WorldWideScience

Sample records for dioxide no2 exposures

  1. Social factors associated with nitrogen dioxide (NO2) exposure during pregnancy: the INMA-Valencia project in Spain.

    Science.gov (United States)

    Llop, Sabrina; Ballester, Ferran; Estarlich, Marisa; Iñiguez, Carmen; Ramón, Rosa; Gonzalez, Ma Carmen; Murcia, Mario; Esplugues, Ana; Rebagliato, Marisa

    2011-03-01

    Numerous studies have focused on the effects of exposure to air pollution on health; however, certain subsets of the population tend to be more exposed to such pollutants depending on their social or demographic characteristics. In addition, exposure to toxicants during pregnancy may play a deleterious role in fetal development as fetuses are especially vulnerable to external insults. The present study was carried out within the framework of the INMA (Infancia y Medio Ambiente or Childhood and the Environment) multicenter cohort study with the objective of identifying the social, demographic, and life-style factors associated with nitrogen dioxide (NO(2)) exposure in the subjects in the cohort. The study comprised 785 pregnant women who formed part of the INMA cohort in Valencia, Spain. Outdoor levels of NO(2) were measured at 93 sampling sites spread over the study area during four different sampling periods lasting 7 days each. Multiple regression models were used for mapping outdoor NO(2) throughout the area. Individual exposure was assigned as: 1) the estimated outdoor NO(2) levels at home, and 2) the average of estimated outdoor NO(2) levels at home and work, weighted according to the time spent in each environment. The subjects' socio-demographic and life-style information was obtained through a questionnaire. In the multiple linear analyses, the outdoor NO(2) levels assigned to each home were taken to be the dependent variable. Other variables included in the model were: age, country of origin, smoking during pregnancy, parity, season of the year, and social class. These same variables remained in the model when the dependent variable was changed to the NO(2) levels adjusted for the subjects' time-activity patterns. We found that younger women, those coming from Latin American countries, and those belonging to the lower social strata were exposed to higher NO(2) levels, both as measured outside their homes as well as when time-activity patterns were taken

  2. Socioeconomic position and outdoor nitrogen dioxide (NO2) exposure in Western Europe : A multi-city analysis

    NARCIS (Netherlands)

    Temam, Sofia; Burte, Emilie; Adam, Martin; Antó, Josep M; Basagaña, Xavier; Bousquet, Jean; Carsin, Anne-Elie; Galobardes, Bruna; Keidel, Dirk; Künzli, Nino; Le Moual, Nicole; Sanchez, Margaux; Sunyer, Jordi; Bono, Roberto; Brunekreef, Bert; Heinrich, Joachim; de Hoogh, Kees; Jarvis, Debbie; Marcon, Alessandro; Modig, Lars; Nadif, Rachel; Nieuwenhuijsen, Mark; Pin, Isabelle; Siroux, Valérie; Stempfelet, Morgane; Tsai, Ming-Yi; Probst-Hensch, Nicole; Jacquemin, Bénédicte

    BACKGROUND: Inconsistent associations between socioeconomic position (SEP) and outdoor air pollution have been reported in Europe, but methodological differences prevent any direct between-study comparison. OBJECTIVES: Assess and compare the association between SEP and outdoor nitrogen dioxide (NO2)

  3. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure

    NARCIS (Netherlands)

    Gruzieva, O.; Xu, C.J.; Breton, C.V.; Annesi-Maesano, I.; Antó, J.M.; Auffray, C.; Ballereau, S.; Bellander, T.; Bousquet, J.; Bustamante, M.; Charles, M.A.; de Kluizenaar, Y.; Den Dekker, H.T.; Duijts, L.; Felix, J.F.; Gehring, U.; Guxens, M.; Jaddoe, V.V.W.; Jankipersadsing, S.A.; Merid, S.K.; Kere, J.; Kumar, A.; Lemonnier, N.; Lepeule, J.; Nystad, W.; Page, C.M.; Panasevich, S.; Postma, D.; Slama, R.; Sunyer, J.; Söderhäll, C.; Yao, J.; London, S.J.; Pershagen, G.; Koppelman, G.H.; Melén, E.

    2017-01-01

    Background: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. Objectives: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as

  4. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    Science.gov (United States)

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  5. Growth response in radish to sequential and simultaneous exposures of NO/sub 2/ and SO/sub 2/. [Raphanus sativus L. cv. Cherry Belle

    Energy Technology Data Exchange (ETDEWEB)

    Hogsett, W.E.; Holman, S.R.; Gumpertz, M.L.; Tingey, D.T.

    1984-01-01

    Sequential and simultaneous exposures of radish Raphanus sativus L. cv. Cherry Belle to 0.8 ..mu..l liter/sup -1/ nitrogen dioxide (NO/sub 2/) and 0.8 ..mu..l liter/sup -1/ sulfur dioxide (SO/sub 2/) were conducted under both day- and night-time conditions to examine the effects on growth and development. Plants were exposed for 2 h per week over the four-week growing period. Frequent harvests at regular intervals were utilized for determination of the growth analysis functions. Sequential exposure to the two pollutants had no effect on growth compared with the charcoal-filtered air controls. Simultaneous exposure to the gases significantly reduced plant growth. The relative growth rate was reduced throughout the growing period apparently influenced by a reduced net assimilation rate. The partitioning of the available assimilate was altered to favor leaf growth at the expense of hypocotyl development. Night-time simultaneous exposures also altered growth progress but to a lesser degree than exposures during the day.

  6. Effect of serial-day exposure to nitrogen dioxide on airway and blood leukocytes and lymphocyte subsets

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, C.; Chen, L.L.; Erle, D.J.; Balmes, J.R. [Univ. of California, Lung Biology Center and Center for Occupational and Environmental Health, San Francisco, CA (United States); Christian, D.L.; Welch, B.S.; Dunham, E. [Univ. of California, Lung Biology Center, San Francisco, CA (United States); Kleinman, M.T. [Univ. of California, Dept. of Community and Environmental Medicine, Irvine, CA (United States)

    2000-07-01

    Nitrogen dioxide (NO{sub 2}) is a free radical-producing oxidant gas. Inhalation of NO2 could cause airway inflammation, and decrease immune function. This experiment tested the hypothesis that exposure to NO{sub 2} would: (1) increase leukocytes in bronchoalveolar lavage (BAL); and (2) change the distribution of lymphocyte subsets and activation in BAL and peripheral blood (PB). Using a counter-balanced, repeated-measures design, 15 healthy volunteers were exposed to filtered air (FA) or 2.0 parts per million NO{sub 2} for 4 h.day{sup -1} (4 x 30 min of exercise), for three consecutive days. Bronchoscopy was performed 18 h following each exposure set, and PB was drawn pre-exposure and pre-bronchoscopy. Flow cytometry was used to enumerate lymphocyte subsets and activation makers in BAL and PB. In the bronchial fraction, there was an increase in the percentage of neutrophils following NO2 exposure compared to FA (median (interquartile range): 10.6 (4.8. 17.2)% versus 5.3 (2.5-8.3)%; p=0.005). In the BAL, there was a decrease in the percentage of T-helper cells following NO{sub 2} exposure compared to FA (55.9 (40.8-62.7)% versus 61.6 (52.6-65.2)%; p=0.022). For PB, there were no between-condition differences in any leukocyte or lymphocyte subsets, or activation. In conclusion exposure to nitrogen dioxide results in bronchial inflammation and a minimal change in bronchoalveolar lavage T-helper cells, and no changes in peripheral blood cells. (au)

  7. Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Driscoll, K.E.; Gunnison, A.F.; Zelikoff, J.T.

    1990-01-01

    Ozone (O 3 ) and nitrogen dioxide (NO 2 ) are common air pollutants, and exposure to these gases has been shown to affect pulmonary physiology, biochemistry, and structure. This study examined their ability to modulate arachidonic acid metabolites (eicosanoids) in the lungs. Rabbits were exposed for 2 h to O 3 at 0.1, 0.3, or 1 ppm; NO 2 at 1, 3, or 10 ppm; or to a mixture of 0.3 ppm O 3 and 3 ppm NO 2 . Groups of animals sacrificed either immediately or 24 h after each exposure underwent broncho-pulmonary lavage. Selected eicosanoids were assessed in lavage fluid by radioimmunoassay. Increases in prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) were found immediately after exposure to 1 ppm O 3 . Exposure to 10 ppm NO 2 resulted in a depression of 6-keto-PGF1 alpha, while thromboxane B2 (TxB2) was elevated after exposure to 1 ppm NO 2 and depressed following 3 and 10 ppm. The O 3 /NO 2 mixture resulted in synergistic increases in PGE2 and PGF2 alpha, with the response appearing to be driven by O 3 . This study has demonstrated that acute exposure to either O 3 or NO 2 can alter pulmonary arachidonic acid metabolism and that the responses to these oxidants differ, both quantitatively and qualitatively

  8. Personal exposure to PM2,5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation

    DEFF Research Database (Denmark)

    Sørensen, M.; Loft, S.; Andersen, H. V.

    2005-01-01

    concentrations of PM(2.5), black smoke (BS), and nitrogen dioxide (NO(2)) were measured during 2-day periods in 30 subjects (20-33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental......Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background...

  9. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2014-05-01

    Full Text Available We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland, and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2 as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61 than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51, and a land use regression model (41 ± 5 µg m−3; range: 24–54. Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  10. Estimation of occupational and nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a microenvironmental model

    International Nuclear Information System (INIS)

    Son, Busoon; Yang, Wonho; Breysse, Patrick; Chung, Taewoong; Lee, Youngshin

    2004-01-01

    Occupational and nonoccupational personal nitrogen dioxide (NO 2 ) exposures were measured using passive samplers for 31 taxi drivers in Asan and Chunan, Korea. Exposures were also estimated using a microenvironmental time-weighted average model based on indoor, outdoor and inside the taxi area measurements. Mean NO 2 indoor and outdoor concentrations inside and outside the taxi drivers' houses were 24.7±10.7 and 23.3±8.3 ppb, respectively, with a mean indoor to outdoor NO 2 ratio of 1.1. Mean personal NO 2 exposure of taxi drivers was 30.3±9.7 ppb. Personal NO 2 exposures for drivers were more strongly correlated with interior vehicle NO 2 levels (r=0.89) rather than indoor residential NO 2 levels (r=0.74) or outdoor NO 2 levels (r=0.71). The main source of NO 2 exposure for taxi drivers was considered to be occupational driving. Interestingly, the NO 2 exposures for drivers' using LPG-fueled vehicles (26.3±1.3 ppb) were significantly lower than those (38.1±1.3 ppb) using diesel-fueled vehicle (P 2 exposure with indoor and outdoor NO 2 levels of the residence, and interior vehicle NO 2 levels (P 2 levels because they drive diesel-using vehicles outdoors in Korea

  11. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    Science.gov (United States)

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  12. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities.

    Science.gov (United States)

    Pinault, Lauren; Crouse, Daniel; Jerrett, Michael; Brauer, Michael; Tjepkema, Michael

    2016-05-01

    Previous studies of environmental justice in Canadian cities have linked lower socioeconomic status to greater air pollution exposures at coarse geographic scales, (i.e., Census Tracts). However, studies that examine these associations at finer scales are less common, as are comparisons among cities. To assess differences in exposure to air pollution among socioeconomic groups, we assigned estimates of exposure to ambient nitrogen dioxide (NO2), a marker for traffic-related pollution, from city-wide land use regression models to respondents of the 2006 Canadian census long-form questionnaire in Toronto, Montreal, and Vancouver. Data were aggregated at a finer scale than in most previous studies (i.e., by Dissemination Area (DA), which includes approximately 400-700 persons). We developed simultaneous autoregressive (SAR) models, which account for spatial autocorrelation, to identify associations between NO2 exposure and indicators of social and material deprivation. In Canada's three largest cities, DAs with greater proportions of tenants and residents who do not speak either English or French were characterised by greater exposures to ambient NO2. We also observed positive associations between NO2 concentrations and indicators of social deprivation, including the proportion of persons living alone (in Toronto), and the proportion of persons who were unmarried/not in a common-law relationship (in Vancouver). Other common measures of deprivation (e.g., lone-parent families, unemployment) were not associated with NO2 exposures. DAs characterised by selected indicators of deprivation were associated with higher concentrations of ambient NO2 air pollution in the three largest cities in Canada. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Single- and double-photoionization cross-sections of nitrogen dioxide (NO2) and ionic fragmentation of NO2+ and NO22+

    International Nuclear Information System (INIS)

    Masuoka, Toshio; Kobayashi, Ataru

    2004-01-01

    Single- and double-photoionization processes of nitrogen dioxide (NO 2 ) have been studied in the photon energy region of 37-125 eV by use of time-of-flight mass spectrometry and the photoion-photoion coincidence method together with synchrotron radiation. The single- and double-photoionization cross-sections of NO 2 are determined. Ion branching ratios and the partial cross-sections for the individual ions, respectively, produced from the parent NO 2 + and NO 2 2+ ions are also determined separately at excitation energies where the molecular and dissociative single- and double-photoionization processes occur simultaneously. It was found that dissociation of the parent ions is dominant both in single and double photoionization. The thresholds for the O + + NO + and N + + O + dissociation channels of NO 2 2+ are at 35.0 ± 0.3 and 43.6 ± 0.3 eV, respectively. Kinetic energy releases in these two dissociation channels of NO 2 2+ have also been elucidated

  14. Acute effects of low-level sulphur dioxide and nitrogen dioxide exposures on the respiratory tract of susceptible subjects in cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, R.O.; Randell, J.T.; Haelinen, A.I.; Pennanen, A.S. [National Public Health Inst., Kuopio (Finland). Div. of Environmental Health; Kosma, V.M. [Kuopio Univ. (Finland). Dept. of Pathology; Pekkarinen, H. [Kuopio Univ. (Finland). Dept. of Physiology; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Tukiainen, H. [Kuopio Univ. (Finland). Dept. of Pulmonary Diseases

    1995-12-31

    Several recent epidemiological studies from Finland have suggested that sulphur dioxide (SO{sub 2}) and nitrogen dioxide (NO{sub 2}) cause adverse health effects in susceptible population groups, such as children and asthmatic patients, at much smaller concentrations than the present guideline values of the World Health Organization. One possible explanation of these findings is that the relatively long winter-time increases the sensitivity of the respiratory tract to irritant pollutants. This hypothesis is supported by experimental human and animal studies, which have shown obstruction and inflammatory changes in the conducting airways after ventilation of cold and dry air. Asthmatic patients are much more sensitive than healthy subjects to the irritating effects of cold and dry air and of air pollutants. The airways of many non-asthmatic a topic subjects are also sensitive to cold air, but these subjects are poorly defined as a potential susceptible population group to air pollutants. The aims of this project are: (1) to construct experimental human and animal facilities and protocols for short-term studies on SO{sub 2} and NO{sub 2} exposures at subfreezing temperatures, (2) to apply advanced lung function methodologies and symptom assessment for characterisation of short-term respiratory responses of asthmatic and a topic subjects to these exposures, (3) to apply well-established pulmonary physiological, cytological and morphological methods for characterisation of short-term responses to and mechanisms of these exposures in the guinea-pig lower airways. (author)

  15. Acute effects of low-level sulphur dioxide and nitrogen dioxide exposures on the respiratory tract of susceptible subjects in cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, R O; Randell, J T; Haelinen, A I; Pennanen, A S [National Public Health Inst., Kuopio (Finland). Div. of Environmental Health; Kosma, V M [Kuopio Univ. (Finland). Dept. of Pathology; Pekkarinen, H [Kuopio Univ. (Finland). Dept. of Physiology; Ruuskanen, J [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Tukiainen, H [Kuopio Univ. (Finland). Dept. of Pulmonary Diseases

    1996-12-31

    Several recent epidemiological studies from Finland have suggested that sulphur dioxide (SO{sub 2}) and nitrogen dioxide (NO{sub 2}) cause adverse health effects in susceptible population groups, such as children and asthmatic patients, at much smaller concentrations than the present guideline values of the World Health Organization. One possible explanation of these findings is that the relatively long winter-time increases the sensitivity of the respiratory tract to irritant pollutants. This hypothesis is supported by experimental human and animal studies, which have shown obstruction and inflammatory changes in the conducting airways after ventilation of cold and dry air. Asthmatic patients are much more sensitive than healthy subjects to the irritating effects of cold and dry air and of air pollutants. The airways of many non-asthmatic a topic subjects are also sensitive to cold air, but these subjects are poorly defined as a potential susceptible population group to air pollutants. The aims of this project are: (1) to construct experimental human and animal facilities and protocols for short-term studies on SO{sub 2} and NO{sub 2} exposures at subfreezing temperatures, (2) to apply advanced lung function methodologies and symptom assessment for characterisation of short-term respiratory responses of asthmatic and a topic subjects to these exposures, (3) to apply well-established pulmonary physiological, cytological and morphological methods for characterisation of short-term responses to and mechanisms of these exposures in the guinea-pig lower airways. (author)

  16. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  17. Air pollution involving nitrogen dioxide exposure and wheezing bronchitis in children.

    Science.gov (United States)

    Pershagen, G; Rylander, E; Norberg, S; Eriksson, M; Nordvall, S L

    1995-12-01

    A population-based case-control study was performed in Stockholm to assess the influence of air pollution on the occurrence of severe wheezing bronchitis in children. The study included 197 children aged 4 months to 4 years, who were hospitalized because of breathing difficulties with wheezing, and 350 population controls. Information on potential risk factors for childhood wheezing and a residential history was obtained at home interview with parents. Outdoor nitrogen dioxide (NO2) concentrations at home addresses and day care centres from birth on were estimated from validated models, mainly using data on traffic intensity from municipal registers. The risk of wheezing bronchitis was related to time-weighted mean outdoor NO2 exposure in girls (P = 0.02), but not in boys. A gas stove in the home appeared to be a risk factor primarily for girls. All analyses controlled for parental asthma and maternal smoking, which were independent risk factors for wheezing bronchitis. The results suggest that exposure to combustion products containing NO2 may be of particular importance for the development of wheezing bronchitis in girls.

  18. Farraj_NO2-O3 Sequential exposure study_All data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cardiovascular Physiologic and Systemic Responses to Sequential Exposure to Nitrogen Dioxide and Ozone in Rats. This dataset is associated with the following...

  19. Quantification of Health Effects Related to SO{sub 2}, NO{sub 2}, O{sub 3} and Particulate Matter Exposure. Report from the Nordic Expert Meeting Oslo, 15-17 October, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Clench-Aas, J.; Krzyzanowski, M. [eds.

    1996-12-31

    The Nordic Council of Ministers founded a workshop of European and Nordic experts to assess the current literature and develop dose-response functions for the criteria air quality indicators of SO{sub 2}, NO{sub 2}, O{sub 3} and particulate matter. This is the report from the workshop held in Oslo on October 15-17, 1995. Estimates of exposure-response relationships are needed to assess the health impact of environmental factors. Based on available research evidence, the relationships for the common air pollutants - particulate matter, sulphur dioxide, ozone and nitrogen dioxide - were reviewed. The Meeting concluded by quantifying exposure-response relationships for particulate matter, SO{sub 2} and ozone; the relationship for NO{sub 2} was not quantified. The Meeting also identified other exposure-response relationships considered to be substantiated, but for which the available data did not provide sufficient background to quantify the risk. The reported concentration-response associations relate to short-term changes in risk due to changes in levels of pollutants. For chronic effects of prolonged exposures the data were judged to be insufficient for quantification. 211 refs., 3 figs., 7 tabs.

  20. Long Term Exposure to NO2 and Diabetes Incidence in the Black Women's Health Study

    Science.gov (United States)

    Coogan, Patricia F.; White, Laura F.; Yu, Jeffrey; Burnett, Richard T.; Marshall, Julian D.; Seto, Edmund; Brook, Robert D.; Palmer, Julie R.; Rosenberg, Lynn; Jerrett, Michael

    2016-01-01

    While laboratory studies show that air pollutants can potentiate insulin resistance, the epidemiologic evidence regarding the association of air pollution with diabetes incidence is conflicting. The purpose of the present study was to assess the association of the traffic-related nitrogen dioxide (NO2) with the incidence of diabetes in a longitudinal cohort study of African American women. We used Cox proportional hazards models to calculate hazard ratios and 95% confidence intervals (CI) for diabetes associated with exposure to NO2 among 43,003 participants in the Black Women's Health Study (BWHS). Pollutant levels at participant residential locations were estimated with 1) a land use regression model for participants living in 56 metropolitan areas, and 2) a dispersion model for participants living in 27 of the cities. From 1995-2011, 4387 cases of diabetes occurred. The hazard ratios per interquartile range of NO2 (9.7 ppb), adjusted for age, metropolitan area, education, vigorous exercise, body mass index, smoking, and diet, were 0.96 (95% CI 0.88-1.06) using the land use regression model estimates and 0.94 (95% CI 0.80, 1.10) using the dispersion model estimates. The present results do not support the hypothesis that exposure to NO2 contributes to diabetes incidence in African American women. PMID:27124624

  1. Acute Exposure to Low-to-Moderate Carbon Dioxide Levels and Submariner Decision Making.

    Science.gov (United States)

    Rodeheffer, Christopher D; Chabal, Sarah; Clarke, John M; Fothergill, David M

    2018-06-01

    Submarines routinely operate with higher levels of ambient carbon dioxide (CO2) (i.e., 2000 - 5000 ppm) than what is typically considered normal (i.e., 400 - 600 ppm). Although significant cognitive impairments are rarely reported at these elevated CO2 levels, recent studies using the Strategic Management Simulation (SMS) test have found impairments in decision-making performance during acute CO2 exposure at levels as low as 1000 ppm. This is a potential concern for submarine operations, as personnel regularly make mission-critical decisions that affect the safety and efficiency of the vessel and its crew while exposed to similar levels of CO2. The objective of this study was to determine if submariner decision-making performance is impacted by acute exposure to levels of CO2 routinely present in the submarine atmosphere during sea patrols. Using a subject-blinded balanced design, 36 submarine-qualified sailors were randomly assigned to receive 1 of 3 CO2 exposure conditions (600, 2500, or 15,000 ppm). After a 45-min atmospheric acclimation period, participants completed an 80-min computer-administered SMS test as a measure of decision making. There were no significant differences for any of the nine SMS measures of decision making between the CO2 exposure conditions. In contrast to recent research demonstrating cognitive deficits on the SMS test in students and professional-grade office workers, we were unable to replicate this effect in a submariner population-even with acute CO2 exposures more than an order of magnitude greater than those used in previous studies that demonstrated such effects.Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp Med Hum Perform. 2018; 89(6):520-525.

  2. Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation.

    Science.gov (United States)

    Sørensen, Mette; Loft, Steffen; Andersen, Helle Vibeke; Raaschou-Nielsen, Ole; Skovgaard, Lene Theil; Knudsen, Lisbeth E; Nielsen, Ivan V; Hertel, Ole

    2005-09-01

    Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background concentrations of PM(2.5), black smoke (BS), and nitrogen dioxide (NO(2)) were measured during 2-day periods in 30 subjects (20-33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental tobacco smoke (ETS) and burning of candles was collected by questionnaires. The personal exposure, the bedroom concentration and the front door concentration was set as outcome variable in separate models and analysed by mixed effect model regression methodology, regarding subject levels as a random factor. Seasons were defined as a dichotomised grouping of outdoor temperature (above and below 8 degrees C). For NO(2) there was a significant association between personal exposure and both the bedroom, the front door and the background concentrations, whereas for PM(2.5) and BS only the bedroom and the front door concentrations, and not the background concentration, were significantly associated to the personal exposure. The bedroom concentration was the strongest predictor of all three pollution measurements. The association between the bedroom and front door concentrations was significant for all three measurements, and the association between the front door and the background concentrations was significant for PM(2.5) and NO(2), but not for BS, indicating greater spatial variation for BS than for PM(2.5) and NO(2). For NO(2), the relationship between the personal exposure and the front door concentration was dependent upon the "season", with a stronger association in the warm season compared with the cold season, and for PM(2.5) and BS the same tendency was seen. Time exposed to

  3. Allowable exposure limits for carbon dioxide during extravehicular activity

    Science.gov (United States)

    Seter, Andrew J.

    1993-01-01

    The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.

  4. Nitrogen dioxide exposures inside ice skating rinks.

    Science.gov (United States)

    Brauer, M; Spengler, J D

    1994-01-01

    OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060

  5. Personal exposures to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague

    International Nuclear Information System (INIS)

    Kousa, A.; Rotko, T.; Alm, S.; Monn, C.

    2001-01-01

    Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO 2 ) were measured for 262 urban adult (25-55 years) participants in three EXPOLIS centres (Basel, Switzerland; Helsinki, Finland; and Prague, Czech Republic) using passive samplers for 48-h sampling periods during 1996-1997. The average residential outdoor and indoor NO 2 levels were lowest in Helsinki (24 ± 12 and 18 ± 11 μgm -3 , respectively), highest in Prague (61 ± 20 and 43 ± 23μgm -3 ), with Basel in between (36 ± 13 and 27± 13μgm -3 ). Average workplace NO 2 levels, however, were highest in Basel (36 ± 24μgm -3 ), lowest in Helsinki (27 ± 15μgm -3 ), with Prague in between (30 ± 18μgm -3 ). A time-weighted microenvironmental exposure model explained 74% of the personal exposure variation in all centre and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO 2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11-19% of personal NO 2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO 2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power. (Author)

  6. Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Zili; Wang, Jian; Lu, Wenju

    2018-05-01

    Exposure to nitrogen dioxide (NO 2 ) has long been linked to elevated mortality and morbidity from epidemiological evidences. However, questions remain unclear whether NO 2 acts directly on human health or being an indicator of other ambient pollutants. In this study, random-effect meta-analyses were performed on examining exposure to nitrogen oxide (NO x ) and its association with chronic obstructive pulmonary disease (COPD). The overall relative risk (RR) of COPD risk related to a 10 μg/m 3 increase in NO 2 exposure increased by 2.0%. The pooled effect on prevalence was 17% with an increase of 10 μg/m 3 in NO 2 concentration, and 1.3% on hospital admissions, and 2.6% on mortality. The RR of COPD cases related to NO 2 long-term exposure was 2.5 and 1.4% in short-term exposure. The COPD effect related with a 10 μg/m 3 increase in exposure to a general outdoor-sourced NO 2 was 1.7 and 17.8% to exposure to an exclusively traffic-sourced NO 2 ; importantly, we did observe the effect of NO 2 on COPD mortality with a large majority in lag0. Long-term traffic exerted more severe impairments on COPD prevalence than long-term or short-term outdoor effect; long-term mortality effect on COPD was serious in single model from this meta-analysis. Overall, our study reported consistent evidence of the potential positive association between NO 2 and COPD risk.

  7. Measurements of children's exposures to particles and nitrogen dioxide in Santiago, Chile

    International Nuclear Information System (INIS)

    Rojas-Bracho, Leonora; Suh, Helen H.; Koutrakis, Petros; Oyola, Pedro

    2002-01-01

    An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter ( 2.5 and 10 , respectively), and nitrogen dioxide (NO 2 ) were measured during pilot (N=8) and main (N=20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM 2.5 concentrations (69.5, 68.5 and 68.1 μg m -3 , respectively) were found. However, for coarse particles (calculated as the difference between measured PM 10 and PM 2.5 , PM 2.5-10 ) indoor and outdoor levels (35.4 and 47.4 μg m -3 ) were lower than their corresponding personal exposures (76.3 μg m -3 ). Indoor and outdoor NO 2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O 3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM 2.5 and PM 2.5-10 , respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM 2.5 , but weakly associated for PM 2.5-10 . For NO 2 , weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM 2.5 were close to unity, and for NO 2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM 2.5 and NO 2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM 2.5 and NO 2 levels

  8. Review of the health risks associated with nitrogen dioxide and sulfur dioxide in indoor air

    International Nuclear Information System (INIS)

    Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K.S.; Rich, R.; Teschke, K.

    2002-01-01

    The scientific literature on the health effects of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) were reviewed with particular focus on the chemical and physical properties of the 2 gases and the toxicological characteristics identified in animal studies at exposure concentrations near the rate of ambient human exposures. The study also examined the expected levels of non-industrial indoor exposure of Canadians compared to other regions with similar climates. The sources of indoor pollution were also reviewed, along with the contribution of outdoor pollution to indoor levels. Results from epidemiological studies of indoor exposures in homes, offices and schools were also presented. For each pollutant, the study identified anthropogenic sources, indoor sources, toxicological characteristics, biochemistry, pulmonary effects, immune response, and other effects. Indoor sources of NO 2 include gas-fired appliances, pilot lights, hot water heaters, kerosene heaters, and tobacco smoke. The impact of ventilation on both NO 2 and SO 2 levels was also examined. Outdoor sources such as traffic can also contribute to indoor levels, particularly in urban areas. In the case of SO 2 , coal heating and cooling appear to be associated in increased indoor levels. The epidemiological studies that were reviewed failed in general to indicate an association between NO 2 exposure and a wide range of health impacts. The studies, however, indicate that asthmatics are more susceptible to the effects of NO 2 exposure. In the case of SO 2 , evidence suggests that it has a chronic effect on lung function and respiratory symptoms and disease. 243 refs., 13 tabs

  9. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  10. Quantification of deaths attributed to air pollution in Sweden using estimated population exposure to nitrogen dioxide as indicator

    International Nuclear Information System (INIS)

    Forsberg, Bertil; Sjoeberg, Karin

    2005-08-01

    In the previous phase of this project a model was provided for quantifying the general population exposure to air pollution. From that work interpolated yearly mean concentrations of nitrogen dioxide were provided for the Swedish population. To be applied in the health impact assessment we selected an ecological study from Auckland, New Zealand, which reported a 13 % increase in non-accidental mortality (all ages) for 10 μg/m 3 increase in NO 2 . Based on official national data we assumed a baseline rate of 1,010 deaths per 100,000 persons and year at the population weighted mean level of approximately 10 μg NO 2 /m 3 . We then calculated the death rate and the yearly number of deaths expected at the population weighted mean exposure in each of four exposure classes above 10 μg/m 3 . Using the modelled levels of NO 2 as an indicator of air pollution levels from transportation and combustion, and calculating effects on mortality only above the yearly mean 10 μg/m 3 , we estimated excess exposure to result in 2,837 (95% CI 2400-3273) deaths per year. A recent paper presenting similar calculations estimated the local contribution to urban levels of PM in Sweden to result in around 1,800 deaths per year, but the authors questioned the use of risk coefficients for regional PM to assess the effect of local traffic pollutants. The new results obtained, using locally produced nitrogen dioxide as the basis for the risk assessment, resulted in an impact estimate 55 % higher than the published estimate based on PM

  11. Dose-response relationships of acute exposure to sulfur dioxide

    International Nuclear Information System (INIS)

    Englehardt, F.R.; Holliday, M.G.

    1981-01-01

    Acute toxicity effects of sulphur dioxide are reviewed, and the derivation of a dose-lethality curve (presented as LC 50 vs. time) for human exposure to sulphur dioxide is attempted for periods ranging from ten seconds to two hours. As an aid to assessment of the hazards involved in operating heavy water manufacturing facilities, the fact that sulphur dioxide would be produced by the combustion of hydrogen sulphide was briefly considered in an appendix. It is suggested that sulphuric acid, a much more toxic substance than sulphur dioxide, may also be formed in such an event. It is concluded, therefore, that an overall hazard evaluation may have to address the contributory effects of sulphuric acid. (author)

  12. Human responses to carbon dioxide, a follow-up study at recommended exposure limits in non-industrial environments

    DEFF Research Database (Denmark)

    Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei

    2016-01-01

    To extend the results of a previous study on the effects of carbon dioxide (CO2) and bioeffluents on humans, the new study reported in this paper was carried out. The purpose of this study was to examine, whether exposure to CO2 at 5000 ppm would cause sensory discomfort, evoke acute health...... no effect on perceived air quality or physiological responses except for end-tidal CO2 (ETCO2), which increased more (to 5.3 kPa) than it was in the reference condition (5.1 kPa). Other results indicate additionally that a 2.5-h exposure to CO2 up to 5000 ppm did not increase intensity of health symptoms...

  13. Effects of NO2 exposure on daily mortality in São Paulo, Brazil

    NARCIS (Netherlands)

    Costa, Amine Farias; Hoek, Gerard; Brunekreef, Bert; Ponce de Leon, Antonio Carlos Monteiro

    2017-01-01

    BACKGROUND: Recent reports have suggested that air pollution mixtures represented by nitrogen dioxide (NO2) may have effects on human health, which are independent from those of particulate matter mass. We evaluate the association between NO2 and daily mortality among elderly using one- and

  14. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  15. Changes in the carbon dioxide expirogram in response to ozone exposure

    International Nuclear Information System (INIS)

    Taylor, Adekemi B.; Lee, Genea M.; Nellore, Kavitha; Ben-Jebria, Abdellaziz; Ultman, James S.

    2006-01-01

    The objectives of this study were to quantify pulmonary responses to ozone (O 3 ) exposure by parameters computed from the carbon dioxide expirogram and to compare these responses to decrements in forced expired spirometry. Anatomical dead space (V D ) was determined from the pure dead space and transition regions of the expirogram. Four alternative parameters were computed from the alveolar plateau: slope (S), normalized slope (NS), peripheral cross-sectional area (A P ) and well-mixed peripheral volume (V MP ). Forty-seven healthy nonsmokers (25 men and 22 women) participated in two research sessions in which they exercised on a cycle ergometer for 1 h while orally inhaling either room air at a minute ventilation of 30.6 ± 3.6 L or room air mixed with 0.252 ± 0.029 ppm O 3 at a minute ventilation of 29.9 ± 3.7 L. Carbon dioxide expirograms were measured before exposure, 10 min after exposure and 70 min after exposure. Percent changes (mean ± SD) in expirogram parameters were significant (P ≤ 0.002) at both 10 and 70 min after O 3 exposure: V D (-4.2 ± 5.1, -3.3 ± 6.9), S(16.4 ± 17.9, +15.1 ± 20.2), NS(17.5 ± 15.4, +15.9 ± 19.2), A P (-8.1 ± 7.6, -7.7 ± 9.8) and V MP (-15.4 ± 13.0, -13.0 ± 15.2). Percent decrements of forced expired volume in one second (FEV 1 ) were also significant at both 10 min (-13.3 ± 13.4) and 70 min (-11.1 ± 9.2) following O 3 exposure. Changes in the expirogram as well as decrements in FEV 1 were not significant at either time point after air exposure. Thus, the CO 2 expirogram is useful for characterizing the effect of O 3 exposure on gas transport, and for supplementing forced expired spirometry that is frequently used to quantify lung mechanics

  16. Saskatoon serviceberry and ambient sulfur dioxide exposures: study sites re-visited, 1999

    International Nuclear Information System (INIS)

    Krupa, S.V.; Legge, A.H.

    2001-01-01

    Field surveys for symptoms of foliar injury in a regional airshed that is influenced by a number of point sources of SO x , NO x and hydrocarbons, combined with foliar and soil sulfur analyses, confirmed earlier results that Saskatoon serviceberry (Amelanchier alnifolia Nutt.) cv. Smokey can be used as a biological indicator of chronic sulfur dioxide exposures, in the presence of other phytotoxic air pollutants such as ozone. (Author)

  17. Measurements of children's exposures to particles and nitrogen dioxide in Santiago, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Bracho, Leonora; Suh, Helen H.; Koutrakis, Petros [Harvard University, School of Public Health, 665 Huntington Avenue, 02115 Boston, MA (United States); Oyola, Pedro [Comision Nacional del Medio Ambiente CONAMA, Santiago (Chile)

    2002-03-27

    An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (<2.5 {mu}m in diameter, PM{sub 2.5} and <10 {mu}m in diameter, PM{sub 10}, respectively), and nitrogen dioxide (NO{sub 2}) were measured during pilot (N=8) and main (N=20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM{sub 2.5} concentrations (69.5, 68.5 and 68.1 {mu}g m{sup -3}, respectively) were found. However, for coarse particles (calculated as the difference between measured PM{sub 10} and PM{sub 2.5}, PM{sub 2.5-10}) indoor and outdoor levels (35.4 and 47.4 {mu}g m{sup -3}) were lower than their corresponding personal exposures (76.3 {mu}g m{sup -3}). Indoor and outdoor NO{sub 2} concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O{sub 3} levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM{sub 2.5} and PM{sub 2.5-10}, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM{sub 2.5}, but weakly associated for PM{sub 2.5-10}. For NO{sub 2}, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM{sub 2.5} were close to unity, and for NO{sub 2} they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM{sub 2.5} and NO{sub 2} levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM

  18. Effects of Exposure to Carbon Dioxide and Bioeffluents on Perceived Air Quality, Self-assessed Acute Health Symptoms and Cognitive Performance

    DEFF Research Database (Denmark)

    Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei

    2017-01-01

    The purpose of this study was to examine the effects on humans of exposure to carbon dioxide (CO2) and bioeffluents. In three of the five exposures, the outdoor air supply rate was high enough to remove bioeffluents, resulting in a CO2 level of 500 ppm. Chemically pure CO2 was added...... to this reference condition to create exposure conditions with CO2 at 1,000 ppm or 3,000 ppm. In two further conditions, the outdoor air supply rate was restricted so that the bioeffluent CO2 reached 1,000 ppm or 3,000 ppm. The same twenty-five subjects were exposed for 255 minutes to each condition. Subjective...... ratings, physiological responses and cognitive performance were measured. No statistically significant effects on perceived air quality, acute health symptoms or cognitive performance were seen during exposures when CO2 was added. Exposures to bioeffluents with CO2 at 3,000 ppm reduced perceived air...

  19. Individual exposure to NO2 in relation to spatial and temporal exposure indices in Stockholm, Sweden: the INDEX study.

    Directory of Open Access Journals (Sweden)

    Tom Bellander

    Full Text Available Epidemiology studies of health effects from air pollution, as well as impact assessments, typically rely on ambient monitoring data or modelled residential levels. The relationship between these and personal exposure is not clear. To investigate personal exposure to NO(2 and its relationship with other exposure metrics and time-activity patterns in a randomly selected sample of healthy working adults (20-59 years living and working in Stockholm. Personal exposure to NO(2 was measured with diffusive samplers in sample of 247 individuals. The 7-day average personal exposure was 14.3 µg/m(3 and 12.5 µg/m(3 for the study population and the inhabitants of Stockholm County, respectively. The personal exposure was significantly lower than the urban background level (20.3 µg/m(3. In the univariate analyses the most influential determinants of individual exposure were long-term high-resolution dispersion-modelled levels of NO(2 outdoors at home and work, and concurrent NO(2 levels measured at a rural location, difference between those measured at an urban background and rural location and difference between those measured in busy street and at an urban background location, explaining 20, 16, 1, 2 and 4% (R(2 of the 7-day personal NO(2 variation, respectively. A regression model including these variables explained 38% of the variation in personal NO(2 exposure. We found a small improvement by adding time-activity variables to the latter model (R(2 = 0.44. The results adds credibility primarily to long-term epidemiology studies that utilise long-term indices of NO(2 exposure at home or work, but also indicates that such studies may still suffer from exposure misclassification and dilution of any true effects. In contrast, urban background levels of NO(2 are poorly related to individual exposure.

  20. Blending Multiple Nitrogen Dioxide Data Sources for Neighborhood Estimates of Long-Term Exposure for Health Research.

    Science.gov (United States)

    Hanigan, Ivan C; Williamson, Grant J; Knibbs, Luke D; Horsley, Joshua; Rolfe, Margaret I; Cope, Martin; Barnett, Adrian G; Cowie, Christine T; Heyworth, Jane S; Serre, Marc L; Jalaludin, Bin; Morgan, Geoffrey G

    2017-11-07

    Exposure to traffic related nitrogen dioxide (NO 2 ) air pollution is associated with adverse health outcomes. Average pollutant concentrations for fixed monitoring sites are often used to estimate exposures for health studies, however these can be imprecise due to difficulty and cost of spatial modeling at the resolution of neighborhoods (e.g., a scale of tens of meters) rather than at a coarse scale (around several kilometers). The objective of this study was to derive improved estimates of neighborhood NO 2 concentrations by blending measurements with modeled predictions in Sydney, Australia (a low pollution environment). We implemented the Bayesian maximum entropy approach to blend data with uncertainty defined using informative priors. We compiled NO 2 data from fixed-site monitors, chemical transport models, and satellite-based land use regression models to estimate neighborhood annual average NO 2 . The spatial model produced a posterior probability density function of estimated annual average concentrations that spanned an order of magnitude from 3 to 35 ppb. Validation using independent data showed improvement, with root mean squared error improvement of 6% compared with the land use regression model and 16% over the chemical transport model. These estimates will be used in studies of health effects and should minimize misclassification bias.

  1. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: the China Air Pollution and Health Effects Study (CAPES).

    Science.gov (United States)

    Chen, Renjie; Samoli, Evangelia; Wong, Chit-Ming; Huang, Wei; Wang, Zongshuang; Chen, Bingheng; Kan, Haidong

    2012-09-15

    Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO(2)). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO(2) and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO(2). In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration-response curves to get an overall NO(2)-mortality association in China. The averaged daily concentrations of NO(2) in the 17 Chinese cities ranged from 26 μg/m(3) to 67 μg/m(3). In the combined analysis, a 10-μg/m(3) increase in two-day moving averaged NO(2) was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO(2)). Older people appeared to be more vulnerable to NO(2) exposure. The combined concentration-response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO(2) in Asian developing countries to date suggests that short-term exposure to NO(2) is associated with increased mortality risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Dose–Response Association between Nitrogen Dioxide Exposure and Serum Interleukin-6 Concentrations

    Directory of Open Access Journals (Sweden)

    Jennifer L. Perret

    2017-05-01

    Full Text Available Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD, and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2 exposure (as a marker of traffic-related air pollution and pro-inflammatory cytokines, and investigated effect modification and mediation by post-bronchodilator airflow obstruction (post-BD-AO and cardiovascular risk. Data from middle-aged participants in the Tasmanian Longitudinal Health Study (TAHS, n = 1389 were analyzed by multivariable logistic regression, using serum interleukin (IL-6, IL-8 and tumor necrosis factor-α (TNF-α as the outcome. Mean annual NO2 exposure was estimated at residential addresses using a validated satellite-based land-use regression model. Post-BD-AO was defined by post-BD forced expiratory ratio (FEV1/FVC < lower limit of normal, and cardiovascular risk by a history of either cerebrovascular or ischaemic heart disease. We found a positive association with increasing serum IL-6 concentration (geometric mean 1.20 (95% CI: 1.1 to 1.3, p = 0.001 per quartile increase in NO2. This was predominantly a direct relationship, with little evidence for either effect modification or mediation via post-BD-AO, or for the small subgroup who reported cardiovascular events. However, there was some evidence consistent with serum IL-6 being on the causal pathway between NO2 and cardiovascular risk. These findings raise the possibility that the interplay between air pollution and systemic inflammation may differ between post-BD airflow obstruction and cardiovascular diseases.

  3. A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods

    Science.gov (United States)

    Choi, Giehae; Bell, Michelle L.; Lee, Jong-Tae

    2017-04-01

    The land-use regression (LUR) approach to estimate the levels of ambient air pollutants is becoming popular due to its high validity in predicting small-area variations. However, only a few studies have been conducted in Asian countries, and much less research has been conducted on comparing the performances and applied estimates of different exposure assessments including LUR. The main objectives of the current study were to conduct nitrogen dioxide (NO2) exposure assessment with four methods including LUR in the Republic of Korea, to compare the model performances, and to estimate the empirical NO2 exposures of a cohort. The study population was defined as the year 2010 participants of a government-supported cohort established for bio-monitoring in Ulsan, Republic of Korea. The annual ambient NO2 exposures of the 969 study participants were estimated with LUR, nearest station, inverse distance weighting, and ordinary kriging. Modeling was based on the annual NO2 average, traffic-related data, land-use data, and altitude of the 13 regularly monitored stations. The final LUR model indicated that area of transportation, distance to residential area, and area of wetland were important predictors of NO2. The LUR model explained 85.8% of the variation observed in the 13 monitoring stations of the year 2009. The LUR model outperformed the others based on leave-one out cross-validation comparing the correlations and root-mean square error. All NO2 estimates ranged from 11.3-18.0 ppb, with that of LUR having the widest range. The NO2 exposure levels of the residents differed by demographics. However, the average was below the national annual guidelines of the Republic of Korea (30 ppb). The LUR models showed high performances in an industrial city in the Republic of Korea, despite the small sample size and limited data. Our findings suggest that the LUR method may be useful in similar settings in Asian countries where the target region is small and availability of data is

  4. HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) 1deg Lat Zonal Fourier Coefficients V007 (H3ZFCNO2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) Zonal Fourier Coefficients" version 7 data product (H3ZFCNO2) contains the entire mission (~3 years) of HIRDLS data...

  5. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12.

