WorldWideScience

Sample records for diode laser effect

  1. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  2. Effect of the Bit Rate on the Pulses of the Laser Diodes | Ayadi ...

    African Journals Online (AJOL)

    The qualities required for Laser Diodes are their spatial and temporal coherence, and their performance in terms modulation. This paper presents the effect data rate of optical pulses delivered by diode laser using software COMSIS. Two types of modulation have been considered: direct modulation and external modulation.

  3. Effect of laser-diode light on growth of Lactuca sativa L

    International Nuclear Information System (INIS)

    Yamazaki, A.; Tsuchiya, H.; Miyajima, H.; Honma, T.; Kan, H.

    2000-01-01

    Development of an effective, high-power, low-cost, artificial light source for use in plant-growing facilities would be very beneficial for plant production. Recently, the laser-diode lamp was proposed as a new type of light source for plant production. The advantages of the laser-diode lamp over conventional light sources are its high electrical-to-optical power conversion efficiency, low thermal radiation, easy set-up for high power and pulse irradiation, small weight and small volume for mounting, and selectivity for proper wavelength. Because laser light itself differs from the light sources presently used in plant growing, we confirmed the possibility of growing plants under the laser-diode light using lettuces. Lettuce seedlings with 5-6 leaves were grown under a laser-diode lamp panel with 30 pieces of high-power and high-efficiency AlGaInP laser-diodes. The power of each laser-diode lamp was 500 mW, and the wavelength was 680 nm, which was efficient for photosynthesis. The lettuce plants were able to grow under the laser-diode light. However, plants were lighter and had thinner leaves than those grown under high-pressure sodium lamps. (author)

  4. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  5. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  6. The Effect of Diode Laser With Different Parameters on Root Fracture During Irrigation Procedure.

    Science.gov (United States)

    Karataş, Ertuğrul; Arslan, Hakan; Topçuoğlu, Hüseyin Sinan; Yılmaz, Cenk Burak; Yeter, Kübra Yesildal; Ayrancı, Leyla Benan

    2016-06-01

    The aim of this study is to compare the effect of a single diode laser application and agitation of EDTA with diode laser with different parameters at different time intervals on root fracture. Ninety mandibular incisors were instrumented except the negative control group. The specimens were divided randomly into 10 groups according to final irrigation procedure: (G1) non-instrumented; (G2) distilled water; (G3) 15% EDTA; (G4) ultrasonically agitated EDTA; (G5) single 1.5W/100 Hz Diode laser; (G6) single 3W/100 Hz Diode laser; (G7) 1.5W/100 Hz Diode laser agitation of EDTA for 20 s; (G8) 1.5W/100 Hz Diode laser agitation of EDTA for 40 s; (G9) 3W/100 Hz Diode laser agitation of EDTA for 20 s; and (G10) 3W/100 Hz Diode laser agitation of EDTA for 40 s. The specimens were filled, mounted in acrylic resin, and compression strength test was performed on each specimen. Statistical analysis was carried out using one way ANOVA and Tukey's post hoc tests (P = 0.05). The statistical analysis revealed that there were statistically significant differences among the groups (P Laser-agitated irrigation with a 3W/100 Hz Diode laser for both 20 s and 40 s decreased the fracture resistance of teeth. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Effect of thermal processes on critical operation conditions of high-power laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Parashchuk, V V [Institute of Physics, Belarus Academy of Sciences, Minsk (Belarus); Vu Doan Mien [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam)

    2013-10-31

    Using numerical and analytical techniques in a threedimensional approximation, we have modelled the effect of spatial thermoelastic stress nonuniformity in a laser diode – heat sink system on the output characteristics of the device in different operation modes. We have studied the influence of the pulse duration, the geometry of the laser system and its thermophysical parameters on the critical pump current density, in particular for state-of-the-art heat conductive substrate materials. The proposed approach has been used to optimise the laser diode assembly process in terms of the quality of laser crystal positioning (bonding) on a heat sink. (lasers)

  8. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  9. outcome of diode laser cyclophotocoagulation in neovascular ...

