth in many plants, it is possible that trees could become progressively more effective in storing carbon as atmospheric CO 2 increases. However, early results from experiments with ponderosa and loblolly pines indicate that the relationship between tree growth and rising CO 2 concentrations may be more complex than scientists once thought. In these experiments, the response to elevated CO 2 has been highly dependent both on species and on mineral nutrient levels in the soil. Further work is necessary to clarify the mechanisms involved. This research will ultimately contribute to an integrated model for predicting forest ecosystem response to elevated CO 2