    Science.gov (United States)

    Hu, Qinglian; Guo, Fengliang; Zhao, Fenghui; Fu, Zhengwei

    2017-04-01

    Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO 2 NPs). After exposure of different concentrations of TiO 2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO 2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO 2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO 2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO 2 NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Hong F

    2017-08-01

    Full Text Available Fashui Hong,1–4 Yingjun Zhou,1–4 Xiaoyang Zhao,5 Lei Sheng,5 Ling Wang6 1Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, 2Jiangsu Key Laboratory for Food Safety and Nutritional Function, 3Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, 4School of Life Sciences, Huaiyin Normal University, Huaian, 5Medical College of Soochow University, Suzhou, 6Library of Soochow University, Suzhou, Jiangsu, China Abstract: Although nanoscale titanium dioxide (nano-TiO2 has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in

  7. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  8. Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production

    International Nuclear Information System (INIS)

    Spinazzè, Andrea; Cattaneo, Andrea; Limonta, Marina; Bollati, Valentina; Bertazzi, Pier Alberto; Cavallo, Domenico M.

    2016-01-01

    Limited data are available regarding occupational exposure assessment to nano-sized titanium dioxide (nano-TiO_2). The objective of this study is to assess the occupational exposure of workers engaged in the application of nano-TiO_2 onto concrete building materials, by means of a multi-metric approach (mean diameter, number, mass and surface area concentrations). The measurement design consists of the combined use of (i) direct-reading instruments to evaluate the total particle number concentrations relative to the background concentration and the mean size-dependent characteristics of particles (mean diameter and surface area concentration) and to estimate the 8-h time-weighted average (8-h TWA) exposure to nano-TiO_2 for workers involved in different working tasks; and (ii) filter-based air sampling, used for the determination of size-resolved particle mass concentrations. A further estimation was performed to obtain the mean 8-h TWA exposure values expressed as mass concentrations (µg nano-TiO_2/m"3). The multi-metric characterization of occupational exposure to nano-TiO_2 was significantly different both for different work environments and for each work task. Generally, workers were exposed to engineered nanoparticles (ENPs; <100 nm) mean levels lower than the recommended reference values and proposed occupational exposure limits (40,000 particle/cm"3; 300 µg/m"3) and relevant exposures to peak concentration were not likely to be expected. The estimated 8-h TWA exposure showed differences between the unexposed and exposed subjects. For these last, further differences were defined between operators involved in different work tasks. This study provides information on nano-TiO_2 number and mass concentration, size distribution, particles diameter and surface area concentrations, which were used to obtain work shift-averaged exposures.

  9. Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production

    Energy Technology Data Exchange (ETDEWEB)

    Spinazzè, Andrea, E-mail: andrea.spinazze@uninsubria.it; Cattaneo, Andrea; Limonta, Marina [Università degli studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia (Italy); Bollati, Valentina; Bertazzi, Pier Alberto [Università degli Studi di Milano, EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità (Italy); Cavallo, Domenico M. [Università degli studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia (Italy)

    2016-06-15

    Limited data are available regarding occupational exposure assessment to nano-sized titanium dioxide (nano-TiO{sub 2}). The objective of this study is to assess the occupational exposure of workers engaged in the application of nano-TiO{sub 2} onto concrete building materials, by means of a multi-metric approach (mean diameter, number, mass and surface area concentrations). The measurement design consists of the combined use of (i) direct-reading instruments to evaluate the total particle number concentrations relative to the background concentration and the mean size-dependent characteristics of particles (mean diameter and surface area concentration) and to estimate the 8-h time-weighted average (8-h TWA) exposure to nano-TiO{sub 2} for workers involved in different working tasks; and (ii) filter-based air sampling, used for the determination of size-resolved particle mass concentrations. A further estimation was performed to obtain the mean 8-h TWA exposure values expressed as mass concentrations (µg nano-TiO{sub 2}/m{sup 3}). The multi-metric characterization of occupational exposure to nano-TiO{sub 2} was significantly different both for different work environments and for each work task. Generally, workers were exposed to engineered nanoparticles (ENPs; <100 nm) mean levels lower than the recommended reference values and proposed occupational exposure limits (40,000 particle/cm{sup 3}; 300 µg/m{sup 3}) and relevant exposures to peak concentration were not likely to be expected. The estimated 8-h TWA exposure showed differences between the unexposed and exposed subjects. For these last, further differences were defined between operators involved in different work tasks. This study provides information on nano-TiO{sub 2} number and mass concentration, size distribution, particles diameter and surface area concentrations, which were used to obtain work shift-averaged exposures.

  10. Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingqing; Tan, Danning; Ze, Yuguan; Sang, Xuezi [Medical College of Soochow University, Suzhou 215123 (China); Liu, Xiaorun [Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009 (China); Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009 (China); Gui, Suxin; Cheng, Zhe; Cheng, Jie; Hu, Renping; Gao, Guodong; Liu, Gan; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling [Medical College of Soochow University, Suzhou 215123 (China); Tang, Meng, E-mail: tm@seu.edu.cn [Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009 (China); Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009 (China); Hong, Fashui, E-mail: Hongfsh_cn@sina.com [Medical College of Soochow University, Suzhou 215123 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Exposure to TiO{sub 2} NPs could be significantly accumulated in the lung. Black-Right-Pointing-Pointer Exposure to TiO{sub 2} NPs caused pulmonary injury in mice. Black-Right-Pointing-Pointer Exposure to TiO{sub 2} NP promoted the expression of inflammatory cytokines in the lung. Black-Right-Pointing-Pointer Exposure to TiO{sub 2} NP caused ROS overproduction in the lung. - Abstract: Exposure to titanium dioxide nanoparticles (TiO{sub 2} NPs) has been demonstrated to result in pulmonary inflammation in animals; however, very little is known about the molecular mechanisms of pulmonary injury due to TiO{sub 2} NPs exposure. The aim of this study was to evaluate the oxidative stress and molecular mechanism associated with pulmonary inflammation in chronic lung toxicity caused by the intratracheal instillation of TiO{sub 2} NPs for 90 consecutive days in mice. Our findings suggest that TiO{sub 2} NPs are significantly accumulated in the lung, leading to an obvious increase in lung indices, inflammation and bleeding in the lung. Exposure to TiO{sub 2} NPs significantly increased the accumulation of reactive oxygen species and the level of lipid peroxidation, and decreased antioxidant capacity in the lung. Furthermore, TiO{sub 2} NPs exposure activated nuclear factor-{kappa}B, increased the levels of tumor necrosis factor-{alpha}, cyclooxygenase-2, heme oxygenase-1, interleukin-2, interleukin-4, interleukin-6, interleukin-8, interleukin-10, interleukin-18, interleukin-1{beta}, and CYP1A1 expression. However, TiO{sub 2} NPs exposure decreased NF-{kappa}B-inhibiting factor and heat shock protein 70 expression. Our results suggest that the generation of pulmonary inflammation caused by TiO{sub 2} NPs in mice is closely related to oxidative stress and the expression of inflammatory cytokines.

  11. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.

    Science.gov (United States)

    Warheit, David B; Donner, E Maria

    2015-11-01

    The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale

  12. Crystal structures of [Ln(NO33(μ2-bpydo2], where Ln = Ce, Pr or Nd, and bpydo = 4,4′-bipyridine N,N′-dioxide: layered coordination networks containing 44 grids

    Directory of Open Access Journals (Sweden)

    Michael L. Stromyer

    2016-01-01

    Full Text Available Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4′-bipyridine N,N′-dioxide (bpydo are reported, namely poly[[tris(nitrato-κ2O,O′cerium(III]-bis(μ2-4,4′-bipyridine N,N′-dioxide2N:N′], [Ce(NO33(C10H8N2O22], poly[[tris(nitrato-κ2O,O′praeseodymium(III]-bis(μ2-4,4′-bipyridine N,N′-dioxide2N:N′], [Pr(NO33(C10H8N2O22], and poly[[tris(nitrato-κ2O,O′neodymium(III]-bis(μ2-4,4′-bipyridine N,N′-dioxide2N:N′], [Nd(NO33(C10H8N2O22]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO33(μ2-bpydo2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate LnIII cations, forming interdigitating 44 grid-like layers extending parallel to (-101, where interdigitation of layers is promoted by C—H...O interactions between nitrate anions and bpydo ligands. The interdigitated layers are linked to sets of neighboring layers via further C—H...O and π–π interactions.

  13. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  14. Use of population exposure frequency distributions to simulate effects of policy interventions on NO2 exposure

    Science.gov (United States)

    Dimitroulopoulou, C.; Ashmore, M. R.; Terry, A. C.

    2017-02-01

    Health effects of air pollution on individuals depend on their personal exposure, but few modelling tools are available which can predict how the distribution of personal exposures within a city will change in response to policies to reduce emissions both indoors and outdoors. We describe a new probabilistic modelling framework (INDAIR-2/EXPAIR), which provides predictions of the personal exposure frequency distribution (PEFD) across a city to assess the effects of both reduced emissions from home sources and reduced roadside concentrations on population exposure. The model uses a national time activity database, which gives the percentage of each population group in different residential and non-residential micro-environments, and links this, for the home, to predictions of concentrations from a three-compartment model, and for non-residential microenvironments to empirical indoor/outdoor ratios. This paper presents modelled PEFDs for NO2 in the city of Leicester, for children, the elderly, and office workers, comparing results in different seasons and on different days of the week. While the mean NO2 population exposure was close to, or below the urban background concentration, the 95%ile of the PEFD was well above the urban background concentration. The relationship between both mean and 95%ile PEFD and urban background concentrations was strongly influenced by air exchange rate. The 24 h mean PEFD showed relative small differences between the population groups, with both removal of home sources and reductions of roadside concentrations on roads with a high traffic density having similar effects in reducing mean exposure. In contrast, the 1 h maximum of the PEFD was significantly higher for children and the elderly than for office workers, and showed a much greater response to reduced home emissions in these groups. The results demonstrate the importance of understanding the dynamics of NO2 exposure at a population level within different groups, if the benefits

  15. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    Science.gov (United States)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  16. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010.

    Science.gov (United States)

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2017-09-14

    Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (-6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (-4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite-white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959.

  17. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution.

    Science.gov (United States)

    Larkin, Andrew; Geddes, Jeffrey A; Martin, Randall V; Xiao, Qingyang; Liu, Yang; Marshall, Julian D; Brauer, Michael; Hystad, Perry

    2017-06-20

    Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO 2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO 2 ) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO 2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R 2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R 2 within 2%) but not for Africa and Oceania (adjusted R 2 within 11%) where NO 2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO 2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO 2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO 2 monitoring data or models.

  18. Effective utilization technology of carbon dioxide. CO sub 2 no yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, T. (National Research Inst. for pollution and Resources, Tsukuba (Japan))

    1991-03-12

    As carbon dioxide-related environmental measures, method was explained to chemically convert and utilize carbon dioxide. Synthesis is possible of methanol, carbon monoxide, different carbohydrates, etc. by catalytic hydrogenation of carbon dioxide, using hydrogen produced by the electrolysis of water. Task consists of heightening in both convertibility and selectivity, and abundant supply of low cost hydrogen. Methane, alcohol, etc. can be synthesized by electrochemical reducion of carbon dioxide. Because of effectively inserting multiple electron, discssion is being made of catalyst, intergrated with electrode, and electron transmitter. The photoelectrochemical reduction of carbon dioxide can be also made by utilizing photoelectric current, generated upon photoradiation on the semiconductive electrode. However, task consists of heightening in both efficiency and selectivity. Photochemical reduction of carbon dioxide, actually made by green plant, consists of oxidationlike decomposition of water and reduction of carbon dioxide. Both those reactions are skillfully separated by intermediation of very quick electron transmission system. Reduction is being studied with semiconductor, metallic colloid, enzyme, metallic complex and other various catalysts. 10 refs., 3 figs., 4 tabs.

  19. Driver exposure to volatile organic compounds, CO, ozone, and NO2 under different driving conditions

    International Nuclear Information System (INIS)

    Changchuan Chan; Oezkaynak, H.; Spengler, J.D.; Sheldon, L.

    1991-01-01

    The in-vehicle concentrations of 24 gasoline-related volatile organic compounds (VOCs) and three criteria air pollutants, ozone, carbon monoxide, and nitrogen dioxide, were measured in the summer of 1988, in Raleigh, NC. Two four-door sedan of different ages were used to evaluate in-vehicle concentrations of these compounds under different driving conditions. Factors that could influence driver exposure, such as different traffic patterns, car model, vehicle ventilation conditions, and driving periods, were evaluated. Isopentane was the most abundant aliphatic hydrocarbon and toluene was the most abundant aromatic VOC measured inside the vehicles. In-vehicle VOC and CO concentrations were highest for the urban roadway, second highest for the interstate highway, and lowest for the rural road. The median concentration ratio of urban/interstate/rural for each VOC was about 10/6/1. No differences in in-vehicle VOC concentrations were found between morning and afternoon rush hour driving, but higher in-vehicle ozone and NO 2 concentrations were found during afternoon driving. In-vehicle VOC levels were lowest with the air conditioner on and highest when the vent was open with the fan on. The in-vehicle/car exterior concentration ratio for VOCs, CO, and NO 2 was slightly higher than 1. The VOC concentration measured by a pedestrian on the urban sidewalk was lower than the in-vehicle measurements but higher than the fixed-site measurements but higher than the fixed-site measurements on urban roadways 50 m from streets. The VOC measurements were positively correlated with the CO measurement and negatively correlated with the ozone measurement

  20. Diesel aftertreatment control technologies in underground mines : the NO{sub 2} issue

    Energy Technology Data Exchange (ETDEWEB)

    Cauda, E.G.; Bugarski, A.D.; Patts, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Diesel engines are the main source of exposure for underground miners to nitric oxide (NO) and nitrogen dioxide (NO{sub 2}). The exposure of underground miners to both these pollutants is regulated by the Mine Safety and Health Administration. Improvements have been made in mine ventilation in an attempt to meet more stringent emission limits. In coal mines in the United States, the exposure limits of underground miners to pollutant concentrations determine the ventilation rate specific for certified diesel engines. The ventilation rates are based on the amount of fresh air needed to dilute CO, CO{sub 2}, NO, NO{sub 2} in the undiluted exhaust gas to the threshold limit values (TLV). This presentation described the other options available to mine operators to reduce diesel particulate matter emissions. More advanced engine technologies, aftertreatment control strategies and the use of biodiesel fuels can reduce the mass concentrations of diesel particulate matter (DPM). However, these strategies can also alter tailpipe emissions of NO{sub 2} and an increase in ventilation rate may be required if the concentration of NO{sub 2} exceeds the regulatory enforced limit. The effects of different exhaust aftertreatment technologies were reviewed in this presentation along with ventilation control strategies for underground mining. 43 refs., 3 figs.

  1. The effect of dietary vitamin A on NO2 exposure on the hamster lung

    International Nuclear Information System (INIS)

    Kim, J.C.

    1978-01-01

    The effect of dietary vitamin A and NO2 exposure on the hamster lung was evaluated by histopathology, electron microscopy, and thymidine uptake studies. Hamsters were maintained on deficient (0 micrograms), adequate (100 micrograms), and high (200 micrograms) dose levels of vitamin A while being exposed repeatedly to 10 ppm of NO2 for 5 hours once a week over an 8-week period. Hamsters of the deficient group exhibited clinical and morphologic changes characteristic of vitamin A deficiency. Animals maintained on adequate and high dose levels of vitamin A were not affected by vitamin A deficiency. Hypertrophy and hyperplasia of the epithelial cells of the terminal bronchiolar alveolar region of lungs of adequately and highly dosed animals were greater than those observed in the deficient animals, when NO2 exposure was given. However, the extent of the lesions observed in all three groups was less than that seen in normal hamsters given a single, 5-hour NO2 exposure. Ultrastructural changes observed in vitamin A-deficient hamsters exposed to NO2 were hypertrophy and hyperplasia of bronchiolar epithelial cells, diffuse loss of cilia, membrane damage, and mitochondrial damage manifested by calcium deposition. Tritiated thymidine uptake studies of lungs of animals exposed repeatedly revealed a rather erratic cell renewal pattern following NO2 exposure in comparison to the group of animals exposed singly

  2. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor.

    Science.gov (United States)

    Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun

    2008-02-11

    The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.

  3. Exposure assessment of workplace manufacturing titanium dioxide particles

    International Nuclear Information System (INIS)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang

    2016-01-01

    With the widespread use of titanium dioxide (TiO 2 ) human exposure is inevitable, but the exposure data on TiO 2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO 2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m 3 , nano dust: 1.22 mg/m 3 ) were much higher than those in the milling workshop (total dust: 0.79 mg/m 3 , nano dust: 0.31 mg/m 3 ) and executive office (total dust: 0.44 mg/m 3 , nano dust: 0.19 mg/m 3 ). However, the MCs of TiO 2 were at a relatively low level in the packaging workshop (total TiO 2 : 46.4 μg/m 3 , nano TiO 2 : 16.7 μg/m 3 ) and milling workshop (total TiO 2 : 39.4 μg/m 3 , nano TiO 2 : 19.4 μg/m 3 ) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC A ), and tracheobronchial (SAC TB ) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10 5 particles/cm 3 , 414.49 ± 395.07, and 86.01 ± 83.18 μm 2 /cm 3 , respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10 5 particles/cm 3 , 75.38 ± 45.23, and 17.60 ± 9.22 μm 2 /cm 3 , respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO 2 particles exposure in the workplace.

  4. Chronic disease associated with long-term concentrations of nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D.E.; Colome, S.D.; Mills, P.K.; Burchette, R.; Beeson, W.L.; Tian, Y. (Loma Linda Univ., CA (United States))

    1993-04-01

    A prospective epidemiologic cohort study of 6,000 residentially stable and non-smoking Seventh-day Adventists (SDA) in California was conducted to evaluate long-term cumulative levels of ambient nitrogen dioxide (NO2) in association with several chronic diseases. These diseases included respiratory symptoms, cancer, myocardial infarction (MI), and all natural causes mortality. Cumulative ambient concentrations of NO2 were estimated for each study subject using monthly interpolations from fixed site monitoring stations and applying these estimates to the monthly residence and work place zip code histories of study participants. In addition, a personal NO2 exposure study on a randomly selected sample of 650 people in southern California was conducted to predict total personal NO2 exposure using household and lifestyle characteristics and ambient NO2 concentrations. It was found that good predictability could be obtained (correlation coefficient between predicted and observed values = 0.79) from a model predicting personal NO2. The resulting regression equations from the personal NO2 exposure study were applied to the epidemiologic study cohort to adjust ambient concentrations of NO2.

  5. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  6. Modelling of indoor exposure to nitrogen dioxide in the UK

    Science.gov (United States)

    Dimitroulopoulou, C.; Ashmore, M. R.; Byrne, M. A.; Kinnersley, R. P.

    A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO 2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5-21 ppb for homes with no source, and 21-27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO 2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.

  7. Effects of titanium dioxide (TiO2 ) nanoparticles on caribbean reef-building coral (Montastraea faveolata).

    Science.gov (United States)

    Jovanović, Boris; Guzmán, Héctor M

    2014-06-01

    Increased use of manufactured titanium dioxide nanoparticles (nano-TiO2 ) is causing a rise in their concentration in the aquatic environment, including coral reef ecosystems. Caribbean mountainous star coral (Montastraea faveolata) has frequently been used as a model species to study gene expression during stress and bleaching events. Specimens of M. faveolata were collected in Panama and exposed for 17 d to nano-TiO2 suspensions (0.1 mg L(-1) and 10 mg L(-1) ). Exposure to nano-TiO2 caused significant zooxanthellae expulsion in all the colonies, without mortality. Induction of the gene for heat-shock protein 70 (HSP70) was observed during an early stage of exposure (day 2), indicating acute stress. However, there was no statistical difference in HSP70 expression on day 7 or 17, indicating possible coral acclimation and recovery from stress. No other genes were significantly upregulated. Inductively coupled plasma mass spectrometry analysis revealed that nano-TiO2 was predominantly trapped and stored within the posterior layer of the coral fragment (burrowing sponges, bacterial and fungal mats). The bioconcentration factor in the posterior layer was close to 600 after exposure to 10 mg L(-1) of nano-TiO2 for 17 d. The transient increase in HSP70, expulsion of zooxanthellae, and bioaccumulation of nano-TiO2 in the microflora of the coral colony indicate the potential of such exposure to induce stress and possibly contribute to an overall decrease in coral populations. © 2014 SETAC.

  8. Exposure assessment of workplace manufacturing titanium dioxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian [Peking University, Department of Occupational and Environmental Health Sciences, School of Public Health (China); Zhou, Jingwen [Jinan Center for Disease Control and Prevention (China); Tang, Shichuan [Beijing Municipal Institute of Labor Protection, Beijing Key Laboratory of Occupational Safety and Health (China); Kong, Fanling [Shandong Center for Disease Control and Prevention (China); Li, Xinwei; Yan, Ling; Zhang, Ji, E-mail: zhangji1967@163.com [Jinan Center for Disease Control and Prevention (China); Jia, Guang, E-mail: jiaguangjia@bjmu.edu.cn [Peking University, Department of Occupational and Environmental Health Sciences, School of Public Health (China)

    2016-10-15

    With the widespread use of titanium dioxide (TiO{sub 2}) human exposure is inevitable, but the exposure data on TiO{sub 2} are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO{sub 2} (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m{sup 3}, nano dust: 1.22 mg/m{sup 3}) were much higher than those in the milling workshop (total dust: 0.79 mg/m{sup 3}, nano dust: 0.31 mg/m{sup 3}) and executive office (total dust: 0.44 mg/m{sup 3}, nano dust: 0.19 mg/m{sup 3}). However, the MCs of TiO{sub 2} were at a relatively low level in the packaging workshop (total TiO{sub 2}: 46.4 μg/m{sup 3}, nano TiO{sub 2}: 16.7 μg/m{sup 3}) and milling workshop (total TiO{sub 2}: 39.4 μg/m{sup 3}, nano TiO{sub 2}: 19.4 μg/m{sup 3}) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC{sub A}), and tracheobronchial (SAC{sub TB}) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10{sup 5} particles/cm{sup 3}, 414.49 ± 395.07, and 86.01 ± 83.18 μm{sup 2}/cm{sup 3}, respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10{sup 5} particles/cm{sup 3}, 75.38 ± 45.23, and 17.60 ± 9.22 μm{sup 2}/cm{sup 3}, respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO{sub 2} particles exposure in the workplace.

  9. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  10. Effects of sulphur dioxide (SO2) on growth and flowering of SO2-tolerant and non-tolerant genotypes of Phleum pratense.

    Science.gov (United States)

    Clapperton, M J; Reid, D M

    1994-01-01

    The objective of this study was to compare the growth and interaction of clipping and sulphur dioxide (SO(2)) exposure on SO(2)-tolerant and non-tolerant genotypes of Phleum pratense at two field sites along an SO(2)-concentration gradient. Sulphur-dioxide-tolerant and non-tolerant genotypes of Phleum pratense were identified from indigenous populations that had been collected along the same SO(2)-concentration gradient in southern Alberta, Canada. Physiological differences between the two genotypes were confirmed by supplying leaves with (14)CO(2) and examining the assimilate partitioning between the genotypes. For the field experiment, clones of each genotype and seedlings grown from commercial seed were planted at two different field sites along an SO(2)-emission gradient. There were no differences in growth between the genotypes at the two field sites after the first year except that the SO(2)-tolerant clones had a greater percentage of root length colonised by vesicular-arbuscular (VA) mycorrhizal fungi. After the second growing season, there was a significant decrease in the number of inflorescences produced by plants exposed to SO(2), particularly by the non-tolerant genotype. The added stress of defoliation appeared to increase the sensitivity of flowering to SO(2), again particularly in the non-tolerant genotype. The results of the field study showed that flowering as opposed to vegetative plant growth was more sensitive to long-term low-concentration SO(2) exposure and that this sensitivity was compounded by the stress interaction of defoliation.

  11. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide

    International Nuclear Information System (INIS)

    Jakab, G.J.

    1987-01-01

    The effect of acute exposures to NO 2 on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO 2 levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO 2 exposure prior to bacterial challenge) raised the threshold concentration for NO 2 -induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO 2 did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with 32 P-labeled staphylococci

  12. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    Science.gov (United States)

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  13. Influence of nitrogen dioxide on the thermal decomposition of ammonium nitrate

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-06-01

    Full Text Available In this paper results of experimental studies of ammonium nitrate thermal decomposition in an open system under normal conditions and in NO2 atmosphere are presented. It is shown that nitrogen dioxide is the initiator of ammonium nitrate self-accelerating exothermic cyclic decomposition process. The insertion of NO2 from outside under the conditions of nonisothermal experiment reduces the characteristic temperature of the beginning of self-accelerating decomposition by 50...70 °C. Using method of isothermal exposures it is proved that thermal decomposition of ammonium nitrate in nitrogen dioxide atmosphere at 210 °C is autocatalytic (zero-order reaction. It was suggested that there is possibility of increasing the sensitivity and detonation characteristics of energy condensed systems based on ammonium nitrate by the insertion of additives which provide an earlier appearance of NO2 in the system.

  14. NO2 decreases paracellular resistance to ion and solute flow in alveolar epithelial monolayers

    International Nuclear Information System (INIS)

    Cheek, J.M.; Kim, K.J.; Crandall, E.D.

    1990-01-01

    Primary cultured monolayers of rat alveolar epithelial cells grown on tissue culture-treated Nuclepore filters were exposed to 2.5 ppm nitrogen dioxide NO 2 for 2-20 min. Changes in monolayer bioelectric properties and solute permeabilities were subsequently measured. Exposure to NO 2 produced a dose-dependent decrease in monolayer transepithelial electrical resistance (Rt), whereas monolayer short-circuit current was unaffected. Post-exposure monolayer permeability to 14 C-sucrose (which primarily crosses alveolar epithelium via the paracellular pathway) increased markedly. That for 3 H-glycerol (which permeates through both paracellular and transcellular pathways) increased to a lesser extent. Partial recovery of Rt and solute permeabilities was noted by 48-h post-exposure. The time courses of the decrease in Rt and increase in solute permeabilities were similar. These results suggest that NO 2 primarily impairs passive alveolar epithelial barrier functions in vitro, probably by altering intercellular junctions, and does not appear to directly affect cell membrane active ion transport processes. When correlated with results obtained from experimental approaches, studies of in vitro alveolar epithelial monolayers may facilitate investigations of dosimetry, sites, and mechanisms of oxidant injury in the lung

  15. Fixation of carbon dioxide by coral reef. Sangosho ni yoru CO2 no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1993-08-01

    The methods for fixation of carbon dioxide in the atmosphere in order to control the greenhouse effect, are groped. Carbon is fixed through two ways such as the production of organic compounds by photosynthesis and formation of calcium carbonate by calcification. Among them, the photosynthesis fixes carbon dioxide in the air, and calcification, on thinking of only chemical equilibrium in the sea water, is a process to exhaust carbon dioxide from ocean to the atmosphere. It is, therefore, uneven in opinions of researchers if the coral reef is an absorbing source or an exhausting one of carbon dioxide. A conventional discussion on this theme, did not carry out based on the actual search or measurement, but preceded on modelling. In order, therefore, to introduce a scientific decision on a play of the coral reef for the global carbon circulation, it seems to take more time. In this paper, an opinion that the coral reef is an absorbing source of carbon dioxide in the air according to some measuring results of carbon dioxide fixation velocity and organic compounds volume in sediments in the coral reefs, are described. 11 refs., 4 figs.

  16. Function of coral reef for glbal scale circulation of carbon dioxide. Chikyu kobo no CO sub 2 junkan ni okeru sangosho no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1990-12-01

    Together with the global warming problem, it becomes important to elucidate the carbon dioxide circulation in global scale mechanism. Within a part of that elucidation, explanation of function and ecology was made of coral reef, fixing carbon dioxide through two passages, ie., formation of potassium carbonate skeleton and formation of organic matter. The coral reef is judged to become effective sink of carbon dioxide by the photosynthesis by symbiotic seaweed in coral body and coral formation of potassium carbonate skeleton. The coral reef is higher than the tropical rain forest in diversity and productivity of biological matter. In addition, the formation of potassium carbonate also fixes carbon dioxide. Its producing rate of organic matter is 2.5kgC/m {sup 2}/year, which is 20 times as high as that of offshore region. Also, its sedimentary rate is more than several hundreds of times as high as that by Foraminifera in the offshore region. Therefore, its effective control is important, though it still has unknown points. 22 refs., 13 figs., 1 tab.

  17. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities.

    Science.gov (United States)

    Wang, Lijun; Liu, Cong; Meng, Xia; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Tse, Lap Ah; Chen, Jianmin; Zhou, Maigeng; Chen, Renjie; Yin, Peng; Kan, Haidong

    2018-04-28

    Ambient sulfur dioxide (SO 2 ) remains a major air pollutant in developing countries, but epidemiological evidence about its health effects was not abundant and inconsistent. To evaluate the associations between short-term exposure to SO 2 and cause-specific mortality in China. We conducted a nationwide time-series analysis in 272 major Chinese cities (2013-2015). We used the over-dispersed generalized linear model together with the Bayesian hierarchical model to analyze the data. Two-pollutant models were fitted to test the robustness of the associations. We conducted stratification analyses to examine potential effect modifications by age, sex and educational level. On average, the annual-mean SO 2 concentrations was 29.8 μg/m 3 in 272 cities. We observed positive and associations of SO 2 with total and cardiorespiratory mortality. A 10 μg/m 3 increase in two-day average concentrations of SO 2 was associated with increments of 0.59% in mortality from total non-accidental causes, 0.70% from total cardiovascular diseases, 0.55% from total respiratory diseases, 0.64% from hypertension disease, 0.65% from coronary heart disease, 0.58% from stroke, and 0.69% from chronic obstructive pulmonary disease. In two-pollutant models, there were no significant differences between single-pollutant model and two-pollutant model estimates with fine particulate matter, carbon monoxide and ozone, but the estimates decreased substantially after adjusting for nitrogen dioxide, especially in South China. The associations were stronger in warmer cities, in older people and in less-educated subgroups. This nationwide study demonstrated associations of daily SO 2 concentrations with increased total and cardiorespiratory mortality, but the associations might not be independent from NO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Phase behaviour for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems at temperatures from (313.2 to 393.2) K and pressures from (5 to 31) MPa

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Jang, Yoon-Seok; Yoo, Ki-Pung

    2010-01-01

    The solubility curves for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems were determined by a static view cell apparatus at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2) K as well as pressures up to 31.43 MPa. Two {carbon dioxide + (meth)acrylate} systems had continuous critical mixture curves with maxima in pressure located between the critical temperatures of carbon dioxide and 2-phenoxyethyl (meth)acrylate. The solubility of 2-phenoxyethyl (meth)acrylate in the {carbon dioxide + 2-phenoxyethyl (meth)acrylate} systems increases as the temperature increases at a fixed pressure. The (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems exhibit type-I phase behaviour. The experimental results for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems correlate with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule including two adjustable parameters. The critical properties of 2-phenoxyethyl acrylate and 2-phenoxyethyl methacrylate were predicted with the Joback and Lee-Kesler method.

  19. Long-Term Exposure to Road Traffic Noise and Nitrogen Dioxide and Risk of Heart Failure

    DEFF Research Database (Denmark)

    Sørensen, Mette; Wendelboe Nielsen, Olav; Sajadieh, Ahmad

    2017-01-01

    BACKGROUND: Although air pollution and road traffic noise have been associated with higher risk of cardiovascular diseases, associations with heart failure have received only little attention. OBJECTIVES: We aimed to investigate whether long-term exposure to road traffic noise and nitrogen dioxid...

  20. Short-term experiments for determination of the relative phytotoxicity of nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    van Haut, H.

    1975-01-01

    In short-term experiments, the relative phytotoxicity of nitrogen dioxide was determined for 60 types of plants by comparing it with that of sulfur dioxide. The plants, which included crop and garden plants such as alfalfa, clover, barley, lettuce, carrots, parsley, radishes, onions, beans, and tobacco; ornamental plants, such as roses, dahlias, and gladioli; and coniferous and deciduous trees, such as pines, spruces, birches, and maples, were exposed to the two gases in parallel experiments. The exposure concentrations were 5 to 20 mg NO/sub 2/ cu/m air and 1.5 to 4 mg SO/sub 2//cu m air. Taking the average concentration ratio of SO/sub 2/ to NO/sub 2/ of 1/3.5 and an SO/sub 2/ long-term value of 0.1 mg SO/sub 2//cu m, an average value of 0.35 mg NO/sub 2//cu m of air was obtained for the vegetation half-year. The average value obtained for a 30-min period was 0.80 mg NO/sub 2//cu m of air.

  1. Folded tubular photometer for atmospheric measurements of NO2 and NO

    Science.gov (United States)

    Birks, John W.; Andersen, Peter C.; Williford, Craig J.; Turnipseed, Andrew A.; Strunk, Stanley E.; Ennis, Christine A.; Mattson, Erick

    2018-05-01

    We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm-1, corresponding to ˜ 0.1 µg m-3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer-Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can

  2. Modeling effects of traffic and landscape characteristics on ambient nitrogen dioxide levels in Connecticut

    Science.gov (United States)

    Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.

    2010-12-01

    An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.

  3. End-tidal carbon dioxide (ETCO2) can replace methods for measuring partial pressure of carbon dioxide (PCO2) in pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen

    2017-01-01

    We compared end-tidal carbon dioxide (ETCO2) with partial pressure of carbon dioxide (PCO2) in domestic pigs anesthetized for neuroscience. There was good agreement between ETCO2 and PCO2 under both hypocapnia, normocapnia, and hypercapnia conditions. ETCO2 saves time by continually providing...

  4. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO 2 ) ... Respiratory adjustments were done for EtCO2 levels above 60mmHg or SPO2 below 92% or adverse haemodynamic changes.

  5. Do individuals with asthma experience airway hyper-responsiveness after exposure to nitrogen dioxide?

    Science.gov (United States)

    Goodman, Julie E; Kennedy, Erin M; Seeley, Mara

    2017-10-01

    The current 100 ppb short-term National Ambient Air Quality Standard for NO 2 , and EPA's determination of a causal association for respiratory effects, are based in part on controlled human exposure studies evaluating airway hyper-responsiveness (AHR). A meta-analysis by Goodman et al. (2009) found increased AHR at 100 ppb NO 2 but no clear concentration-response relationship up to 600 ppb, and an overall lack of an AHR effect for studies involving exercise or exposure to allergens. Several factors have been suggested to explain why effects on AHR are observed while people are at rest, but not during exercise or after exposure to allergens. These include an exercise-induced refractory period; partial reversal of bronchospasm from use of forced expiration maneuvers; and greater airway responsiveness of participants exposed to NO 2 at rest. We reviewed the scientific evidence to determine whether there is biological support for these factors and found that none sufficiently explained the lack of an effect during exercise or after exposure to allergens. In the absence of either a consistent concentration-response or a plausible explanation for the paradoxical AHR findings, the biological significance of these findings is uncertain and provides equivocal support for NO 2 as a causal factor of AHR at these exposure levels. Copyright © 2017 Gradient. Published by Elsevier Inc. All rights reserved.

  6. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.

    Science.gov (United States)

    Buteau, Stephane; Hatzopoulou, Marianne; Crouse, Dan L; Smargiassi, Audrey; Burnett, Richard T; Logan, Travis; Cavellin, Laure Deville; Goldberg, Mark S

    2017-07-01

    In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O 3 ) and nitrogen dioxide (NO 2 ) of participants' residences in Montreal, 1991-2002. We used the following methods to predict spatially-resolved daily concentrations of O 3 and NO 2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O 3 and NO 2 . On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O 3 and 108ppb

  7. Investigations on the influence of NO/sub 2/ and SO/sub 2/ as well as a combination of the two gases on the production of precipitating antibodies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Antweiler, K; Kompch, K H; Brockhaus, A

    1975-01-01

    The influence of nitrogen dioxide and sulfur dioxide, or a combination of the two, on the production pf precipitating antibodies was studied in guinea pigs. The gas concentration was 10 mg/cu m. Continuous exposure began 3 days before sensitization and lasted up to the testing date. Sensitization was done subcutaneously and intramuscularly with fresh chicken albumen plus complete Freund's adjuvant. Production of precipitating antibodies was tested by the double diffusion method of Ouchterlony. Total protein content was measured and an immunoelectrophoretic separation of the protein fractions was performed with polyvalent anti-guinea pig serum. The statistical evaluation of the results yielded no support for an interaction of NO/sub 2/ and SO/sub 2/, or their combination, in the concentration used on the formation of precipitating bodies.

  8. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Boersma, K.F.; Veefkind, P.

    2015-01-01

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  9. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, Gerard; Eeftens, Marloes; Beelen, Rob; Fischer, Paul; Brunekreef, Bert; Boersma, K. Folkert; Veefkind, Pepijn

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  10. Folded tubular photometer for atmospheric measurements of NO2 and NO

    Directory of Open Access Journals (Sweden)

    J. W. Birks

    2018-05-01

    Full Text Available We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2 and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2, ozone (O3, and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm−1, corresponding to  ∼  0.1 µg m−3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2 and the incorporation of design features that also enable measurement of nitric oxide (NO in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1 an absolute quantification for NO2 based on the Beer–Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2 the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3 the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the

  11. Evaluation of submarine atmospheres: effects of carbon monoxide, carbon dioxide and oxygen on general toxicology, neurobehavioral performance, reproduction and development in rats. I. Subacute exposures.

    Science.gov (United States)

    Hardt, Daniel J; James, R Arden; Gut, Chester P; McInturf, Shawn M; Sweeney, Lisa M; Erickson, Richard P; Gargas, Michael L

    2015-02-01

    The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23 h/day, whole-body inhalation study of exposure to clean air (0.4 ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4 ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.

  12. Combined Study of Titanium Dioxide Nanoparticle Transport and Toxicity on Microbial Nitrifying Communities under Single and Repeated Exposures in Soil Columns.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Uzu, Gaëlle; Vince, Erwann; Richaume, Agnès

    2016-10-04

    Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO 2 ) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO 2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO 2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO 2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.

  13. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    NARCIS (Netherlands)

    Krotkov, Nickolay A.; McLinden, Chris A.; Li, Can; Lamsal, Lok N.; Celarier, Edward A.; Marchenko, Sergey V.; Swartz, William H.; Bucsela, Eric J.; Joiner, Joanna; Duncan, Bryan N.; Boersma, Folkert; Veefkind, J.P.; Levelt, Pieternel F.; Fioletov, Vitali E.; Dickerson, Russell R.; He, Hao; Lu, Zifeng; Streets, David G.

    2016-01-01

    The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), since October 2004. The data products from the same instrument provide

  14. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO2, PM10 and PM2,5 for the winter 1995 to 1996

    International Nuclear Information System (INIS)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO 2 , PM 1 0 and PM 2 ,5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km 2 level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO 2 these threshold figures are 100 microgram/m 3 for hour values and 75 microgram/m 3 for day values. For PM 1 0 and PM 2 ,5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m 3 for PM 1 0 and 20 microgram/m 3 for PM 2 ,5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO 2 , PM 1 0 and PM 2 ,5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO 2 is largest in Bergen. The PM 1 0 and PM 2 ,5 i.e. particle exposure, is greater than for NO 2 and is largest in Oslo

  15. n-TiO{sub 2} and CdCl{sub 2} co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax)

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, M.; Bernardeschi, M. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Costagliola, D. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy); Della Torre, C. [Department of Physical, Earth and Environmental Sciences, University of Siena, Siena (Italy); Frenzilli, G., E-mail: giada@biomed.unipi.it [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Guidi, P.; Lucchesi, P. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Mottola, F.; Santonastaso, M. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy); Scarcelli, V. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Monaci, F.; Corsi, I. [Department of Physical, Earth and Environmental Sciences, University of Siena, Siena (Italy); Stingo, V.; Rocco, L. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy)

    2015-11-15

    Highlights: • European sea bass was exposed to CdCl{sub 2} and n-TiO{sub 2} alone and in combination. • Genotoxicity was evaluated by RAPD-assay, comet assay and cytome assay. • CdCl{sub 2} induced DNA primary damage but not chromosomal damage. • n-TiO{sub 2} induced chromosomal damage but not DNA primary damage. • Co-exposure effects depend on the biomarker used. - Abstract: Due to the large production and growing use of titanium dioxide nanoparticles (n-TiO{sub 2}), their release in the marine environment and their potential interaction with existing toxic contaminants represent a growing concern for biota. Different end-points of genotoxicity were investigated in the European sea bass Dicentrarchus labrax exposed to n-TiO{sub 2} (1 mg L{sup −1}) either alone and combined with CdCl{sub 2} (0.1 mg L{sup −1}) for 7 days. DNA primary damage (comet assay), apoptotic cells (diffusion assay), occurrence of micronuclei and nuclear abnormalities (cytome assay) were assessed in peripheral erythrocytes and genomic stability (random amplified polymorphism DNA-PCR, RAPD assay) in muscle tissue. Results showed that genome template stability was reduced after CdCl{sub 2} and n-TiO{sub 2} exposure. Exposure to n-TiO{sub 2} alone was responsible for chromosomal alteration but ineffective in terms of DNA damage; while the opposite was observed in CdCl{sub 2} exposed specimens. Co-exposure apparently prevents the chromosomal damage and leads to a partial recovery of the genome template stability.

  16. Effects of sulfur dioxide on net CO/sub 2/ assimilation in the lichen Evernia mesomorpha Nyl

    Energy Technology Data Exchange (ETDEWEB)

    Huebert, D B; L' Hirondelle, S J; Addison, P A

    1985-01-01

    Physiologically active thalli of the lichen Evernia mesomorpha Nyl. were very sensitive to short-term fumigations with low concentrations of gaseous sulfur dioxide. Net CO/sub 2/ assimilation rate (NAR) was significantly reduced after exposure to 0.085 ..mu..l l/sup -1/ (250 ..mu..g m/sup -3/) SO/sub 2/ for 1 h or more, and the reduction increased with increasing concentration. Duration of exposure had no significant effect on NAR, indicating the importance of rate of SO/sub 2/ uptake rather than the total amount absorbed. Respiration was significantly reduced after 4 h or more of exposure to 0.265 ..mu..l l/sup -1/ (639 ..mu..g m/sup -3/) SO/sub 2/ or higher. Recovery of NAR after fumigation was dependent on both SO/sub 2/ concentration and duration of fumigation, and on the time allowed for recovery. Virtually complete recovery occurred within 24 h after episodes with up to 0.355 ..mu..l l/sup -1/ (856 ..mu..g m/sup -3/) SO/sub 2/ for 1 h and 0.085 ..mu..l l/sup -1/ SO/sub 2/ for 4 h. Above these levels, recovery was incomplete or nonexistent after 24 h in clean air. The level of sensitivity found can be attributed to the environmental conditions during fumigation, which prevented thallus desiccation and inactivity. Based on this study, neither the concept of dose (concentration x time) nor that of threshold levels of SO/sub 2/ fumigations are supported. Peak exposures to SO/sub 2/ for short periods may be of primary importance in determining the survival of lichens in industrial areas.

  17. Hemispherical Scanning Imaging DOAS: Resolving nitrogen dioxide in the urban environment

    Science.gov (United States)

    Leigh, R. J.; Graves, R. R.; Lawrence, J.; Faloon, K.; Monks, P. S.

    2012-12-01

    Imaging DOAS techniques have been used for nitrogen dioxide and sulfer dioxide for a number of years. This presentation describes a novel system which images concentrations of nitrogen dioxide by scanning an imaging spectrometer 360 degrees azimuthally, covering a region from 5 degrees below the horizon, to the zenith. The instrument has been built at the University of Leicester (UK), on optical designs by Surrey Satellite Technologies Ltd, and incorporates an Offner relay with Schwarzchild fore-optics, in a rotating mount. The spectrometer offers high fidelity spectroscopic retrievals of nitrogen dioxide as a result of a reliable Gaussian line shape, zero smile and low chromatic aberration. The full hemispherical scanning provides complete coverage of nitrogen dioxide concentrations above approximately 5 ppbv in urban environments. Through the use of multiple instruments, the three-dimensional structure of nitrogen dioxide can be sampled and tomographically reconstructed, providing valuable information on nitrogen dioxide emissions and downwind exposure, in addition to new understanding of boundary layer dynamics through the use of nitrogen dioxide as a tracer. Furthermore, certain aerosol information can be retrieved through absolute intensity measurements in each azimuthal direction supplemented by traditional techniques of O4 spectroscopy. Such measurements provide a new tool for boundary layer measurement and monitoring at a time when air quality implications on human health and climate are under significant scrutiny. This presentation will describe the instrument and tomographic potential of this technique. First measurements were taken as part of the international PEGASOS campaign in Bologna, Italy. Results from these measurements will be shown, including imaging of enhanced NO2 in the Bologna urban boundary layer during a severe thunderstorm. A Hemispherical Scanning Imaging DOAS instrument operating in Bologna, Italy in June 2012. Visible in the background

  18. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  19. Short-term diffusive sampler for nitrogen dioxide monitoring in epidemiology

    International Nuclear Information System (INIS)

    Michaud, J.P.; Quackenboss, J.