    African Journals Online (AJOL)

    Duke

    including, ruby, ND:YAG, argon, krypton and, more recently, trans scleral cyclophotocoagulation with the diode laser, which has been shown to be more effective with less side effects than the others. The diode laser, 810nm, has. 4,5 greater melanin absorption compared to other lasers. Of the various cyclodestructive laser ...

  10. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation.

    Science.gov (United States)

    González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan

    2011-05-01

    Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully

  11. A 1,470 nm diode laser in stapedotomy: Mechanical, thermal, and acoustic effects.

    Science.gov (United States)

    Koenraads, Simone P C; de Boorder, Tjeerd; Grolman, Wilko; Kamalski, Digna M A

    2017-08-01

    Multiple laser systems have been investigated for their use in stapes surgery in patients with otosclerosis. The diode 1,470 nm laser used in this study is an attractive laser system because it is easily transported and relatively inexpensive in use. This wavelength has relative high absorption in water. This study aimed to investigate the mechanical, thermal, and acoustic effects of the diode 1,470 nm laser on a stapes in an inner ear model. Experiments were performed in an inner ear model including fresh frozen human stapes. High-speed imaging with frame rates up to 2,000 frames per second (f/s) was used to visualize the effects in the vestibule during fenestration of the footplate. A special high-speed color Schlieren technique was used to study thermal effects. The sound produced by perforation was recorded by a hydrophone. Single pulse settings of the diode 1,470 nm laser were 100 ms, 3 W. Diode 1,470 nm laser fenestration showed mechanical effects with small vapor bubbles and pressure waves pushed into the vestibule. Thermal imaging visualized an increase temperature underneath the stapes footplate. Acoustic effects were limited, but larger sounds levels were reached when vaporization bubbles arise and explode in the vestibule. The diode 1,470 nm laser highly absorbs in perilymph and is capable of forming a clear fenestration in the stapes. An overlapping laser pulse will increase the risk of vapor bubbles, pressure waves, and heating the vestibule. As long as we do not know the possible damage of these effects to the inner ear function, it seems advisable to use the laser with less potential harm. Lasers Surg. Med. 49:619-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  13. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  14. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  15. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (Pdiode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  16. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    International Nuclear Information System (INIS)

    Kotoku, Y; Kato, J; Akashi, G; Hirai, Y; Ishihara, K

    2009-01-01

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm 2 . The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm 2 . The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis

  17. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    Science.gov (United States)

    Kotoku, Y.; Kato, J.; Akashi, G.; Hirai, Y.; Ishihara, K.

    2009-05-01

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm2. The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm2. The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis.

  18. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Kotoku, Y; Kato, J; Akashi, G; Hirai, Y [Department of Operative Dentistry, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba, 261-8502 (Japan); Ishihara, K [Department of Microbiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba, 261-8502 (Japan)

    2009-05-15

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm{sup 2}. The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm{sup 2}. The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis.

  19. Effective Management of a pregnancy tumour using a soft tissue diode laser: a case Report.

    Science.gov (United States)

    Sharma, Ambika; Mathur, Vijay Prakash; Sardana, Divesh

    2014-12-27

    Pregnancy tumours (PTs) are a non-neoplastic, reactive, inflammatory conditional gingival enlargement which occurs in the oral cavity during pregnancy. The lesion most frequently occurs on the gingiva but may also develop on the lip, tongue, oral mucosa and palate. When a large PT develops, it can interfere with mastication, speech, maintenance of oral hygiene and can be aesthetically disfiguring. The treatment of PTs depends upon the size of the lesion; smaller lesions can regress after parturition however large lesions need to be surgically removed. Conventional surgical techniques have the disadvantage of more bleeding from the surgical site and delay in healing of the scar tissue. The diode laser is a relatively new alternative to conventional surgical technique in intra-oral areas with the added advantage of bloodless procedures and rapid healing. The purpose of the present study is to highlight the management of a PT in a 25-year-old female using a diode laser delivering a painless, bloodless procedure with rapid postoperative healing. Diode laser excision of a persistent pregnancy tumour in a postpartum patient was safe and effective with minimal bleeding, good coagulation, and good wound healing. Among other lasers, the diode laser can therefore be considered for excisional treatment of persistent PTs.