    1991-01-01

    An automated timed exposure diffusive sampler (TEDS) for sampling nitrogen dioxide (NO 2 ) was developed for use in epidemiological studies. The TEDS sequentially exposes four passive sampling devices (PSD) by microprocessor controlled valves while a pump and air flow guide prevent sampler starvation. Two TEDS units and two portable, real-time NO 2 monitors were tested for accuracy, precision, sensitivity, and linearity of response. The accuracy of the TEDS was within 10 percent of the means of the measured values. The TEDS sensitivity was 20 to 30 ppb-hour for NO 2 . Co-location of the TEDS with a chemiluminescent NO x monitor (EPA reference method) showed a similar responses to ambient NO 2 . TEDS allows better time resolution than traditional diffusive samplers (i.e., Palmes tube) while sharing their ability to sample a variety of gases

  20. Personal exposures of preschool children to carbon monoxide and nitrogen dioxide. The role of gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Jantunen, M.J.; Mukala, K.; Tuomisto, J. [National Public Health Institute, Kuopio (Finland). Div. of Environmental Health; Pasanen, P. [Kuopio Univ. (Finland)

    1993-12-31

    Personal 1-h mean CO exposures of preschool children in two day care centers of Helsinki were measured with continuously recording personal exposure monitors, and their personal 1-wk NO{sub 2} exposures with Palmes tubes. The results were compared to fixed site ambient air monitoring results and related to the presence of high CO, low heat value town gas fired stoves in the homes of the children. Results show that fixed site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas, and also that town gas fired stoves have a profound effect on the CO exposures, and little or no effect on the NO{sub 2} exposures of the children. (author)

  1. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules

    Science.gov (United States)

    Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L.

    2017-01-01

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

  2. Carbon Dioxide (CO2) in Blood: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/carbondioxideco2inblood.html Carbon Dioxide (CO2) in Blood To use the sharing features ... this page, please enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an ...

  3. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  4. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-01-01

    Full Text Available Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2. The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD.

  5. Hemocyte responses of Dreissena polymorpha following a short-term in vivo exposure to titanium dioxide nanoparticles: Preliminary investigations

    Energy Technology Data Exchange (ETDEWEB)

    Couleau, Nicolas; Techer, Didier [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France); Pagnout, Christophe [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), UMR 7146, Campus Bridoux, rue du General Delestraint, Metz, F-57070 (France); International Consortium for the Environmental Implications of Nanotechnology, iCEINT, http://www.i-ceint.org (France); Jomini, Stephane [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), UMR 7146, Campus Bridoux, rue du General Delestraint, Metz, F-57070 (France); Foucaud, Laurent; Laval-Gilly, Philippe; Falla, Jairo [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France); Bennasroune, Amar, E-mail: amar.bennasroune@univ-metz.fr [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France)

    2012-11-01

    The widespread use of titanium-based nanoparticles and their environmental release may pose a significant risk to aquatic organisms within freshwater ecosystems. Suspension-feeder invertebrates like bivalve molluscs represent a unique target group for nanoparticle toxicology. The aim of this work was to investigate the short-term responses of Dreissena polymorpha hemocytes after in vivo exposure to titanium dioxide nanoparticles (TiO{sub 2} NP). For this purpose, freshwater mussels were exposed to P25 TiO{sub 2} NP at the concentrations of 0.1, 1, 5 and 25 mg/L during 24 h. Viability, phagocytosis activity and mitogen activated protein kinase (MAPK) phosphorylation level of ERK 1/2 and p38 in hemocytes extracted from exposed mussels were compared to those from control specimens. Results demonstrated an inhibition of the phagocytosis activity after exposure to TiO{sub 2} NP at 0.1 and 1 mg/L. Similar trends, albeit less pronounced, were reported for higher concentrations of NP. Transmission electron microscopy showed for the first time the internalization of TiO{sub 2} NP into Dreissena polymorpha hemocytes. Besides, exposure to NP increased the ERK 1/2 phosphorylation levels in all treatments. Concerning the phosphorylation level of p38, only exposures to 5 and 25 mg/L of NP induced significant p38 activation in comparison to that of the control. Finally, these short-term effects observed at environmentally relevant concentrations highlighted the need for further studies concerning ecotoxicological evaluation of nanoparticle release into an aquatic environment. -- Highlights: Black-Right-Pointing-Pointer Phagocytosis inhibition at TiO{sub 2} NP exposure concentrations of 0.1 and 1 mg/L. Black-Right-Pointing-Pointer Internalization of TiO{sub 2} NP in freshwater mussel hemocytes. Black-Right-Pointing-Pointer Increased phosphorylation level of p38 and ERK 1/2 after in vivo exposure to TiO{sub 2} NP.

  6. Exogenous sodium sulfide improves morphological and physiological responses of a hybrid Populus species to nitrogen dioxide.

    Science.gov (United States)

    Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong

    2014-06-15

    Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Bioreactors for fixation and effective utilization of carbon dioxide gas. Tansan gas no koteiter dot yuko riyo no tame no bio reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. (Osaka University, Osaka (Japan). Faculty of Pharmaceutical Science); Benemann, J. (California University, CA (USA))

    1991-06-01

    As for a preventive countermeasure against the global warming, experiments and studies have been conducted on the bioreactors to fix carbon dioxide gas recovered from the concentric and large scale generating sources such as thermal power plamts in a form of carbohydrate by means of the culture of microbial algae. By using the Vertical Tube Reactors (VTR) culturing apparatus, a variety of microbial algae were cultivated and experiments were performed on the relationship of biomass productivity and absorption rate of carbon dioxide gas indoors and outdoors. Consequently, it was found that when the flow rate of carbon dioxide gas is adjusted to make the biomass productivity of filament type Nostoc maximum,the inlet and outlet concentrations of carbon dioxide gas were 0.7% and 0.05% respectively with the absorption rate of more than 90%. From the standpoint of fixation and effective utilization of carbon dioxide gas, the above rate of removal is one of the important parameters and it will be necessary in future to compare the rates of removal of carbon dioxide gas among various types of bioreactors as a function of operating condition. 9 refs., 6 figs., 2 tabs.

  8. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry.

    Science.gov (United States)

    Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge

    2015-04-01

    The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Effect of exposure to O/sub 3/, SO/sub 2/, and NO/sub 2/ upon the lung histamine content of guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T

    1969-01-01

    Male guinea pigs were exposed to 1 or 4 to 8 ppM O/sub 3/, 10 or 50 ppM SO/sub 2/, or 10 or 80 ppM NO/sub 2/ for 3 hr. Histamine and water content of lungs were measured. Animals exposed to higher concentrations of O/sub 3/ or NO/sub 2/ had edematous lungs. Lungs of those exposed to lower concentrations of O/sub 3/ or NO/sub 2/ also had slightly higher water contents. Lung histamine content and concentration decreased by O/sub 3/ exposure but not by any other treatment. In vitro exposure of lung to O/sub 3/ showed released histamine occurring in the perfusion outflow. Endogenous, cellular, inert histamine evidently was released by O/sub 3/ stimulant. However, the mechanism for NO/sub 2/-caused edema was not revealed, but could be direct action on lung vessels rather than through histamine mediation.

  10. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis.

    Science.gov (United States)

    Ebrahimzadeh Bideskan, Alireza; Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Hosseini, Mahmoud; Rajabzadeh, Aliakbar

    2017-07-05

    The usage of Titanium dioxide nanoparticles (TiO 2 -NPs) covers a vast area in different fields ranging from cosmetics and food to the production of drugs. Maternal exposure to TiO 2 -NPs during developmental period has been associated with hippocampal injury and with a decrease in learning and memory status of the offspring. However, little is known about its injury mechanism. This paper describes the in vivo neurotoxic effects of TiO 2 -NPs on rat offspring hippocampus during developmental period. Pregnant and lactating Wistar rats received intragastric TiO 2 -NPs (100mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21 and postnatal day (PD) 2 to (PD) 21 respectively. Animals in the control groups received an equal volume of distilled water via gavage. At the end of the treatment process, offspring were deeply anesthetized and sacrificed. Then brains of each group were collected and sections of the rat offspring's brains were stained using TUNEL staining (for detection of apoptotic cells) and immunostaining (for neurogenesis). Moreover, the right hippocampus (n=6 per each group) were removed from the right hemisphere for evaluating the expression of Bax and Bcl-2 level. Results of histopatological examination by TUNEL staining showed that maternal exposure to TiO 2 -NPs during pregnancy and lactation periods increased apoptotic cells significantly (P<0.01) in the offspring hippocampus. The immunolabeling of double cortin (DCX) protein as neurogenesis marker also showed that TiO 2 -NPs reduced neurogenesis in the hippocampus of the offspring (P<0.05). Moreover, in comparison with the control group, the mRNA levels of Bax and Bcl-2 in the TiO 2 -NPs group significantly increased and decreased, respectively (P<0.01). These findings provide strong evidence that maternal exposure to TiO 2 -NPs significantly impact hippocampal neurogenesis and apoptosis in the offspring. The potential impact of nanoparticle exposure for millions of pregnant mothers and

  11. Mortality and Morbidity Due to Exposure to Ambient NO2, SO2, and O3 in Isfahan in 2013-2014.

    Science.gov (United States)

    Abdolahnejad, Ali; Jafari, Negar; Mohammadi, Amir; Miri, Mohammad; Hajizadeh, Yaghoub

    2018-01-01

    The presence of air pollutants such as CO, NO 2 , SO 2 , O 3 , and PM in the ambient air mainly emitted from fossil fuels combustion has become a major health concern. The aims of this study were to estimate the attribution of NO 2 , SO 2 , and O 3 in the premature deaths and prevalence of cardiovascular and respiratory diseases in Isfahan in 2013-2014. In this study, short-term health effects (total mortality, cardiovascular and respiratory mortality, chronic obstructive pulmonary disease, and acute myocardial infarction) of exposure NO 2 , SO 2 , and O 3 on the population of Isfahan were assessed using AirQ 2.2.3 software suggested by the World Health Organization (WHO). The result showed that from nonaccident total mortality in 2013-2014 in Isfahan, the attributable proportion related to NO 2 , SO 2 , and O 3 were 1.03% (109 cases), 3.46% (365 cases), and 1.29% (136 cases), respectively. The percentage of days that people were exposed to the highest concentration of NO 2 (40-49 μg/m 3 ), SO 2 (60-69 μg/m 3 ), and O 3 (40-49 μg/m 3 ) was 34.46%, 16.85%, and 42.74% of a year, respectively. Total mortality attributed to NO 2 , SO 2 , and O 3 exposure was 0.36%, 0.79%, and 0.83%, respectively. The concentrations of NO 2 and SO 2 were upper than the WHO guidelines. The Air-Q software in spite of its limitations can provide useful information regarding the health outcome of the air pollutants. The results estimated in this study were considerable. This information can help the health authorities and policy makers to draw suitable strategies and fulfill effective emission control programs.

  12. The effect of carbon dioxide at high pressure under different ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... the pulse beetle, Callosobruchus maculates. J. Insect Sci. 9: 58-61. George NM, Sonny BR (1998). Comparative effect of short term exposures of Callosobruchus subinnotatus to carbon dioxide, nitrogen, or low temperature on behaviour and fecundity. Entomologia Experimentalis et Applicata Vol. 89, No.

  13. Long-term exposure to gaseous air pollutants and cardio-respiratory mortality in Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Xiao Yu Wang

    2009-05-01

    Full Text Available This study examines the association of long-term exposure to gaseous air pollution with cardio-respiratory mortality in Brisbane, Australia, in the period 1996-2004. The pollutant concentrations were estimated using geographical information system (GIS techniques at the statistical local area (SLA level. The generalized estimating equations model was used to investigate the impact of nitrogen dioxide (NO2, ozone (O3 and sulphur dioxide (SO2 on mortality due to cardio-respiratory disease after adjusting for a range of potential confounders. An increase of 4.7% (95% confidence interval = 0.7-8.9% in cardio-respiratory mortality for 1 part per billion (ppb increment in annual average concentration of SO2 was estimated. However, there was no significant association between long-term exposures to NO2 or O3 and death due to cardio-respiratory disease. The results indicate that the annual average concentration of SO2 is associated with cardio-respiratory mortality at the SLA level and this association appears to vary with the geographical area.

  14. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  15. Association between exposure to ambient air pollution and renal function in Korean adults.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p   0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  16. Effects of exposure to nitrogen dioxide on the mechanical properties of the lung in anesthetized dogs

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, E

    1963-01-01

    Eight dogs were ventilated with 8 to 190 ppM NO/sub 2/ (NO/sub 2/ not actually measured) for 25 to 40 min. Flow-resistive work was elevated 10% (avg) at the end of exposure and remained elevated 30 min after exposure. Effective and static compliance were not significantly changed.

  17. Exposure to air pollution and pulmonary function in university students.

    Science.gov (United States)

    Hong, Yun-Chul; Leem, Jong-Han; Lee, Kwan-Hee; Park, Dong-Hyun; Jang, Jae-Yeon; Kim, Sun-Tae; Ha, Eun-Hee

    2005-03-01

    Exposure to air pollution has been reported to be associated with increase in pulmonary disease. The aims of the present study were to examine the use of personal nitrogen dioxide (NO(2)) samplers as a means of measuring exposure to air pollution and to investigate the relationship between personal exposure to air pollution and pulmonary function. We measured individual exposures to NO(2) using passive personal NO(2) samplers for 298 healthy university students. Questionnaire interview was conducted for traffic-related factors, and spirometry was performed when the samplers were returned after 1 day. Personal NO(2) concentrations varied, depending on the distance between residence and a main road (P=0.029). Students who used transportation for more than 1 h were exposed to higher levels of NO(2) than those using transportation for less than 1 h (P=0.032). In terms of transportation, riding in a bus or subway caused significantly higher exposure than not using them (P=0.046). NO(2) exposure was not significantly associated with forced vital capacity (FVC) or forced expiratory volume in 1 s (FEV(1)) but was associated with the ratio of FEV(1)/FVC and mid-expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) (Ppollution and are associated with decreased pulmonary function.

  18. Socioeconomic status and exposure to outdoor NO2 and benzene in the Asturias INMA birth cohort, Spain.

    Science.gov (United States)

    Fernández-Somoano, Ana; Tardon, Adonina

    2014-01-01

    It is commonly assumed that low socioeconomic levels are associated with greater exposure to pollution, but this is not necessarily valid. Our goal was to examine how individual socioeconomic characteristics are associated with exposure levels in a Spanish region included in the INfancia y Medio Ambiente (INMA) cohort. The study population comprised 430 pregnant women from the Asturias INMA cohort. Air pollution exposure was estimated using land-use regression techniques. Information about the participants' lifestyle and socioeconomic variables was collected through questionnaires. In multivariate analysis, the levels of NO2 and benzene assigned to each woman were considered as dependent variables. Other variables included in the models were residential zone, age, education, parity, smoking, season, working status during pregnancy and social class. The average NO2 level was 23.60 (SD=6.50) μg/m(3). For benzene, the mean value was 2.31 (SD=1.32) μg/m(3). We found no association of any pollutant with education. We observed an association between social class and benzene levels. Social classes I and II had the highest levels. The analysed socioeconomic and lifestyle variables accounted for little variability in air pollution in the models; this variability was explained mainly by residential zone (adjusted R(2): 0.27 for NO2; 0.09 for benzene). Education and social class were not clearly associated with pollution. Administrations should monitor the environment of residential areas regardless of the socioeconomic level, and they should increase the distances between housing and polluting sources to prevent settlements at distances that are harmful to health.

  19. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  20. Nitrogen Dioxide pollution and hazardous household environment: what impacts more congenital malformations.

    Science.gov (United States)

    Landau, D; Novack, L; Yitshak-Sade, M; Sarov, B; Kloog, I; Hershkovitz, R; Grotto, I; Karakis, I

    2015-11-01

    Nitrogen Dioxide (NO2) is a product of fuel combustion originating mainly from industry and transportation. Studies suggest an association between NO2 and congenital malformations (CM). We investigated an independent effect of NO2 on CM by adjusting to individual factors and household environment in 1024 Bedouin-Arab pregnant women in southern Israel. This population is characterised by high rates of CMs, frequent consanguineous marriages, paternal smoking, temporary housing and usage of open fire for heat cooking. Information on household risk factors was collected during an interview. Ambient measurements of 24-h average NO2 and meteorological conditions were obtained from 13 local monitors. Median value of daily NO2 measured in the area was 6.78ppb. CM was diagnosed in 8.0% (82) of offspring. Maternal NO2 exposure during the 1st trimester >8.6ppb was significantly associated with minor CM (RR=2.68, p=0.029). Major CM were independently associated with maternal juvenile diabetes (RR=9.97, p-value=0.002) and heating by open fire (RR=2.00, p-value=0.049), but not NO2 exposure. We found that NO2 emissions had an independent impact only on minor malformations, whereas major malformations depended mostly on the household environment. Antepartum deaths were associated by maternal morbidity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Road traffic,NO{sub 2} exposure and respiratory system of the child in the VESTA study; Trafic automobile, exposition au NO{sub 2} et fonction respiratoire de l'enfant au sein de l'etude VESTA

    Energy Technology Data Exchange (ETDEWEB)

    Gauvin, St.; Amro, S.; Zmirou, D. [Faculte de Medecine, Lab. de Sante Publique, 38 - La Tronche (France); Le Moullec, Y. [Lab. d' Hygiene de la Ville de Paris, 75 (France); Sahraoui, F. [Hopital Trousseau, 75 - Paris (France); Pin, I. [Centre Hospitalier Universitaire 1-Michallon, 38 - Grenoble (France); Neukirch, F. [INSERM U 408, Faculte de Medecine Xavier Bichat, 75 - Paris (France); Momas, I. [Faculte de Pharmacie, Lab. d' Hygiene et Sante Publique, 75 - Paris (France); Lauvergne, N. [Centre Hospitalier Universitaire de l' Archet, 06 - Nice (France); Poilve, M.P. [Centre Hospitalier Universitaire Purpan, 31 - Toulouse (France); Chiron, M. [Institut National de Recherche sur les Transports et leur Securite (INRETS), 69 - Bron (France)

    2000-07-01

    The purpose of VESTA study is to assess the role of air pollution associated with automobile exhaust on the occurrence of childhood asthma. A case-control study is underway in 4 French cities (Paris, Grenoble, Toulouse and Nice). Cases are 'incident' asthmatics (less than 2 years since first diagnostic); controls are non asthmatic children chosen at random among a pool of relatives of the cases, after provision for overmatching on home location. The children, 4 to 14 years of age at inclusion, must fill in questionnaires that describe their past and present life environment. They also must carry during 48 hours passive monitors for NO and NO{sub 2}. This paper deals with the association between the respiratory function, measured at the enrollment of children, and personal NO{sub 2} exposure or proximity of their home and school to traffic. This work also allows assessment of the relative contribution of different emissions sources on personal NO{sub 2} exposure. The respiratory function (FEVI and PEFR) was measured with a One-Flow tester, a portable electronic device. NO{sub 2} personal exposure was measured by passive Ogawa samplers continuously worn during 48 hours. Exposure to traffic exhausts was assessed through an index based on a time-weighted average of the traffic density to road distance ratio (I/D), where I and D were calculated for the home and school addresses. Time spent daily at home and at school, as documented by the time activity diary, was used for weighing the school and home I/D ratios. The most influential variables that predicted NO{sub 2} personal exposures were the traffic index, the use of a gas cooker at home and the background pollution (partial R2 ranks from 0.33 to 067). No association was found between the respiratory function and the levels of NO{sub 2} personal exposure. Nevertheless, the FEVI or PEFR values were associated to traffic index, in 2 out of 4 cities. These results suggest that exposure to traffic exhausts may

  2. Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan

    Directory of Open Access Journals (Sweden)

    Sheena E. Martenies

    2017-10-01

    Full Text Available The environmental burden of disease is the mortality and morbidity attributable to exposures of air pollution and other stressors. The inequality metrics used in cumulative impact and environmental justice studies can be incorporated into environmental burden studies to better understand the health disparities of ambient air pollutant exposures. This study examines the diseases and health disparities attributable to air pollutants for the Detroit urban area. We apportion this burden to various groups of emission sources and pollutants, and show how the burden is distributed among demographic and socioeconomic subgroups. The analysis uses spatially-resolved estimates of exposures, baseline health rates, age-stratified populations, and demographic characteristics that serve as proxies for increased vulnerability, e.g., race/ethnicity and income. Based on current levels, exposures to fine particulate matter (PM2.5, ozone (O3, sulfur dioxide (SO2, and nitrogen dioxide (NO2 are responsible for more than 10,000 disability-adjusted life years (DALYs per year, causing an annual monetized health impact of $6.5 billion. This burden is mainly driven by PM2.5 and O3 exposures, which cause 660 premature deaths each year among the 945,000 individuals in the study area. NO2 exposures, largely from traffic, are important for respiratory outcomes among older adults and children with asthma, e.g., 46% of air-pollution related asthma hospitalizations are due to NO2 exposures. Based on quantitative inequality metrics, the greatest inequality of health burdens results from industrial and traffic emissions. These metrics also show disproportionate burdens among Hispanic/Latino populations due to industrial emissions, and among low income populations due to traffic emissions. Attributable health burdens are a function of exposures, susceptibility and vulnerability (e.g., baseline incidence rates, and population density. Because of these dependencies, inequality

  3. Mortality and morbidity due to exposure to Ambient NO2, SO2, and O3in Isfahan in 2013–2014

    Directory of Open Access Journals (Sweden)

    Ali Abdolahnejad

    2018-01-01

    Full Text Available Background: The presence of air pollutants such as CO, NO2, SO2, O3, and PM in the ambient air mainly emitted from fossil fuels combustion has become a major health concern. The aims of this study were to estimate the attribution of NO2, SO2, and O3 in the premature deaths and prevalence of cardiovascular and respiratory diseases in Isfahan in 2013–2014. Methods: In this study, short-term health effects (total mortality, cardiovascular and respiratory mortality, chronic obstructive pulmonary disease, and acute myocardial infarction of exposure NO2, SO2, and O3 on the population of Isfahan were assessed using AirQ 2.2.3 software suggested by the World Health Organization (WHO. Results: The result showed that from nonaccident total mortality in 2013–2014 in Isfahan, the attributable proportion related to NO2, SO2, and O3 were 1.03% (109 cases, 3.46% (365 cases, and 1.29% (136 cases, respectively. The percentage of days that people were exposed to the highest concentration of NO2 (40–49 μg/m3, SO2 (60–69 μg/m3, and O3 (40–49 μg/m3 was 34.46%, 16.85%, and 42.74% of a year, respectively. Total mortality attributed to NO2, SO2, and O3exposure was 0.36%, 0.79%, and 0.83%, respectively. Conclusions: The concentrations of NO2and SO2were upper than the WHO guidelines. The Air-Q software in spite of its limitations can provide useful information regarding the health outcome of the air pollutants. The results estimated in this study were considerable. This information can help the health authorities and policy makers to draw suitable strategies and fulfill effective emission control programs.

  4. Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Science.gov (United States)

    Prasad, Raju Y.; Chastain, Paul D.; Nikolaishvili-Feinberg, Nana; Smeester, Lisa M.; Kaufmann, William K.; Fry, Rebecca C.

    2013-01-01

    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway. PMID:22770119

  5. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus).

    Science.gov (United States)

    Manesh, R Roshan; Grassi, G; Bergami, E; Marques-Santos, L F; Faleri, C; Liberatori, G; Corsi, I

    2018-02-01

    Recent developments on environmental fate models indicate that as nano waste, engineered nanomaterials (ENMs) could reach terrestrial ecosystems thus potentially affecting environmental and human health. Plants can be therefore exposed to ENMs but controversial data in terms of fate and toxicity are currently available. Furthermore, there is a current lack of information on complex interactions/transformations to which ENMs undergo in the natural environment as for instance interacting with existing toxic compounds. The aim of the present study was to assess the behavior and biological effects of titanium dioxide nanoparticles (n-TiO 2 ) (Aeroxide P25, Degussa Evonik) and its interaction with cadmium (CdCl 2 ) in plants using radish seeds (Raphanus sativus L. Parvus) as model species. Radish seeds were exposed to n-TiO 2 (1-1000mg/L) and CdCl 2 (1-250mg/L) alone and in combination using a seed germination and seedling growth toxicity test OECD 208. Percentage of seed germination, germination index (GI) and root elongation were calculated. Cell morphology and oxidative stress parameters as glutathione-S-transferase (GST) and catalase activities (CAT) were measured in radish seeds after 5 days of exposure. Z-Average, PdI and Z-potential of n-TiO 2 in Milli-Q water as exposure medium were also determined. DLS analysis showed small aggregates of n-TiO 2 , negative Z-potential and stable PdI in seed's exposure media. Germination percentage, GI and root length resulted affected by n-TiO 2 exposure compared to controls. In particular, n-TiO 2 at 1mg/L and 100mg/L did not affect radish seeds germination (100%) while at concentration of 10mg/L, 200mg/L, 500mg/L, and 1000mg/L a slight but not significant decrease of germination % was observed. Similarly root length and GI resulted significantly higher in seeds exposed to 10mg/L and 200mg/L compared to 1mg/L, 100mg/L, 500mg/L, 1000mg/L and control (p germination % and GI compared to control seeds and a concentration dependent

  6. Morphometric study on age-dependent pulmonary lesions in rats exposed to nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, H.; Kawai, K.

    1982-01-01

    Electronmicroscopic morphometry was performed on lung of 1, 3, 12 and 21 months-old rats exposed to 0.1, 0.5, 3 and 10 ppm nitrogen dioxide (NO/sub 2/) continuously for one month. The rats used in this experiment were all supplied at one time from one colony and kept under a barrier system until exposure. Effects of aging on the responses of lungs to NO/sub 2/ were studied by comparing the dose-effect reaction patterns among the age groups. A trend of dose-dependent increase of arithmetic mean thickness of air-blood barrier was found in all age groups examined. The response of lung to NO/sub 2/ exposure showed age-related differences. Based on the morphometric index, the response declines from 1 to 12 months, but increases again in 21-months-old rats. The compartmental components of alveolar wall tissue such as type I epithelial cells, type II epithelial cells, interstitial cells, interstitial matrix and capillary endothelium appeared to have various degrees of response due to both age at onset of exposure and NO/sub 2/ concentration, resulting in the appearance of varying stages in impairment or repair. Accordingly, the response of each compartmental component of lung to the concentrations of NO/sub 2/ did not always exhibit a simple dose-dependent increase or decrease but sometimes indicated a multiphasic reaction pattern.

  7. Behaviour of uranium dioxide in liquid nitrogen tetraoxide

    International Nuclear Information System (INIS)

    Kobets, L.V.; Klavsut', G.N.; Dolgov, V.M.

    1983-01-01

    Interaction kinetics of uranium dioxide with liquid nitrogen tetroxide at 25-150 deg C has been studied. It is shown that in the temperature range studied NO[UO 2 (NO 3 ) 3 ] is the final product of the reaction. With the increase of specific surface of uranium dioxide and with the temperature increase the degree of oxide transformation increases. Uranium dioxide-liquid N 2 O 4 interaction proceeds in the diffusion region. Seeming activation energies and rate constants of the mentioned processes are calculated. Effect of nitrogen trioxide additions on transformation kinetics is considered

  8. Analysis of the distributions of hourly NO2 concentrations contributing to annual average NO2 concentrations across the European monitoring network between 2000 and 2014

    Directory of Open Access Journals (Sweden)

    C. S. Malley

    2018-03-01

    Full Text Available Exposure to nitrogen dioxide (NO2 is associated with negative human health effects, both for short-term peak concentrations and from long-term exposure to a wider range of NO2 concentrations. For the latter, the European Union has established an air quality limit value of 40 µg m−3 as an annual average. However, factors such as proximity and strength of local emissions, atmospheric chemistry, and meteorological conditions mean that there is substantial variation in the hourly NO2 concentrations contributing to an annual average concentration. The aim of this analysis was to quantify the nature of this variation at thousands of monitoring sites across Europe through the calculation of a standard set of chemical climatology statistics. Specifically, at each monitoring site that satisfied data capture criteria for inclusion in this analysis, annual NO2 concentrations, as well as the percentage contribution from each month, hour of the day, and hourly NO2 concentrations divided into 5 µg m−3 bins were calculated. Across Europe, 2010–2014 average annual NO2 concentrations (NO2AA exceeded the annual NO2 limit value at 8 % of > 2500 monitoring sites. The application of this chemical climatology approach showed that sites with distinct monthly, hour of day, and hourly NO2 concentration bin contributions to NO2AA were not grouped into specific regions of Europe, furthermore, within relatively small geographic regions there were sites with similar NO2AA, but with differences in these contributions. Specifically, at sites with highest NO2AA, there were generally similar contributions from across the year, but there were also differences in the contribution of peak vs. moderate hourly NO2 concentrations to NO2AA, and from different hours across the day. Trends between 2000 and 2014 for 259 sites indicate that, in general, the contribution to NO2AA from winter months has increased, as has the contribution from the rush-hour periods of

  9. Analysis of the distributions of hourly NO2 concentrations contributing to annual average NO2 concentrations across the European monitoring network between 2000 and 2014

    Science.gov (United States)

    Malley, Christopher S.; von Schneidemesser, Erika; Moller, Sarah; Braban, Christine F.; Hicks, W. Kevin; Heal, Mathew R.

    2018-03-01

    Exposure to nitrogen dioxide (NO2) is associated with negative human health effects, both for short-term peak concentrations and from long-term exposure to a wider range of NO2 concentrations. For the latter, the European Union has established an air quality limit value of 40 µg m-3 as an annual average. However, factors such as proximity and strength of local emissions, atmospheric chemistry, and meteorological conditions mean that there is substantial variation in the hourly NO2 concentrations contributing to an annual average concentration. The aim of this analysis was to quantify the nature of this variation at thousands of monitoring sites across Europe through the calculation of a standard set of chemical climatology statistics. Specifically, at each monitoring site that satisfied data capture criteria for inclusion in this analysis, annual NO2 concentrations, as well as the percentage contribution from each month, hour of the day, and hourly NO2 concentrations divided into 5 µg m-3 bins were calculated. Across Europe, 2010-2014 average annual NO2 concentrations (NO2AA) exceeded the annual NO2 limit value at 8 % of > 2500 monitoring sites. The application of this chemical climatology approach showed that sites with distinct monthly, hour of day, and hourly NO2 concentration bin contributions to NO2AA were not grouped into specific regions of Europe, furthermore, within relatively small geographic regions there were sites with similar NO2AA, but with differences in these contributions. Specifically, at sites with highest NO2AA, there were generally similar contributions from across the year, but there were also differences in the contribution of peak vs. moderate hourly NO2 concentrations to NO2AA, and from different hours across the day. Trends between 2000 and 2014 for 259 sites indicate that, in general, the contribution to NO2AA from winter months has increased, as has the contribution from the rush-hour periods of the day, while the contribution from

  10. Interaction of nitrogen dioxide with sulfonamide-substituted phthalocyanines: Towards NO2 gas sensor

    Czech Academy of Sciences Publication Activity Database

    Pochekailov, Sergii; Nožár, Juraj; Nešpůrek, Stanislav; Rakušan, J.; Karásková, M.

    2012-01-01

    Roč. 169, 5 July (2012), s. 1-9 ISSN 0925-4005 R&D Projects: GA AV ČR KAN400720701; GA MPO FR-TI1/144 Institutional research plan: CEZ:AV0Z40500505 Keywords : phthalocyanine * sulfonamide * nitrogen dioxide Subject RIV: CG - Electrochemistry Impact factor: 3.535, year: 2012

  11. Socioeconomic status and exposure to outdoor NO2 and benzene in the Asturias INMA birth cohort, Spain

    Science.gov (United States)

    Fernández-Somoano, Ana; Tardon, Adonina

    2014-01-01

    Background It is commonly assumed that low socioeconomic levels are associated with greater exposure to pollution, but this is not necessarily valid. Our goal was to examine how individual socioeconomic characteristics are associated with exposure levels in a Spanish region included in the INfancia y Medio Ambiente (INMA) cohort. Methods The study population comprised 430 pregnant women from the Asturias INMA cohort. Air pollution exposure was estimated using land-use regression techniques. Information about the participants’ lifestyle and socioeconomic variables was collected through questionnaires. In multivariate analysis, the levels of NO2 and benzene assigned to each woman were considered as dependent variables. Other variables included in the models were residential zone, age, education, parity, smoking, season, working status during pregnancy and social class. Results The average NO2 level was 23.60 (SD=6.50) μg/m3. For benzene, the mean value was 2.31 (SD=1.32) μg/m3. We found no association of any pollutant with education. We observed an association between social class and benzene levels. Social classes I and II had the highest levels. The analysed socioeconomic and lifestyle variables accounted for little variability in air pollution in the models; this variability was explained mainly by residential zone (adjusted R2: 0.27 for NO2; 0.09 for benzene). Conclusions Education and social class were not clearly associated with pollution. Administrations should monitor the environment of residential areas regardless of the socioeconomic level, and they should increase the distances between housing and polluting sources to prevent settlements at distances that are harmful to health. PMID:23999377

  12. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  13. Calculation of exposure to NO{sub 2} and PM{sub 10} for Oslo, Drammen, Bergen and Trondheim; Beregning av NO{sub 2} og PM{sub 10} eksponering for Oslo, Drammen, Bergen og Trondheim. Vinteren 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, L H

    1998-12-31

    This report presents calculations of the human exposure to the air pollutants NO{sub 2} and PM{sub 10} in four Norwegian cities. The calculations are done for the winter 1994/1995. Data on the distribution of residences in a 1 km x 1 km model grid are used to calculate various measures of exposure. It is calculated that large parts of the population are at times subjected to exposures greater than the officially recommended limits. This is particularly the case with NO{sub 2} and for the cities Oslo and Trondheim. 2 refs., 9 tabs.

  14. Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: comparing exposure methods in sensitive subgroups

    Directory of Open Access Journals (Sweden)

    Arain Altaf

    2009-04-01

    Full Text Available Abstract Background Variations in air pollution exposure within a community may be associated with asthma prevalence. However, studies conducted to date have produced inconsistent results, possibly due to errors in measurement of the exposures. Methods A standardized asthma survey was administered to children in grades one and eight in Hamilton, Canada, in 1994–95 (N ~1467. Exposure to air pollution was estimated in four ways: (1 distance from roadways; (2 interpolated surfaces for ozone, sulfur dioxide, particulate matter and nitrous oxides from seven to nine governmental monitoring stations; (3 a kriged nitrogen dioxide (NO2 surface based on a network of 100 passive NO2 monitors; and (4 a land use regression (LUR model derived from the same monitoring network. Logistic regressions were used to test associations between asthma and air pollution, controlling for variables including neighbourhood income, dwelling value, state of housing, a deprivation index and smoking. Results There were no significant associations between any of the exposure estimates and asthma in the whole population, but large effects were detected the subgroup of children without hayfever (predominately in girls. The most robust effects were observed for the association of asthma without hayfever and NO2LUR OR = 1.86 (95%CI, 1.59–2.16 in all girls and OR = 2.98 (95%CI, 0.98–9.06 for older girls, over an interquartile range increase and controlling for confounders. Conclusion Our findings indicate that traffic-related pollutants, such as NO2, are associated with asthma without overt evidence of other atopic disorders among female children living in a medium-sized Canadian city. The effects were sensitive to the method of exposure estimation. More refined exposure models produced the most robust associations.

  15. Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.

    Science.gov (United States)

    Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir

    2013-07-01

    Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).

  16. Ambient Air Pollution and Risk for Ischemic Stroke: A Short-Term Exposure Assessment in South China

    Directory of Open Access Journals (Sweden)

    Pi Guo

    2017-09-01

    Full Text Available Data on the association between air pollution and risk of ischemic stroke in China are still limited. This study aimed to investigate the association between short-term exposure to ambient air pollution and risk of ischemic strokes in Guangzhou, the most densely-populated city in south China, using a large-scale multicenter database of stroke hospital admissions. Daily counts of ischemic stroke admissions over the study years 2013–2015 were obtained from the Guangzhou Cardiovascular and Cerebrovascular Disease Event Surveillance System. Daily particulate matter <2.5 μm in diameter (PM2.5, sulfur dioxide (SO2, nitrogen dioxide (NO2, ozone (O3, and meteorological data were collected. The associations between air pollutants and hospital admissions for stroke were examined using relative risks (RRs and their corresponding 95% confidence intervals (CIs based on time-series Poisson regression models, adjusting for temperature, public holiday, day of week, and temporal trends in stroke. Ischemic stroke admissions increased from 27,532 to 35,279 through 2013 to 2015, increasing by 28.14%. Parameter estimates for NO2 exposure were robust regardless of the model used. The association between same-day NO2 (RR = 1.0509, 95% CI: 1.0353–1.0668 exposure and stroke risk was significant when accounting for other air pollutants, day of the week, public holidays, temperature, and temporal trends in stroke events. Overall, we observed a borderline significant association between NO2 exposure modeled as an averaged lag effect and ischemic stroke risk. This study provides data on air pollution exposures and stroke risk, and contributes to better planning of clinical services and emergency contingency response for stroke.

  17. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  18. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  19. Spectroscopy and picosecond dynamics of aqueous NO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gadegaard, Ane Riis; Thøgersen, Jan; Jensen, Svend Knak; Nielsen, Jakob Brun; Jensen, Frank; Keiding, Søren Rud, E-mail: keiding@chem.au.dk [Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C (Denmark); Jena, Naresh K.; Odelius, Michael [Department of Physics, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-08-14

    We investigate the formation of aqueous nitrogen dioxide, NO{sub 2} formed through femtosecond photolysis of nitrate, NO{sub 3}{sup −}(aq) and nitromethane CH{sub 3}NO{sub 2}(aq). Common to the experiments is the observation of a strong induced absorption at 1610 ± 10 cm{sup −1}, assigned to the asymmetric stretch vibration in the ground state of NO{sub 2}. This assignment is substantiated through isotope experiments substituting {sup 14}N by {sup 15}N, experiments at different pH values, and by theoretical calculations and simulations of NO{sub 2}–D{sub 2}O clusters.

  20. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  1. Experimental nitrogen dioxide poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Cutlip, R C

    1966-01-01

    Experimental nitrogen dioxide inhalation has been reported to produce signs and lesions typical of field cases of bovine pulmonary adenomatosis (BPA) as described by Monlux et al, and Seaton. Similar lesions have been produced in mice and guinea pigs. These studies were conducted because of the similarities between silo-filler's disease of man, caused by nitrogen dioxide, and BPA. Since previous studies involved inadequate numbers of cattle, a more critical evaluation of the effects of nitrogen dioxide was needed. This project was designed to study the clinical and pathologic alterations induced in cattle by repeated exposure to nitrogen dioxide gas.

  2. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide. [Staphylococcus aureus; Proteus mirabilis; Pasteurella pneumotropica

    Energy Technology Data Exchange (ETDEWEB)

    Jakab, G.J.

    1987-02-01

    The effect of acute exposures to NO/sub 2/ on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO/sub 2/ levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO/sub 2/ exposure prior to bacterial challenge) raised the threshold concentration for NO/sub 2/-induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO/sub 2/ did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with /sup 32/P-labeled staphylococci.

  3. Long-Term Exposure to Road Traffic Noise and Nitrogen Dioxide and Risk of Heart Failure

    DEFF Research Database (Denmark)

    Sørensen, Mette; Wendelboe Nielsen, Olav; Sajadieh, Ahmad

    2017-01-01

    (NO2) were associated with incident heart failure. METHODS: In a cohort of 57,053 people 50-64 y of age at enrollment in the period 1993-1997, we identified 2,550 cases of first-ever hospital admission for heart failure during a mean follow-up time of 13.4 y. Present and historical residential....... CONCLUSIONS: Long-term exposure to NO2 and road traffic noise was associated with higher risk of heart failure, mainly among men, in both single- and two-pollutant models. High exposure to both pollutants was associated with highest risk. https://doi.org/10.1289/EHP1272....

  4. Radiation Protection and NORM Residue Management in the Titanium Dioxide and Related Industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The Fundamental Safety Principles (IAEA Safety Standards Series No. SF-1), together with Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (IAEA Safety Standards Series No. GSR Part 3 (Interim)), set out the principles and basic requirements for radiation protection and safety applicable to all activities involving radiation exposure, including exposure to natural sources of radiation. The Safety Guides on Occupational Radiation Protection in the Mining and Processing of Raw Materials (IAEA Safety Standards Series No. RS-G-1.6) and Management of Radioactive Waste from the Mining and Milling of Ores (IAEA Safety Standards Series No. WS-G-1.2) provide guidance on the control of exposure of workers and members of the public to naturally occurring radioactive material (NORM) in industrial activities involving the exploitation of minerals. This guidance applies irrespective of whether the minerals are exploited for their radioactivity content. The titanium dioxide and related industries constitute one of several industry sectors for which the radioactivity content of the minerals and raw materials involved is too small to be of commercial value but is large enough to warrant consideration by the regulatory body concerning the possible need to control exposures of workers and members of the public. This Safety Report has been developed as part of the IAEA's programme to provide for the application of its safety standards in the field of radiation, transport and waste safety. It is a compilation of detailed information on the processes and materials involved in the titanium dioxide and related industries and on the radiological considerations that need to be taken into account by the regulatory body when determining the nature and extent of radiation protection measures to be taken. This is consistent with the graded approach to regulation, in terms of which the application of the requirements of the safety standards is

  5. Studies concerning substantial and structural changes in plants under the influence of NO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, W D; Ullrich, H

    1975-05-01

    For determination of the influence of nitrogen dioxide on respiration and photosynthesis, the oxygen and carbon dioxide production in string beans (phaseolus vulgaris) was determined by the Warburg method. It was found that fumigation with NO/sub 2/ had a more deleterious effect on photosynthesis than to respiration, causing the chloroplasts and mitochondria to invaginate more frequently, and produced tubular protrusions on the outer layer of the invaginations. After treatment with NO/sub 2/, dense layers of filaments appeared in the stroma. Nitrogen dioxide treatment caused specific changes in the leaf pigments, thus offering a possibility for specific NO/sub 2/ diagnosis. The uptake of NO/sub 2/ was found to be proportional to the amount of water lost and hence dependent on the stomatal width. The pigment damage was not linearly proportional to the amount of NO/sub 2/ taken in by the plants. Plant substances such as ascorbic acid and dioxyphenylalanin influenced pigment damage. Ectodesmata could not be found. Stomatal reactions of various plants were influenced differently.

  6. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... sulfur dioxide (SO2). (a) Except as provided under paragraph (d) of this section, on and after the date... affected facility any gases that contain SO2 in excess of: (1) 340 ng/J heat input (0.80 lb/MMBtu) derived...

  7. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.

    Science.gov (United States)

    Zhang, Lu; Xie, Xingxing; Zhou, Yigang; Yu, Dainan; Deng, Yu; Ouyang, Jiexiu; Yang, Bei; Luo, Dan; Zhang, Dalei; Kuang, Haibin

    2018-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have recently found applications in a wide variety of consumer goods. TiO 2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO 2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. The objective of this study was to investigate the effects of maternal exposure of TiO 2 NPs on the placentation. Mice were administered TiO 2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO 2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1 , Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA markedly decreased in TiO 2 NP treated placentas. Furthermore, TiO 2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Gestational exposure to TiO 2 NPs

  8. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High pressure phase behaviour of the binary mixture for the 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Choi, Min-Yong

    2007-01-01

    Experimental data of high pressure phase behaviour for binary mixtures of {carbon dioxide + 2-hydroxyethyl methacrylate (HEMA)}, {carbon dioxide + 2-hydroxypropyl acrylate (HPA)}, and {carbon dioxide + 2-hydroxypropyl methacrylate (HPMA)} were determined using a static type with the variable-volume cell at temperatures from (313.2 to 393.2) K and pressures up to 27.10 MPa. Among these binary experimental data, the bubble-point data were correlated with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule containing two interaction parameters (k ij and η ij ). The (carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems exhibit type-I phase behaviour. At constant pressure, the solubility of HEMA, HPA, and HPMA for the (Carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems increases as the temperature increases

  10. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    Science.gov (United States)

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and

  11. Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  12. Titanium dioxide use (TiO{sub 2}) in cement matrix as a photocatalyst of nitrogen oxides (NO{sub x}); Utilizacao de dioxido de titanio (TiO{sub 2}) em matriz cimenticia como fotocatalisador de oxidos de nitrogenio (NO{sub x})

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, C.A.; Hotza, D.; Repette, W.L.; Jochem, L.F., E-mail: cezar.acasa@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    The use of titanium dioxide (TiO{sub 2}) in the photodegradation of nitrogen oxides (NO{sub x}) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO{sub 2} in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NO{sub x} tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NO{sub x} gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NO{sub x} degradation, presenting itself as a promising technique to control environmental pollution.

  13. Titanium dioxide: inhalation toxicology and epidemiology.

    Science.gov (United States)

    Hext, Paul M; Tomenson, John A; Thompson, Peter

    2005-08-01

    Titanium dioxide (TiO(2)) is manufactured worldwide in large quantities for use in a wide range of applications and is normally considered to be toxicologically inert. Findings of tumours in the lungs of rats exposed chronically to high concentrations of TiO(2), but not in similarly exposed mice or hamsters, suggest that the tumorigenic response may be a rat-specific phenomenon but nonetheless raises concerns for potential human health effects. With the limited toxicological understanding of species differences in response to inhaled TiO(2) and a similarly limited amount of epidemiological information with respect to TiO(2) exposure in the workplace, a consortium of TiO(2) manufacturers in Europe (under the European Chemistry Industry Council; CEFIC) and in North America (under the American Chemistry Council; ACC) initiated a programme of research to investigate inter-species differences as a result of exposure to TiO(2) and to conduct detailed epidemiological surveys of the major manufacturing sites. The toxicology studies exposed rats, mice and hamsters to pigment-grade TiO(2) (PG-TiO(2), 0, 10, 50 and 250 mg m(-3)) or ultrafine TiO(2) (UF-TiO(2), 0, 0.5, 2 and 10 mg m(-3)) for 90 days and the lung burdens and tissue responses were evaluated at the end of the exposure period and for up to 1 year after exposure. Results demonstrated clear species differences. Rats and mice had similar lung burdens and clearance rates while hamsters showed high clearance rates. At high lung particle burdens, rats showed a marked progression of histopathological lesions throughout the post-exposure period while mice and hamsters showed minimal initial lesions with recovery apparent during the post-exposure period. Lung neutrophil responses, a sensitive marker of inflammatory changes, reflected the development or recovery of the histopathological lesions. The use of surface area rather than gravimetric lung burden provided closer correlates of the burden to the biological effect

  14. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan. A study in mice

    Directory of Open Access Journals (Sweden)

    Vibenholt Anni

    2010-06-01

    Full Text Available Abstract Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181. Methods Time-mated mice (C57BL/6BomTac were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2 with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test. Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  15. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens J; Löschner, Katrin; Larsen, Erik H; Birkedal, Renie K; Vibenholt, Anni; Boisen, Anne-Mette Z; Wallin, Håkan; Vogel, Ulla

    2010-06-14

    Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  16. Air Pollution Exposure During Pregnancy and Fetal Markers of Metabolic function

    Science.gov (United States)

    Lavigne, Eric; Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Hystad, Perry; Johnson, Markey; Crouse, Dan L.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Morisset, Anne-Sophie; Taback, Shayne; Bouchard, Maryse F.; Sun, Liu; Monnier, Patricia; Dallaire, Renée; Fraser, William D.

    2016-01-01

    Previous evidence suggests that exposure to outdoor air pollution during pregnancy could alter fetal metabolic function, which could increase the risk of obesity in childhood. However, to our knowledge, no epidemiologic study has investigated the association between prenatal exposure to air pollution and indicators of fetal metabolic function. We investigated the association between maternal exposure to nitrogen dioxide and fine particulate matter (aerodynamic diameter ≤2.5 µm) and umbilical cord blood leptin and adiponectin levels with mixed-effects linear regression models among 1,257 mother-infant pairs from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, conducted in Canada (2008–2011). We observed that an interquartile-range increase in average exposure to fine particulate matter (3.2 µg/m3) during pregnancy was associated with an 11% (95% confidence interval: 4, 17) increase in adiponectin levels. We also observed 13% (95% confidence interval: 6, 20) higher adiponectin levels per interquartile-range increase in average exposure to nitrogen dioxide (13.6 parts per billion) during pregnancy. Significant associations were seen between air pollution markers and cord blood leptin levels in models that adjusted for birth weight z score but not in models that did not adjust for birth weight z score. The roles of prenatal exposure to air pollution and fetal metabolic function in the potential development of childhood obesity should be further explored. PMID:27026336

  17. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  18. First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Hanlim; Hong, Hyunkee; Han, Kyungsoo; Noh, Youngmin; Kwon, Soonchul

    2014-01-01

    Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) in power plant emissions can be determined simultaneously in terms of SCD distribution. The SO 2 SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high NO 2 SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to NO 2 in NOx concentration, attributed to the NO oxidation by O 3 . The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions

  19. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  20. Effects of sub-chronic exposure to SO{sub 2} on lipid and carbohydrate metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lovati, M.R. [Institute of Pharmacological Sciences, Milan (Italy); Manzoni, C. [Institute of Pharmacological Sciences, Milan (Italy); Daldossi, M. [Institute of Pharmacological Sciences, Milan (Italy); Spolti, S. [Institute of Pharmacological Sciences, Milan (Italy); Sirtori, C.R. [Institute of Pharmacological Sciences, Milan (Italy)

    1996-01-01

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air, and in higher concentrations in the working environment. While toxicological reports on SO{sub 2} have extensively dealt with the pulmonary system, essentially no data are available on the effects of chronic exposure to this pollutant on intermediary metabolism, although some biochemical changes in lipid metabolism have been detected. The present investigation was aimed at evaluating the effects of sub-chronic exposure to SO{sub 2} on concentrations of serum lipids/lipoproteins and on glucose metabolism, in animal models of hypercholesterolemia and diabetes. A specially designed controlinert atmosphere chamber was used, where male Sprague-Dawley rats fed on either standard or cholesterol enriched (HC) diets, as well as streptozotocin diabetics, were exposed to SO{sub 2} at 5 and 10 ppm, 24 h per day for 14 days. In rats, both on a standard diet and on a HC regimen, SO{sub 2} exposure determined a significant dose-dependent increase in plasma triglycerides, up to +363% in the 10 ppm HC exposed animals. This same gas concentration significantly reduced HDL cholesterol levels. In contrast, exposure of diabetic animals to 10 ppm SO{sub 2} resulted in a fall (-41%) of plasma and liver triglycerides and in a concomitant increase (+62%) of plasma HDL cholesterol. This discrepancy could apparently be related to diverging effects of SO{sub 2} exposure on plasma insulin levels in the different animal groups. Kinetic analyses of triglyceride synthesis carried out in rats on a standard diet revealed, in exposed animals, a significant reduction in the secretory rate, in spite of the concomitant hypertriglyceridemia. These findings suggest that SO{sub 2} exposure can markedly modify major lipid and glycemic indices, also indicating a differential response in normo/hyperlipidemic versus diabetic animals. (orig.)

  1. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2...... the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of ..., particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution....

  2. Murine liver damage caused by exposure to nano-titanium dioxide

    International Nuclear Information System (INIS)

    Hong, Jie; Zhang, Yu-Qing

    2016-01-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO_2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO_2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO_2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO_2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO_2 is systematically described. The toxicity of nano-TiO_2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO_2 in the future. (topical review)

  3. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.

    Science.gov (United States)

    Jovanović, Boris; Cvetković, Vladimir J; Mitrović, Tatjana Lj

    2016-02-01

    The fruitfly, Drosophila melanogaster was exposed to the human food grade of E171 titanium dioxide (TiO2). This is a special grade of TiO2 which is frequently omitted in nanotoxicology studies dealing with TiO2, yet it is the most relevant grade regarding oral exposure of humans. D. melanogaster larvae were exposed to 0.002 mg mL(-1), 0.02 mg mL(-1), 0.2 mg mL(-1), and 2 mg mL(-1) of TiO2 in feeding medium, and the survival, fecundity, pupation time, and expression of genes involved in oxidative stress response were monitored. TiO2 did not affect survival but significantly increased time to pupation (p TiO2 was present in a significant amount in larvae, but was not transferred to adults during metamorphosis. Two individuals with aberrant phenotype similar to previously described gold nanoparticles induced mutant phenotypes were detected in the group exposed to TiO2. In general, TiO2 showed little toxicity toward D. melanogaster at concentrations relevant to oral exposure of humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  5. High resolution spatio-temporal mapping of NO2 pollution for estimating personal exposures of the Dutch population

    Science.gov (United States)

    Soenario, Ivan; Helbich, Marco; Schmitz, Oliver; Strak, Maciek; Hoek, Gerard; Karssenberg, Derek

    2017-04-01

    Air pollution has been associated with adverse health effects (e.g., cardiovascular and respiration diseases) in the urban environments. Therefore, the assessment of people's exposure to air pollution is central in epidemiological studies. The estimation of exposures on an individual level can be done by combining location information across space and over time with spatio-temporal data on air pollution concentrations. When detailed information on peoples' space-time paths (e.g. commuting patterns calculated by means of spatial routing algorithms or tracked through GPS) and peoples' major activity locations (e.g. home location, work location) are available, it is possible to calculate more precise personal exposure levels depending on peoples' individual space-time mobility patterns. This requires air pollution values not only at a high level of spatial accuracy and high temporal granularity but such data also needs to be available on a nation-wide scale. As current data is seriously limited in this respect, we introduce a novel data set of NO2 levels across the Netherlands. The provided NO2 concentrations are accessible on hourly timestamps on a 5 meter grid cell resolution for weekdays and weekends, and each month of the year. We modeled a single Land Use Regression model using a five year average of NO2 data from the Dutch NO2 measurement network consisting of N=46 sampling locations distributed over the country. Predictor variables for this model were selected in a data-driven manner using an Elastic Net and Best Subset Selection procedure from 70 candidate predictors including traffic, industry, infrastructure and population-based variables. Subsequently, to model NO2 for each time scale (hour, week, month), the LUR coefficients were fitted using the NO2 data, aggregated per time scale. Model validation was grounded on independent data collected in an ad hoc measurement campaign. Our results show a considerable difference in urban concentrations between

  6. Occupational exposure to diesel engine exhaust: a literature review.

    Science.gov (United States)

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: ECunderground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.

  7. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  8. On-Road Chemical Transformation as an Important Mechanism of NO2 Formation

    Science.gov (United States)

    Nitrogen dioxide (NO2) not only is linked with a number of adverse effects on the respiratory system, but also contributes to the formation of ground-level ozone (O3) and fine particulate matter (PM2.5) pollution. NO2 levels near major roads have been monitored as part of the one...

  9. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    Directory of Open Access Journals (Sweden)

    Hussain S

    2012-03-01

    were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO2 nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO2 nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO2 nanoparticles followed by lipopolysaccharide exposure.Conclusion: CeO2 nanoparticles at noncytotoxic concentrations neither modulate pre-existing inflammation nor prime for subsequent exposure to lipopolysaccharides in human monocytes from healthy subjects.Keywords: cerium dioxide, nanoparticle, nanomedicine, inflammation, human monocyte, lipopolysaccharides

  10. 2014-12-19_PASSIVE NO2 STUDY_final data_kovalcik.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Nitrogen dioxide (NO2) concentrations relative to near road sites in Research Triangle area of North Carolina. This dataset is associated with the following...

  11. Coordination compounds of the nitrate salts of oxycation uranyl (UO22+) and praseodymium(III), neodymium(III) and erbium(III) with 2,2'-bipyridine-1,1'-dioxide

    International Nuclear Information System (INIS)

    Madan, S.; Chan, K.S.

    1977-01-01

    Coordination compounds with 2,2'-bipyridine-1,1'-dioxide (bipyO 2 ) having the composition [UO 2 (bipyO 2 ) 2 (NO 3 ) 2 ].4H 2 O, [Pr(bipyO 2 ) 4 (NO 3 ) 2 ]NO 3 .2H 2 O, [Dy(bipyO 2 ) 4 (NO 3 ) 2 ]NO 3 .4H 2 O and [Er(bipyO 2 ) 4 (NO 3 ) 2 ]NO 3 .4H 2 O have been synthesized. These new complexes have been characterized by electrical conductance, X-ray powder patterns and IR spectral measurements. (author)

  12. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    Science.gov (United States)

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  13. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise

    DEFF Research Database (Denmark)

    Pedersen, Marie; Olsen, Sjurdur F; Halldorsson, Thorhallur I

    2017-01-01

    pollution and road traffic noise on GDM in a prospective cohort. Methods: We identified GDM cases from self-reports and hospital records, using two different criteria, among 72,745 singleton pregnancies (1997–2002) from the Danish National Birth Cohort. We modeled nitrogen dioxide (NO2) and noise from road...... traffic (Lden) exposure at all pregnancy addresses. Results: According to the two diagnostic criteria: the Danish clinical guidelines, which was our main outcome, and the WHO standard during recruitment period, a total of 565 and 210 women, respectively, had GDM. For both exposures no risk was evident......: No risk was evident for the common Danish criterion of GDM. NO2 was associated with higher risk for GDM according to the WHO criterion, which might be due to selection bias....

  14. Carbon Dioxide Exposure Resulting From Hood Protective Equipment Used in Joint Arthroplasty Surgery.

    Science.gov (United States)

    Patel, Suhani; Fine, Janelle M; Lim, Michael J; Copp, Steven N; Rosen, Adam S; West, John B; Prisk, G Kim

    2017-08-01

    To protect both the surgeon and patient during procedures, hooded protection shields are used during joint arthroplasty procedures. Headache, malaise, and dizziness, consistent with increased carbon dioxide (CO 2 ) exposure, have been anecdotally reported by surgeons using hoods. We hypothesized that increased CO 2 concentrations were causing reported symptoms. Six healthy subjects (4 men) donned hooded protection, fan at the highest setting. Arm cycle ergometry at workloads of 12 and 25 watts (W) simulated workloads encountered during arthroplasty. Inspired O 2 and CO 2 concentrations at the nares were continuously measured at rest, 12 W, and 25 W. At each activity level, the fan was deactivated and the times for CO 2 to reach 0.5% and 1.0% were measured. At rest, inspired CO 2 was 0.14% ± 0.04%. Exercise had significant effect on CO 2 compared with rest (0.26% ± 0.08% at 12 W, P = .04; 0.31% ± 0.05% at 25 W, P = .003). Inspired CO 2 concentration increased rapidly with fan deactivation, with the time for CO 2 to increase to 0.5% and 1.0% after fan deactivation being rapid but variable (0.5%, 12 ± 9 seconds; 1%, 26 ± 15 seconds). Time for CO 2 to return below 0.5% after fan reactivation was 20 ± 37 seconds. During simulated joint arthroplasty, CO 2 remained within Occupational Safety and Health Administration (OSHA) standards with the fan at the highest setting. With fan deactivation, CO 2 concentration rapidly exceeds OSHA standards. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  16. Exposure of pregnant women to cookstove-related household air pollution in urban and periurban Trujillo, Peru.

    Science.gov (United States)

    St Helen, Gideon; Aguilar-Villalobos, Manuel; Adetona, Olorunfemi; Cassidy, Brandon; Bayer, Charlene W; Hendry, Robert; Hall, Daniel B; Naeher, Luke P

    2015-01-01

    Although evidence suggests associations between maternal exposure to air pollution and adverse birth outcomes, pregnant women's exposure to household air pollution in developing countries is understudied. Personal exposures of pregnant women (N = 100) in Trujillo, Peru, to air pollutants and their indoor concentrations were measured. The effects of stove-use-related characteristics and ambient air pollution on exposure were determined using mixed-effects models. Significant differences in 48-hour kitchen concentrations of particulate matter (PM2.5), carbon monoxide (CO), and nitrogen dioxide (NO2) concentrations were observed across fuel types (p health risks even in homes where cleaner burning gas stoves were used.

  17. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed...) of this section, any gases that contain SO2 in excess of: (1) 520 ng/J (1.20 lb/MMBtu) heat input and...

  18. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    Science.gov (United States)

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  19. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  20. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Saeko Tada-Oikawa

    2016-04-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2 cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm and rutile (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL of anatase (100 nm, rutile (50 nm, and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm TiO2 particles increased interleukin (IL-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  1. The interaction of NO2 with BaO: from cooperative adsorption to Ba(NO3)2 formation

    International Nuclear Information System (INIS)

    Yi, Cheol-Woo W.; Kwak, Ja Hun H.; Szanyi, Janos

    2007-01-01

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. The conversion of surface to bulk Ba-nitrates is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials

  2. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  3. Observations of the loss of stratospheric NO2 following volcanic eruptions

    Science.gov (United States)

    Coffey, M. T.; Mankin, William G.

    1993-01-01

    Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.

  4. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  5. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Sahoko [Mie University, Graduate School of Regional Innovation Studies (Japan); Li, Weihua [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Omura, Seiichi [Tokyo Institute of Technology (Japan); Fujitani, Yuji [National Institute for Environmental Studies (Japan); Liu, Ying; Wang, Qiangyi [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Hiraku, Yusuke [Mie University Graduate School of Medicine, Department of Environmental and Molecular Medicine (Japan); Hisanaga, Naomi [Aichi Gakusen University, Faculty of Human Science and Design (Japan); Wakai, Kenji [Nagoya University Graduate School of Medicine, Department of Preventive Medicine (Japan); Ding, Xuncheng [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Kobayashi, Takahiro, E-mail: takakoba@airies.or.jp [Association for International Research Initiatives for Environmental Studies (Japan); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Tokyo University of Science, Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences (Japan)

    2016-03-15

    Titanium dioxide (TiO{sub 2}) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO{sub 2} particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m{sup 3} during work, but significantly less before work (0.36 mg/m{sup 3}). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO{sub 2} particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

  6. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    Science.gov (United States)

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  7. Effect of combined nitrogen dioxide and carbon nanoparticle exposure on lung function during ovalbumin sensitization in Brown Norway rat.

    Directory of Open Access Journals (Sweden)

    Skander Layachi

    Full Text Available The interaction of particulate and gaseous pollutants in their effects on the severity of allergic inflammation and airway responsiveness are not well understood. We assessed the effect of exposure to NO(2 in the presence or absence of repetitive treatment with carbon nanoparticle (CNP during allergen sensitization and challenges in Brown-Norway (BN rat, in order to assess their interactions on lung function and airway responses (AR to allergen and methacholine (MCH, end-expiratory lung volume (EELV, bronchoalveolar lavage fluid (BALF cellular content, serum and BALF cytokine levels and histological changes. Animals were divided into the following groups (n = 6: Control; CNP (Degussa-FW2: 13 nm, 0.5 mg/kg instilled intratracheally ×3 at 7-day intervals; OVA: ovalbumin-sensitised; OVA+CNP: both sensitized and exposed to CNP. Rats were divided into equal groups exposed either to air or to NO(2, 10 ppm, 6 h/d, 5d/wk for 4 weeks. Exposure to NO(2, significantly enhanced lung inflammation and airway reactivity, with a significantly larger effect in animals sensitized to allergen, which was related to a higher expression of TH1 and TH2-type cytokines. Conversely, exposure to NO(2 in animals undergoing repeated tracheal instillation of CNP alone, increased BALF neutrophilia and enhanced the expression of TH1 cytokines: TNF-α and IFN-γ, but did not show an additive effect on airway reactivity in comparison to NO(2 alone. The exposure to NO(2 combined with CNP treatment and allergen sensitization however, unexpectedly resulted in a significant decrease in both airway reactivity to allergen and to methacholine, and a reduction in TH2-type cytokines compared to allergen sensitization alone. EELV was significantly reduced with sensitization, CNP treatment or both. These data suggest an immunomodulatory effect of repeated tracheal instillation of CNP on the proinflammatory effects of NO(2 exposure in sensitized BN rat. Furthermore, our findings suggest

  8. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO2) in a polar environment

    International Nuclear Information System (INIS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-01-01

    Carbon dioxide (CO 2 ) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν 3 band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO 2 band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H 2 O)-carbon dioxide (CO 2 ) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν 3 band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  9. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  10. Chronic CO2 exposure markedly increases the incidence of cataracts in juvenile Atlantic cod Gadus morhua L

    DEFF Research Database (Denmark)

    Moran, Damian; Tubbs, Lincoln; Støttrup, Josianne G.

    2012-01-01

    A study was undertaken to test the affect of chronic exposure to elevated dissolved carbon dioxide on juvenile Atlantic cod. The CO2 treatment concentrations were designated as low (1–2mgL−1, 1000μatm), medium (8mgL−1, 3500μatm) and high (18mgL−1, 8500μatm), and the fish were reared at 10°C and 2...

  11. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  12. Effect of sulfur dioxide inhalation on CYP2B1/2 and CYP2E1 in rat liver and lung

    Energy Technology Data Exchange (ETDEWEB)

    Guohua Qin; Ziqiang Meng [Shanxi University, Taiyuan (China). Institute of Environmental Medicine and Toxicology

    2006-07-15

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air and in higher concentrations in the working environment. In this study, we investigated the effects of inhaled SO{sub 2} on the O-dealkylase of pentoxyresorufin (PROD) and p-nitrophenol hydroxylases (p-NP) activities and mRNA levels of CYP2B1/2 and CYP2E1 in the lung and liver of Wistar rats. Male Wistar rats were housed in exposure chambers and treated with 14.11 {+-}1.53, 28.36 {+-} 2.12, and 56.25 {+-} 4.28 mg /m{sup 3}SO{sub 2} for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. The mRNAs of CYP2B1/2 and -2E1 were analyzed in livers and lungs by using reverse-transcription polymerase chain reaction (RT-PCR). Results showed that the PROD activities and mRNA of CYP2B1/2 were decreased in livers and lungs of rats exposed to SO{sub 2}. The p-NP activities and mRNA of CYP2E1 were decreased in lungs but not in livers of rats exposed to SO{sub 2}. Total liver microsomal cytochrome P-450 (CYP) contents were diminished in SO{sub 2} -exposed rats. These results lead to two conclusions: (1) SO{sub 2} exposure can suppress CYP2B1/2 and CYP2E1 in lungs and CYP2B1/2 in livers of rats, thus modifying the liver and lung toxication/detoxication potential, and (2) the total liver microsomal CYP contents were diminished, although the activity and mRNA expression of CYP2E1 in rat livers were not affected by SO{sub 2} exposure.

  13. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse

    Directory of Open Access Journals (Sweden)

    Umezawa Masakazu

    2009-07-01

    Full Text Available Abstract Background Nanotechnology is developing rapidly throughout the world and the production of novel man-made nanoparticles is increasing, it is therefore of concern that nanomaterials have the potential to affect human health. The purpose of this study was to investigate the effects of maternal exposure to nano-sized anatase titanium dioxide (TiO2 on gene expression in the brain during the developmental period using cDNA microarray analysis combined with Gene Ontology (GO and Medical Subject Headings (MeSH terms information. Results Analysis of gene expression using GO terms indicated that expression levels of genes associated with apoptosis were altered in the brain of newborn pups, and those associated with brain development were altered in early age. The genes associated with response to oxidative stress were changed in the brains of 2 and 3 weeks old mice. Changes of the expression of genes associated with neurotransmitters and psychiatric diseases were found using MeSH terms. Conclusion Maternal exposure of mice to TiO2 nanoparticles may affect the expression of genes related to the development and function of the central nervous system.

  14. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    Science.gov (United States)

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-03-06

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  15. Titanium Dioxide Nanoparticles: a Risk for Human Health?

    Science.gov (United States)

    Grande, Fedora; Tucci, Paola

    2016-01-01

    Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.

  16. Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence

    International Nuclear Information System (INIS)

    Amster, Eric D.; Haim, Maayan; Dubnov, Jonathan; Broday, David M.

    2014-01-01

    This study investigates the association between exposure to ambient NO x and SO 2 originating from power plant emissions and prevalence of obstructive pulmonary disease and related symptoms. The Orot Rabin coal-fired power plant is the largest power generating facility in the Eastern Mediterranean. Two novel methods assessing exposure to power plant-specific emissions were estimated for 2244 participants who completed the European Community Respiratory Health Survey. The “source approach” modeled emissions traced back to the power plant while the “event approach” identified peak exposures from power plant plume events. Respiratory symptoms, but not prevalence of asthma and COPD, were associated with estimates of power plant NO x emissions. The “source approach” yielded a better estimate of exposure to power plant emissions and showed a stronger dose–response relationship with outcomes. Calculating the portion of ambient pollution attributed to power plants emissions can be useful for air quality management purposes and targeted abatement programs. -- Highlights: • Two methods assessing NO x and SO 2 exposure attributed to a coal-fired power plant are utilized. • Exposure estimates are compared with respiratory outcomes in 2244 participants. • Power plant nitrogen oxide emissions are associated with respiratory symptoms. • Stack emission models correlated closest with health outcomes. -- Chronic cough, nocturnal dyspnea, chronic phlegm, and shortness of breath were significantly associated with exposure estimates of power plant-specific NO x emissions

  17. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  18. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-04-16

    Titanium dioxide (TiO₂) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO₂ nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO₂ nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO₂ particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO₂ particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO₂ particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO₂ particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO₂ particles also increased IL-8 expression. The results indicated that anatase TiO₂ nanoparticles induced inflammatory responses compared with other TiO₂ particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  19. Effects of titanium dioxide nanoparticles on human keratinocytes.

    Science.gov (United States)

    Wright, Clayton; Iyer, Anand Krishnan V; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S; Rojanasakul, Yon; Azad, Neelam

    2017-01-01

    Titanium dioxide (TiO 2 ) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO 2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO 2 nanoparticles (H 2 TiO 7 ) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO 2 particles varying in size (Fine, Ultrafine and H 2 TiO 7 ) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO 2 ; however, there is no consistent effect on cell viability and proliferation with either of these TiO 2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO 2 , we did not observe any significant effect of UV-C exposure combined with TiO 2 treatment on HaCaTs. Furthermore, TiO 2 -treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H 2 TiO 7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO 2 .

  20. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Robledo, Candace A.; Mendola, Pauline; Yeung, Edwina; Männistö, Tuija; Sundaram, Rajeshwari; Liu, Danping; Ying, Qi; Sherman, Seth; Grantz, Katherine L.

    2015-01-01

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM 2.5 ) and PM 2.5 constituents, PM ≤ 10 μm (PM 10 ), nitrogen oxides (NO x ), carbon monoxide, sulfur dioxide (SO 2 ) and ozone (O 3 ) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO X (RR=1.09, 95% CI: 1.04, 1.13) and SO 2 (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O 3 was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO x and SO 2 preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O 3 appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO x and SO 2 before conception increased subsequent GDM risk. • NO x and SO 2 exposure in the first seven weeks of pregnancy also increased GDM risk. • Early exposure to O 3 reduced GDM risk but risk increased

  1. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K.

    1989-01-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance

  2. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO{sub 2}, PM{sub 10} and PM{sub 2,5} for the winter 1995 to 1996; Eksponering til luftforurensing i Oslo, Drammen, Bergen og Trondheim. Beregninger av NO{sub 2}, PM{sub 10} og PM{sub 2,5} for vinteren 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km{sub 2} level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO{sub 2} these threshold figures are 100 microgram/m{sup 3} for hour values and 75 microgram/m{sup 3} for day values. For PM{sub 1}0 and PM{sub 2},5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m{sup 3} for PM{sub 1}0 and 20 microgram/m{sup 3} for PM{sub 2},5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO{sub 2} is largest in Bergen. The PM{sub 1}0 and

  3. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  4. Environmental effects of increased atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Soon, W.; Baliunas, S.L.; Robinson, A.B.; Robinson, Z.W.

    1999-01-01

    A review of the literature concerning the environmental consequences of increased levels of atmospheric carbon dioxide leads to the conclusion that increases during the 20th century have produced no deleterious effects upon global climate or temperature. Increased carbon dioxide has, however, markedly increased plant growth rates as inferred from numerous laboratory and field experiments. There is no clear evidence, nor unique attribution, of the global effects of anthropogenic CO 2 on climate. Meaningful integrated assessments of the environmental impacts of anthropogenic CO 2 are not yet possible because model estimates of global and regional climate changes on interannual, decadal and centennial timescales remain highly uncertain.(author)

  5. Association between maternal exposure to elevated ambient sulfur dioxide during pregnancy and term low birth weight

    International Nuclear Information System (INIS)

    Lin, C.-M.; Li, C.-Y.; Yang, G.-Y.; Mao, I.-F.

    2004-01-01

    This retrospective cohort study investigated whether the risk of delivering full term (37-44 completed weeks of gestation) low birth weight (LBW) infants is associated with differences in exposure to air pollutants in different trimesters. Full-term infants (37 completed weeks of gestation) with a birth weight below 2500 g were classified as term LBW infants. The study infants comprised 92,288 full-term live singletons identified from the Taiwan birth registry and born in the city of Taipei or Kaoshiung in Taiwan between 1995 and 1997. Maternal exposures to various air pollutants including CO, SO 2 , O 3 , NO 2 , and PM 10 in each trimester of pregnancy was estimated as the arithmetic means of all daily measurements taken by the air quality monitoring station nearest to the district of residence of the mother at birth. The multivariable logistic regression model with adjustment for potential confounders was used to assess the independent effect of specific air pollutants on the risk of term LBW. This study suggested a 26% increase in term LBW risk given maternal ambient exposure to SO 2 concentration exceeding 11.4 ppb during pregnancy compared to low exposure ( 12.4 ppb of SO 2 in the last trimester showed 20% higher risk (OR=1.20, 95% CI=1.01-1.41) of term LBW delivery than mothers with lower exposure (<6.8 ppb). No significant elevation ORs was observed for other air pollutants

  6. Murine respiratory mycoplasmosis (MRM) in C57BL/6N and C3H/HeN mice: strain differences in early host responses and exacerbation by nitrogen dioxide

    International Nuclear Information System (INIS)

    Parker, R.F.

    1987-01-01

    The studies reported here used genetic differences in susceptibility of C57BL/6N and C3H/HeN mice and exacerbation of the disease by nitrogen dioxide (NO 2 ) as tools in assessing the role of early host responses in the pathogenesis of MRM. The two strains did not differ in susceptibility to infection, but C3H/HeN mice were more susceptible to and had increased severity of lung lesions 14 days after intranasal inoculation as determined by 50% biological endpoints and morphometric analysis of tissues. Exposure to NO 2 for 4 hours prior to exposure to infectious aerosols exacerbated murine respiratory mycoplasmosis (MRM) by 7 days after exposure in both mouse strains. NO 2 appeared to affect host lung defense mechanisms responsible for limiting mycoplasmal growth in the lungs. The NO 2 exposure concentration required for this effect varied with the genetic background of the host, the dose of mycoplasmas administered, and the endpoint measured. Pulmonary clearance of radiolabeled M. pulmonis was determined in both mouse strains, and in C57BL/6N mice exposed to NO 2

  7. Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial

    Science.gov (United States)

    Kendrick, Christine M.; Koonce, Peter; George, Linda A.

    2015-12-01

    Urban arterial corridors are landscapes that give rise to short and long-term exposures to transportation-related pollution. With high traffic volumes and a wide mix of road users, urban arterial environments are important targets for improved exposure assessment to traffic-related pollution. A common method to estimate exposure is to use traffic volumes as a proxy. The study presented here analyzes a unique yearlong dataset of simultaneous roadside air quality and traffic observations for a U.S. arterial to assess the reliability of using traffic volumes as a proxy for traffic-related exposure. Results show how the relationships of traffic volumes with NO and NO2 vary not only by time of day and season but also by time aggregation. At short-term aggregations (15 min) nitrogen oxides were found to have a significant linear relationship with traffic volumes during morning hours for all seasons although variability was still high (r2 = 0.1-0.45 NO, r2 = 0.14-0.27 NO2), and little to no relationship during evening periods (r2 road users, these results show when traffic volumes alone can be a reliable proxy for exposure and when this approach is not warranted.

  8. Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations.

    Science.gov (United States)

    Tan, Wenjuan; Du, Wenchao; Darrouzet-Nardi, Anthony J; Hernandez-Viezcas, Jose A; Ye, Yuqing; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2018-09-15

    There is a lack of information about the transgenerational effects of titanium dioxide nanoparticles (nano-TiO 2 ) in plants. This study aimed to evaluate the impacts of successive exposure of nano-TiO 2 with different surface properties to basil (Ocimum basilicum). Seeds from plants exposed or re-exposed to pristine, hydrophobic, or hydrophilic nano-TiO 2 were cultivated for 65 days in soil unamended or amended with 750 mg·kg -1 of the respective particles. Plant growth, concentration of titanium and essential elements, as well as content of carbohydrates and chlorophyll were evaluated. There were no differences on Ti concentration in roots of plants sequentially exposed to pristine or hydrophobic nano-TiO 2 , or in roots of plants exposed to the corresponding particle, only in the second cycle. However, sequential exposure to hydrophilic particles resulted in 65.2% less Ti in roots, compared to roots of plants exposed the same particles, only in the second cycle. The Ti concentrations in shoots were similar in all treatments. On the other hand, pristine and hydrophilic particles reduced Mg in root by 115% and 81%, respectively, while pristine and hydrophobic particles reduced Ni in shoot by 84% and 75%, respectively, compared to unexposed plants in both cycles. Sequential exposure to pristine nano-TiO 2 increased stomatal conductance (214%, p ≤ 0.10), compared to plants that were never exposed. Hydrophobic and hydrophilic nano-TiO 2 reduced chlorophyll b (52%) and total chlorophyll (30%) but increased total sugar (186%) and reducing sugar (145%), compared to unexposed plants in both cycles. Sequential exposure to hydrophobic or hydrophilic nano-TiO 2 resulted in more adverse effects on photosynthesis but in positive effects on plant growth, compared to pristine nano-TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  10. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  11. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  12. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  13. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total suspended particulates and sulfur dioxide in California Seventh-Day Adventist residents

    Energy Technology Data Exchange (ETDEWEB)

    Euler, G.L.; Abbey, D.E.; Magie, A.R.; Hodgkin, J.E.

    1987-07-01

    Risk of chronic obstructive pulmonary disease symptoms due to long-term exposure to ambient levels of total suspended particulates (TSP) and sulfur dioxide (SO/sub 2/) symptoms was ascertained using the National Heart, Lung, and Blood Institute (NHLBI) respiratory symptoms questionnaire on 7445 Seventh-Day Adventists. They were non-smokers, at least 25 yr of age, and had lived 11 yr or more in areas ranging from high to low photochemical air pollution in California. Participant cumulative exposures to each pollutant in excess of four thresholds were estimated using monthly residence zip code histories and interpolated dosages from state air monitoring stations. These pollutant thresholds were entered individually and in combination in multiple logistic regression analyses with eight covariables including passive smoking. Statistically significant associations with chronic symptoms were seen for: SO/sub 2/ exposure above 4 pphm (104 mcg/m3), (p = .03), relative risk 1.18 for 500 hr/yr of exposure; and for total suspended particulates (TSP) above 200 mcg/m3, (p less than .00001), relative risk of 1.22 for 750 hr/yr.

  14. The Alberta Oil Sands Community Exposure and Health Effects Assessment Program : methods report

    International Nuclear Information System (INIS)

    2000-01-01

    The Alberta Oil Sands Community Exposure and Health Effects Assessment Program involved the development of a holistic approach to the study of personal exposure and the potential health impacts of airborne contaminants including volatile organic compounds (VOCs), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ) and particulates (both PM10 and PM2.5). Volunteer residents from Fort McMurray, Alberta were recruited to participate in neurocognitive tests and a health and nutrition survey. In addition, the local community identified several priority contaminants which were highlighted during a public hearing of the Alberta Energy and Utilities Board in relation to Syncrude's Mildred Lake Development Project. The approach to the study was based on the direct measurement of all routes of exposure to the contaminants (breathing, ingestion and skin contact), direct measurement of biomarkers, and daily logs of participant's activities. The choice of biomarkers was based on the ability of the laboratory to measure low levels of relevant biological markers, the most appropriate media for measuring the markers, and the burden placed on each volunteer. The final set of biological measures of exposure included trace metals (arsenic, cadmium, lead and uranium) nicotine, and metabolites of the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes). The objective was to determine if chronic or occupational exposure to these contaminants cause structural alterations in the respiratory system that compromise oxygen absorption and lung elasticity. 82 refs., 14 tabs., 15 figs., 3 appendices

  15. Oslo traffic study - part 2: quantifying effects of traffic measures using individual exposure modeling

    International Nuclear Information System (INIS)

    Clench-Aas, J.; Bartonova, A.; Klaeboe, R.; Kolbenstvedt, M.

    2000-01-01

    In quantifying the benefits of air pollution reduction measures, it is desirable to compare the size of the benefits with the effects of other individual confounding factors such as smoking or passive smoking. The effect of pollution is rarely very large and in order to quantify it, exposure estimating procedures must be as accurate as possible. Dispersion models, run for hourly time intervals and controlled by measurements, are therefore used to provide estimates for specific receptor points. Results of three consecutive cross-sectional investigations in an area of Oslo characterized by heavy traffic are presented. The study was designed to provide repeated information on the effects of traffic diversion measures on the self-reporting of symptoms of reduced health of 1100 adults living in Oslo. The principal source of air pollution in Oslo is vehicular traffic. The primary pollutants of interest are nitrogen dioxide (NO 2 ) and respirable particles (PM 2.5 and PM 10 ). The mean hourly concentration of exposure was estimated at each participant's home by means of a time-dependent finite dispersion model combined with subgrid models to describe the source contribution to the grid concentrations. The study controlled the confounding factors. Using the symptom fatigue, the study illustrates that by controlling the changes in population composition, estimated exposure-effect relationships for health symptoms allow the effect of the studied traffic measures on the population to be evaluated. Since the method is based on individual estimates of exposure to different pollutants, it allows standardizing the exposure to compare effects of different pollutants. The study offers a methodology that is useful in evaluating the benefits of measures by both being able to quantify and compare the effects of different compounds and effects on different population sub-groups. (author)

  16. Long-term exposure to air pollution and the risk of suicide death: A population-based cohort study.

    Science.gov (United States)

    Min, Jin-Young; Kim, Hye-Jin; Min, Kyoung-Bok

    2018-07-01

    Suicide is a major public health problem. Previous studies have reported a significant association between acute exposure to air pollution and suicide; little attention has been paid to the long-term effects of air pollution on risk of suicide. We investigated whether long-term exposure to particulate matter of ≤10μm in diameter (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) would be associated with a greater risk of death by suicide. The study sample comprised 265,749 adults enrolled in the National Health Insurance Service-National Sample Cohort (2002-2013) in South Korea. Suicide death was defined as per ICD-10 code. Data on air pollution exposure used nationwide monitoring data, and individual exposure levels were assigned using geographic information systems. Air pollution exposure was categorized as the interquartile range (IQR) and quartiles. Hazards ratios (HRs) were calculated for the occurrence of suicide death after adjusting for potential covariates. During the study period, 564 (0.2%) subjects died from suicide. Increases in IQR pollutants (7.5μg/m 3 for PM 10 , 11.8ppb for NO 2 , and 0.8ppb for SO 2 ) significantly increased HR for suicide death [PM 10 : HR=3.09 (95% CI: 2.63-3.63); NO 2 : HR=1.33 (95% CI: 1.09-1.64); and SO 2 : HR=1.15 (95% CI: 1.07-1.24)]. Compared with the lowest level of air pollutants (Quartile 1), the risk of suicide significantly increased in the highest quartile level (Quartile 4) for PM 10 (HR=4.03; 95% CI: 2.97-5.47) and SO 2 (HR=1.65; 95% CI: 1.29-2.11) and in the third quartile for NO 2 (HR=1.52; 95% CI: 1.17-1.96). HRs for subjects with a physical or mental disorder were higher than that those for subjects without the disorder. Subjects living in metropolitan areas were more vulnerable to long-term PM 10 exposure than those living in non-metropolitan areas. Long-term exposure to air pollution was associated with a significantly increased risk of suicide death. People having underlying diseases or

  17. Biological fixation of carbon dioxide. Seibutsu ni yoru nisanka tanso no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Someya, J [Fermentaion Research Institute, Tsukuba (Japan)

    1991-10-20

    Bulks of photosynthetic product to reduce the carbon dioxide by the light energy are forests, represented by the tropical rain forests, on the land, and marine algae and coral reefs in the ocean. For the purpose of effectively utilizing the fixation power of carbon dioxide through the photosynthesis by higher plants and algae, it is necessary to make many further researches, starting with a conditional selection of species, excellent in both absorption and fixation of carbon dioxide. The Japan Technology Transfer Association has recently issued a design to build a large scale closed type farm in the vicinity of factory, exhausting the carbon dioxide, and supply it to structure a system of producing vegetable and other food. What largely contributes to the calcification in the ocean is the coral reefs, where coral is symbiotic with brown algae., called dinoflagellatae. Those algae are judged to accelerate the formation of calcium carbonate by the photosynthesis. To estimate the absorption power of oceanic carbon dioxide, it is important to quantitatively know the calcification by the coral. 4 figs., 1 tab.

  18. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Aagesen, Martin

    2017-01-01

    A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL....... In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size...

  19. First Simultaneous Visualization of SO{sub 2} and NO{sub 2} Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hanlim; Hong, Hyunkee; Han, Kyungsoo [Pukyong National Univ., Busan (Korea, Republic of); Noh, Youngmin [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kwon, Soonchul [Georgia Institute of Technology, Atlanta (United States)

    2014-04-15

    Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide (SO{sub 2}) and nitrogen dioxide (NO{sub 2}) in power plant emissions can be determined simultaneously in terms of SCD distribution. The SO{sub 2} SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high NO{sub 2} SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to NO{sub 2} in NOx concentration, attributed to the NO oxidation by O{sub 3}. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

  20. Internal exposure to neutron-activated {sup 56}Mn dioxide powder in Wistar rats. Pt. 1. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Valeriy; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria [Medical Radiological Research Center (MRRC) named after A.F. Tsyb - National Medical Research Radiological Center of the Health Ministry of the Russian Federation, Obninsk, Kaluga Region (Russian Federation); Rakhypbekov, Tolebay; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Kairkhanova, Yankar [Semey State Medical University, Semey (Kazakhstan); Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Fujimoto, Nariaki; Hoshi, Masaharu [Hiroshima University, Hiroshima (Japan); Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro [Nagasaki University, Nagasaki (Japan); Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi [University of Tsukuba, Ibaraki (Japan); Toyoda, Shin [Okayama University of Science, Okayama (Japan); Sato, Hitoshi [Ibaraki Prefectural University of Health Science, Ibaraki (Japan); Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander [National Nuclear Center of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Zhumadilov, Kasym [Eurasian National University named after L.N. Gumilyov, Astana (Kazakhstan)

    2017-03-15

    There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were {sup 24}Na, {sup 28}Al, {sup 31}Si, {sup 32}P, {sup 38}Cl, {sup 42}K, {sup 45}Ca, {sup 46}Sc, {sup 56}Mn, {sup 59}Fe, {sup 60}Co, and {sup 134}Cs. The radionuclide {sup 56}Mn (T{sub 1/2} = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to {sup 56}Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated {sup 56}Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured {sup 56}Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of

  1. A Review of Human Health and Ecological Risks due to CO2 Exposure

    Science.gov (United States)

    Hepple, R. P.; Benson, S. M.

    2001-05-01

    This paper presents an overview of the human health and ecological consequences of exposure to elevated levels of carbon dioxide (CO2) in the context of geologic carbon sequestration. The purpose of this effort is to provide a baseline of information to guide future efforts in risk assessment for CO2 sequestration. Scenarios for hazardous CO2 exposure include surface facility leaks, leaks from abandoned or aging wells, and leakage from geologic CO2 storage structures. Amounts of carbon in various reservoirs, systems, and applications were summarized, and the levels of CO2 encountered in nature and everyday life were compared along with physiologically relevant concentrations. Literature pertaining to CO2 occupational exposure limits, regulations, monitoring, and ecological consequences was reviewed. The OSHA, NIOSH, and ACGIH occupational exposure standards are 0.5% CO2 averaged over a 40 hour week, 3% average for a short-term (15 minute) exposure, and 4% as the maximum instantaneous limit considered immediately dangerous to life and health. All three conditions must be satisfied at all times. Any detrimental effects of low-level CO2 exposure are reversible, including the long-term metabolic compensation required by chronic exposure to 3% CO2. Breathing rate doubles at 3% CO2 and is four times the normal rate at 5% CO2. According to occupational exposure and controlled atmosphere research into CO2 toxicology, CO2 is hazardous via direct toxicity at levels above 5%, concentrations not encountered in nature outside of volcanic settings and water-logged soils. Small leaks do not present any danger to people unless the CO2 does not disperse quickly enough through atmospheric mixing but accumulates instead in depressions and confined spaces. These dangers are the result of CO2 being more dense than air. Carbon dioxide is regulated for diverse purposes but never as a toxic substance. Catastrophic incidents involving large amounts and/or rapid release of CO2 such as Lake

  2. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    Science.gov (United States)

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated

  3. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis......) reveals a broad high temperature desorption state for CO2 with peak maximum around 450 K. X-ray photoelectron spectroscopy (XPS) shows that approximately one third of the oxygen accumulated on the surface upon CO2 exposure remains after TPD, indicative of carbonate formation via CO2 dissociation supplying...... O-ads and then facile CO2 + O-ads association, as well as subsequent decomposition at higher temperatures. Density functional theory studies of stepped Cu and Cu/Pt slabs reproduce vibrational frequencies of the carbonate, suggesting a nearly flat tridentate configuration at steps/defect sites....

  4. Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and L. higginsii) to elevated carbon dioxide

    Science.gov (United States)

    Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig

    2018-01-01

    Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.

  5. Long-term air pollution exposure and cardio- respiratory mortality: a review.

    Science.gov (United States)

    Hoek, Gerard; Krishnan, Ranjini M; Beelen, Rob; Peters, Annette; Ostro, Bart; Brunekreef, Bert; Kaufman, Joel D

    2013-05-28

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric.

  6. Health risks of NO 2, SPM and SO 2 in Delhi (India)

    Science.gov (United States)

    Pandey, Jai Shanker; Kumar, Rakesh; Devotta, Sukumar

    There is increasingly growing evidence linking urban air pollution to acute and chronic illnesses amongst all age groups. Therefore, monitoring of ambient concentrations of various air pollutants as well as quantification of the dose inhaled becomes quite important, specially in view of the fact that in many countries, policy decisions for reducing pollutant concentrations are mainly taken on the basis of their health impacts. The dose when gets combined with the likely responses, indicates the ultimate health risk (HR). Thus, as an extension of our earlier studies, HR has been estimated for three pollutants, namely, suspended particulate matter (SPM), nitrogen dioxide (NO 2) and sulfur dioxide (SO 2) for Delhi City in India. For estimation and analyses, three zones have been considered, namely, residential, industrial and commercial. The total population has been divided into three age classes (infants, children and adults) with different body weights and breathing rates. The exercise takes into account age-specific breathing rates, body weights for different age categories and occupancy factors for different zones. Results indicate that health risks due to air pollution in Delhi are highest for children. For all age categories, health risks due to SO 2 (HR_SO 2) are the lowest. Hence, HR_SO 2 has been taken as the reference with respect to which HR values due to SPM and NO 2 have been compared. Taking into account all the age categories and their occupancy in different zones, average HR values for NO 2 and SPM turn out to be respectively 22.11 and 16.13 times more than that for SO 2. The present study can be useful in generating public awareness as well as in averting and mitigating the health risks.

  7. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  8. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, Candace A. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Mendola, Pauline, E-mail: pauline.mendola@mail.nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Yeung, Edwina; Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Sundaram, Rajeshwari; Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20892 (United States); Ying, Qi [Texas A& M University, Zachary Department of Civil Engineering, College Station, TX 77845 (United States); Sherman, Seth [The EMMES Corporation, Rockville, MD 20852 (United States); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States)

    2015-02-15

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM{sub 2.5}) and PM{sub 2.5} constituents, PM ≤ 10 μm (PM{sub 10}), nitrogen oxides (NO{sub x}), carbon monoxide, sulfur dioxide (SO{sub 2}) and ozone (O{sub 3}) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO{sub X} (RR=1.09, 95% CI: 1.04, 1.13) and SO{sub 2} (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O{sub 3} was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO{sub x} and SO{sub 2} preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O{sub 3} appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO{sub x} and SO{sub 2} before conception increased subsequent GDM risk. • NO{sub x} and SO{sub 2} exposure in the first seven weeks of pregnancy also increased

  9. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Science.gov (United States)

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  10. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations

    Directory of Open Access Journals (Sweden)

    L. N. Lamsal

    2014-11-01

    Full Text Available We assess the standard operational nitrogen dioxide (NO2 data product (OMNO2, version 2.1 retrieved from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite using a combination of aircraft and surface in~situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8 with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Since validation data sets are scarce and are limited in space and time, validation of the global product is still limited in scope by spatial and temporal coverage and retrieval conditions. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI chemistry-transport model (CTM used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.

  12. Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors

    NARCIS (Netherlands)

    Andringa, A.-M.; Meijboom, J.R.; Smits, E.C.P.; Mathijssen, S.G.J.; Blom, P.W.M.; Leeuw, D.M. de

    2011-01-01

    Detection of nitrogen dioxide, NO2, is required to monitor the air-quality for human health and safety. Commercial sensors are typically chemiresistors, however field-effect transistors are being investigated. Although numerous investigations have been reported, the NO2 sensing mechanism is not

  13. Exposure to air pollutants during the early weeks of pregnancy, and placenta praevia and placenta accreta in the western part of Japan.

    Science.gov (United States)

    Michikawa, Takehiro; Morokuma, Seiichi; Yamazaki, Shin; Fukushima, Kotaro; Kato, Kiyoko; Nitta, Hiroshi

    2016-01-01

    Placenta praevia is an obstetric complication involving placental implantation in the lower uterine segment. Given the suggested aetiology of placenta praevia, adverse biological effects of air pollutants, such as plasma viscosity increment, endothelial dysfunction, and systemic inflammation, have the potential to induce low implantation. We explored the association between exposure to air pollutants during the pregnancy period up to implantation, and placenta praevia, in pregnant Japanese women. The outcome also included placenta accreta, which often exists in combination with placenta praevia. From the Japan Perinatal Registry Network database, we obtained data on 40,573 singleton pregnant women in western Japan (Kyushu-Okinawa Districts) between 2005 and 2010. We assigned pollutant concentrations (suspended particulate matter [SPM], ozone, nitrogen dioxide [NO2], and sulphur dioxide [SO2]), measured at the nearest monitoring station to the respective delivery hospital of each woman. A logistic regression model was used to adjust for several covariates. The odds ratios (ORs) of placenta praevia per 10 units increase were 1.12 (95% confidence interval (CI)=1.01-1.23) for SPM over 0-4weeks of gestation, and 1.08 (1.00-1.16) for ozone. The association between exposure to NO2 and SO2, and praevia, was in the direction of increased risk. SPM exposure during 0-4weeks was associated with placenta accreta without praevia (OR=1.33, 95% CI=1.07-1.66). We found no association with exposure to air pollutants during 5-12weeks and the second trimester. Exposure to air pollutants through to implantation was positively associated with placenta praevia and accreta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study.

    Science.gov (United States)

    Duan, Huawei; Jia, Xiaowei; Zhai, Qingfeng; Ma, Lu; Wang, Shan; Huang, Chuanfeng; Wang, Haisheng; Niu, Yong; Li, Xue; Dai, Yufei; Yu, Shanfa; Gao, Weimin; Chen, Wen; Zheng, Yuxin

    2016-02-01

    Diesel engine exhaust (DEE) is a ubiquitous environmental pollutant and is carcinogenic to humans. To seek early and sensitive biomarkers for prediction of adverse health effects, we analysed the components of DEE particles, and examined the genetic and oxidative damages in DEE-exposed workers. 101 male diesel engine testing workers who were constantly exposed to DEE and 106 matched controls were enrolled in the present study. The components of DEE were analysed, including fine particulate matter (PM2.5), element carbon (EC), nitrogen dioxide (NO2), sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs). Postshift urine samples were collected and analysed for 1-hydroxypyrene (1-OHP), an internal exposure marker for DEE. Levels of DNA strand breaks and oxidised purines, defined as formamidopyrimidine-DNA glycosylase (FPG) sites in leucocytes, were measured by medium throughput Comet assay. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also used to determine the level of oxidative stress. We found higher levels of PM2.5, EC, NO2, SO2 and PAHs in the diesel engine testing workshop and significantly higher urinary 1-OHP concentrations in exposed subjects (p<0.001). Compared with controls, the levels of parameters in normal Comet and FPG-Comet assay were all significantly higher in DEE-exposed workers (p<0.001), and in a dose-dependent and time-dependent manner. There were no significant differences between DEE-exposed workers and controls in regard to leucocyte FPG sensitive sites and urinary 8-OHdG levels. These findings suggest that DEE exposure mainly induces DNA damage, which might be used as an early biomarker for risk assessment of DEE exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers.

    Science.gov (United States)

    Pele, Laetitia C; Thoree, Vinay; Bruggraber, Sylvaine F A; Koller, Dagmar; Thompson, Richard P H; Lomer, Miranda C; Powell, Jonathan J

    2015-09-02

    Exposure to persistent engineered nano and micro particles via the oral route is well established. Animal studies have demonstrated that, once ingested, a small proportion of such particles translocate from the gastrointestinal tract to other tissues. Exposure to titanium dioxide is widespread via the oral route, but only one study has provided indirect evidence (total titanium analyses) of absorption into the blood stream in humans. We sought to replicate these observations and to provide additional evidence for particulate uptake. Human volunteers with normal intestinal permeability were orally administered 100 mg pharmaceutical/food grade titanium dioxide. Blood samples were collected from 0.5 to 10 h post ingestion and analysed for the presence of reflectant bodies (particles) by dark field microscopy, and for total titanium by inductively coupled plasma mass spectrometry (ICP-MS). Blood film analyses implied early absorption of particles (2 h) with a peak maximum at 6 h following ingestion. The presence of these reflectant particles in blood roughly mirrored the levels of total titanium by ICP-MS, providing good evidence for the latter being a measure of whole particle (titanium dioxide) absorption. This study shows that a fraction of pharmaceutical/food grade titanium dioxide is absorbed systemically by humans following ingestion. It confirms that at least two routes of particle uptake may exist in the human gut- one proximal and one distal. Further work should quantify human exposure and uptake of such persistent particles.

  16. Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI

    Science.gov (United States)

    Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.

    2014-12-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.

  17. Molecular and physiological responses to titanium dioxide ...

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  18. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  19. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  20. Modeling the intraurban variation in nitrogen dioxide in urban areas in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Gurung, Anobha; Levy, Jonathan I; Bell, Michelle L

    2017-05-01

    With growing urbanization, traffic has become one of the main sources of air pollution in Nepal. Understanding the impact of air pollution on health requires estimation of exposure. Land use regression (LUR) modeling is widely used to investigate intraurban variation in air pollution for Western cities, but LUR models are relatively scarce in developing countries. In this study, we developed LUR models to characterize intraurban variation of nitrogen dioxide (NO 2 ) in urban areas of Kathmandu Valley, Nepal, one of the fastest urbanizing areas in South Asia. Over the study area, 135 monitoring sites were selected using stratified random sampling based on building density and road density along with purposeful sampling. In 2014, four sampling campaigns were performed, one per season, for two weeks each. NO 2 was measured using duplicate Palmes tubes at 135 sites, with additional information on nitric oxide (NO), NO 2 , and nitrogen oxide (NOx) concentrations derived from Ogawa badges at 28 sites. Geographical variables (e.g., road network, land use, built area) were used as predictor variables in LUR modeling, considering buffers 25-400m around each monitoring site. Annual average NO 2 by site ranged from 5.7 to 120ppb for the study area, with higher concentrations in the Village Development Committees (VDCs) of Kathmandu and Lalitpur than in Kirtipur, Thimi, and Bhaktapur, and with variability present within each VDC. In the final LUR model, length of major road, built area, and industrial area were positively associated with NO 2 concentration while normalized difference vegetation index (NDVI) was negatively associated with NO 2 concentration (R 2 =0.51). Cross-validation of the results confirmed the reliability of the model. The combination of passive NO 2 sampling and LUR modeling techniques allowed for characterization of nitrogen dioxide patterns in a developing country setting, demonstrating spatial variability and high pollution levels. Copyright © 2017

  1. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure

    International Nuclear Information System (INIS)

    Huang Shing; Chueh Pinju; Lin Yunwei; Shih Tungsheng; Chuang Showmei

    2009-01-01

    Titanium dioxide (TiO2) nano-particles (< 100 nm in diameter) have been of interest in a wide range of applications, such as in cosmetics and pharmaceuticals because of their low toxicity. However, recent studies have shown that TiO2 nano-particles (nano-TiO2) induce cytotoxicity and genotoxicity in various lines of cultured cells as well as tumorigenesis in animal models. The biological roles of nano-TiO2 are shown to be controversial and no comprehensive study paradigm has been developed to investigate their molecular mechanisms. In this study, we showed that short-term exposure to nano-TiO2 enhanced cell proliferation, survival, ERK signaling activation and ROS production in cultured fibroblast cells. Moreover, long-term exposure to nano-TiO2 not only increased cell survival and growth on soft agar but also the numbers of multinucleated cells and micronucleus (MN) as suggested in confocal microscopy analysis. Cell cycle phase analysis showed G2/M delay and slower cell division in long-term exposed cells. Most importantly, long-term TiO2 exposure remarkably affected mitotic progression at anaphase and telophase leading to aberrant multipolar spindles and chromatin alignment/segregation. Moreover, PLK1 was demonstrated as the target for nano-TiO2 in the regulation of mitotic progression and exit. Notably, a higher fraction of sub-G1 phase population appeared in TiO2-exposed cells after releasing from G2/M synchronization. Our results demonstrate that long-term exposure to nano-TiO2 disturbs cell cycle progression and duplicated genome segregation, leading to chromosomal instability and cell transformation.

  2. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  3. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    Science.gov (United States)

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  4. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  5. Induction of ovoviviparity in Rhabditis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J T; Tsui, R K

    1968-01-01

    While investigating the influence of atmospheric pollutants on soil and plant microbiotas, ovoviviparity was observed in the saprophagous nematode, Rhabditis sp., after exposure to various concentrations of sulfur dioxide.

  6. A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy

    Directory of Open Access Journals (Sweden)

    Ana M. Vicedo-Cabrera

    2013-11-01

    Full Text Available A core challenge in epidemiological analysis of the impact of exposure to air pollution on health is assessment of the individual exposure for subjects at risk. Geographical information systems (GIS-based pollution mapping, such as kriging, has become one of the main tools for evaluating individual exposure to ambient pollutants. We applied universal Bayesian kriging to estimate the residential exposure to gaseous air pollutants for children living in a high-risk area (Milazzo- Valle del Mela in Sicily, Italy. Ad hoc air quality monitoring campaigns were carried out: 12 weekly measurements for sulphur dioxide (SO2 and nitrogen dioxide (NO2 were obtained from 21 passive dosimeters located at each school yard of the study area from November 2007 to April 2008. Universal Bayesian kriging was performed to predict individual exposure levels at each residential address for all 6- to 12-years-old children attending primary school at various locations in the study area. Land use, altitude, distance to main roads and population density were included as covariates in the models. A large geographical heterogeneity in air quality was recorded suggesting complex exposure patterns. We obtained a predicted mean level of 25.78 (±10.61 μg/m3 of NO2 and 4.10 (±2.71 μg/m3 of SO2 at 1,682 children’s residential addresses, with a normalised root mean squared error of 28% and 25%, respectively. We conclude that universal Bayesian kriging approach is a useful tool for the assessment of realistic exposure estimates with regard to ambient pollutants at home addresses. Its prediction uncertainty is highly informative and can be used for both designing subsequent campaigns and for improved modelling of epidemiological associations.

  7. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  8. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  9. Research Progress about the Relationship between Nanoparticles Silicon Dioxide and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chun DAI

    2014-10-01

    Full Text Available Nano-silicon dioxide widely distributed in plastic, rubber, ceramics, paint, adhesives, and many other fields, and it is the product of coal combustion. A growing evidence shows that nano-silicon dioxide has certain correlation with respiratory system disease. In this paper, we synthesized existing researches of domestic and abroad, summarized the lung toxicity of nanoparticles. This article are reviewed from the physical and chemical properties of nanoparticles silicon dioxide, exposure conditions and environment, and the pathogenic mechanism of nano-silicon dioxide.

  10. A sensitive spectrophotometric determination of nitrogen dioxide in the working atmosphere

    Directory of Open Access Journals (Sweden)

    Prachi Parmar

    2009-12-01

    Full Text Available In the present investigation, a simple and sensitive spectrophotometric method for the determination of nitrogen dioxide in various environmental samples is described. Nitrogen dioxide in air was fixed as nitrite ion in alkaline sodium arsenite absorbing solution. The nitrite formed was diazotized with p−aminoacetophenone in acidic medium which was subsequently coupled with phloroglucinol to give yellow−orange dye in alkaline medium having an absorption maximum at 420 nm. Beer’s law was obeyed in the range of 0.008 − 0.12 μg mL-1 of nitrogen dioxide and has a molar absorptivity of 2.875 x 105 L mol-1 cm-1. Optimum reaction conditions for diazotization, full colour development and the effect of variables like temperature, time and pH have been studied. Detailed studies to check the collection efficiency and NO2:NO2- stoichiometric ratio has been carried out. The reaction has been successfully applied for the detection of nitrogen dioxide in cigarette smoke, scooter exhaust, and workroom air.

  11. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan.

    Science.gov (United States)

    Katanoda, Kota; Sobue, Tomotaka; Satoh, Hiroshi; Tajima, Kazuo; Suzuki, Takaichiro; Nakatsuka, Haruo; Takezaki, Toshiro; Nakayama, Tomio; Nitta, Hiroshi; Tanabe, Kiyoshi; Tominaga, Suketami

    2011-01-01

    Evidence for a link between long-term exposure to air pollution and lung cancer is limited to Western populations. In this prospective cohort study, we examined this association in a Japanese population. The study comprised 63 520 participants living in 6 areas in 3 Japanese prefectures who were enrolled between 1983 and 1985. Exposure to particulate matter less than 2.5 µm in aerodynamic diameter (PM(2.5)), sulfur dioxide (SO(2)), and nitrogen dioxide (NO(2)) was assessed using data from monitoring stations located in or nearby each area. The Cox proportional hazards model was used to calculate the hazard ratios associated with the average concentrations of these air pollutants. The 10-year average concentrations of PM(2.5), SO(2), and NO(2) before recruitment (1974-1983) were 16.8 to 41.9 µg/m(3), 2.4 to 19.0 ppb, and 1.2 to 33.7 ppb, respectively (inter-area range). During an average follow-up of 8.7 years, there were 6687 deaths, including 518 deaths from lung cancer. The hazard ratios for lung cancer mortality associated with a 10-unit increase in PM(2.5) (µg/m(3)), SO(2) (ppb), and NO(2) (ppb) were 1.24 (95% confidence interval: 1.12-1.37), 1.26 (1.07-1.48), and 1.17 (1.10-1.26), respectively, after adjustment for tobacco smoking and other confounding factors. In addition, a significant increase in risk was observed for male smokers and female never smokers. Respiratory diseases, particularly pneumonia, were also significantly associated with all the air pollutants. Long-term exposure to air pollution is associated with lung cancer and respiratory diseases in Japan.

  12. Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort.

    OpenAIRE

    Baïz , Nour; Slama , Rémy; Béné , Marie-Christine; Charles , Marie-Aline; Kolopp-Sarda , Marie-Nathalie; Magnan , Antoine; Thiebaugeorges , Olivier; Faure , Gilbert; Annesi-Maesano , Isabella

    2011-01-01

    Abstract Background Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system. Methods Exposure to background particulate matter less than 10 μm in diameter (PM10) and nitrogen dioxide (NO2) was assessed in 370 women three months ...

  13. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach.

  14. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles.

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbuhler, Konrad

    2015-05-01

    Nano-sized titanium dioxide particles (nano-TiO2) can be found in a large number of foods and consumer products, such as cosmetics and toothpaste, thus, consumer exposure occurs via multiple sources, possibly involving different exposure routes. In order to determine the disposition of nano-TiO2 particles that are taken up, a physiologically based pharmacokinetic (PBPK) model was developed. High priority was placed on limiting the number of parameters to match the number of underlying data points (hence to avoid overparameterization), but still reflecting available mechanistic information on the toxicokinetics of nano-TiO2. To this end, the biodistribution of nano-TiO2 was modeled based on their ability to cross the capillary wall of the organs and to be phagocytosed in the mononuclear phagocyte system (MPS). The model's predictive power was evaluated by comparing simulated organ levels to experimentally assessed organ levels of independent in vivo studies. The results of our PBPK model indicate that: (1) within the application domain of the PBPK model from 15 to 150 nm, the size and crystalline structure of the particles had a minor influence on the biodistribution; and (2) at high internal exposure the particles agglomerate in vivo and are subsequently taken up by macrophages in the MPS. Furthermore, we also give an example on how the PBPK model may be used for risk assessment. For this purpose, the daily dietary intake of nano-TiO2 was calculated for the German population. The PBPK model was then used to convert this chronic external exposure into internal titanium levels for each organ.

  15. Concentrations and determinants of NO{sub 2} in homes of Ashford, UK and Barcelona and Menorca, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Algar, O.G.; Puig, C.; Vall, O. [Hospital del Mar, Pediatrics, and Univ. Autonoma de Barcelona, Barcelona (Spain); Pichini, S. [Istituto Superiore di Sanita, Drug Research and Control Dept., Rome (Italy); Basagana, X. [Institut Municipal Investigacio Medica, Barcelona (Spain); Torrent, M. [INSALUD, Area de Salud de Menorca, Menorca Island (Spain); Harris, J.; Cullinan, P. [Imperial College, Dept. of Occupational and Environmental Med., London (United Kingdom); Sunyer, J. [Univ. Pompeu Fabra, Barcelona (Spain)

    2004-08-01

    The study examined indoor nitrogen dioxide (NO{sub 2}) concentrations in Ashford, Kent (UK), Menorca Island and Barcelona city (Spain) and the contribution of their most important indoor determinants (e.g. gas combustion appliances and cigarette smoking). The homes examined (n = 1421) were those from infants recruited for the Asthma Multicentre Infants Cohort Study, which aimed to assess, using a standard protocol, the effects of pre- and post-natal environmental exposures in the inception of atopy and asthma. Indoor NO{sub 2} was measured using passive filter badges placed on a living room wall of the hoes for between 7 and 15 days. Homes in the three centers had significantly diffent concentrations of indoor NO{sub 2}, with those in Barcelona showing the highest levels (median NO{sub 2} levels: 5.79, 6.06 and 23.87 p.p.b. in Ashford, Menorca and Barcelona, respectively). Multiple regression analysis showed that the principal indoor determinants of NO{sub 2} concentrations in the three cohorts were the heating/cooking fuel used in the house (gas fire increased average NO{sub 2} concentrations by 1.27-fold and gas cooker by 2.13 times), parental cigarette smoking and season of measurement. Those variable significantly related to indoor NO{sub 2} concentration in Ashford, Barcelona and Menorca, respectively. In all the cohorts combined, 52% of the variation could be explained in this way. Although outdoor NO{sub 2} was not measured concurrently, its additional contribution was estimated. In conclusion, despite differences in indoore NO{sub 2} mean concentrations probably reflecting different outdoor NO{sub 2} level, home factors affecting indoor NO{sub 2} values and their specific contributions were constant across the their cohorts. (au)

  16. The AOTF-Based NO2 Camera

    Science.gov (United States)

    Dekemper, E.; Fussen, D.; Vanhellemont, F.; Vanhamel, J.; Pieroux, D.; Berkenbosch, S.

    2017-12-01

    In an urban environment, nitrogen dioxide is emitted by a multitude of static and moving point sources (cars, industry, power plants, heating systems,…). Air quality models generally rely on a limited number of monitoring stations which do not capture the whole pattern, neither allow for full validation. So far, there has been a lack of instrument capable of measuring NO2 fields with the necessary spatio-temporal resolution above major point sources (power plants), or more extended ones (cities). We have developed a new type of passive remote sensing instrument aiming at the measurement of 2-D distributions of NO2 slant column densities (SCDs) with a high spatial (meters) and temporal (minutes) resolution. The measurement principle has some similarities with the popular filter-based SO2 camera (used in volcanic and industrial sulfur emissions monitoring) as it relies on spectral images taken at wavelengths where the molecule absorption cross section is different. But contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. A first prototype was successfully tested with the plume of a coal-firing power plant in Romania, revealing the dynamics of the formation of NO2 in the early plume. A lighter version of the NO2 camera is now being tested on other targets, such as oil refineries and urban air masses.

  17. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    International Nuclear Information System (INIS)

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO 2 on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO 2 reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO 2 for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO 2 , but only when relative humidity (RH) was at or above 90%. The effect of SO 2 on Lepidium pollen germination in vitro was greater than the effect of SO 2 on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO 2 , at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO 2 on reproduction in vivo based on effects of SO 2 on pollen germination and pollen tube growth in vitro are not valid

  18. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  19. Aura OMI Observations of Global SO2 and NO2 Pollution from 2005 to 2013

    Science.gov (United States)

    Krotkov, Nickolay; Li, Can; Lamsal, Lok; Celarier, Edward; Marchenko, Sergey; Swartz, William H.; Bucsela, Eric; Fioletov, Vitali; McLinden, Chris; Joiner, Joanna; hide

    2014-01-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the NASA Aura satellite and uses reflected sunlight to measure the two critical atmospheric trace gases: nitrogen dioxide (NO2) and sulfur dioxide (SO2) characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage and reduced visibility). Our group at NASA GSFC has developed and maintained OMI standard SO2 and NO2 data products. We have recently released an updated version of the standard NO2 L2 and L3 products (SP v2.1) and continue improving the algorithm. We are currently in the process of releasing next generation pollution SO2 product, based on an innovative Principal Component Analysis (PCA) algorithm, which greatly reduces the noise and biases. These new standard products provide valuable datasets for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed changes in air quality over several regions. Over the US average NO2 and SO2 pollution levels had decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in pollution over Europe. Over China OMI observed an increase of about 60 percent in NO2 pollution between 2005 and 2013, despite a temporal reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of large new coal power plants had been built in recent years. We expect that further

  20. Enclosure design for flock-level, chronic exposure of birds to air contaminant mixtures.

    Science.gov (United States)

    North, Michelle A; Kinniburgh, David W; Smits, Judit E G

    2018-05-01

    The objective of this study was to design an enclosure suitable for studying the ecotoxicological effects of vehicle emissions on groups of wild birds without compromising welfare. Two, adjacent enclosures sheltered from sunlight, wind and rain, were bird-proofed and wrapped with thick polyethylene sheeting. Emissions were directed into the treatment enclosure from the exhaust of a light-duty gasoline truck, using flexible, heat-proof pipe, with joins sealed to prevent leakage. During active exposure, the engine was idled for 5 h/day, 6 days/week for 4 weeks. Fans maintained positive pressure (controls) and negative pressure (treatment), preventing cross-contamination of enclosures and protecting investigators. Four sets of passive, badge-type samplers were distributed across each enclosure, measuring nitrogen dioxide, sulfur dioxide and volatile organic compounds (NO 2 , SO 2 and VOCs, respectively), and were complemented by active monitors measuring VOCs and particulate matter (2.5 µm diameter, PM 2.5 ). We found that the concentrations of NO 2 , SO 2 and PM 2.5 were not different between treatment and control enclosures. Volatile organic compounds (e.g. benzene, toluene, ethylbenzene and xylenes) were approximately six times higher in the treatment enclosure than control (13.23 and 2.13 µg m -1 , respectively). In conclusion, this represents a successful, practical design for studying the effects of sub-chronic to chronic exposure to realistic mixtures of vehicle exhaust contaminants, in groups of birds. Recommended modifications for future research include a chassis dynamometer (vehicle treadmill), to better replicate driving conditions including acceleration and deceleration.

  1. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Asada, K

    1980-01-01

    Injury of plant leaf cells by sulfur dioxide-exposure is greater in day time than in night. A hypothesis is proposed that the free radical chain oxidation of sulfite is initiated by the superoxide radicals (O/sub 2//sup -/) produced in illuminated chloroplasts, and that the resulting amplified production of O/sub 2//sup -/, the hydroxyl radicals and the bisulfite radicals causes the injury of leaf tissues. In this review, the production of O/sub 2//sup -/ in illuminated chloroplasts and scavenging of O/sub 2//sup -/ by superoxide dismutase and their relation to oxidation of sulfite in chloroplasts are discussed. Superoxide dismutase in chloroplasts plays an important role in protecting leaf cells from injury by sulfur dioxide.

  2. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  3. Mass spectrometric determination of partial electron impact ionization cross sections of No, No2, and N2O from threshold up to 180 eV

    International Nuclear Information System (INIS)

    Kim, Y. B.

    1982-01-01

    Electron impact ionization of nitric oxide (NO), nitrogen dioxide (NO 2 ) and nitrous oxide (N 2 O) has been studied as a function of electron energy up to 180 eV with a double focussing mass spectrometer Varian MAT CH5 and an improved Nier type electron impact ion source. Relative partial ionization cross sections were measured for the processes NO + + 2e, NO ++ + 3e, and NO 2 + e -> NO + 2 + 2e, NO ++ + 3e and N 2 O + e -> N 2 O + + 2e. An accurate measurement of the cross section ratios q(NO 2+ /NO)/q(NO + /NO) and q(NO 2 2 /NO 2 )/q(NO + 2 /NO 2 ) has been made. Relative cross section functions were calibrated absolutely with two different normalization methods. Moreover, both metastable and collision induced dissociations of N 2 O + were studied quantitatively using the technique of decoupling the acceleration and deflection electric fields. Using the n- th root extrapolation the following ionization potentials have been derived from the cross section functions near threshold: NO + (X 1 Σ + ); NO ++ ; NO + 2 ; NO 2 ++ ; N 2 O + (X 2 π). These results are compared with previous measurements and theoretical calculations, where available. Part of the results presented have been already published in seven papers by the author. (Author)

  4. Physiological responses to exposure to carbon dioxide and human bioeffluents

    DEFF Research Database (Denmark)

    Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei

    2015-01-01

    Present paper describes physiological responses as a result of exposures to CO2 (between 500 ppm to 3,000 ppm) with and without bioeffluents. Twenty-five subjects participated. They were exposed in the climate chamber for 255 minutes in groups of five at a time. During exposure, they performed di...

  5. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  6. Internal exposure to neutron-activated {sup 56}Mn dioxide powder in Wistar rats. Pt. 2. Pathological effects

    Energy Technology Data Exchange (ETDEWEB)

    Shichijo, Kazuko; Mussazhanova, Zhanna; Niino, Daisuke; Nakashima, Masahiro; Tomonaga, Masao [Nagasaki University, Nagasaki (Japan); Fujimoto, Nariaki; Hoshi, Masaharu [Hiroshima University, Hiroshima (Japan); Uzbekov, Darkhan; Kairkhanova, Ynkar; Saimova, Aisulu; Chaizhunusova, Nailya; Sayakenov, Nurlan; Shabdarbaeva, Dariya; Aukenov, Nurlan; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Azimkhanov, Almas; Kolbayenkov, Alexander [National Nuclear Center of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Zhumadilov, Kassym [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Stepanenko, Valeriy [A. Tsyb Medical Radiological Research Center, National Medical Research Radiological Center, Ministry of Health of Russian Federation, Obninsk, Kaluga region (Russian Federation)

    2017-03-15

    To fully understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil and other materials should be considered in addition to the initial radiation directly received from the bombs. This might be important for evaluating the radiation risks to the people who moved to these cities soon after the detonations and probably inhaled activated radioactive ''dust.'' Manganese-56 is known to be one of the dominant radioisotopes produced in soil by neutrons. Due to its short physical half-life, {sup 56}Mn emits residual radiation during the first hours after explosion. Hence, the biological effects of internal exposure of Wistar rats to {sup 56}Mn were investigated in the present study. MnO{sub 2} powder was activated by a neutron beam to produce radioactive {sup 56}Mn. Rats were divided into four groups: those exposed to {sup 56}Mn, to non-radioactive Mn, to {sup 60}Co γ rays (2 Gy, whole body), and those not exposed to any additional radiation (control). On days 3, 14, and 60 after exposure, the animals were killed and major organs were dissected and subjected to histopathological analysis. As described in more detail by an accompanying publication, the highest internal radiation dose was observed in the digestive system of the rats, followed by the lungs. It was found that the number of mitotic cells increased in the small intestine on day 3 after {sup 56}Mn and {sup 60}Co exposure, and this change persisted only in {sup 56}Mn-exposed animals. Lung tissue was severely damaged only by exposure to {sup 56}Mn, despite a rather low radiation dose (less than 0.1 Gy). These data suggest that internal exposure to {sup 56}Mn has a significant biological impact on the lungs and small intestine. (orig.)

  7. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  8. Achievement report of projects in fiscal 2000 for measures on technologies to fix and utilize effectively carbon dioxide. Development of program system technologies to fix and utilize effectively carbon dioxide - researches on key technologies (Developing technology to fix carbon dioxide electrochemically); 2000 nendo program hoshiki nisanka tanso koteika yuko riyo gijutsu kaihatsu (kiban gijutsu kenkyu) seika hokokusho (kokaiyo). Nisanka tanso no denki kagakuteki koteika gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to prevent global warming, research and development has been made on a carbon dioxide fixation technology using electrochemical means. This paper summarizes the achievements in fiscal 2000. In the research of a technology to return carbon dioxide to hydrocarbon such as methane electrochemically utilizing the high concentration carbon dioxide-methanol system, basic studies were performed on electrolytic reduction of CO2 using a methanol solvent system, and experimental studies were executed on high-speed reduction of carbon dioxide using gas diffusion electrodes. In the basic property experiment on diamond electrodes, high carbon dioxide reduction activity was obtained by having copper carried in the diamond electrode. In the CO2 electrolytic reduction experiment on three-phase interface using a copper net electrode, CO, ethylene, and methane were produced, while the electrode has retained the activity for an extended period of time, and the CO2 conversion rate reached about 66%. In structuring an electrochemical carbon dioxide fixation system, specifications for the CO2 electrolytic reduction equipment were determined, design, manufacturing, and electrode materials were selected, supporting electrolytes were discussed, and the entire system flow and liquid resistance were discussed. (NEDO)

  9. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Science.gov (United States)

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... gases which contain SO2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb...

  10. Carbon dioxide (CO 2 ) utilizing strain database | Saini | African ...

    African Journals Online (AJOL)

    Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance because database of ...

  11. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  12. Bioaccumulation, Subacute Toxicity, and Tissue Distribution of Engineered Titanium Dioxide Nanoparticles in Goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    Mehmet Ates

    2013-01-01

    Full Text Available The increased use of nanosized materials is likely to result in the release of these particles into the environment. It is, however, unclear if these materials are harmful to aquatic animals. In this study, the sublethal effects of exposure of low and high concentrations of titanium dioxide nanoparticles (TiO2 NPs on goldfish (Carassius auratus were investigated. Accumulation of TiO2 NPs increased from 42.71 to 110.68 ppb in the intestine and from 4.10 to 9.86 ppb in the gills of the goldfish with increasing exposure dose from 10 to 100 mg/L TiO2 NPs. No significant accumulation in the muscle and brain of the fish was detected. Malondialdehyde as a biomarker of lipid oxidation was detected in the liver of the goldfish. Moreover, TiO2 NPs exposure inhibited growth of the goldfish. Although there was an increase (8.1% in the body weights of the goldfish for the control group, in the low and high exposure groups 1.8% increase and 19.7% decrease were measured, respectively. The results of this study contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and highlight the importance of characterization of NPs in understanding their behavior, uptake, and effects in aquatic systems and in fish.

  13. [Air pollutant exposure during pregnancy and fetal and early childhood development. Research protocol of the INMA (Childhood and Environment Project)].

    Science.gov (United States)

    Esplugues, Ana; Fernández-Patier, Rosalía; Aguilera, Inma; Iñíguez, Carmen; García Dos Santos, Saúl; Aguirre Alfaro, Amelia; Lacasaña, Marina; Estarlich, Marisa; Grimalt, Joan O; Fernández, Marieta; Rebagliato, Marisa; Sala, María; Tardón, Adonina; Torrent, Maties; Martínez, María Dolores; Ribas-Fitó, Núria; Sunyer, Jordi; Ballester, Ferran

    2007-01-01

    The INMA (INfancia y Medio Ambiente [Spanish for Environment and Childhood]) project is a cooperative research network. This project aims to study the effects of environment and diet on fetal and early childhood development. This article aims to present the air pollutant exposure protocol during pregnancy and fetal and early childhood development of the INMA project. The information to assess air pollutant exposure during pregnancy is based on outdoor measurement of air pollutants (nitrogen dioxide [NO2], volatile organic compounds [VOC], ozone, particulate matter [PM10, PM2,5 ] and of their composition [polycyclic aromatic hydrocarbons]); measurement of indoor and personal exposure (VOC and NO2); urinary measurement of a biological marker of hydrocarbon exposure (1-hydroxypyrene); and data gathered by questionnaires and geographic information systems. These data allow individual air pollutant exposure indexes to be developed, which can then be used to analyze the possible effects of exposure on fetal development and child health. This protocol and the type of study allow an approximation to individual air pollutant exposure to be obtained. Finally, the large number of participants (N = 4,000), as well as their geographic and social diversity, increases the study's potential.

  14. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  15. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  16. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    Science.gov (United States)

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-07

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  17. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  18. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Measurement of nitrogen dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J T

    1967-01-01

    The Hersch electrolytic nitrogen dioxide generator has been used to provide accurately known weights of nitrogen dioxide and hence to evaluate a calibration factor for the colorimetric reagent described by Saltaman for the determination of this gas. A method of testing whether the electrolytic generator was giving a quantitative output of NO/sub 2/ is described. The work has confirmed Saltman's value of 0.72 for the calibration factor. An assertion that the calibration factor is dependent on the concentration of nitrogen dioxide sampled, is re-examined and dismissed, the observations being re-interpreted on a simple basis. A tentative suggestion is made as to why, in recent work by Stratmann and Buck, a calibration factor equal to unity has been found. 8 references, 4 figures, 1 table.

  20. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    Science.gov (United States)

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  1. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: A cohort study.

    Science.gov (United States)

    Pedersen, Marie; Olsen, Sjurdur F; Halldorsson, Thorhallur I; Zhang, Cuilin; Hjortebjerg, Dorrit; Ketzel, Matthias; Grandström, Charlotta; Sørensen, Mette; Damm, Peter; Langhoff-Roos, Jens; Raaschou-Nielsen, Ole

    2017-11-01

    Road traffic is a main source of air pollution and noise. Both exposures have been associated with type 2 diabetes, but associations with gestational diabetes mellitus (GDM) have been studied less. We aimed to examine single and joint associations of exposure to air pollution and road traffic noise on GDM in a prospective cohort. We identified GDM cases from self-reports and hospital records, using two different criteria, among 72,745 singleton pregnancies (1997-2002) from the Danish National Birth Cohort. We modeled nitrogen dioxide (NO 2 ) and noise from road traffic (L den ) exposure at all pregnancy addresses. According to the two diagnostic criteria: the Danish clinical guidelines, which was our main outcome, and the WHO standard during recruitment period, a total of 565 and 210 women, respectively, had GDM. For both exposures no risk was evident for the common Danish criterion of GDM. A 10-μg/m 3 increase in NO 2 exposure during first trimester was, however, associated with an increased risk of WHO-GDM (adjusted odds ratio (OR)=1.24; 95% confidence interval (CI): 1.03, 1.49). The corresponding OR associated with a 10-dB higher road traffic noise level was 1.15 (0.94 to 1.18). In mutually adjusted models the OR for NO 2 remained similar 1.22 (0.98, 1.53) whereas that for road traffic noise decreased to 1.03 (0.80, 1.32). Significant associations were also observed for exposure averaged over the 2nd and 3rd trimesters and the full pregnancy. No risk was evident for the common Danish criterion of GDM. NO 2 was associated with higher risk for GDM according to the WHO criterion, which might be due to selection bias. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  3. Effect of high dose SO2 and ethylene exposure on the structure of epicuticular wax of picea pungens

    International Nuclear Information System (INIS)

    Patrie, J.; Berg, V.

    1994-01-01

    Conifers in polluted air generally exhibit accelerated degradation of epicuticular wax, but it is not clear whether the change is due to direct exposure to the pollutant or some other mechanism. Needles from blue spruce (Picea pungens) were exposed to sulfur dioxide or ethylene gas at 0 to 10,000 microliters per liter for 2 to 196 h; samples were examined by scanning electron microscopy. Neither gas caused changes in the wax crystals, although late in the growing season a fungal infestation was associated with degradation of wax structures. This supports hypotheses explaining accelerated epicuticular wax degradation by indirect effects of exposure to air pollutants. (orig.)

  4. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  5. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    Science.gov (United States)

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Tropospheric nitrogen dioxide inversions based on spectral measurements of scattered sunlight

    NARCIS (Netherlands)

    Vlemmix, T.

    2011-01-01

    This thesis describes the development of inversion methods for tropospheric nitrogen dioxide (NO2), based on ground based observations of scattered sunlight with themulti-axis differential optical absorption spectroscopy (MAX-DOAS) technique. NO2 is an atmospheric trace gas which, when present near

  7. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects

    Energy Technology Data Exchange (ETDEWEB)

    Federici, Gillian; Shaw, Benjamin J. [Ecotoxicology and Stress Biology Research Group, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Handy, Richard D. [Ecotoxicology and Stress Biology Research Group, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: rhandy@plymouth.ac.uk

    2007-10-30

    Mammalian and in vitro studies have raised concerns about the toxicity of titanium dioxide nanoparticles (TiO{sub 2} NPs), but there are very limited data on ecotoxicity to aquatic life. This paper is an observational study where we aim to describe the toxicity of TiO{sub 2} NPs to the main body systems of rainbow trout. Stock solutions of dispersed TiO{sub 2} NPs were prepared by sonication without using solvents. A semi-static test system was used to expose rainbow trout to either a freshwater control, 0.1, 0.5, or 1.0 mg l{sup -1} TiO{sub 2} NPs for up to 14 days. Exposure to TiO{sub 2} NPs caused some gill pathologies including oedema and thickening of the lamellae. No major haematological or blood disturbances were observed in terms of red and white blood cell counts, haematocrit values, whole blood haemoglobin, and plasma Na{sup +} or K{sup +} concentrations. Tissue metal levels (Na{sup +}, K{sup +}, Ca{sup 2+} and Mn) were generally unaffected. However, some exposure concentration-dependent changes in tissue Cu and Zn levels were observed, especially in the brain. Exposure to TiO{sub 2} NPs caused statistically significant decreases in Na{sup +}K{sup +}-ATPase activity (ANOVA, P < 0.05) in the gills and intestine, and a trend of decreasing enzyme activity in the brain (the latter was not statistically significant). Thiobarbituric acid reactive substances (TBARS) showed exposure concentration-dependent and statistically significant (ANOVA or Kruskal-Wallis test, P < 0.05) increases (two-fold or more) in the gill, intestine and brain, but not the liver during exposure to TiO{sub 2} NPs compared to controls. TiO{sub 2} NP exposure caused statistically significant (ANOVA, P < 0.05) increases in the total glutathione levels in the gills, but depletion of hepatic glutathione compared to controls. Total glutathione levels in the brain and intestine were unaffected. Liver cells exposed to TiO{sub 2} NPs showed minor fatty change and lipidosis, and some hepatocytes

  8. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers.

    Science.gov (United States)

    Morales, Eva; Julvez, Jordi; Torrent, Maties; de Cid, Rafael; Guxens, Mònica; Bustamante, Mariona; Künzli, Nino; Sunyer, Jordi

    2009-06-01

    The authors investigated the association of early-life exposure to indoor air pollution with neuropsychological development in preschoolers and assessed whether this association differs by glutathione-S-transferase gene (GSTP1) polymorphisms. A prospective, population-based birth cohort was set up in Menorca, Spain, in 1997-1999 (n = 482). Children were assessed for cognitive functioning (McCarthy Scales of Children's Abilities) and attention-hyperactivity behaviors (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) at age 4 years. During the first 3 months of life, information about gas appliances at home and indoor nitrogen dioxide concentration was collected at each participant's home (n = 398, 83%). Genotyping was conducted for the GSTP1 coding variant Ile105Val. Use of gas appliances was inversely associated with cognitive outcomes (beta coefficient for general cognition = -5.10, 95% confidence interval (CI): -9.92, -0.28; odds ratio for inattention symptoms = 3.59, 95% CI: 1.14, 11.33), independent of social class and other confounders. Nitrogen dioxide concentrations were associated with cognitive function (a decrease of 0.27 point per 1 ppb, 95% CI: -0.48, -0.07) and inattention symptoms (odds ratio = 1.06, 95% CI: 1.01, 1.12). The deleterious effect of indoor pollution from gas appliances on neuropsychological outcomes was stronger in children with the GSTP1 Val-105 allele. Early-life exposure to air pollution from indoor gas appliances may be negatively associated with neuropsychological development through the first 4 years of life, particularly among genetically susceptible children.

  9. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  10. Evaluation of coexposure to inorganic arsenic and titanium dioxide nanoparticles in the marine shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cordeiro, Lucas; Müller, Larissa; Gelesky, Marcos A; Wasielesky, Wilson; Fattorini, Daniele; Regoli, Francesco; Monserrat, José Marìa; Ventura-Lima, Juliane

    2016-01-01

    The acute toxicity of titanium dioxide nanoparticles (nTiO2) that occur concomitantly in the aquatic environment with other contaminants such as arsenic (As) is little known in crustaceans. The objective of the present study is to evaluate whether coexposure to nTiO2 can influence the accumulation, metabolism, and oxidative stress parameters induced by arsenic exposure in the gills and hepatopancreas of the shrimp Litopenaeus vannamei. Organisms were exposed by dissolving chemicals in seawater (salinity = 30) at nominal concentrations of 10 μg/L nTiO2 or As(III), dosed alone and in combination. Results showed that there was not a significant accumulation of As in either tissue type, but the coexposure altered the pattern of the metabolism. In the hepatopancreas, no changes were observed in the biochemical response, while in the gills, an increase in the glutamate-cysteine-ligase (GCL) activity was observed upon exposure to As or nTiO2 alone, an increase in the reduced glutathione (GSH) levels was observed upon exposure to As alone, and an increase in the total antioxidant capacity was observed upon exposure to nTiO2 or nTiO2 + As. However, these modulations were not sufficient enough to prevent the lipid damage induced by nTiO2 exposure. Our results suggest that coexposure to nTiO2 and As does not alter the toxicity of this metalloid in the gills and hepatopancreas of L. vannamei but does alter its metabolism, favoring its accumulation of organic As species considered moderately toxic.

  11. Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath

    International Nuclear Information System (INIS)

    Yao, Yingwu; Zhou, Tao; Zhao, Chunmei; Jing, Qiming; Wang, Yang

    2013-01-01

    The influence of ZrO 2 particles on fluorine-doped lead dioxide electrodeposition process on the glass carbon electrode (GCE) from lead nitrate electrolytes was studied by cyclic voltammetry (CV) and chronoamperometry (CA), coupled with the scanning electron microscope (SEM). Instantaneous nucleation mechanism is found for fluorine-doped lead dioxide electrodeposition in the presence of ZrO 2 particles according to Scharifker–Hills’ model with three-dimensional growth. The results show that the addition of ZrO 2 particles decrease the active surface area of the GCE, and the growth of the lead dioxide crystallites was obstructed

  12. LDEF fiber-optic exposure experiment No. S-0109

    International Nuclear Information System (INIS)

    Johnston, A.R.; Bergman, L.A.; Hartmayer, R.

    1992-01-01

    Ten fiber optic cable samples of different types were exposed in low-earth orbit for over 5.5 years on the Long-Duration Exposure Facility (LDEF). Four of the samples were mounted externally, and the remaining six were internal, under approximately 0.5 g cm(exp -2) of aluminum. The experiment was recovered in Jan. 1990, and laboratory evaluation of the effects of the exposure has continued since. An increase in fiber loss, presumed to be from radiation darkening, aging effects on polymer materials used in cabling, unique contamination effects on connector terminations, and micrometeoroid impacts were observed. In addition, the sample loss was measured for each sample as a function of temperature before and after the flight. All cable samples were functional, and the best exhibited no measurable change in performance, indicating that conventional fiber optic cables can perform satisfactorily in spacecraft. Experimental results obtained to date are presented and discussed

  13. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  14. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  15. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  16. Carbon Dioxide Physiological Training at NASA.

    Science.gov (United States)

    Law, Jennifer; Young, Millennia; Alexander, David; Mason, Sara S; Wear, Mary L; Méndez, Claudia M; Stanley, David; Ryder, Valerie Meyers; Van Baalen, Mary

    2017-10-01

    Astronauts undergo CO2 exposure training to recognize their symptoms that can arise acutely both on the ground and in spaceflight. This article describes acute CO2 exposure training at NASA and examines the symptoms reported by astronauts during training. In a controlled training environment, astronauts are exposed to up to 8% CO2 (60 mmHg) by a rebreathing apparatus. Symptoms are reported using a standard form. Symptom documentation forms between April 1994 and February 2012 were obtained for 130 astronauts. The number of symptoms reported per session out of the possible 24 was related to age and sex, with those older slightly more likely to report symptoms. Women reported more symptoms on average than men (men: 3.7, women: 4.7). Respiratory symptoms (90%), flushing sensation/sweating (56%), and dizziness/feeling faint/lightheadedness (43%) were the top symptoms. Only headache reached statistical significance in differences between men (13%) and women (37%) after adjustment for multiple testing. Among those with multiple training sessions, respiratory symptoms were the most consistently reported. CO2 exposure training is an important tool to educate astronauts about their potential acute CO2 symptoms. Wide interindividual and temporal variations were observed in symptoms reported during astronaut CO2 exposure training. Headache could not be relied on as a marker of acute exposure during testing since fewer than half the subjects reported it. Our results support periodic refresher training since symptoms may change over time. Further study is needed to determine the optimal interval of training to maximize symptom recognition and inform operational decisions.Law J, Young M, Alexander D, Mason SS, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017; 88(10):897-902.

  17. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    Science.gov (United States)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  18. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    Science.gov (United States)

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    Science.gov (United States)

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  20. Crystal structure of [UO2(NH35]NO3·NH3

    Directory of Open Access Journals (Sweden)

    Patrick Woidy

    2016-12-01

    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  1. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    International Nuclear Information System (INIS)

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  2. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

    International Nuclear Information System (INIS)

    Landa, Premysl; Vankova, Radomira; Andrlova, Jana; Hodek, Jan; Marsik, Petr; Storchova, Helena; White, Jason C.; Vanek, Tomas

    2012-01-01

    Highlights: ► Exposure to different nanoparticles resulted in specific changes in gene transcription. ► Nano ZnO caused most dramatic changes in Arabidopsis gene expression. ► Nano ZnO was the most toxic and up-regulated most stress-related genes. ► Fullerene soot caused significant gene expression response – mainly stress-related. ► Nano TiO 2 had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO 2 ) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO 2 exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] 2 exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  3. Indoor NO2 air pollution and lung function of professional cooks

    Directory of Open Access Journals (Sweden)

    M.A. Arbex

    2007-04-01

    Full Text Available Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046 for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF25-75, a decrease of 3.5% (P = 0.035 was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.

  4. Indoor NO2 air pollution and lung function of professional cooks.

    Science.gov (United States)

    Arbex, M A; Martins, L C; Pereira, L A A; Negrini, F; Cardoso, A A; Melchert, W R; Arbex, R F; Saldiva, P H N; Zanobetti, A; Braga, A L F

    2007-04-01

    Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF(25-75), based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF(25-75), a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF(25-75) that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.

  5. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  6. Comparative study of neurologic effects of nano-TiO2 versus SiO2 after direct intracerebral exposure in mice

    International Nuclear Information System (INIS)

    Balvay, A; Bencsik, A; Thieriet, N; Lakhdar, L

    2013-01-01

    Titanium and silicon dioxide nanoparticles (TiO 2 and SiO 2 NPs) are now in daily use in many commercial products of which food, sunscreens, toothpastes or cosmetics. However, their effects on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether direct exposition of the brain to TiO 2 and SiO 2 NPs results in alternations in nervous system function. C57Bl6 mice were exposed to 5 and 10 μg doses of TiO 2 and SiO 2 NPs through intracerebroventricular administration using a stereotaxic approach. Then the neurologic effects were investigated using motor performance parameters, measured on a rotarod at 20 rpm or at an accelerating rod (from 4 to 40 rpm). Before and after injection, motor activity is registered individually for each mouse exposed, once a week, for 8 weeks. Besides, a group of 3 mice is culled at 1, 2, 3, 4 and 8 weeks after exposure in order to study the time dependant effect on the histopathology of the brain (gliosis, inflammatory process...). Both rotarod tests (accelerating and at 20 rpm) showed that TiO 2 and SiO 2 NPs exposure could significantly impair the motor performances, even several weeks after initial acute exposure. The first examination of the brain histopathology revealed microglial activation. As it appeared to grow throughout the brain in a time dependant manner this suggests the induction of a long lasting neuroinflammation. These primary findings indicated that exposure to TiO 2 and SiO 2 NPs could possibly impair the locomotor ability and this deficit may be possibly attributed at least to an inflammatory process maintained till 8 weeks after exposure in the mouse brain. To fully investigate the neurotoxicological consequences of TiO 2 and SiO 2 NPs exposure, brain contents in these NPs will be also investigated as well as other alterations like neurotransmitter levels. These preliminary data already underline the necessity of more in vivo studies to better

  7. Comparative study of neurologic effects of nano-TiO2 versus SiO2 after direct intracerebral exposure in mice

    Science.gov (United States)

    Balvay, A.; Thieriet, N.; Lakhdar, L.; Bencsik, A.

    2013-04-01

    Titanium and silicon dioxide nanoparticles (TiO2 and SiO2 NPs) are now in daily use in many commercial products of which food, sunscreens, toothpastes or cosmetics. However, their effects on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether direct exposition of the brain to TiO2 and SiO2 NPs results in alternations in nervous system function. C57Bl6 mice were exposed to 5 and 10 μg doses of TiO2 and SiO2 NPs through intracerebroventricular administration using a stereotaxic approach. Then the neurologic effects were investigated using motor performance parameters, measured on a rotarod at 20 rpm or at an accelerating rod (from 4 to 40 rpm). Before and after injection, motor activity is registered individually for each mouse exposed, once a week, for 8 weeks. Besides, a group of 3 mice is culled at 1, 2, 3, 4 and 8 weeks after exposure in order to study the time dependant effect on the histopathology of the brain (gliosis, inflammatory process...). Both rotarod tests (accelerating and at 20 rpm) showed that TiO2 and SiO2 NPs exposure could significantly impair the motor performances, even several weeks after initial acute exposure. The first examination of the brain histopathology revealed microglial activation. As it appeared to grow throughout the brain in a time dependant manner this suggests the induction of a long lasting neuroinflammation. These primary findings indicated that exposure to TiO2 and SiO2 NPs could possibly impair the locomotor ability and this deficit may be possibly attributed at least to an inflammatory process maintained till 8 weeks after exposure in the mouse brain. To fully investigate the neurotoxicological consequences of TiO2 and SiO2 NPs exposure, brain contents in these NPs will be also investigated as well as other alterations like neurotransmitter levels. These preliminary data already underline the necessity of more in vivo studies to better characterize TiO2

  8. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  9. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  10. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure.

    Science.gov (United States)

    Duckworth, Christina G; Picariello, Codie R; Thomason, Rachel K; Patel, Krina S; Bielmyer-Fraser, Gretchen K

    2017-01-01

    Ocean acidification, caused by increasing atmospheric carbon dioxide (CO 2 ), is a growing concern in marine environments. Land-based sources of pollution, such as metals, have also been a noted problem; however, little research has addressed the combined exposure of both pollutants to coral reef organisms. In this study we examined tissue metal accumulation and physiological effects (activity of anti-oxidant enzymes, catalase and glutathione reductase) in the sea anemone, Exaiptasia pallida after exposure to increased CO 2 , as well as zinc (Zn) or nickel (Ni). After exposure to four concentrations (nominal values=control, 10, 50, 100μg/L) of Zn or Ni over 7days, both metals accumulated in the tissues of E. pallida in a concentration-dependent manner. Anemones exposed to elevated CO 2 (1000ppm) accumulated significant tissue burdens of Zn or Ni faster (by 48h) than those exposed to the same metal concentrations at ambient CO 2 . No differences were observed in catalase activity due to Zn exposure; however, 50μg/L Ni caused a significant increase in catalase activity at ambient CO 2 . No significant effect on catalase activity from CO 2 exposure alone was observed. Glutathione reductase activity was affected by increased Zn or Ni exposure and those effects were influenced by increased CO 2 . Results of this study provide insight into the toxic mechanisms and environmental implications of CO 2 and Zn or Ni exposure to the cnidarian E. pallida. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Science.gov (United States)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  12. Titanium dioxide use (TiO2) in cement matrix as a photocatalyst of nitrogen oxides (NOx)

    International Nuclear Information System (INIS)

    Casagrande, C.A.; Hotza, D.; Repette, W.L.; Jochem, L.F.

    2012-01-01

    The use of titanium dioxide (TiO 2 ) in the photodegradation of nitrogen oxides (NO x ) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO 2 in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NO x tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NO x gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NO x degradation, presenting itself as a promising technique to control environmental pollution

  13. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    Chronic exposure to elevated levels of dissolved carbon dioxide (CO2) has been linked to reduced growth, physiological disturbances and negative health outcomes in intensively reared fish. Although pumping to a degassing tower can lower concentrations of dissolved CO2 in water recirculation aquacult...

  14. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide

    Science.gov (United States)

    Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.

    A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.

  15. Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Gold, Diane R.; Schwartz, Joel D.; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2013-01-01

    Rationale: Short-term exposure to ambient air pollution has been associated with lower lung function. Few studies have examined whether these associations are detectable at relatively low levels of pollution within current U.S. Environmental Protection Agency (EPA) standards. Objectives: To examine exposure to ambient air pollutants within EPA standards and lung function in a large cohort study. Methods: We included 3,262 participants of the Framingham Offspring and Third Generation cohorts living within 40 km of the Harvard Supersite monitor in Boston, Massachusetts (5,358 examinations, 1995–2011) who were not current smokers, with previous-day pollutant levels in compliance with EPA standards. We compared lung function (FEV1 and FVC) after previous-day exposure to particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the “moderate” range of the EPA Air Quality Index to exposure in the “good” range. We also examined linear relationships between moving averages of pollutant concentrations 1, 2, 3, 5, and 7 days before spirometry and lung function. Measurements and Main Results: Exposure to pollutant concentrations in the “moderate” range of the EPA Air Quality Index was associated with a 20.1-ml lower FEV1 for PM2.5 (95% confidence interval [CI], −33.4, −6.9), a 30.6-ml lower FEV1 for NO2 (95% CI, −60.9, −0.2), and a 55.7-ml lower FEV1 for O3 (95% CI, −100.7, −10.8) compared with the “good” range. The 1- and 2-day moving averages of PM2.5, NO2, and O3 before testing were negatively associated with FEV1 and FVC. Conclusions: Short-term exposure to PM2.5, NO2, and O3 within current EPA standards was associated with lower lung function in this cohort of adults. PMID:24200465

  16. The version 3 OMI NO2 standard product

    Directory of Open Access Journals (Sweden)

    N. A. Krotkov

    2017-09-01

    Full Text Available We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI standard nitrogen dioxide (NO2 products (SPv3. The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/. The major improvements include (1 a new spectral fitting algorithm for NO2 slant column density (SCD retrieval and (2 higher-resolution (1° latitude and 1.25° longitude a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI chemistry–transport model with yearly varying emissions to calculate air mass factors (AMFs required to convert SCDs into vertical column densities (VCDs. The new SCDs are systematically lower (by ∼ 10–40 % than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.

  17. Carbon dioxide (CO2) capture and storage : Canadian market development

    International Nuclear Information System (INIS)

    Hendriks, A.

    2006-01-01

    Carbon dioxide (CO 2 ) enhanced oil recovery (EOR) is used to extend the life of light oil reservoirs in Canada. An additional 13 per cent of original oil in place is typically recovered using CO 2 flooding processes. However, a carbon capture and storage (CCS) market is needed in order to commercialize CO 2 flooding technologies. CO 2 can be obtained from naturally-occurring accumulations in underground reservoirs, electrical and coal-fired generation plants, petrochemical facilities, and upstream oil and gas processing facilities. CO 2 is sequestered in EOR processes, in sour gas disposal processes, solvent recovery processes, and in coalbed methane (CBM) extraction. It is also disposed in depleted fields and aquifers. While CCS technologies are mature, project economics remain marginal. However, CCS in EOR is commercially feasible at current high oil prices. No transportation infrastructure is in place to transport sources of CO 2 in the high volumes needed to establish a market. While governments have created a favourable public policy environment for CCS, governments will need to address issues related to infrastructure, public perception of CCS, and stakeholder engagement with CCS projects. It was concluded that CCS and CO 2 flooding techniques have the capacity to reduce greenhouse gas (GHG) emissions while helping to sustain light oil production. tabs., figs

  18. NO2 column changes induced by volcanic eruptions

    Science.gov (United States)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  19. Estimating Surface NO2 and SO2 Mixing Ratios from Fast-Response Total Column Observations and Potential Application to Geostationary Missions

    Science.gov (United States)

    Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...

  20. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  1. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    Science.gov (United States)

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  2. Spatial variations in estimated chronic exposure to traffic-related air pollution in working populations: A simulation

    Directory of Open Access Journals (Sweden)

    Cloutier-Fisher Denise

    2008-07-01

    Full Text Available Abstract Background Chronic exposure to traffic-related air pollution is associated with a variety of health impacts in adults and recent studies show that exposure varies spatially, with some residents in a community more exposed than others. A spatial exposure simulation model (SESM which incorporates six microenvironments (home indoor, work indoor, other indoor, outdoor, in-vehicle to work and in-vehicle other is described and used to explore spatial variability in estimates of exposure to traffic-related nitrogen dioxide (not including indoor sources for working people. The study models spatial variability in estimated exposure aggregated at the census tracts level for 382 census tracts in the Greater Vancouver Regional District of British Columbia, Canada. Summary statistics relating to the distributions of the estimated exposures are compared visually through mapping. Observed variations are explored through analyses of model inputs. Results Two sources of spatial variability in exposure to traffic-related nitrogen dioxide were identified. Median estimates of total exposure ranged from 8 μg/m3 to 35 μg/m3 of annual average hourly NO2 for workers in different census tracts in the study area. Exposure estimates are highest where ambient pollution levels are highest. This reflects the regional gradient of pollution in the study area and the relatively high percentage of time spent at home locations. However, for workers within the same census tract, variations were observed in the partial exposure estimates associated with time spent outside the residential census tract. Simulation modeling shows that some workers may have exposures 1.3 times higher than other workers residing in the same census tract because of time spent away from the residential census tract, and that time spent in work census tracts contributes most to the differences in exposure. Exposure estimates associated with the activity of commuting by vehicle to work were

  3. Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system

    Science.gov (United States)

    R.B. Muntifering; A.H. Chappelka; J.C. Lin; D.F. Karnosky; G.L. Somers

    2006-01-01

    Tropospheric ozone (O3) and carbon dioxide (CO2) are significant drivers of plant growth and chemical composition. We hypothesized that exposure to elevated concentrations of O3 and CO2, singly and in combination, would modify the chemical composition of Trifolium...

  4. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  5. Titanium dioxide nanoparticles: a review of current toxicological data.

    Science.gov (United States)

    Shi, Hongbo; Magaye, Ruth; Castranova, Vincent; Zhao, Jinshun

    2013-04-15

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.

  6. Titanium dioxide nanoparticles: a review of current toxicological data

    Science.gov (United States)

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  7. [Multiple mere exposure effect: category evaluation measured in the Go/No-go association task (GNAT)].

    Science.gov (United States)

    Kawakami, Naoaki; Yoshida, Fujio

    2011-12-01

    The effect on likability of multiple subliminal exposures to the same person was investigated. Past studies on the mere exposure effect indicated a correlation between the frequency of repeated exposure to the same stimulus and likability. We proposed that exposure to various stimuli of the same person would have a stronger effect on likability. Participants were subliminally exposed to photographs of a person's face taken from seven angles (multi-angle-exposure) three times each (Experiment 1), or photographs of a person with seven facial expressions (multi-expression-exposure) three times each (Experiment 2). Then, the likability toward the exposed person was measured using the Go/No-go Association Task. The results indicated that the effect of the multiple exposures from various angles was equivalent to exposure to only one full-face photograph shown 21 times (Experiment 1). Moreover, likability was significantly higher in the case of exposure to various facial expressions than for exposure to only a single facial expression (Experiment 2). The results suggest that exposure to various stimuli in a category is more effective than repeated exposure to a single stimulus for increasing likability.

  8. A Decade of Change in NO

    NARCIS (Netherlands)

    McLinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, Folkert; Adams, Cristen

    2016-01-01

    A decade (2005-2014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide (NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the

  9. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis

    International Nuclear Information System (INIS)

    Della Torre, Camilla; Balbi, Teresa; Grassi, Giacomo; Frenzilli, Giada; Bernardeschi, Margherita; Smerilli, Arianna; Guidi, Patrizia; Canesi, Laura; Nigro, Marco; Monaci, Fabrizio; Scarcelli, Vittoria; Rocco, Lucia; Focardi, Silvano; Monopoli, Marco; Corsi, Ilaria

    2015-01-01

    Highlights: • Nano-TiO 2 modulate CdCl 2 cellular responses in gills of marine mussel. • Nano-TiO 2 reduced CdCl 2 -induced effects by lowering abcb1 m-RNA and GST activity. • Nano-TiO 2 reduced Cd accumulation in mussel’s gills but not in whole soft tissue. • Higher accumulation of Ti in the presence of CdCl 2 was observed in gills. - Abstract: We investigated the influence of titanium dioxide nanoparticles (nano-TiO 2 ) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO 2 , CdCl 2 , alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO 2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO 2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO 2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO 2 in sea water media

  10. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study

    DEFF Research Database (Denmark)

    Aguilera, Inmaculada; Pedersen, Marie; Garcia-Esteban, Raquel

    2013-01-01

    the first 12-18 months of age in a Spanish birth cohort of 2,199 infants. METHODS: We obtained parentally reported information on doctor-diagnosed lower respiratory tract infections (LRTI) and parental reports of wheezing, eczema, and ear infections. We estimated individual exposures to nitrogen dioxide (NO...... and lower respiratory tract infections in infants.......BACKGROUND: Prenatal and early-life periods may be critical windows for harmful effects of air pollution on infant health. OBJECTIVES: We studied the association of air pollution exposure during pregnancy and the first year of life with respiratory illnesses, ear infections, and eczema during...

  11. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  12. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, Siti Umairah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Ismail, Siti Norazian, E-mail: fitrah@salam.uitm.edu.my; Hashib, Syafiza Abd, E-mail: fitrah@salam.uitm.edu.my [Faculty of Chemical Engineering, UniversitiTeknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Naim, M. Nazli [Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  13. [Individual exposure to air pollution in urban areas: the example of Marseille].

    Science.gov (United States)

    Grimaldi, Frédérique; Viala, Alain

    2007-01-01

    We examined the exposure of an urban population to the following air pollutants, in the home and outdoors: nitrogen dioxide, benzene and its derivative BTXE, carbon monoxide, ozone, aldehydes and particulate matter (PM)2,5. Measurements were made continuously during 48-hour periods in summer and in winter, in non-smoking volunteers, using passive and active samplers and appropriate analytical methods. NO2 concentrations were relatively low (lower in summer than in winter). Individual overall exposure correlated strongly with levels in the home. Benzene levels were high both outdoors and in the home, and were higher in winter than in summer; 47% of the volunteers were exposed to mean values up to 5 microg x m(-3) (annual mean value outdoors). Benzene derivative levels were also higher in winter than in summer. Personal exposure to CO was low and related to determinants such as trafic and environmental tobacco smoke (ETS). Mean concentrations of O3 were low in winter and higher in summer, owing to higher outdoor photochemical pollution. The most abundant aldehydes were formaldehyde, acetaldehyde and acrolein ; personal exposure was low. Overall personal exposure to formaldehyde correlated with concentrations in the home. PM2,5 reached high levels in the home in winter and outdoors in summer.

  14. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    Directory of Open Access Journals (Sweden)

    N. A. Krotkov

    2016-04-01

    Full Text Available The Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2 and sulfur dioxide (SO2, since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper, we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2015, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal-fired power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012–2015, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2015. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved valuable in documenting rapid changes in air

  15. Conditions for a partial summation of SO2 and NO2 hazardous effect in gas emission regulations

    Science.gov (United States)

    Sokolov, A. K.

    2017-12-01

    In order to provide environmental safety, the concentrations of SO2 and SO2 in the surface layer of atmospheric air should not exceed corresponding one-time values accepted for maximum permissible concentrations (MPCs). The only document that provides a normative calculation of hazardous substance dispersion in the atmospheric air up to the present time is presented by regulations OND-86. It has established that, in taking into account the summation (unidirectionality) of hazardous action of substances (including SO2 and NO2 gases), the sum of their relative concentrations should not exceed unity. A novel standard GN 2.1.6.2326-08 stipulates that "nitrogen dioxide and sulfur dioxide have a partial summation of action; therefore the sum of their relative concentrations should not exceed 1.6." This paper is devoted to analyzing the calculation of the summation of action for SO2 and NO2 gases and proving that the condition established in GN 2.1.6.2326-08 is not quite correct. According to the condition required by standard GN 2.1.6.2326-08, it turns out that, for some combinations of concentrations, the hazardous effect of gases is not added together, but one gas compensates an effect of the other, which contradicts the points of OND-86. For example, at SO2 and NO2 concentrations amounting to 0.6 and 0.04, respectively, the condition required by standard GN 2.1.6.2326-08 is satisfied, although the concentration of SO2 exceeds a normatively fixed value of MPC = 0.5. The graphical analysis of a concentration region for SO2 and NO2 gases clearly shows the areas where the condition required by standard GN 2.1.6.2326-08 is satisfied, but the environmental safety according to OND-86 is not provided. Recommendations are proposed for the correction of requirements established by standard GN 2.1.6.2326-08.

  16. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  17. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Science.gov (United States)

    2013-04-19

    ... Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO 2 ) Emissions From... (IBR) the federal deferral of, until July 21, 2014, PSD applicability to biogenic carbon dioxide (CO 2... decomposition of biologically-based materials other than fossil fuels and mineral sources of carbon. Examples of...

  18. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River

    Science.gov (United States)

    Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo

    2018-04-01

    In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that

  19. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  20. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  1. Toxicity and Fate Comparison between Several Brass and Titanium Dioxide Powders

    Science.gov (United States)

    1993-07-01

    the entire gut without showing any apparent effects . 14. UBJET TEMS1I. NUMBER OF PAGES 27 Daphnia Algae EC50 Aquatic toxicity 11T.PRICE CODE 9...levels of soluble copper and zinc in solution. 3. RESULTS The titanium dioxide ( TiO2 ) materials did not show any apparent toxic effects to daphnia up to...The extended exposure did not show any apparent toxic effects . Long term effects on aquatic org.rnisms exposed to TiO2 are not known. It is apparent

  2. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.

    Science.gov (United States)

    Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S

    2015-04-01

    Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.

  3. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  4. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  5. N,N'-Dimethylthiourea dioxide formation from N,N'-dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems

    International Nuclear Information System (INIS)

    Curtis, W.E.; Muldrow, M.E.; Parker, N.B.; Barkley, R.; Linas, S.L.; Repine, J.E.

    1988-01-01

    The authors hypothesized that measurement of a specific product from reaction of N,N'-dimethylthiourea (Me 2 TU) and H 2 O 2 would provide a good indication of the H 2 O 2 scavenging and protection seen after addition of Me 2 TU to biological systems. They found that addition of H 2 O 2 to Me 2 TU yielded a single stable product, Me 2 TU dioxide. Me 2 TU dioxide formation correlated with Me 2 TU consumption as a function of added H 2 O 2 concentration and was prevented by simultaneous addition of catalase (but not boiled catalase), superoxide dismutase, dimethyl sulfoxide, mannitol, or sodium benzoate. Me 2 TU dioxide formation, Me 2 TU consumption, and H 2 O 2 concentration increases occurred in mixtures containing phorbol 12-myristate 13-acetate (PMA) and normal human neutrophils but not in mixtures containing PMA and neutrophils from patients with chronic granulomatous disease or in mixtures containing PMA and normal neutrophils and catalase. Me 2 TU dioxide formation also occurred in isolated rat lungs perfused with Me 2 TU and H 2 O 2 but not in lungs perfused with Me 2 TU and elastase, histamine, or oleic acid. In contrast, Me 2 TU dioxide formation did not occur after exposure of Me 2 TU to 60 Co-generated hydroxyl radical or hypochlorous acid in the presence of catalase. The results indicate that reaction of Me 2 TU with H 2 O 2 selectively forms Me 2 TU may be useful for assessing the presence and significance of H 2 O 2 in biological systems

  6. Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection

    Science.gov (United States)

    Mane, A. A.; Suryawanshi, M. P.; Kim, J. H.; Moholkar, A. V.

    2017-05-01

    The V2O5 nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl3) solution of different concentrations. The effect of solution concentration on the physicochemical and NO2 gas sensing properties of sprayed V2O5 nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V2O5 having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V2O5. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO2 gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO2 gas on the V2O5 nanorods is discussed.

  7. Titanium dioxide in our everyday life; is it safe?

    International Nuclear Information System (INIS)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Titanium dioxide (TiO 2 ) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO 2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO 2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO 2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO 2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO 2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO 2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO 2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO 2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO 2 nanoparticles should be used with great care

  8. Titanium dioxide in our everyday life; is it safe?

    Science.gov (United States)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Background Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Conclusions Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care. PMID:22933961

  9. Experimental and modeling investigations of solubility and saturated liquid densities and viscosities for binary systems (methane +, ethane +, and carbon dioxide + 2-propanol)

    International Nuclear Information System (INIS)

    Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2013-01-01

    Highlights: • Solubilities of CH 4 , C 2 H 6 , and CO 2 in 2-propanol and saturated density and viscosity. • Solubility of C 2 H 6 in 2-propanol is higher than CH 4 and CO 2 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. -- Abstract: Solubilities of methane, ethane, and carbon dioxide in 2-propanol have been measured at the temperatures (303 and 323) K and at the pressures up to 6 MPa using an in-house designed PVT apparatus. The saturated liquid properties, density and viscosity, were also measured in each experiment. Prior to the phase equilibrium measurements, the density and viscosity of pure 2-propanol were measured at the temperatures (303 and 323) K over the pressure range (0.1 to 10) MPa. The dissolution of carbon dioxide in 2-propanol caused a decline in the viscosity of saturated liquid phase while an increase in the density of gas-expanded liquid was observed. The viscosity-pressure trends for methane- and ethane-saturated liquid viscosities were similar to carbon dioxide, but the saturated liquid densities decreased with the dissolution of methane and ethane in 2-propanol. Solubility increased with pressure and decreased with temperature for all compressed gases (methane, ethane and carbon dioxide). The experimental data were well correlated using Soave–Redlich–Kwong and Peng–Robinson equations of state. The solubilities and saturated liquid densities were well represented with both equations of state, and there is no superior equation of state for the modeling of the phase compositions and saturated liquid densities

  10. Posttranslational modification of bioaerosol protein by common gas pollutants: NO2 and O3

    Science.gov (United States)

    Abdullahi Mahmood, Marliyyah; Bloss, William; Pope, Francis

    2016-04-01

    Air pollution can exacerbate several medical conditions, for example, hay fever and asthma. The global incidence of hay fever has been rising for decades; however, the underlying reasons behind this rise remain unclear. It is hypothesized that the exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO2) and ozone (O3), increases the allergenicity of the pollen and thus increases hay fever incidence (Reinmuth-Selzle et al., 2014, Franze, et al., 2005). Since atmospheric pollutants often have greater concentrations within urban areas (in particular NO2) the hypothesis suggests that greater allergenicity should occur in urban areas. Certainly, several studies do suggest higher hay fever incidence within urban areas compared to rural areas (Schröder et al., 2015). Previous published work suggests a link between increased allergies and changes in the chemical composition of pollen protein via posttranslational modification of the protein (Reinmuth-Selzle et al., 2014). This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically relevant exposures of gas phase NO2, O3 and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer). Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular nitration that occurs upon tyrosine residues and nitrosylation on cysteine residues. These modifications may affect human immune response to the pollen protein, which may suggest a possible reason for increased allergies in reaction to such chemically altered protein. Quantification of the relative degree of PTMs, from a variety of

  11. Evaluation of exposure limits to toxic gases for nuclear reactor control room operators

    International Nuclear Information System (INIS)

    Mahlum, D.D.; Sasser, L.B.

    1991-07-01

    We have evaluated ammonia, chlorine, Halon (actually a generic name for several halogenated hydro-carbons), and sulfur dioxide for their possible effects during an acute two-minute exposure in order to derive recommendations for maximum exposure levels. To perform this evaluation, we conducted a search to find the most pertinent literature regarding toxicity in humans and in experimental animals. Much of the literature is at least a decade old, not an unexpected finding since acute exposures are less often performed now than they were a few years ago. In most cases, the studies did not specifically examine the effects of two-minute exposures; thus, extrapolations had to be made from studies of longer-exposure periods. Whenever possible, we gave the greatest weight to human data, with experimental animal data serving to strengthen the conclusion arrived at from consideration of the human data. Although certain individuals show hypersensitivity to materials like sulfur dioxide, we have not attempted to factor this information into the recommendations. After our evaluation of the data in the literature, we held a small workshop. Major participants in this workshop were three consultants, all of whom were Diplomates of the American Board of Toxicology, and staff from the Nuclear Regulatory Commission. Our preliminary recommendations for two-minute exposure limits and the rationale for them were discussed and consensus reached on final recommendations. These recommendations are: (1) ammonia-300 to 400-ppm; (2) chlorine-30 ppm; (3) Halon 1301-5%; Halon 1211-2%; and (4) sulfur dioxide-100 ppm. Control room operators should be able to tolerate two-minute exposures to these levels, don fresh-air masks, and continue to operate the reactor if the toxic material is eliminated, or safely shut down the reactor if the toxic gas remains. 96 refs., 9 tabs

  12. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  13. Influence of shape and dispersion media of titanium dioxide nanostructures on microvessel network and ossification.

    Science.gov (United States)

    Freyre-Fonseca, Verónica; Medina-Reyes, Estefany I; Téllez-Medina, Darío I; Paniagua-Contreras, Gloria L; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Delgado-Buenrostro, Norma L; Flores-Flores, José O; López-Villegas, Edgar O; Gutiérrez-López, Gustavo F; Chirino, Yolanda I

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO 2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO 2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO 2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NARCIS (Netherlands)

    Lin, J.T.; Liu, M.Y.; Xin, J.Y.; Boersma, K.F.; Spurr, R.; Zhang, Q.; Martin, R.

    2015-01-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the

  15. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. The synthesis of no-carrier-added [11C]urea from [11C]carbon dioxide and application to [11C]uracil synthesis

    International Nuclear Information System (INIS)

    Chakraborty, P.K.; Mangner, T.J.; Chugani, H.T.

    1997-01-01

    No-carrier-added [ 11 C]urea has been synthesized by bubbling cyclotron-produced [ 11 C]-carbon dioxide directly into a tetrahydrofuran solution of lithium bis(trimethylsilyl)amide, followed by hydrolysis of the C-11 labeled adduct with aqueous ammonium chloride. Using this simple, one-pot method, [ 11 C]urea was produced in 55-70% radiochemical yield (decay-corrected) in 16 min following end-of-bombardment (or in 10 min following the introduction of the [ 11 C]carbon dioxide. The [ 11 C]urea thus produced was converted to [ 11 C]uracil (carrier-added) in 40-75% decay-corrected radiochemical yield by condensation with diethyl malate in presence of fuming sulfuric acid. (author)

  17. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat.

    Science.gov (United States)

    Farrell, Thomas P; Magnuson, Berna

    2017-08-01

    Titanium dioxide (TiO 2 ) is a white color additive that has a long history of global approval and use in food. There is, however, considerable confusion regarding the applicability of the biological effects of novel, engineered, nano-sized forms of TiO 2 developed for nonpigmentary applications to the safety of oral exposure to food grade TiO 2 pigment. The objective of this study was to assess the absorption, distribution, and routes of excretion in rats after oral exposure to food grade TiO 2 . Four different grades of TiO 2 (200 ppm) or control (0 ppm) diets were fed to rats for 7 consecutive days, followed by control diet only for 1, 24, or 72 h. Concentrations of titanium in liver, kidney and muscle were mainly below the limit of detection (titanium above the LOD were in the range of 0.1 to 0.3 mg/kg wet weight for all groups. Whole blood concentrations of titanium were titanium was equivalent to titanium in tissues following consumption of diets containing 200 ppm food grade TiO 2 . No differences in systemic absorption of the 4 forms of TiO 2 were observed indicating that the bioavailability of TiO 2 is consistently low for the range of particle sizes and morphologies examined in this study. © 2017 Institute of Food Technologists®.

  18. Conversion of no-carrier-added [11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-labelled aromatic ketones

    International Nuclear Information System (INIS)

    Zeisler, S.K.; Nader, M.; Theobald, A.; Oberdorfer, F.

    1997-01-01

    A new method for the efficient conversion of no-carrier-added [ 11 C]carbon dioxide into [ 11 C]carbon monoxide is described. [ 11 C]Carbon dioxide produced by proton bombardment of ultra high purity nitrogen is pre-concentrated in a cryo trap and then passed through a quartz tube filled with a mesh of thin molybdenum wire heated to 850 o C. [ 11 C]Carbon dioxide readily reacts with molybdenum to form [ 11 C]carbon monoxide and molybdenum(IV) oxide. The latter also reduces carbon dioxide to carbon monoxide and helps improve the performance of the converter. [ 11 C]Carbon monoxide is purified from remaining [ 11 C]carbon dioxide and collected in a small silica trap from which it is eluted into a reaction mixture for the palladium-mediated synthesis of a 11 C-labelled aromatic ketone. Radiochemical yields of up to 81% (decay-corrected) for [ 11 C]carbon monoxide were obtained. Radiochemical purity and specific radioactivity of both [ 11 C]carbon monoxide and the 11 C-labelled ketone are sufficient for nuclear medical studies with PET. (Author)

  19. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  20. Dynamics of charge carrier trapping in NO 2 sensors based on ZnO field-effect transistors

    NARCIS (Netherlands)

    Andringa, A.-M.; Vlietstra, N.; Smits, E.C.P.; Spijkman, M.-J.; Gomes, H.L.; Klootwijk, J.H.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    Nitrogen dioxide (NO 2) detection with ZnO field-effect transistors is based on charge carrier trapping. Here we investigate the dynamics of charge trapping and recovery as a function of temperature by monitoring the threshold voltage shift. The threshold voltage shifts follow a

  1. Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced nephrotoxicity in animals. However, the nephrotoxic multiple molecular mechanisms are not clearly understood. Methods Mice were exposed to 2.5, 5 and 10 mg/kg TiO2 NPs by intragastric administration for 90 consecutive days, and their growth, element distribution, and oxidative stress in kidney as well as kidney gene expression profile were investigated using whole-genome microarray analysis technique. Results Our findings suggest that TiO2 NPs resulted in significant reduction of renal glomerulus number, apoptosis, infiltration of inflammatory cells, tissue necrosis or disorganization of renal tubules, coupled with decreased body weight, increased kidney indices, unbalance of element distribution, production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse kidney tissue. Furthermore, microarray analysis showed significant alterations in the expression of 1, 246 genes in the 10 mg/kg TiO2 NPs-exposed kidney. Of the genes altered, 1006 genes were associated with immune/inflammatory responses, apoptosis, biological processes, oxidative stress, ion transport, metabolic processes, the cell cycle, signal transduction, cell component, transcription, translation and cell differentiation, respectively. Specifically, the vital up-regulation of Bcl6, Cfi and Cfd caused immune/ inflammatory responses, the significant alterations of Axud1, Cyp4a12a, Cyp4a12b, Cyp4a14, and Cyp2d9 expression resulted in severe oxidative stress, and great suppression of Birc5, Crap2, and Tfrc expression led to renal cell apoptosis. Conclusions Axud1, Bcl6, Cf1, Cfd, Cyp4a12a, Cyp4a12b, Cyp2d9, Birc5, Crap2, and Tfrc may be potential biomarkers of kidney toxicity caused by TiO2 NPs exposure. PMID:23406204

  2. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marr, I.; Moos, R., E-mail: functional.materials@uni-bayreuth.de [Department of Functional Materials, University of Bayreuth, Bayreuth 95440 (Germany); Neumann, K.; Thelakkat, M. [Department of Macromolecular Chemistry I, Applied Functional Polymers, University of Bayreuth, Bayreuth 95440 (Germany)

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  3. Eddy Covariance Fluxes of the NO-O3-NO2 Triad above the Forest Canopy at the ATTO Site in the Amazon Basin

    Science.gov (United States)

    Tsokankunku, A.; Wolff, S.; Berger, M.; Zelger, M.; Dlugi, R. J. W.; Andreae, M. O.; Sörgel, M.

    2017-12-01

    Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are therefore often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, therefore resulting in oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the biosphere-atmosphere exchange fluxes of these species is important for atmospheric chemistry and ecosystem research. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments with the required high time resolution. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, because of the absence of nearby anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope GmbH). Additionally, a suite of micrometeorological instruments was installed, including a profile of 3-dimensional sonic anemometers and meteorological sensors. Vertical concentration profile measurements of NO, NO2 and O

  4. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  5. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  6. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  7. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  8. Carbon dioxide issue: A perspective for the energy research laboratories. Report No. ERL 90-46(TR)

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C J; Read, P J

    1990-01-01

    This document presents a major revision of CANMET's Energy Research Laboratories' (ERL) view on atmospheric emissions of carbon dioxide from its original policy in early 1989. The report covers ERL's mandate to deal with pollutants caused by the production, upgrading and utilization of fuels, concentrating on carbon dioxide emissions, and identifies new and improved fuel utilization and energy conversion technologies. It indicates strategies for implementing these technologies to decrease atmospheric pollution, toxic wastes and carbon dioxide emissions in an economically acceptable way; explains what ERL has already achieved; and presents proposals to expand ERL's work to lead Canada in the development of environmentally sound fuel technologies. Strategies not considered include improvement in motor vehicle efficiency and the enhancement of natural biological carbon dioxide absorbers by preserving forests and coral reefs and other crustaceans in oceans.

  9. Personal exposure to PM2.5 and biomarkers of DNA damage

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Hertel, Ole

    2003-01-01

    Ambient particulate air pollution assessed as outdoor concentrations of particulate matter PM(2.5)) has been associated with an increased cancer risk. However, outdoor PM(2.5) concentrations may not be the best measure of the individual particle exposure that is a sum...... of many sources besides outdoor particle levels, e.g., environmental tobacco smoke and cooking. We measured personal PM(2.5) and black smoke exposure in 50 students four times over 1 year and analyzed for biomarkers of different types of DNA damages. Ambient PM(2.5) concentrations were also measured...... collections were analyzed for 8-oxodG and 1-hydroxypyrene. Personal PM(2.5) exposure was found to be a predictor of 8-oxodG in lymphocyte DNA with an 11% increase in 8-oxodG/10 microg/m(3) increase in personal PM(2.5) exposure (P = 0.007). No other associations between exposure markers and biomarkers could...

  10. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler.

    Science.gov (United States)

    Liu, Youcheng; Woodin, Mark A; Smith, Thomas J; Herrick, Robert F; Williams, Paige L; Hauser, Russ; Christiani, David C

    2005-09-01

    The health effects of exposure to vanadium in fuel-oil ash are not well described at levels ranging from 10 to 500 microg/m(3). As part of a larger occupational epidemiologic study that assessed these effects during the overhaul of a large oil-fired boiler, this study was designed to quantify boilermakers' exposures to fuel-oil ash particles, metals, and welding gases, and to identify determinants of these exposures. Personal exposure measurements were conducted on 18 boilermakers and 11 utility workers (referents) before and during a 3-week overhaul. Ash particles < 10 microm in diameter (PM(10), mg/m(3)) were sampled over full work shifts using a one-stage personal size selective sampler containing a polytetrafluoroethylene filter. Filters were digested using the Parr bomb method and analyzed for the metals vanadium (V), nickel (Ni), iron (Fe), chromium (Cr), cadmium (Cd), lead (Pb), manganese (Mn), and arsenic (As) by inductively coupled plasma mass spectrometry. Nitrogen dioxide (NO(2)) was measured with an Ogawa passive badge-type sampler and ozone (O(3)) with a personal active pump sampler.Time-weighted average (TWA) exposures were significantly higher (p < 0.05) for boilermakers than for utility workers for PM(10) (geometric mean: 0.47 vs. 0.13 mg/m(3)), V (8.9 vs. 1.4 microg/m(3)), Ni (7.4 vs. 1.8 microg/m(3)) and Fe (56.2 vs. 11.2 microg/m(3)). Exposures were affected by overhaul time periods, tasks, and work locations. No significant increases were found for O(3) or NO(2) for boilermakers or utility workers regardless of overhaul period or task group. Fuel-oil ash was a major contributor to boilermakers' exposure to PM(10) and metals. Vanadium concentrations sometimes exceeded the 2003 American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value.

  11. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Science.gov (United States)

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide (SO 2 ) National Ambient Air Quality Standard (NAAQS). The EPA is issuing this rule to identify areas...

  12. Experience with novel technologies for direct measurement of atmospheric NO2

    Science.gov (United States)

    Hueglin, Christoph; Hundt, Morten; Mueller, Michael; Schwarzenbach, Beat; Tuzson, Bela; Emmenegger, Lukas

    2017-04-01

    Nitrogen dioxide (NO2) is an air pollutant that has a large impact on human health and ecosystems, and it plays a key role in the formation of ozone and secondary particulate matter. Consequently, legal limit values for NO2 are set in the EU and elsewhere, and atmospheric observation networks typically include NO2 in their measurement programmes. Atmospheric NO2 is principally measured by chemiluminescence detection, an indirect measurement technique that requires conversion of NO2 into nitrogen monoxide (NO) and finally calculation of NO2 from the difference between total nitrogen oxides (NOx) and NO. Consequently, NO2 measurements with the chemiluminescence method have a relatively high measurement uncertainty and can be biased depending on the selectivity of the applied NO2 conversion method. In the past years, technologies for direct and selective measurement of NO2 have become available, e.g. cavity attenuated phase shift spectroscopy (CAPS), cavity enhanced laser absorption spectroscopy and quantum cascade laser absorption spectrometry (QCLAS). These technologies offer clear advantages over the indirect chemiluminescence method. We tested the above mentioned direct measurement techniques for NO2 over extended time periods at atmospheric measurement stations and report on our experience including comparisons with co-located chemiluminescence instruments equipped with molybdenum as well as photolytic NO2 converters. A still open issue related to the direct measurement of NO2 is instrument calibration. Accurate and traceable reference standards and NO2 calibration gases are needed. We present results from the application of different calibration strategies based on the use of static NO2 calibration gases as well as dynamic NO2 calibration gases produced by permeation and by gas-phase titration (GPT).

  13. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice

    International Nuclear Information System (INIS)

    Wang, Yunxia; Song, Qiling; Frei, Michael; Shao, Zaisheng; Yang, Lianxin

    2014-01-01

    The effects of CO 2 and/or O 3 elevation on rice grain quality were investigated in chamber experiments with gas fumigation performed from transplanting until maturity in 2011 and 2012. Compared with the control (current CO 2 and O 3 concentration), elevated CO 2 caused a tendency of an increase in grain chalkiness and a decrease in mineral nutrient concentrations. In contrast, elevated O 3 significantly increased grain chalkiness and the concentrations of essential nutrients, while changes in starch pasting properties indicated a trend of deterioration in the cooking and eating quality. In the combination of elevated CO 2 and O 3 treatment, only chalkiness degree was significantly affected. It is concluded that the O 3 concentration projected for the coming few decades will have more substantial effects on grain quality of Chinese hybrid rice than the projected high CO 2 concentration alone, and the combination of two gases caused fewer significant changes in grain quality than individual gas treatments. - Highlights: • We investigated the effects of carbon dioxide and/or ozone elevation on rice grain quality. • Elevated ozone concentration had substantial effects on grain quality under current carbon dioxide concentration. • Elevated carbon dioxide concentration mitigated the impact of elevated ozone concentration on rice grain quality. - Exposure of Chinese hybrid rice to elevated ozone and CO 2 during growth causes fewer changes in grain quality than ozone exposure alone

  14. Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor.

    Science.gov (United States)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Zhang, Fei

    2017-12-01

    The influences of cerium dioxide nanoparticles (CeO 2 NPs) on nitrogen removal in biofilm were investigated. Prolonged exposure (75d) to 0.1mg/L CeO 2 NPs caused no inhibitory effects on nitrogen removal, while continuous addition of 10mg/L CeO 2 NPs decreased the treatment efficiency to 53%. With the progressive concentration of CeO 2 NPs addition, the removal efficiency could nearly stabilize at 67% even with the continues spike of 10mg/L. The micro-profiles of dissolved oxygen, pH, and oxidation reduction potential suggested the developed protection mechanisms of microbes to progressive CeO 2 NPs exposure led to the less influence of microenvironment, denitrification bacteria and enzyme activity than those with continuous ones. Furthermore, high throughput sequencing illustrated the drastic shifted communities with gradual CeO 2 NPs spiking was responsible for the adaption and protective mechanisms. The present study demonstrated the acclimated microbial community was able to survive CeO 2 NPs addition more readily than those non-acclimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Letter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2016-02-01

    Full Text Available Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3. Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6. Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria  pollutants (particulate matter (PM, ozone (O3, nitrogen dioxide (NO2, sulfur dioxide (SO2, and carbon monoxide (CO, determinate  the  potential short term effects of air pollution  and allows the examination of various scenarios in which emission rates of pollutants are varied (7,8. Air Q software provided by the WHO European Centre for Environment and Health (ECEH (9. Air Q model is based on cohort studies and used to estimates of both attributable average reductions in life-span and numbers of mortality and morbidity associated with exposure to air pollution (10,11. Applications

  16. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  17. Chronic Exposure to Deoxynivalenol Has No Influence on the Oral Bioavailability of Fumonisin B1 in Broiler Chickens

    Science.gov (United States)

    Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2015-01-01

    Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690

  18. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats.

    Science.gov (United States)

    Pujalté, Igor; Dieme, Denis; Haddad, Sami; Serventi, Alessandra Maria; Bouchard, Michèle

    2017-01-04

    This study focused on the generation of aerosols of titanium dioxide (TiO 2 ) nanoparticles (NPs) and their disposition kinetics in rats. Male Sprague-Dawley rats were exposed by inhalation to 15mg/m 3 of anatase TiO 2 NPs (∼20nm) during 6h. Rats were sacrificed at different time points over 14days following the onset of inhalation. Ti levels were quantified by ICP-MS in blood, tissues, and excreta. Oxidative damages were also monitored (MDA). Highest tissue levels of Ti were found in lungs; peak values were reached only at 48h followed by a progressive decrease over 14days, suggesting a persistence of NPs at the site-of-entry. Levels reached in blood, lymph nodes and other internal organs (including liver, kidney, spleen) were circa one order of magnitude lower than in lungs, but the profiles were indicative of a certain translocation to the systemic circulation. Large amounts were recovered in feces compared to urine, suggesting that inhaled NPs were eliminated mainly by mucociliary clearance and ingested. TiO 2 NPs also appeared to be partly transferred to olfactory bulbs and brain. MDA levels indicative of oxidative damage were significantly increased in lungs and blood at 24h but this was not clearly reflected at later times. Translocation and clearance rates of inhaled NPs under different realistic exposure conditions should be further documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

    International Nuclear Information System (INIS)

    Lee, Myung Jin; Kim, Ji Ho; Park, Young Tae

    2010-01-01

    We have carried out the surface modification of photocatalytic TiO 2 with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state 29 Si MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water

  20. Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration illustrated through experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, E S

    1944-01-01

    By culture experiments with the freshwater plants Helodea canadensis and Ceratophyllum demersum, in which both the contents of carbon dioxide and pH of the water were varied, it was shown that ph within the area 4.5 to 8.2 has no appreciable influence on the growth. The supply of carbon dioxide, on the other hand, has very great influence. The fact that the two freshwater plants mentioned in Denmark are found in alkaline water only, is due to the contents of assimilable carbon dioxide decreasing with decrease of pH. While thus in alkaline water there are generally large quantities of bicarbonate, from which half of the carbon dioxide may be utilized in the assimilation, there is in acid water (pH below 4.5) no bicarbonate. Carbon dioxide in true solution and bicarbonate carbon dioxide behave differently as sources of carbon dioxide for the assimilation; this is amongst other things due to the fact that the absorption of the carbon dioxide through the bicarbonate is made actively on the part of the plant. The investigations which illustrate the influence of the quantity of carbon dioxide on the intensity of assimilation were made on submersed plants in water containing bicarbonate, and therefore give quite different results in relation to terraneous plants, where the carbon dioxide is exclusively assimilated.

  1. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    Science.gov (United States)

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter pollutants on systemic IL-6 and fibrinogen. Effect modification by season was considered. We observed a positive association between IL-6 and O3 [0.31 SD per O3 interquartile range (IQR); 95% confidence interval (CI), 0.080.54] and between IL-6 and SO2 (0.25 SD per SO2 IQR; 95% CI, 0.060.43). We observed the strongest effects using 4-day moving averages. Responses to pollutants varied by season and tended to be higher in the summer, particularly for O3 and PM2.5. Fibrinogen was not associated with pollution. This study demonstrates a significant association between ambient pollutant levels and baseline levels of systemic IL-6. These findings have potential implications for controlled human exposure studies. Future research should consider whether ambient pollution exposure before chamber exposure modifies IL-6 response.

  2. Weight-correction of carbon dioxide diffusion coefficient (DCO2 ) reduces its inter-individual variability and improves its correlation with blood carbon dioxide levels in neonates receiving high-frequency oscillatory ventilation.

    Science.gov (United States)

    Belteki, Gusztav; Lin, Benjamin; Morley, Colin J

    2017-10-01

    Carbon-dioxide elimination during high-frequency oscillatory ventilation (HFOV) is thought to be proportional to the carbon dioxide diffusion coefficient (DCO 2 ) which is calculated as frequency x (tidal volume) 2 . DCO 2 can be used to as an indicator of CO 2 elimination but values obtained in different patients cannot be directly compared. To analyze the relationship between DCO 2 , the weight-corrected DCO 2 (DCO 2 corr) and blood gas PCO 2 values obtained from infants receiving HFOV. DCO 2 data were obtained from 14 infants at 1/s sampling rate and the mean DCO 2 was determined over 10 min periods preceding the time of the blood gas. DCO 2 corr was calculated by dividing the DCO 2 by the square of the body weight in kg. Weight-correction significantly reduced the inter-individual variability of DCO 2 . When data from all the babies were combined, standard DCO 2 showed no correlation with PCO 2 but DCO 2 corr showed a weak but statistically significant inverse correlation. The correlation was better when the endotracheal leak was correlation between the HFOV tidal volume (VThf) and the PCO 2 . In any baby, DCO 2 corr >50 mL 2 /sec/kg 2 or VThf > 2.5 mL/kg was rarely needed to avoid hypercapnia. Weight-correction of DCO 2 values improved its comparability between patients. Weight-corrected DCO 2 correlated better with PCO 2 than uncorrected DCO 2 but the correlation was weak. © 2017 Wiley Periodicals, Inc.

  3. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.

    Science.gov (United States)

    Dorier, Marie; Béal, David; Marie-Desvergne, Caroline; Dubosson, Muriel; Barreau, Frédérick; Houdeau, Eric; Herlin-Boime, Nathalie; Carriere, Marie

    2017-08-01

    The whitening and opacifying properties of titanium dioxide (TiO 2 ) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO 2 nanoparticles (TiO 2 -NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO 2 -NPs, either acutely (6-48 h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO 2 -NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.

  4. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    Directory of Open Access Journals (Sweden)

    Li Lin

    2017-01-01

    Full Text Available A nano-patterning approach on silicon dioxide (SiO2 material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL followed by a dry etching process. Afterwards, the Si stamp was employed in nanoimprint lithography (NIL assisted with a dry etching process to produce nanoholes on the SiO2 layer. The demonstrated approach has advantages such as a high resolution in nanoscale by EBL and good reproducibility by NIL. In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size variation of the nanostructures resulting from exposure parameters in EBL, the pattern transfer during nanoimprint in NIL, and subsequent etching processes of SiO2 were also studied quantitatively. By this method, a hexagonal arranged hole array in SiO2 with a hole diameter ranging from 45 to 75 nm and a pitch of 600 nm was demonstrated on a four-inch wafer.

  5. Occupational exposures to emissions from combustion of diesel and alternative fuels in underground mining--a simulated pilot study.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Lee, Vivien S T; Burgess, Jefferey L

    2015-01-01

    Diesel fuel is commonly used for underground mining equipment, yet diesel engine exhaust is a known human carcinogen. Alternative fuels, including biodiesel, and a natural gas/diesel blend, offer the potential to reduce engine emissions and associated health effects. For this pilot study, exposure monitoring was performed in an underground mine during operation of a load-haul-dump vehicle. Use of low-sulfur diesel, 75% biodiesel/25% diesel blend (B75), and natural gas/diesel blend (GD) fuels were compared. Personal samples were collected for total and respirable diesel particulate matter (tDPM and rDPM, respectively) and total and respirable elemental and organic carbon (tEC, rEC, tOC, rOC, respectively), as well as carbon monoxide (CO), formaldehyde, acetaldehyde, naphthalene, nitric oxide (NO), and nitrogen dioxide (NO2). Compared to diesel, B75 use was associated with a 33% reduction in rDPM, reductions in rEC, tEC, and naphthalene, increased tDPM, tOC, and NO, and no change in rOC, CO, and NO2. Compared to diesel, GD was associated with a 66% reduction in rDPM and a reduction in all other exposures except CO. The alternative fuels tested both resulted in reduced rDPM, which is the basis for the current Mine Safety and Health Administration (MSHA) occupational exposure standard. Although additional study is needed with a wider variety of equipment, use of alternative fuels have the promise of reducing exposures from vehicular exhaust in underground mining settings.

  6. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration.

    Science.gov (United States)

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Chen, Tian; Li, Yang; Zhang, Wenxiao; Gao, Xin; Li, Ping; Wang, Haifang; Jia, Guang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) have a broad application prospect in replace with TiO2 used as a food additive, especially used in sweets. Understanding the interaction of TiO2 NPs with sugar is meaningful for health promotion. We used a young animal model to study the toxicological effect of orally administrated TiO2 NPs at doses of 0, 2, 10 and 50 mg/kg per day with or without daily consumption of 1.8 g/kg glucose for 30 days and 90 days. The results showed that oral exposure to TiO2 NPs and TiO2 NPs+glucose both induced liver, kidney, and heart injuries as well as changes in the count of white and red blood cells in a dose, time and gender-dependent manner. The toxicological interactions between orally-administrated TiO2 NPs and glucose were evident, but differed among target organs. These results suggest that it is necessary to limit dietary co-exposure to TiO2 NPs and sugar. Nanotechnology has gained entrance in the food industry, with the presence of nanoparticles now in many food items. Despite this increasing trend, the potential toxic effects of these nanoparticles to human remain unknown. In this article, the authors studied titanium dioxide nanoparticles (TiO2 NPs), which are commonly used as food additive, together with glucose. The findings of possible adverse effects on liver, kidney, and heart might point to a rethink of using glucose and TiO2 NPs combination. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dose-response relationships between occupational exposure to potash, diesel exhaust and nitrogen oxides and lung function: cross-sectional and longitudinal study in two salt mines.

    Science.gov (United States)

    Lotz, Gabriele; Plitzko, Sabine; Gierke, Erhardt; Tittelbach, Ulrike; Kersten, Norbert; Schneider, W Dietmar

    2008-08-01

    Several studies have shown that underground salt miners may have an increased incidence of chest symptoms and sometimes decreased lung function. Miners of two salt mines were investigated to evaluate relationships between the lung function and the workplace exposure. The effect of nitrogen monoxide (NO) and nitrogen dioxide (NO(2)) was investigated in view of the recent debate on European occupational exposure limits. A total of 410/463 miners (mine A/mine B) were examined cross-sectional and 75/64% of the first cohort were examined after a 5-year period. Exposure was measured by personal sampling. Personal lifetime exposure doses of salt dust, diesel exhaust, NO(2) and NO were calculated for all miners. Dose-response relationships were calculated by multiple regression analysis. Each exposure component acted as an indicator for the complex exposure. Exposure response relationships were shown in the cross-sectional and longitudinal investigations in both mines. In the 5-year period, the adjusted (age, smoking, etc.) effect of the exposure indicators resulted in a mean decrease of FEV(1) between -18 ml/year (mine A) and -10 ml/year (mine B). The personal concentrations related to this effect were 12.6/7.1 mg/m(3) inhalable dust, 2.4/0.8 mg/m(3) respirable dust, 0.09/0.09 mg/m(3) diesel exhaust, 0.4/0.5 ppm NO(2) and 1.7/1.4 ppm NO (mine A/B). Exposure was related to symptoms of chronic bronchitis only in mine B. The effects found in both mines indicate that the mixed exposure can cause lung function disorders in salt miners exposed over a long time. Because of the high correlation of the concentrations it was not possible to determine the effects of a single exposure component separately or to recommend a specific occupational exposure limit. However, possible maximum effects associated with the mixed exposure can be evaluated in the ranges of concentrations of the individual substances in the mines.

  8. Carbon dioxide and the greenhouse effect: an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1978-01-01

    This paper evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is discussed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected.

  9. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis.

    Science.gov (United States)

    Flores-Pajot, Marie-Claire; Ofner, Marianna; Do, Minh T; Lavigne, Eric; Villeneuve, Paul J

    2016-11-01

    Genetic and environmental factors have been recognized to play an important role in autism. The possibility that exposure to outdoor air pollution increases the risk of autism spectrum disorder (ASD) has been an emerging area of research. Herein, we present a systematic review, and meta-analysis of published epidemiological studies that have investigated these associations. We undertook a comprehensive search strategy to identify studies that investigated outdoor air pollution and autism in children. Overall, seven cohorts and five case-control studies met our inclusion criteria for the meta-analysis. We summarized the associations between exposure to air pollution and ASD based on the following critical exposure windows: (i) first, second and third trimester of pregnancy, (ii) entire pregnancy, and (iii) postnatal period. Random effects meta-analysis modeling was undertaken to derive pooled risk estimates for these exposures across the studies. The meta-estimates for the change in ASD associated with a 10μg/m 3 increase in exposure in PM 2.5 and 10 ppb increase in NO 2 during pregnancy were 1.34 (95% CI:0.83, 2.17) and 1.05 (95% CI:0.99, 1.11), respectively. Stronger associations were observed for exposures received after birth, but these estimates were unstable as they were based on only two studies. O 3 exposure was weakly associated with ASD during the third trimester of pregnancy and during the entire pregnancy, however, these estimates were also based on only two studies. Our meta-analysis support the hypothesis that exposure to ambient air pollution is associated with an increased risk of autism. Our findings should be interpreted cautiously due to relatively small number of studies, and several studies were unable to control for other key risk factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.

    Science.gov (United States)

    Long, Xiang-Li; Xiao, Wen-De; Yuan, Wei-kang

    2005-05-01

    An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.

  11. Ozone and/or sulfur dioxide effects on tissue permeability of petunia leaves

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Measurements were made of potassium (K ) and total electrolyte leakage from leaf discs of 42-day old petunia plants exposed to 40 pphm ozone (O3) and/or 80 pphm sulfur dioxide (SO2). In an O3-sensitive cultivar White Cascade, K leakage was not affected by O3 or O3 and SO2 after 4 h exposure, but greatly increased by 4 h day exposure for 4 days to O3, SO2, or O3 and SO2. There was an indication of decreased K leakage from plants exposed for 4 h to SO2. Total electrolyte leakage was greater from leaf discs of White Cascade and White Magic, an intermediate sensitivity cultivar, than for Capri, the least O3-sensitive cultivar, when exposed to O3 for 4 h, while SO2 had little effect on total electrolyte leakage. There was also little effect on total K content of the leaves. 21 references, 2 figures, 1 table.

  12. Response to a wild poliovirus type 2 (WPV2)-shedding event following accidental exposure to WPV2, the Netherlands, April 2017.

    Science.gov (United States)

    Duizer, Erwin; Ruijs, Wilhelmina Lm; van der Weijden, Charlie P; Timen, Aura

    2017-05-25

    On 3 April 2017, a wild poliovirus type 2 (WPV2) spill occurred in a Dutch vaccine manufacturing plant. Two fully vaccinated operators with risk of exposure were advised on stringent personal hygiene and were monitored for virus shedding. Poliovirus (WPV2-MEF1) was detected in the stool of one, 4 days after exposure, later also in sewage samples. The operator was isolated at home and followed up until shedding stopped 29 days after exposure. No further transmission was detected. This article is copyright of The Authors, 2017.

  13. (Blastomogenic action of low concentrations of nitrosodimethylamine, dimethylamine and nitrogen dioxide)

    Energy Technology Data Exchange (ETDEWEB)

    Benemanskii, V V; Prusakov, V M; Leshchenko, M E

    1981-01-01

    The round-the clock inhalation of the mixture of nitrosodimethylamine (NDMA), dimethylamine (DMA) and nitrogen dioxide, with NDMA concentrations varying within 0.66-0.0026 mg/m3, was followed by development of tumors in the kidney, liver, lungs and at other sites in albino nonbred rats, after a year of exposure. Application of DMA and nitrogen dioxide modified the carcinogenic effect of NDMA. In male rats, the blastogenic effect of the mixture was higher, as compared with that of inhalation of NDMA alone. NDMA inhalation resulted in a lower tumor yield in female rats.

  14. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  15. COCAP: a carbon dioxide analyser for small unmanned aircraft systems

    Science.gov (United States)

    Kunz, Martin; Lavric, Jost V.; Gerbig, Christoph; Tans, Pieter; Neff, Don; Hummelgård, Christine; Martin, Hans; Rödjegård, Henrik; Wrenger, Burkhard; Heimann, Martin

    2018-03-01

    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol-1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.

  16. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Della Torre, Camilla [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Balbi, Teresa [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Grassi, Giacomo [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Frenzilli, Giada; Bernardeschi, Margherita [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Smerilli, Arianna [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Guidi, Patrizia [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Canesi, Laura [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Nigro, Marco [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Monaci, Fabrizio [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Scarcelli, Vittoria [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Rocco, Lucia [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Focardi, Silvano [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Monopoli, Marco [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Corsi, Ilaria, E-mail: ilaria.corsi@unisi.it [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy)

    2015-10-30

    Highlights: • Nano-TiO{sub 2} modulate CdCl{sub 2} cellular responses in gills of marine mussel. • Nano-TiO{sub 2} reduced CdCl{sub 2}-induced effects by lowering abcb1 m-RNA and GST activity. • Nano-TiO{sub 2} reduced Cd accumulation in mussel’s gills but not in whole soft tissue. • Higher accumulation of Ti in the presence of CdCl{sub 2} was observed in gills. - Abstract: We investigated the influence of titanium dioxide nanoparticles (nano-TiO{sub 2}) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO{sub 2}, CdCl{sub 2}, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO{sub 2} alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO{sub 2} reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO{sub 2} and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO{sub 2} in sea water media.

  17. First-principles investigation on defect-induced silicene nanoribbons - A superior media for sensing NH3, NO2 and NO gas molecules

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-04-01

    In this paper, the electronic and transport properties of armchair silicene nanoribbons (ASiNRs) are analyzed for their application as highly selective and sensitive gas molecule sensors. The study is focused on sensing three nitrogen based gases; ammonia (NH3), nitrogen dioxide (NO2) and nitric oxide (NO), which depending upon their adsorption energy and charge transfer, form bonds of varying strength with ASiNRs. The negligible band gap of ASiNRs is tuned by adding a defect in ASiNRs. Adsorption of NH3 leads to the opening of band gap whereas on adsorption of NO2 and NO, ASiNRs exhibit metallic nature. Distinctly divergent electronic and transport properties of ASiNRs are observed and on adsorption of NH3, NO2 and NO, renders them suitable for sensing them. All gas molecules show stronger adsorption on defective ASiNRs (D-ASiNRs) as compared to pristine ASiNRs (P-ASiNRs). The work reveals that introduction of defect can drastically improve the sensitivity of ASiNRs.

  18. NO2 and Cancer Incidence in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Khalid Al-Ahmadi

    2013-11-01

    Full Text Available Air pollution exposure has been shown to be associated with an increased risk of specific cancers. This study investigated whether the number and incidence of the most common cancers in Saudi Arabia were associated with urban air pollution exposure, specifically NO2. Overall, high model goodness of fit (GOF was observed in the Eastern, Riyadh and Makkah regions. The significant coefficients of determination (r2 were higher at the regional level (r2 = 0.32–0.71, weaker at the governorate level (r2 = 0.03–0.43, and declined slightly at the city level (r2 = 0.17–0.33, suggesting that an increased aggregated spatial level increased the explained variability and the model GOF. However, the low GOF at the lowest spatial level suggests that additional variation remains unexplained. At different spatial levels, associations between NO2 concentration and the most common cancers were marginally improved in geographically weighted regression (GWR analysis, which explained both global and local heterogeneity and variations in cancer incidence. High coefficients of determination were observed between NO2 concentration and lung and breast cancer incidences, followed by prostate, bladder, cervical and ovarian cancers, confirming results from other studies. These results could be improved using individual explanatory variables such as environmental, demographic, behavioral, socio-economic, and genetic risk factors.

  19. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  20. Air pollution, weight loss and metabolic benefits of bariatric surgery: a potential model for study of metabolic effects of environmental exposures.

    Science.gov (United States)

    Ghosh, R; Gauderman, W J; Minor, H; Youn, H A; Lurmann, F; Cromar, K R; Chatzi, L; Belcher, B; Fielding, C R; McConnell, R

    2018-05-01

    Emerging experimental evidence suggests that air pollution may contribute to development of obesity and diabetes, but studies of children are limited. We hypothesized that pollution effects would be magnified after bariatric surgery for treatment of obesity, reducing benefits of surgery. In 75 obese adolescents, excess weight loss (EWL), high-density lipoprotein (HDL) cholesterol, triglycerides, alkaline phosphatase (ALP) and hemoglobin A1c (HbA 1c ) were measured prospectively at baseline and following laparoscopic adjustable gastric banding (LAGB). Residential distances to major roads and the average two-year follow-up exposure to particulate matter <2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ) and ozone were estimated. Associations of exposure with change in outcome and with attained outcome two years post-surgery were examined. Major-roadway proximity was associated with reduced EWL and less improvement in lipid profile and ALP after surgery. NO 2 was associated with less improvement in HbA 1c and lower attained HDL levels and change in triglycerides over two years post-surgery. PM 2.5 was associated with reduced EWL and reduced beneficial change or attained levels for all outcomes except HbA 1c . Near-roadway, PM 2.5 and NO 2 exposures at levels common in developed countries were associated with reduced EWL and metabolic benefits of LAGB. This novel approach provides a model for investigating metabolic effects of other exposures. © 2017 World Obesity Federation.

  1. Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus

    Science.gov (United States)

    Hellack, Bryan; Sugiri, Dorothea; Schins, Roel P. F.; Schikowski, Tamara; Krämer, Ursula; Kuhlbusch, Thomas A. J.; Hoffmann, Barbara

    2017-12-01

    While land use regression models (LUR) are commonly used, e.g. for the prediction of spatially variable air pollutant mass concentrations, they are scarcely used for predicting the oxidative potential (OP), a suggested unifying predictor of health effects. Therefore a LUR model was developed to examine if long-term OP of fine particulate exposure can be reasonably predicted by LUR modeling and whether it is related to health effects in a study region comprised of urban and rural areas. Four 14-day sampling periods over 1 year at 40 sites in the western Ruhr Area and adjacent northern rural area, Germany, in 2002/2003 were conducted and annual Nitrogen Dioxide (NO2), fine particles (PM2.5), and OP were calculated. LUR models were developed to estimate spatially-resolved annual OP, NO2 and PM2.5 concentrations. The model performance was checked by leave-one-out cross validation (LOOCV) and cox regression was used to analyze the association of modeled residential OP and NO2 with incident type 2 diabetes mellitus (T2DM) in 1784 elderly women during a mean follow-up of 16 years (baseline 1985-1994). The measured OP and NO2 concentrations were moderately correlated (rSpearman 0.57). The LUR models explained 62% and 92% of the OP and NO2 variance (adjusted LOOCV R2 57% and 90%). PM10 emission from combustion in a 5000 m buffer was the most important predictor for OP and NO2. Modeled pollutants were highly correlated (rSpearman 0.87). Model quality for OP was sensitive to the inclusion of a single influential measurement site. For PM2.5 mass only an insufficient model with a low explained variance of 22% (adjusted R2) was developed so no health effects analyses were conducted with estimated PM2.5. Increases in OP and NO2 were associated with an increase in risk of T2DM by a hazard ratio of 1.38 (95% CI 1.06-1.80) and 1.39 (95% CI 1.07-1.81) per interquartile range of OP and NO2, respectively. We conclude that spatially-resolved OP can be predicted by LUR modeling, but

  2. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  3. Development of a personal multi-pollutant exposure sampler for particulate matter and criteria gases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, I.T.; Sarnat, J.; Wolfson, J.M.; Rojas-Bracho, L.; Suh, H.H.; Koutrakis, P. [Harvard Univ., Boston, MA (United States). School of Public Health

    1999-12-01

    A novel personal sampler is reported which allows simultaneous measurement of PM{sub 2,5}, and PM{sub 10}, ozone, nitrogen dioxide, and sulfur dioxide. This method combines previously used samplers for personal mass measurement with passive samplers for criteria gases and uses a single pump. Preliminarily results are reported for laboratory chamber tests and field comparisons with reference methods for both mass and criteria gases. These results demonstrate the suitability of this sampler of exposure assessment studies. (authors)

  4. Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns

    NARCIS (Netherlands)

    Hains, J.C.; Boersma, K.F.; Kroon, M.; Dirksen, R.J.; Cohen, R.C.; Perring, A.E.; Bucsela, E.J.; Volten, H.; Swart, D.P.J.; Richter, A.; Wittrock, F.; Schönhardt, A.; Wagner, T.; Ibrahim, O.W.; Roozendael, Van M.; Pinardi, G.; Gleason, J.F.; Veefkind, J.P.; Levelt, P.F.

    2010-01-01

    We present a sensitivity analysis of the tropospheric NO2 retrieval from the Ozone Monitoring Instrument (OMI) using measurements from the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) and Intercontinental Chemical Transport Experiment-B (INTEX-B)

  5. Response to gaseous NO2 air pollutant of P. fluorescens airborne strain MFAF76a and clinical strain MFN1032

    Directory of Open Access Journals (Sweden)

    Tatiana eKondakova

    2016-03-01

    Full Text Available Human exposure to nitrogen dioxide (NO2, an air pollutant of increasing interest in biology, results in several toxic effects to human health and also to the air microbiota. The aim of this study was to investigate the bacterial response to gaseous NO2. Two Pseudomonas fluorescens strains, namely the airborne strain MFAF76a and the clinical strain MFN1032 were exposed to 0.1, 5 or 45 ppm concentrations of NO2, and their effects on bacteria were evaluated in terms of motility, biofilm formation, antibiotic resistance, as well as expression of several chosen target genes. While 0.1 and 5 ppm of NO2 did not lead to any detectable modification in the studied phenotypes of the two bacteria, several alterations were observed when the bacteria were exposed to 45 ppm of gaseous NO2. We thus chose to focus on this high concentration. NO2-exposed P. fluorescens strains showed reduced swimming motility, and decreased swarming in case of the strain MFN1032. Biofilm formed by NO2-treated airborne strain MFAF76a showed increased maximum thickness compared to non-treated cells, while NO2 had no apparent effect on the clinical MFN1032 biofilm structure. It is well known that biofilm and motility are inversely regulated by intracellular c-di-GMP level. The c-di-GMP level was however not affected in response to NO2 treatment. Finally, NO2-exposed P. fluorescens strains were found to be more resistant to ciprofloxacin and chloramphenicol. Accordingly, the resistance nodulation cell division (RND MexEF-OprN efflux pump encoding genes were highly upregulated in the two P. fluorescens strains. Noticeably, similar phenotypes had been previously observed following a NO treatment. Interestingly, an hmp-homologue gene in P. fluorescens strains MFAF76a and MFN1032 encodes a NO dioxygenase that is involved in NO detoxification into nitrites. Its expression was upregulated in response to NO2, suggesting a possible common pathway between NO and NO2 detoxification. Taken

  6. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic.

    Science.gov (United States)

    Foraster, Maria; Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-11-01

    Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people's noise exposure indoors in bedrooms. We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). We evaluated 1,926 cohort participants at baseline (years 2003-2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: -0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise-SBP association was stronger and statistically significant with a threshold at 30 dB(A). Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by

  7. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2010-09-10

    A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.

  8. Eddy covariance fluxes of the NO-O3-NO2 triad above the forest canopy at the ATTO Site in the Amazon Basin

    Science.gov (United States)

    Tsokankunku, Anywhere; Wolff, Stefan; Sörgel, Matthias; Berger, Martina; Zelger, Michael; Dlugi, Ralf

    2017-04-01

    Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, thus contributes to oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the exchange fluxes of these species between the atmosphere and the biosphere are important for atmospheric chemistry and ecosystem research as well. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, being largely undisturbed by anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (radiation. Vertical concentration profile measurements of NO, NO2 and O3 were available at 8 levels on the INSTANT tower from a reactive trace gas profile system which has been operational at the site since 2012. From these measurements, we present eddy covariance fluxes of the NO-O3-NO2 triad. We relate the fluxes to the canopy

  9. Long-term air pollution exposure and cardio- respiratory mortality: a review

    Science.gov (United States)

    2013-01-01

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric. There is a significant number of new studies on long-term air pollution exposure, covering a wider geographic area, including Asia. These recent studies support associations found in previous cohort studies on PM2.5. The pooled effect estimate expressed as excess risk per 10 μg/m3 increase in PM2.5 exposure was 6% (95% CI 4, 8%) for all-cause and 11% (95% CI 5, 16%) for cardiovascular mortality. Long-term exposure to PM2.5 was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) than from non-malignant respiratory diseases (pooled estimate 3% (95% CI −6, 13%)). Significant heterogeneity in PM2.5 effect estimates was found across studies, likely related to differences in particle composition, infiltration of particles indoors, population characteristics and methodological differences in exposure assessment and confounder control. All-cause mortality was significantly associated with elemental carbon (pooled estimate per 1 μg/m3 6% (95% CI 5, 7%)) and NO2 (pooled estimate per 10 μg/m3 5% (95% CI 3, 8%)), both markers of combustion sources. There was little evidence for an association between long term coarse particulate matter exposure and mortality, possibly due to the small number of

  10. Standard practice for conducting moist SO2 tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This practice covers the apparatus and procedure to be used in conducting qualitative assessment tests in accordance with the requirements of material or product specifications by means of specimen exposure to condensed moisture containing sulfur dioxide. 1.2 The exposure conditions may be varied to suit particular requirements and this practice includes provisions for use of different concentrations of sulfur dioxide and for tests either running continuously or in cycles of alternate exposure to the sulfur dioxide containing atmosphere and to the ambient atmosphere. 1.3 The variant of the test to be used, the exposure period required, the type of test specimen, and the criteria of failure are not prescribed by this practice. Such details are provided in appropriate material and product purchase specifications. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety c...

  11. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes.

    Science.gov (United States)

    Marisa, Ilaria; Marin, Maria Gabriella; Caicci, Federico; Franceschinis, Erica; Martucci, Alessandro; Matozzo, Valerio

    2015-02-01

    The continuous growth of nanotechnology and nano-industries, the considerable increase of products containing nanoparticles (NPs) and the potential release of NPs in aquatic environments suggest a need to study NP effects on aquatic organisms. In this context, in vitro assays are commonly used for evaluating or predicting the negative effects of chemicals and for understanding their mechanisms of action. In this study, a physico-chemical characterisation of titanium dioxide NPs (n-TiO2) was performed, and an in vitro approach was used to investigate the effects of n-TiO2 on haemocytes of the clam Ruditapes philippinarum. In particular, the effects on haemocyte phagocytic activity were evaluated in two different experiments (with and without pre-treatment of haemocytes) by exposing cells to P25 n-TiO2 (0, 1 and 10 μg/mL). In addition, the capability of n-TiO2 to interact with clam haemocytes was evaluated with a transmission electron microscope (TEM). In this study, n-TiO2 particles showed a mean diameter of approximately 21 nm, and both anatase (70%) and rutile (30%) phases were revealed. In both experiments, n-TiO2 significantly decreased the phagocytic index compared with the control, suggesting that NPs are able to interfere with cell functions. The results of the TEM analysis support this hypothesis. Indeed, we observed that TiO2 NPs interact with cell membranes and enter haemocyte cytoplasm and vacuoles after 60 min of exposure. To the best of our knowledge, this is the first study demonstrating the internalisation of TiO2 NPs into R. philippinarum haemocytes. The present study can contribute to the understanding of the mechanisms of action of TiO2 NPs in bivalve molluscs, at least at the haemocyte level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    Science.gov (United States)

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  13. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    Science.gov (United States)

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Extracorporeal Carbon Dioxide Removal Enhanced by Lactic Acid Infusion in Spontaneously Breathing Conscious Sheep.

    Science.gov (United States)

    Scaravilli, Vittorio; Kreyer, Stefan; Belenkiy, Slava; Linden, Katharina; Zanella, Alberto; Li, Yansong; Dubick, Michael A; Cancio, Leopoldo C; Pesenti, Antonio; Batchinsky, Andriy I

    2016-03-01

    The authors studied the effects on membrane lung carbon dioxide extraction (VCO2ML), spontaneous ventilation, and energy expenditure (EE) of an innovative extracorporeal carbon dioxide removal (ECCO2R) technique enhanced by acidification (acid load carbon dioxide removal [ALCO2R]) via lactic acid. Six spontaneously breathing healthy ewes were connected to an extracorporeal circuit with blood flow 250 ml/min and gas flow 10 l/min. Sheep underwent two randomly ordered experimental sequences, each consisting of two 12-h alternating phases of ALCO2R and ECCO2R. During ALCO2R, lactic acid (1.5 mEq/min) was infused before the membrane lung. Caloric intake was not controlled, and animals were freely fed. VCO2ML, natural lung carbon dioxide extraction, total carbon dioxide production, and minute ventilation were recorded. Oxygen consumption and EE were calculated. ALCO2R enhanced VCO2ML by 48% relative to ECCO2R (55.3 ± 3.1 vs. 37.2 ± 3.2 ml/min; P less than 0.001). During ALCO2R, minute ventilation and natural lung carbon dioxide extraction were not affected (7.88 ± 2.00 vs. 7.51 ± 1.89 l/min, P = 0.146; 167.9 ± 41.6 vs. 159.6 ± 51.8 ml/min, P = 0.063), whereas total carbon dioxide production, oxygen consumption, and EE rose by 12% each (223.53 ± 42.68 vs. 196.64 ± 50.92 ml/min, 215.3 ± 96.9 vs. 189.1 ± 89.0 ml/min, 67.5 ± 24.0 vs. 60.3 ± 20.1 kcal/h; P less than 0.001). ALCO2R was effective in enhancing VCO2ML. However, lactic acid caused a rise in EE that made ALCO2R no different from standard ECCO2R with respect to ventilation. The authors suggest coupling lactic acid-enhanced ALCO2R with active measures to control metabolism.

  15. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    OpenAIRE

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2014-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placemen...

  16. Air pollution exposure and preeclampsia among US women with and without asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Wallace, Maeve [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20852 (United States); Robledo, Candace [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Northern Finland Laboratory Centre NordLab, Oulu (Finland); Department of Clinical Chemistry, University of Oulu, Oulu (Finland); Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 500, 90029 OYS (Finland); Department of Chronic Disease Prevention, National Institute for Health and Welfare, PO Box 310, 90101 Oulu (Finland); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States)

    2016-07-15

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  17. Air pollution exposure and preeclampsia among US women with and without asthma

    International Nuclear Information System (INIS)

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Männistö, Tuija; Grantz, Katherine L.

    2016-01-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO x ), sulfur dioxide (SO 2 ) and carbon monoxide (CO); PM 2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO x and SO 2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  18. An investigation of the PM2.5 and NO2 concentrations and their human health impacts in the metro subway system of Suzhou, China.

    Science.gov (United States)

    Cao, Shi-Jie; Kong, Xiang-Ri; Li, Linyan; Zhang, Weirong; Ye, Zi-Ping; Deng, Yelin

    2017-05-24

    This study measured the particle concentrations with an aerodynamic diameter smaller than 2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), and relative humidity (RH) at five metro subway stations in Suzhou's subway system (Lines 1 and 2). The real-time monitoring campaign was conducted from March 30 th to April 10 th and August 4 th to August 21 st , 2015. The monitoring practice was carried out during rush (7:00-9:00 AM and 17:00-19:00 PM) and regular hours (other times) at the ground and underground levels under different weather conditions with a purpose of obtaining representative data. The monitored results show that the concentrations of PM 2.5 in the train carriages were lower than the concentrations at the underground platforms during both spring and summer. The mean PM 2.5 concentrations at all the underground platforms in all the sub-stations monitored were significantly higher than those at the ground level. The human health impact was calculated to be 6300 annual DALYs (or 375 deaths) due to exposure to the subway system in Suzhou according to the UNEP-SETAC toxicity (USEtox) model. Linear regression models were applied to evaluate the relationships between the PM 2.5 , NO 2 concentrations, and RH. We found that a 10% increment in RH from the current average level of 50-60% can lead to a 9.8 μg m -3 concentration decrease in PM 2.5 . This further results in the total human health impact being reduced to 2451 DALYs (150-4753 DALYs), representing a 20% decrease (1.2-38%).

  19. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  20. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats.

    Science.gov (United States)

    Donner, E M; Myhre, A; Brown, S C; Boatman, R; Warheit, D B

    2016-02-01

    Six pigment-grade (pg) or ultrafine (uf)/nanoscale (anatase and/or rutile) titanium dioxide (TiO2) particulates were evaluated for in vivo genotoxicity (OECD 474 Guidelines) in male and female rats by two different laboratories. All test materials were robustly characterized. The BET surface areas of the pg and uf samples ranged from 7 to 17 m(2)/g and 50 to 82 m(2)/g respectively. The materials were assessed for induction of micronuclei and toxicity in bone marrow by analyzing peripheral blood reticulocytes (RETs) by flow cytometry. Single oral gavage doses of 500, 1000 or 2000 mg/kg body weight (bw) of each material were implemented with concurrent negative (water) and positive controls (cyclophosphamide). Approximately 48 and 72 h after exposure, blood samples were collected and 20,000 RETs per animal were analyzed. For each of the six tests, there were no biologically or toxicologically relevant increases in the micronucleated RET frequency in any TiO2 exposed group at either time point at any dose level. In addition, there were a lack of biologically relevant decreases in %RETs among total erythrocytes. All six TiO2 test substances were negative for in vivo genotoxicity effects; however, it is noted that the exposure to target tissues was likely negligible. One pigment grade and one ultrafine material each were evaluated for potential systemic exposure/uptake from the gastrointestinal tract by analysis of TiO2 into blood and liver. No significant increases in TiO2 over controls were measured in blood (48 or 72 h) or liver (72 h) following exposures to 2000 mg/kg bw TiO2. These data indicate that there was no absorption of the test material from the gastrointestinal tract into the blood circulation and the lack of genotoxic effects is therefore attributed to a lack of exposure due to the inability of the test material to migrate from the gastrointestinal tract into the blood and then into target tissues. Copyright © 2015 Elsevier Inc. All rights

  1. 4-Acyloxy-2,5-diphenyl-3-oxo-2,3-dihydrothiophene 1,1-dioxides as acylating agents in the Friedel-Crafts reaction

    International Nuclear Information System (INIS)

    Van Ree, T.

    1989-01-01

    The 'activated esters', 4-acyloxy-2,5-diphenyl-3-oxo-2,3-dihydrothiophene 1,1-dioxides, easily accessible from 4,6-diphenylthieno[3,4-d][1,3]dioxol-2-one 5,5-dioxide, have been found to be excellent acylating agents in the Friedel-Crafts reaction with olefins and activated aromatic compounds. In the case of the olefins, product mixtures containing β-chloroketones were treated with 1,8-diazabicyclo[5.4.0]undex-7-ene to afford the corresponding unsaturated ketones in 30 - 73% yields, whereas aromatic ketones were obtained in high yields. The activated esters react slightly faster than the corresponding alkanoyl chlorides, and form fewer by-products

  2. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study.

    Science.gov (United States)

    Sørensen, Mette; Hjortebjerg, Dorrit; Eriksen, Kirsten T; Ketzel, Matthias; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2015-12-01

    Exposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear. We aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design. In 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures. Baseline residential exposure to the interquartile range of road traffic noise,NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: −0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (−0.08mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (−0.05; 1.22); PM2.5: 0.57 (−0.02; 1.17) mg/dl). Air pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.

  3. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  4. Vasomotor function in rat arteries after ex vivo and intragastric exposure to food-grade titanium dioxide and vegetable carbon particles

    DEFF Research Database (Denmark)

    Jensen, Ditte Marie; Christophersen, Daniel Vest; Sheykhzade, Majid

    2018-01-01

    -grade particle exposure on vasomotor function and systemic oxidative stress in an ex vivo study and intragastrically exposed rats.Methods: In an ex vivo study, aorta rings from naive Sprague-Dawley rats were exposed for 30 min to food-grade TiO2 (E171), benchmark TiO2 (Aeroxide P25), food-grade vegetable carbon...... (E153) or benchmark carbon black (Printex 90). Subsequently, the vasomotor function was assessed in wire myographs. In an in vivo study, lean Zucker rats were exposed intragastrically once a week for 10 weeks to vehicle, E171 or E153. Doses were comparable to human daily intake. Vasomotor function...... no differences between groups.Conclusion: Gastrointestinal tract exposure to E171 and E153 was associated with modest albeit statistically significant alterations in the vasocontraction and vasorelaxation responses. Direct particle exposure to aorta rings elicited a similar type of response. The vasomotor...

  5. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Preliminary study of varietal susceptibility to sulfur dioxide

    International Nuclear Information System (INIS)

    Miller, J.E.; Xerikos, P.B.

    1976-01-01

    The injury response of plants to air pollutants, such as sulfur dioxide, is known to vary in severity and type for different varieties or cultivars of a species. Differences in the susceptibility of soybean varieties to sulfur dioxide have previously been noted, but sufficient information is not available concerning the sulfur dioxide resistance of varieties commonly grown in the Midwest. Results are reported from preliminary experiments concerning acute sulfur dioxide effects on 12 soybean varieties. The injury symptoms ranged from cream colored necrotic lesions (generally on younger leaves) to a reddish brown necrotic stipling (on older leaves). Differences in the severity of symptom development for the varieties was evident on both the younger and older leaves. No injury was apparent with three of the varieties

  7. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    Science.gov (United States)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  8. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  9. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  10. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science.

    Science.gov (United States)

    Jerrett, Michael; Donaire-Gonzalez, David; Popoola, Olalekan; Jones, Roderic; Cohen, Ronald C; Almanza, Estela; de Nazelle, Audrey; Mead, Iq; Carrasco-Turigas, Glòria; Cole-Hunter, Tom; Triguero-Mas, Margarita; Seto, Edmund; Nieuwenhuijsen, Mark

    2017-10-01

    Low cost, personal air pollution sensors may reduce exposure measurement errors in epidemiological investigations and contribute to citizen science initiatives. Here we assess the validity of a low cost personal air pollution sensor. Study participants were drawn from two ongoing epidemiological projects in Barcelona, Spain. Participants repeatedly wore the pollution sensor - which measured carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO 2 ). We also compared personal sensor measurements to those from more expensive instruments. Our personal sensors had moderate to high correlations with government monitors with averaging times of 1-h and 30-min epochs (r ~ 0.38-0.8) for NO and CO, but had low to moderate correlations with NO 2 (~0.04-0.67). Correlations between the personal sensors and more expensive research instruments were higher than with the government monitors. The sensors were able to detect high and low air pollution levels in agreement with expectations (e.g., high levels on or near busy roadways and lower levels in background residential areas and parks). Our findings suggest that the low cost, personal sensors have potential to reduce exposure measurement error in epidemiological studies and provide valid data for citizen science studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chemoselective alternating copolymerization of limonene dioxide and carbon dioxide : a new highly functional aliphatic epoxy polycarbonate

    NARCIS (Netherlands)

    Li, C.; Sablong, R.J.; Koning, C.E.

    The alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg) up

  12. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Science.gov (United States)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  13. Nitrogen fixation in soybean treated with nitrogen dioxide and molybdenum

    International Nuclear Information System (INIS)

    Gupta, G.; Narayanan, R.

    1992-01-01

    Soybean plants were treated with Mo (0.0 or 2.0 mg kg -1 , soil dry wt.) and exposed to NO 2 (0.0, 0.05, or 0.1 μmol mol -1 ) at flowering stage. Specific root nodule activity (SNA), chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), leaf N, number of pods, seeds per pod, weight of seeds, and shoot dry weight were measured. Compared with control, SNA did not change on the addition of 2 mg Mo to the soil, but increased by 65% on exposure to 0.1 μmol -1 NO 2 and by 106% on treatment with both NO 2 and Mo. Both Ch-a and Ch-b increased significantly on exposure to 0.1 μmol -1 NO 2 and 2 mg MO was almost the same as with 0.1 μmol mol -1 NO 2 alone. Leaf-N increased by 46% on exposure to NO 2 but did not change on the addition of Mo. Pod number, seed number and weight, and shoot dry weights showed significantly higher values on exposure to 0.1 μmol mol -1 NO 2 and 2 mg Mo

  14. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    Science.gov (United States)

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  16. 76 FR 56982 - Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide (CO2

    Science.gov (United States)

    2011-09-15

    ...-9465-1] Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide... Injection Control (UIC) Class VI Program for Carbon Dioxide (CO 2 ) Geologic Sequestration (GS) Wells under... highlighted in the ``Report of the Interagency Task Force on Carbon Capture and Storage'' (August 2010), it is...

  17. Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the Agglomeration Lausanne-Morges.

    Science.gov (United States)

    Castro, Alberto; Künzli, Nino; Götschi, Thomas

    2017-07-01

    Exposure to urban air pollution has been associated with adverse effects on cardio-vascular and respiratory health, both short and long term. Consequently, governments have applied policies to reduce air pollution. Quantitative health impact assessments of hypothetic changes in air pollution have been conducted at national and global level, but assessments of observed air pollution changes associated with specific clean air policies at a local or regional scale remain scarce. This study estimates health impacts attributable to a decrease in PM 10 and NO 2 exposure in the Agglomeration of Lausanne-Morges (ALM), Switzerland, between 2005 and 2015, corresponding to the implementation period of a supra-municipal plan of measures to reduce air pollution in different sectors such as transport, energy, and industry (called Plan OPair 05). The health impact assessment compares health effects attributed to air pollution exposure levels in 2015 (reference case) with those in 2005 (counterfactual scenario), using 2015 as baseline for all other input data. In the ALM, the modeled PM 10 exposure reduction of 3.3μg/m 3 from 2005 to 2015 prevents 26 premature deaths (equivalent to around 290 years of life lost), 215 hospitalization days due to cardio-vascular and respiratory diseases as well as approximately 47,000 restricted activity days annually. Monetized health impacts of the reduction of PM 10 exposure are valued at approximately CHF 36 million annually. Immaterial costs, mainly related to the economic valuation of years of life lost, dominate the monetized health impacts (90% of total value), while savings at the workplace (net loss in production and reoccupation costs) amount to about CHF 1.9 million, and savings in health care costs to about CHF 0.5 million. The assessment is sensitive to the value assigned to immaterial costs and to uncertainties in the relative risk estimates, whereas variations in the baseline year (i.e. using 2005 data instead of 2015 data) affect

  18. Fast response of sprayed vanadium pentoxide (V{sub 2}O{sub 5}) nanorods towards nitrogen dioxide (NO{sub 2}) gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Mane, A.A. [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); General Science and Humanities Department, Sant Gajanan Maharaj College of Engineering, Mahagaon, 416 503 (India); Suryawanshi, M.P. [Optoelectronics Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Optoelectronics Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V., E-mail: avmoholkar@gmail.com [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2017-05-01

    Highlights: • Effect of solution concentration on physicochemical properties of sprayed V{sub 2}O{sub 5} nanorods is studied. • Good response and short response-recovery times of V{sub 2}O{sub 5} nanorods towards NO{sub 2} gas show it is potential material for fabrication of NO{sub 2} sensor. • The chemisorption mechanism of NO{sub 2} gas on the V{sub 2}O{sub 5} nanorods is discussed. - Abstract: The V{sub 2}O{sub 5} nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl{sub 3}) solution of different concentrations. The effect of solution concentration on the physicochemical and NO{sub 2} gas sensing properties of sprayed V{sub 2}O{sub 5} nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V{sub 2}O{sub 5} having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V{sub 2}O{sub 5}. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO{sub 2} gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO{sub 2} gas on the V{sub 2}O{sub 5} nanorods is discussed.

  19. Influence of nitrogen dioxide on the thermal decomposition of ammonium nitrate

    OpenAIRE

    Igor L. Kovalenko

    2015-01-01

    In this paper results of experimental studies of ammonium nitrate thermal decomposition in an open system under normal conditions and in NO2 atmosphere are presented. It is shown that nitrogen dioxide is the initiator of ammonium nitrate self-accelerating exothermic cyclic decomposition process. The insertion of NO2 from outside under the conditions of nonisothermal experiment reduces the characteristic temperature of the beginning of self-accelerating decomposition by 50...70 °C. Using metho...

  20. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  1. Kinetic study of synthesis of Titanium carbide by methano thermal reduction of Titanium dioxide

    International Nuclear Information System (INIS)

    Alizadeh, R.; Ostrovski, O.

    2011-01-01

    Reduction of the Titanium dioxide, TiO 2 , by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150 d egree C to 1450 d egree C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO 2 and H 2 O. The synthesized product powder was characterized by X-ray diffraction for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/g mole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.

  2. Petrophysical laboratory invertigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group

    2009-04-01

    Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure

  3. Simultaneous absorption of NO and SO{sub 2} into hexamminecobalt(II)/iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Long, X.L.; Xiao, W.D.; Yuan, W.K. [East China University of Science & Technology, Shanghai (China)

    2005-05-01

    An innovative catalyst system has been developed to simultaneously remove NO and SO{sub 2} from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO{sub 2} in the same reactor. When the catalyst system is utilized for removing NO and SO{sub 2} from the flue gas, Co(NH{sub 3}){sub 6}{sup 2+} ions act as the catalyst and I{sup -} as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO{sub 2} is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO{sub 2} can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO{sub 2} and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.

  4. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    Science.gov (United States)

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2014-01-01

    We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2) concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p2.5 hours/week of physical activity). Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08). Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile) for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  5. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    Directory of Open Access Journals (Sweden)

    Lara P Clark

    Full Text Available We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2 concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p2.5 hours/week of physical activity. Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08. Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  6. Attraction of subterranean termites (Isoptera) to carbon dioxide.

    Science.gov (United States)

    Bernklau, Elisa Jo; Fromm, Erich A; Judd, Timothy M; Bjostad, Louis B

    2005-04-01

    Subterranean termites, Reticulitermes spp., were attracted to carbon dioxide (CO2) in laboratory and field tests. In behavioral bioassays, Reticulitermes flavipes (Kollar), Reticulitermes tibialis Banks, and Reticulitermes virginicus Banks were attracted to CO2 concentrations between 5 and 50 mmol/mol. In further bioassays, R. tibialis and R. virginicus were attracted to the headspace from polyisocyanurate construction foam that contained 10-12 mmol/mol CO2. In soil bioassays in the laboratory, more termites foraged in chambers containing CO2-generating formulations than in unbaited control chambers. In field tests, stations containing CO2-generating baits attracted R. tibialis away from wooden fence posts at rangeland sites in Colorado. For all of the CO2 formulations tested, termites foraged in significantly more bait stations at treatment fenceposts than in bait stations at the control fenceposts. By the end of the 8-wk study, the number of bait stations located by termites at treatment fenceposts ranged from 40 to 90%. At control fenceposts, termites foraged in only a single station and the one positive station was not located by termites until week 5 of the study. At treatment fenceposts, termites foraged equally in active stations (containing a CO2-generating bait) and passive stations (with no CO2-generating bait), indicating that bait stations may benefit passively from a proximal CO2 source in the soil. CO2 used as an attractant in current baiting systems could improve their effectiveness by allowing earlier exposure of termites to an insecticide.

  7. Biological processing of carbon dioxide. ; Photosynthetic function of plants, and carbon dioxide fixing function of marine organisms. Nisanka tanso no seibutsuteki shori. ; Shokubutsu no kogosei kino to kaiyo seibutsu no nisanka tanso kotei kino

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M [National Research Inst. for Pollution and Resources, Tsukuba (Japan)

    1991-02-15

    This paper describes photosynthetic function of plants, and CO {sub 2} fixing function of marine organisms. Among the photosythetic reaction systems, the C {sub 3} type reaction carries out CO {sub 2} fixation using the Calvin cycle, and takes out the carbon dioxide out of the system through enzymatic reactions of 3-phosphoglycerate {yields} fructose-6-phosphate. The C {sub 4} type reaction has a special cycle to supply CO {sub 2} to the Calvin cycle, i. e. C {sub 4} dicarboxylic acid cycle. The CAM type reaction enables the photosynthetic type to be converted according to variations in the growing environment. The majority of the surace agricultural crops are from C {sub 3} plants, of which yield may be increased when grown in a high CO {sub 2} atmosphere. On the one hand, gene engineering may make possible breeding of plants having high CO {sub 2} fixing capability. In the area of marine organisms, lime algae growing in clusters around coral reefs form and deposit CaCO {sub 3}. Reef creating corals have symbiotically in their stomach layer brown algae having photosynthetic function to build CaCO {sub 3} skeleton. The corals calcify algae quickly and in a large quantity, hence play an important role in fixing underwater CO {sub 2}. 2 tabs.

  8. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    OpenAIRE

    Leung, Solomon

    2008-01-01

    James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plast...

  9. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    Science.gov (United States)

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P carbon dioxide, and water insufflation ( P carbon dioxide for pain tolerance. This was seen in the subgroups with BMI 30 kg/m 2 .

  10. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide2O:O′erbium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Er(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-antiprismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 and (110 and interact with the coordination network through C—H...O hydrogen bonds.

  11. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    Directory of Open Access Journals (Sweden)

    Ya-Jie Wang

    2014-12-01

    Full Text Available AIM:To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs on embryonic development and retinal neurogenesis. METHODS:The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf. The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS: The1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS, closely resembled their endogenous profile. CONCLUSION:These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity.

  12. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  13. Theoretical Insights into the Nature of Nickel-Carbon Dioxide Interactions in Ni(PH3)2(eta2-CO2)

    Czech Academy of Sciences Publication Activity Database

    Kegl, T.; Ponec, Robert; Kollar, L.

    2011-01-01

    Roč. 115, č. 45 (2011), s. 12463-12473 ISSN 1089-5639 R&D Projects: GA ČR GA203/09/0118 Grant - others:HSRF(HU) OTKA NK 71906; HSRF(HU) OTKA-NKTH CK 78553; RTI(HU) SROP-4.2.2/08/1/2008-2011 Institutional research plan: CEZ:AV0Z40720504 Keywords : carbon dioxide coordination to Ni * analysis of bonding interactions * density functional methods Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 2.946, year: 2011

  14. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  15. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.

    Science.gov (United States)

    Paulin, L M; Diette, G B; Scott, M; McCormack, M C; Matsui, E C; Curtin-Brosnan, J; Williams, D L; Kidd-Taylor, A; Shea, M; Breysse, P N; Hansel, N N

    2014-08-01

    Nitrogen dioxide (NO2 ), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. Several combustion sources unique to the residential indoor environment, including gas stoves, produce nitrogen dioxide (NO2), and higher NO2 concentrations, are associated with worse respiratory morbidity in people with obstructive lung disease. A handful of studies have modified the indoor environment by replacing unvented gas heaters; this study, to our knowledge, is the first randomized study to target unvented gas stoves. The results of this study show that simple home interventions, including replacement of an unvented gas stove with an electric stove or placement of HEPA air purifiers with carbon filters, can significantly decrease indoor NO2 concentrations. © 2013 John Wiley & Sons A

  16. Intra-urban and street scale variability of BTEX, NO 2 and O 3 in Birmingham, UK: Implications for exposure assessment

    Science.gov (United States)

    Vardoulakis, Sotiris; Solazzo, Efisio; Lumbreras, Julio

    2011-09-01

    Automatic monitoring networks have the ability of capturing air pollution episodes, as well as short- and long-term air quality trends in urban areas that can be used in epidemiological studies. However, due to practical constraints (e.g. cost and bulk of equipment), the use of automatic analysers is restricted to a limited number of roadside and background locations within a city. As a result, certain localised air pollution hotspots may be overlooked or overemphasised, especially near heavily trafficked street canyons and intersections. This has implications for compliance with regulatory standards and may cause exposure misclassification in epidemiological studies. Apart from automatic analysers, low cost passive diffusion tubes can be used to characterise the spatial variability of air pollution in urban areas. In this study, BTEX, NO 2 and O 3 data from a one-year passive sampling survey were used to characterise the intra-urban and street scale spatial variability of traffic-related pollutants in Birmingham (UK). In addition, continuous monitoring of NO 2, NO x, O 3, CO, SO 2, PM 10 and PM 2.5 from three permanent monitoring sites was used to identify seasonal and annual pollution patterns. The passive sampling measurements allowed us to evaluate the representativeness of a permanent roadside monitoring site that has recorded some of the highest NO 2 and PM 10 concentrations in Birmingham in recent years. Dispersion modelling was also used to gain further insight into pollutant sources and dispersion characteristics at this location. The strong spatial concentration gradients observed in busy streets, as well as the differences between roadside and urban background levels highlight the importance of appropriate positioning of air quality monitoring equipment in cities.

  17. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    International Nuclear Information System (INIS)

    Edwards, A.G.; Ho, C.S.

    1988-01-01

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  18. Effects of microwave exposure on motor learning and GluR2 phosphorylation in rabbit cerebellum

    International Nuclear Information System (INIS)

    Liu Yong; Wang Denggao; Zhang Guangbin; Zhou Wen; Yang Xuesen

    2007-01-01

    Objective: To investigate the effects of microwave exposure on motor learning and Glutamate receptor 2(GluR2) phosphorylation in rat cerebellum. Methods: The rabbits were trained for seven days to form eye-blink conditioning, and then divided randomly into control and microwave exposure group (at hours 0,3,24 and 72 subgroups after exposure, respectively). The rabbits were accepted 90 mW/cm 2 microwave exposure for 30 minutes, and the rectal temperature were detected immediately after exposure and specific absorption rate (SAR) value were calculated. Eye-blink conditioning were detected immediately after exposure, and cerebellar GluR2 protein and GluR2 phosphorylation were detected with Western blotting. Results: Rectal temperature of rabbits were increased by 3.02 degree C after exposure, and SAR value was 8.74 W/kg. The eye-blink conditioning decreased significantly after exposure, and cerebellar GluR2 protein expression had no significant alteration but phosphorylation reduced significantly after exposure. Conclusions: 90 mW/cm 2 microwave exposure has injurious effects on cerebellar GluR2 phosphorylation and motor learning. (authors)

  19. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study.

    Science.gov (United States)

    Chen, Hong; Kwong, Jeffrey C; Copes, Ray; Hystad, Perry; van Donkelaar, Aaron; Tu, Karen; Brook, Jeffrey R; Goldberg, Mark S; Martin, Randall V; Murray, Brian J; Wilton, Andrew S; Kopp, Alexander; Burnett, Richard T

    2017-11-01

    Emerging studies have implicated air pollution in the neurodegenerative processes. Less is known about the influence of air pollution, especially at the relatively low levels, on developing dementia. We conducted a population-based cohort study in Ontario, Canada, where the concentrations of pollutants are among the lowest in the world, to assess whether air pollution exposure is associated with incident dementia. The study population comprised all Ontario residents who, on 1 April 2001, were 55-85years old, Canadian-born, and free of physician-diagnosed dementia (~2.1 million individuals). Follow-up extended until 2013. We used population-based health administrative databases with a validated algorithm to ascertain incident diagnosis of dementia as well as prevalent cases. Using satellite observations, land-use regression model, and an optimal interpolation method, we derived long-term average exposure to fine particulate matter (≤2.5μm in diameter) (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ), respectively at the subjects' historical residences based on a population-based registry. We used multilevel spatial random-effects Cox proportional hazards models, adjusting for individual and contextual factors, such as diabetes, brain injury, and neighborhood income. We conducted various sensitivity analyses, such as lagging exposure up to 10years and considering a negative control outcome for which no (or weaker) association with air pollution is expected. We identified 257,816 incident cases of dementia in 2001-2013. We found a positive association between PM 2.5 and dementia incidence, with a hazard ratio (HR) of 1.04 (95% confidence interval (CI): 1.03-1.05) for every interquartile-range increase in exposure to PM 2.5 . Similarly, NO 2 was associated with increased incidence of dementia (HR=1.10; 95% CI: 1.08-1.12). No association was found for O 3 . These associations were robust to all sensitivity analyses examined. These estimates translate to 6.1% of

  20. Integrated Assessment of Carbon Dioxide Removal

    Science.gov (United States)

    Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M. F.

    2018-03-01

    To maintain the chance of keeping the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2°C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.

  1. NO2 sensing properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Donkov, N; Stefanov, P; Sendova-Vassileva, M; Grechnikov, A

    2012-01-01

    The sensitivity to NO 2 was studied of amorphous silicon thin films obtained by e-beam evaporation. The process was carried out at an operational-mode vacuum of 1.5x10 -5 Torr at a deposition rate of 170 nm/min. The layer's structure was analyzed by Raman spectroscopy, while its composition was determined by X-ray photoemission spectroscopy (XPS). To estimate their sensitivity to NO 2 , the Si films were deposited on a 16-MHz quartz crystal microbalance (QCM) and the correlation was used between the QCM frequency variation and the mass-loading after exposure to NO 2 in concentrations from 10 ppm to 5000 ppm. A considerable sensitivity of the films was found in the interval 1000 ppm-2500 ppm NO 2 , leading to frequency shifts from 131 Hz to 208 Hz. The results obtained on the films' sorption properties can be applied to the development sensor elements.

  2. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  3. Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements

    Directory of Open Access Journals (Sweden)

    H. Bovensmann

    2012-05-01

    Full Text Available The increasing amounts of reactive nitrogen in the stratosphere necessitate accurate global measurements of stratospheric nitrogen dioxide (NO2. Over the past decade, the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY instrument on ENVISAT (European Environmental Satellite has been providing global coverage of stratospheric NO2 every 6 days. In this study, the vertical distributions of NO2 retrieved from SCIAMACHY limb measurements of the scattered solar light are validated by comparison with NO2 products from three different satellite instruments (SAGE II, HALOE and ACE-FTS. The retrieval algorithm based on the information operator approach is discussed, and the sensitivity of the SCIAMACHY NO2 limb retrievals is investigated. The photochemical corrections needed to make this validation feasible, and the chosen collocation criteria are described. For each instrument, a time period of two years is analyzed with several hundreds of collocation pairs for each year. As NO2 is highly variable, the comparisons are performed for five latitudinal bins and four seasons. In the 20 to 40 km altitude range, mean relative differences between SCIAMACHY and other instruments are found to be typically within 20 to 30%. The mean partial NO2 columns in this altitude range agree typically within 15% (both global monthly and zonal annual means. Larger differences are seen for SAGE II comparisons, which is consistent with the results presented by other authors. For SAGE II and ACE-FTS, the observed differences can be partially attributed to the diurnal effect error.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  5. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Ammendolia

    Full Text Available Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.

  6. Electrocatalytic process for carbon dioxide conversion

    Science.gov (United States)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    2017-11-14

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  7. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  8. Respiratory effects of sulphur dioxide : a hierarchical multicity analysis in the APHEA 2 study

    NARCIS (Netherlands)

    Sunyer, J; Atkinson, R; Ballester, F; Le Tertre, A; Ayres, JG; Forastiere, F; Forsberg, B; Vonk, JM; Bisanti, L; Anderson, RH; Schwartz, J; Katsouyanni, K

    Background: Sulphur dioxide (SO2) was associated with hospital admissions for asthma in children in the original APHEA study, but not with other respiratory admissions. Aims: To assess the association between daily levels of SO2 and daily levels of respiratory admissions in a larger and more recent

  9. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  10. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  11. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  12. Kiln emissions and potters' exposures.

    Science.gov (United States)

    Hirtle, B; Teschke, K; van Netten, C; Brauer, M

    1998-10-01

    Some ten thousand British Columbia potters work in small private studios, cooperative facilities, educational institutions, or recreation centers. There has been considerable concern that this diffuse, largely unregulated activity may involve exposures to unacceptable levels of kiln emissions. Pottery kiln emissions were measured at 50 sites--10 from each of 5 categories: professional studios, recreation centers, elementary schools, secondary schools, and colleges. Area monitoring was done 76 cm from firing kilns and 1.6 m above the floor to assess breathing zone concentrations of nitrogen dioxide, carbon monoxide, sulfur dioxide, fluorides, aldehydes, aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, gold, iron, lead, lithium, magnesium, manganese, mercury, nickel, selenium, silver, vanadium, and zinc. Personal exposures to the same metals were measured at 24 sites. Almost all measured values were well below permissible concentrations for British Columbia work sites and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) with the following two exceptions. A single firing duration (495 minute) acrolein measurement adjacent to an electric kiln (0.109 ppm) exceeded these guidelines. One 15-minute sulfur dioxide measurement collected adjacent to a gas kiln (5.7 ppm) exceeded the ACGIH short-term exposure limit. The fact that concentrations in small, ventilated kiln rooms ranked among the highest measured gives rise to concern that unacceptable levels of contamination may exist where small kiln rooms remain unventilated. Custom designed exhaust hoods and industrial heating, ventilating, and air-conditioning systems were the most effective ventilation strategies. Passive diffusion and wall/window fans were least effective.

  13. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.

    Science.gov (United States)

    Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou

    2017-06-01

    Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.

  14. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    Directory of Open Access Journals (Sweden)

    Kenichi Miyazaki

    2016-05-01

    Full Text Available We investigated the effects of chromium (Cr and niobium (Nb co-doping on the temperature coefficient of resistance (TCR and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2 films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  15. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  16. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  17. Does low to moderate environmental exposure to noise and air pollution influence preterm delivery in medium-sized cities?

    Science.gov (United States)

    Barba-Vasseur, Marie; Bernard, Nadine; Pujol, Sophie; Sagot, Paul; Riethmuller, Didier; Thiriez, Gérard; Houot, Hélène; Defrance, Jérôme; Mariet, Anne-Sophie; Luu, Vinh-Phuc; Barbier, Alice; Benzenine, Eric; Quantin, Catherine; Mauny, Frédéric

    2017-12-01

    Preterm birth (PB) is an important predictor of childhood morbidity and educational performance. Beyond the known risk factors, environmental factors, such as air pollution and noise, have been implicated in PB. In urban areas, these pollutants coexist. Very few studies have examined the effects of multi-exposure on the pregnancy duration. The objective of this study was to analyse the relationship between PB and environmental chronic multi-exposure to noise and air pollution in medium-sized cities. A case-control study was conducted among women living in the city of Besançon (121 671 inhabitants) or in the urban unit of Dijon (243 936 inhabitants) and who delivered in a university hospital between 2005 and 2009. Only singleton pregnancies without associated pathologies were considered. Four controls were matched to each case in terms of the mother's age and delivery location. Residential noise and nitrogen dioxide (NO2) exposures were calculated at the mother's address. Conditional logistic regression models were applied, and sensitivity analyses were performed. This study included 302 cases and 1204 controls. The correlation between noise and NO2 indices ranged from 0.41 to 0.59. No significant differences were found in pollutant exposure levels between cases and controls. The adjusted odds ratios ranged between 0.96 and 1.08. Sensitivity analysis conducted using different temporal and spatial exposure windows demonstrated the same results. The results are in favour of a lack of connection between preterm delivery and multi-exposure to noise and air pollution in medium-sized cities for pregnant women without underlying disease. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  18. Effects of carbon dioxide therapy on the healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    2013-05-01

    Full Text Available PURPOSE: To evaluate the healing effect of carbon dioxide therapy on skin wounds induced on the back of rats. METHODS: Sixteen rats underwent excision of a round dermal-epidermal dorsal skin flap of 2.5 cm in diameter. The animals were divided into two groups, as follows: carbon dioxide group - subcutaneous injections of carbon dioxide on the day of operation and at three, six and nine days postoperatively; control group - no postoperative wound treatment. Wounds were photographed on the day of operation and at six and 14 days postoperatively for analysis of wound area and major diameter. All animals were euthanized on day 14 after surgery. The dorsal skin and the underlying muscle layer containing the wound were resected for histopathological analysis. RESULTS: There was no statistically significant difference between groups in the percentage of wound closure, in histopathological findings, or in the reduction of wound area and major diameter at 14 days postoperatively. CONCLUSION: Under the experimental conditions in which this study was conducted, carbon dioxide therapy had no effects on the healing of acute skin wounds in rats.

  19. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS).

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin Min; Li, Shanshan; Fan, Shujun; Chen, Gongbo; Syberg, Kevin M; Xian, Hong; Wang, Si-Quan; Ma, Huimin; Chen, Duo-Hong; Yang, Mo; Liu, Kang-Kang; Zeng, Xiao-Wen; Hu, Li-Wen; Guo, Yuming; Dong, Guang-Hui

    2018-07-01

    Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM 1 ), ≤ 2.5 µm (PM 2.5 ), and ≤ 10 µm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and ozone (O 3 )). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m 3 increase in PM 1 , PM 2.5 , PM 10 , SO 2 , NO 2 , and O 3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Sterilization of Lung Matrices by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Balestrini, Jenna L; Liu, Angela; Gard, Ashley L; Huie, Janet; Blatt, Kelly M S; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J; Mecham, Robert P; Wilcox, Elise C; Niklason, Laura E

    2016-03-01

    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10(-6) in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes.

  1. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  2. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    Science.gov (United States)

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  3. Ozone and sulphur dioxide effects on leaf water potential of Petunia

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Three cultivars of Petunia hydrida Vilm., of differing ozone visible injury sensitivity, were exposed to 40 parts per hundred million (pphm) ozone and/or 80 pphm SO/sub 2/ for 4 h to study the relationships of leaf water potential, pollutant exposure, and cultivar sensitivity. Ozone substantially decreased leaf water potential in cv White Cascade but not in cv Capri or White Magic. Sulphur dioxide did not affect leaf water potential but delayed ozone-induced changes. Cultivar sensitivity to ozone-induced changes in leaf water potential was not related to cultivar sensitivity to ozone-induced visible injury.

  4. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  5. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Subhash Minocha; Paula Marquardt; Neil Nelson; Mark. Kubiske

    2010-01-01

    This study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA). Since 1998, 12 experimental rings planted in 1997 underwent four different treatments: control; elevated CO2 (560 ppm); elevated O3 (1.5X ambient) and elevated CO2 (560 ppm) + O...

  6. The Potential Impact of a "No-Buy" List on Youth Exposure to Alcohol Advertising on Cable Television.

    Science.gov (United States)

    Ross, Craig S; Brewer, Robert D; Jernigan, David H

    2016-01-01

    The purpose of this study was to outline a method to improve alcohol industry compliance with its self-regulatory advertising placement guidelines on television with the goal of reducing youth exposure to noncompliant advertisements. Data were sourced from Nielsen (The Nielsen Company, New York, NY) for all alcohol advertisements on television in the United States for 2005-2012. A "no-buy" list, that is a list of cable television programs and networks to be avoided when purchasing alcohol advertising, was devised using three criteria: avoid placements on programs that were noncompliant in the past (serially noncompliant), avoid placements on networks at times of day when youth make up a high proportion of the audience (high-risk network dayparts), and use a "guardbanded" (or more restrictive) composition guideline when placing ads on low-rated programs (low rated). Youth were exposed to 15.1 billion noncompliant advertising impressions from 2005 to 2012, mostly on cable television. Together, the three no-buy list criteria accounted for 99% of 12.9 billion noncompliant advertising exposures on cable television for youth ages 2-20 years. When we evaluated the no-buy list criteria sequentially and mutually exclusively, serially noncompliant ads accounted for 67% of noncompliant exposure, high-risk network-daypart ads accounted for 26%, and low-rated ads accounted for 7%. These findings suggest that the prospective use of the no-buy list criteria when purchasing alcohol advertising could eliminate most noncompliant advertising exposures and could be incorporated into standard post-audit procedures that are widely used by the alcohol industry in assessing exposure to television advertising.

  7. Exploring mechanisms of a tropospheric archetype: CH{sub 3}O{sub 2} + NO

    Energy Technology Data Exchange (ETDEWEB)

    Launder, Andrew M.; Agarwal, Jay; Schaefer, Henry F., E-mail: ccq@uga.edu [Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-12-21

    Methylperoxy radical (CH{sub 3}O{sub 2}) and nitric oxide (NO) contribute to the propagation of photochemical smog in the troposphere via the production of methoxy radical (CH{sub 3}O) and nitrogen dioxide (NO{sub 2}). This reaction system also furnishes trace quantities of methyl nitrate (CH{sub 3}ONO{sub 2}), a sink for reactive NO{sub x} species. Here, the CH{sub 3}O{sub 2} + NO reaction is examined with highly reliable coupled-cluster methods. Specifically, equilibrium geometries for the reactants, products, intermediates, and transition states of the ground-state potential energy surface are characterized. Relative reaction enthalpies at 0 K (ΔH{sub 0K}) are reported; these values are comprised of electronic energies extrapolated to the complete basis set limit of CCSDT(Q) and zero-point vibrational energies computed at CCSD(T)/cc-pVTZ. A two-part mechanism involving CH{sub 3}O and NO{sub 2} production followed by radical recombination to CH{sub 3}ONO{sub 2} is determined to be the primary channel for formation of CH{sub 3}ONO{sub 2} under tropospheric conditions. Constrained optimizations of the reaction paths at CCSD(T)/cc-pVTZ suggest that the homolytic bond dissociations involved in this reaction path are barrierless.

  8. BOOK REVIEW: NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States

    Science.gov (United States)

    Thurston, Jim

    2010-10-01

    the overall average effective dose to a US citizen from approximately 3.6 mSv reported in 1987 to 6.2 mSv per annum, with medical exposures now responsible for 48% of the total (up from 15% in 1992). It is interesting to note that over roughly the same period of time, the total dose to the UK population has been revised upwards from 2.6 mSv to 2.7mSv to reflect (amongst other factors) the increase in CT scanning in the UK—obviously a much smaller change. However, one has to consider whether medical radiological practices in the UK might similarly change in the coming years, and UK population doses subsequently follow the US trend reported here. There is now a more detailed chapter on exposure to the population from consumer products and activities. Of the contributing factors in this category, the radiation dose received from radioactivity in tobacco smoke is the most significant, followed by building materials and air travel. There has been no significant change in the total dose received from these sources when compared to the earlier Report 93, at 0.13 mSv. The report also gives significant detail on exposure to the public from industrial sources (not just nuclear power), and discusses occupational exposure. Both these categories of exposure, averaged out of the whole population, give very small contributions to the total dose (0.003 mSv and 0.005 mSv, respectively). There are two final points to make about this report. Firstly, it continues the NCRP policy introduced for Report 93 of using SI units rather than the radiation units more commonly used within the US, hence making this report more readily accessible to an international audience. Secondly, in all the descriptions of the exposures and radiation doses received, no attempt is made to convert the doses into risk. The view of the Council, as stated in the forward to the report, is that attempting to quantify the risks associated with such levels of radiation exposure falls outside the remit of the

  9. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    Science.gov (United States)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving

  10. Effects of air pollution on crops. I. Effects of gaseous sulfur dioxide and ozone on the occurrence of symptoms of injuries on vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Masahara, O; Mega, K

    1974-06-01

    In order to obtain information on plant injuries due to air pollution to utilize susceptible plants as biological indicators of air pollution, potted plants such as chard, spinach, Chinese cabbage, and Japanese radish or cut plants such as Welsh onion were exposed in a glass house to sulfur dioxide at 0.4 ppM continuously for a week or to ozone for 6 hr at 0.13, 0.2, 0.4, and 0.6 ppM. The symptoms due to sulfur dioxide appeared first as peripheral and interveinal necrosis, followed by dehydration. The period of exposure required for the appearance of injuries depended mainly on the vegetable species and ranged from 1 day for potted herb mustard to more than a week for maize. A variety of cabbage did not show any injury after 1 week of continuous exposure to sulfur dioxide. The symptoms due to ozone appeared on the veinal or interveinal parts of leaves and were white to light brown in color on cruciferous vegetables and onions. Brown spots appeared on cucumber, and brown, reddish-purple, or dark purple lesions appeared on burdock, rice, and kidney bean. Damage was most severe on cucumbers occurring even at 0.13 ppM. The environmental conditions before and after the exposure to these gases affected the appearance of the symptoms.

  11. Sulfur dioxide content of the air and its influence on the plant

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, G; Reckendorfer, P; Beran, F

    1929-01-01

    Clover was exposed to concentrations of sulfur dioxide ranging from 5 to 50 ppm for periods of 1 to 4 hours. The higher concentrations caused an increase in sulfur content. Single exposures did not affect the digestible protein content of the plants. 10 tables, 3 figures.

  12. Impact of TiO{sub 2} nanoparticles on freshwater bacteria from three Swedish lakes

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Julia, E-mail: julia.farkas@ntnu.no [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Peter, Hannes [Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Ciesielski, Tomasz M. [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Thomas, Kevin V. [Norwegian Institute of Water Research, Gaustadalléen 21, 0349 Oslo (Norway); Sommaruga, Ruben [Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Salvenmoser, Willi [Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Weyhenmeyer, Gesa A.; Tranvik, Lars J. [Department of Ecology and Genetics/Limnology, Uppsala University, PO Box 573, 75123 Uppsala (Sweden); Jenssen, Bjørn M. [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway)

    2015-12-01

    Due to the rapidly rising production and usage of nano-enabled products, aquatic environments are increasingly exposed to engineered nanoparticles (ENPs), causing concerns about their potential negative effects. In this study we assessed the effects of uncoated titanium dioxide nanoparticles (TiO{sub 2}NPs) on the growth and activity of bacterial communities of three Swedish lakes featuring different chemical characteristics such as dissolved organic carbon (DOC) concentration, pH and elemental composition. TiO{sub 2}NP exposure concentrations were 15, 100, and 1000 μg L{sup −1}, and experiments were performed in situ under three light regimes: darkness, photosynthetically active radiation (PAR), and ambient sunlight including UV radiation (UVR). The nanoparticles were most stable in lake water with high DOC and low chemical element concentrations. At the highest exposure concentration (1000 μg L{sup −1} TiO{sub 2}NP) the bacterial abundance was significantly reduced in all lake waters. In the medium and high DOC lake waters, exposure concentrations of 100 μg L{sup −1} TiO{sub 2}NP caused significant reductions in bacterial abundance. The cell-specific bacterial activity was significantly enhanced at high TiO{sub 2}NP exposure concentrations, indicating the loss of nanoparticle-sensitive bacteria and a subsequent increased activity by tolerant ones. No UV-induced phototoxic effect of TiO{sub 2}NP was found in this study. We conclude that in freshwater lakes with high DOC and low chemical element concentrations, uncoated TiO{sub 2}NPs show an enhanced stability and can significantly reduce bacterial abundance at relatively low exposure concentrations. - Highlights: • Titanium dioxide nanoparticles reduced the abundance of lake water bacteria from 3 Swedish lakes. • The impact was most severe in the lake with high DOC content and low element concentration. • Particle stability influences impact on bacteria. • No phototoxic effects of TiO{sub 2}NP

  13. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice

    DEFF Research Database (Denmark)

    Jackson, Petra; Halappanavar, Sabina; Hougaard, Karin Sorig

    2013-01-01

    We investigated effects of maternal pulmonary exposure to titanium dioxide (UV-Titan) on prenatally exposed offspring. Time-mated mice (C57BL/6BomTac) were inhalation exposed (1 h/day to 42 mg UV-Titan/m(3) aerosolised powder or filtered air) during gestation days (GDs) 8-18. We evaluated DNA...... strand breaks using the comet assay in bronchoalveolar lavage (BAL) cells and livers of the time-mated mice (5 and 26-27 days after inhalation exposure), and in livers of the offspring (post-natal days (PND) 2 and 22). We also analysed hepatic gene expression in newborns using DNA microarrays. UV-Titan...

  14. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Tan, Cheng; Wang, Wen-Xiong

    2014-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are widely used in water treatments, yet their influences on other contaminants in the water are not well studied. In this study, the aqueous uptake, assimilation efficiency, and toxicity of two ionic metals (cadmium-Cd, and zinc-Zn) in a freshwater zooplankton, Daphnia magna, were investigated following 2 days pre-exposure to nano-TiO 2 . Pre-exposure to 1 mg/L nano-TiO 2 resulted in a significant increase in Cd and Zn uptake from the dissolved phase. After the nano-TiO 2 in the guts were cleared, the uptake rates immediately recovered to the normal levels. Concurrent measurements of reactive oxygen species (ROS) and metallothioneins (MTs) suggested that the increased metal uptake was mainly due to the increased number of binding sites provided by nano-TiO 2 presented in the guts. Consistently, pre-exposure to nano-TiO 2 increased the toxicity of aqueous Cd and Zn due to enhanced uptake. Our study provides the evidence that nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Highlights: • Dissolved Cd and Zn uptake in daphnids increased significantly after nano-TiO 2 pre-exposure. • Aqueous toxicity of Cd and Zn also increased after nano-TiO 2 pre-exposure. • Dietary assimilation of Cd and Zn was not affected after nano-TiO 2 pre-exposure. • Metal uptake recovered to normal levels after nano-TiO 2 in the guts were removed. • Nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Nano-TiO 2 accumulation in Daphnia magna facilitated the uptake and toxicity of metal contaminants

  15. MAX-DOAS measurements of NO2 column densities in Vienna

    Science.gov (United States)

    Schreier, Stefan; Weihs, Philipp; Peters, Enno; Richter, Andreas; Ostendorf, Mareike; Schönhardt, Anja; Burrows, John P.; Schmalwieser, Alois

    2017-04-01

    In the VINDOBONA (VIenna horizontal aNd vertical Distribution OBservations Of Nitrogen dioxide and Aerosols) project, two Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) systems will be set up at two different locations and altitudes in Vienna, Austria. After comparison measurements in Bremen, Germany, and Cabauw, The Netherlands, the first of the two MAX-DOAS instruments was set up at the University of Veterinary Medicine in the northeastern part of Vienna in December 2016. The instrument performs spectral measurements of visible scattered sunlight at defined horizontal and vertical viewing directions. From these measurements, column densities of NO2 and aerosols are derived by applying the DOAS analysis. First preliminary results are presented. The second MAX-DOAS instrument will be set up in April/May 2017 at the University of Natural Resources and Life Sciences in the northwestern part of Vienna. Once these two instruments are measuring simultaneously, small campaigns including car DOAS zenith-sky and tower DOAS off-axis measurements are planned. The main emphasis of this project will be on the installation and operation of two MAX-DOAS instruments, the improvement of tropospheric NO2 and aerosol retrieval, and the characterization of the horizontal, vertical, and temporal variations of tropospheric NO2 and aerosols in Vienna, Austria.

  16. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    International Nuclear Information System (INIS)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica; Delgado-Buenrostro, Norma L.; Flores-Flores, José O.; Gutiérrez-López, Gustavo F.; Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M.

    2015-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO 2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO 2 -B) using TiO 2 spheres (TiO 2 -SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm 2 ) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO 2 -B effect on agglomerates size, cell size and granularity than TiO 2 -SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO 2 -SP and TiO 2 -B, respectively; TiO 2 -SP and TiO 2 -B induced 23% and 70% cell size decrease, respectively, whilst TiO 2 -SP and TiO 2 -B induced 7 and 14-fold of granularity increase. NO x production was down-regulated (31%) by TiO 2 -SP and up-regulated (70%) by TiO 2 -B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO 2 -SP exposed cells while TiO 2 -B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO 2 -B had higher proliferative potential than TiO 2 -SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm 2 ) to titanium dioxide nanoparticles (TiO 2 -NPs) shaped as spheres (TiO 2 -SP) and belts (TiO 2 -B) for midterm (7 continuous days) separately. (B) Then, cells from each cell

  17. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).

    Science.gov (United States)

    Singh, Satyavan; Bhatia, Arti; Tomer, Ritu; Kumar, Vinod; Singh, B; Singh, S D

    2013-08-01

    Field experiments were conducted in open top chamber during rabi seasons of 2009-10 and 2010-11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80-85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5-10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25-35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25-35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18-20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.

  18. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.

    Science.gov (United States)

    Xue, Meizhao; Yi, Huilan

    2018-01-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has complex impacts on plants. The effect of prior exposure to 30mgm -3 SO 2 on defence against Botrytis cinerea (B. cinerea) in Arabidopsis thaliana and the possible mechanisms of action were investigated. The results indicated that pre-exposure to 30mgm -3 SO 2 resulted in significantly enhanced resistance to B. cinerea infection. SO 2 pre-treatment significantly enhanced the activities of defence-related enzymes including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), β-1,3-glucanase (BGL) and chitinase (CHI). Transcripts of the defence-related genes PAL, PPO, PR2, and PR3, encoding PAL, PPO, BGL and CHI, respectively, were markedly elevated in Arabidopsis plants pre-exposed to SO 2 and subsequently inoculated with B. cinerea (SO 2 + treatment group) compared with those that were only treated with SO 2 (SO 2 ) or inoculated with B. cinerea (CK+). Moreover, SO 2 pre-exposure also led to significant increases in the expression levels of MIR393, MIR160 and MIR167 in Arabidopsis. Meanwhile, the expression of known targets involved in the auxin signalling pathway, was negatively correlated with their corresponding miRNAs. Additionally, the transcript levels of the primary auxin-response genes GH3-like, BDL/IAA12, and AXR3/IAA17 were markedly repressed. Our findings indicate that 30mgm -3 SO 2 pre-exposure enhances disease resistance against B. cinerea in Arabidopsis by priming defence responses through enhancement of defence-related gene expression and enzyme activity, and miRNA-mediated suppression of the auxin signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pajanan NO2 Bulan Pertama dan Kedua Kehamilan terhadap Bayi dengan Berat Badan Lahir Rendah

    Directory of Open Access Journals (Sweden)

    Bunga Oktora

    2014-01-01

    Full Text Available Pajanan pencemar udara selama kehamilan berhubungan dengan bayi berat badan lahir rendah (BBLR. Untuk menghubungkan konsentrasi NO2 dalam udara ambien, telah dilakukan studi ekologi di Jakarta. Konsentrasi NO2 didapat dari data monitoring BPLHD DKI Jakarta 2009 – 2011, sedangkan kasus-kasus bayi BBLR diperoleh dari Dinas Kesehatan Provinsi DKI Jakarta. Data dianalisis dengan Anova, uji korelasi, dan regresi linier dan berganda. Hasil analisis menunjukkan bahwa konsentrasi NO2 dalam bulan pertama dan kedua kehamilan berhubungan bermakna dengan BBLR (masing-masing dengan R = 0,464, nilai p = 0,0001 dan R = 0,243, nilai p = 0,013. Regresi linier berganda menunjukkan bahwa konsentrasi NO2 dapat meramalkan 25% kasus BBLR (R = 0,5; R2 = 0,25; nilai p = 0,0001. Variabel yang paling memengaruhi BBLR adalah pajanan terhadap NO2 pada bulan pertama gestasi (B = 259. Disimpulkan, pajanan NO2 pada bulan pertama dan kedua kehamilan dan tempat wilayah tinggal berhubungan dengan BBLR, dengan pajanan NO2 pada bulan pertama kehamilan merupakan faktor utama BBLR. It has been known that exposure to air pollutant during pregnancy was associated with low birth weight. To correlate NO2 concentration in ambient air with baby with low birth weight (LBW, an ecological study has been carried in Jakarta. NO2 concentration was obtained from 2009 – 2011 monitoring data (Jakarta BPLHD, while low birth weight data were obtained from Jakarta Provincial Health Office. Anova, correlation, linear and multiple linear regressions were employed to analyze NO2 concentration with LBW. It showed that NO2 concentrations during first and second month of pregnancy were significantly correlated with the LBW (R = 0.464, p value = 0.0001 and R = 0.243, p value = 0.013. Multiple linear regression showed that the concentration of NO2 in the first and second month of pregnancy can predict 25% of LBW cases (R = 0.5, R2 = 0.25; p value = 0.0001. The most influence variable on LBW is exposure

  20. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference?

    Science.gov (United States)

    Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA

    2016-01-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245