  20. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    Science.gov (United States)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  1. Diverse effects of a 445 nm diode laser on isometric contraction of the rat aorta

    Science.gov (United States)

    Park, Sang Woong; Shin, Kyung Chul; Park, Hyun Ji; Lee, In Wha; Kim, Hyung-Sik; Chung, Soon-Cheol; Kim, Ji-Sun; Jun, Jae-Hoon; Kim, Bokyung; Bae, Young Min

    2015-01-01

    The usefulness of visible lasers in treating vascular diseases is controversial. It is probable that multiple effects of visible lasers on blood vessels and their unclear mechanisms have hampered the usefulness of this therapy. Therefore, elucidating the precise actions and mechanisms of the effects of lasers on blood vessels would provide insight into potential biomedical applications. Here, using organ chamber isometric contraction measurements, western blotting, patch-clamp, and en face immunohistochemistry, we showed that a 445 nm diode laser contracted rat aortic rings, both by activating endothelial nitric oxide synthase and by increasing oxidative stress. In addition to the effects on the endothelium, the laser also directly relaxed and contracted vascular smooth muscle by inhibiting L-type Ca2+ channels and by activating protein tyrosine kinases, respectively. Thus, we conclude that exposure to 445 nm laser might contract and dilate blood vessels in the endothelium and smooth muscle via distinct mechanisms. PMID:26417517

  2. Effect of different diode laser wavelengths on root dentin decontamination infected with Enterococcus faecalis.

    Science.gov (United States)

    Borges, Caroline Cristina; Estrela, Carlos; Lopes, Fabiane Carneiro; Palma-Dibb, Regina Guenka; Pecora, Jesus Djalma; De Araújo Estrela, Cyntia Rodrigues; Sousa-Neto, Manoel Damião de

    2017-11-01

    The objective of this study was to evaluate the antibacterial effect and the ultrastructural alterations of diode laser with different wavelengths (808nm and 970nm) and its association with irrigating solutions (2.5% sodium hypochlorite and 2% chlorhexidine) in root dentin contaminated by a five days biofilm. Thirteen uniradicular teeth were sectioned into 100 dentin intraradicular blocks. Initially, the blocks were immersed for 5min in 17% EDTA and washed with distilled water for 5min, then samples were sterilized for 30min at 120°C. The dentin samples were inoculated with 0.1mL of E. faecalis suspension in 5mL BHI (Brain Heart Infusion) and incubated at 37°C for 5days. After contamination, the specimens were distributed into ten groups (n=10) according to surface treatment: GI - 5mL NaOCl 2.5%, GII - 5mL NaOCl 2.5%+808nm diode (0.1W for 20s), GIII - 5mL NaOCl 2.5%+970nm diode (0.5W for 4s), GIV - 808nm diode (0.1W for 20s), GV - 970nm diode (0.5W for 4s), GVI - CHX 2%, GVII - CHX 2%+808nm diode (0.1W for 20s), GVIII - CHX 2%+970nm diode (0.5W for 4s), GIX - positive control and GX - negative control. Bacterial growth was analyzed by turbidity and optical density of the growth medium by spectrophotometry (nm). Then, the specimens were processed for analysis ultrastructural changes of the dentin surface by SEM. The data was subject to the One-way ANOVA test. GI (77.5±12.1), GII (72.5±12.2), GIII (68.7±8.7), GV (68.3±8.7), GVI (62.0±5.5) and GVII (67.5±3.3) were statistically similar and statistically different from GIV (58.8±25.0), GVIII (59.2±4.0) and control groups (pdiode laser; erosion of the intertubular dentin in blocks submitted to 808nm diode laser irradiation; and an increased erosion of the intertubular dentin when 2.5% NaOCl was associated to the different wavelengths lasers. All the therapeutic protocols were able to reduce the bacterial contingent in dentin blocks, and the association of diode laser and solutions did not significantly improve

  3. Evaluation of Diode laser (940 nm irradiation effect on microleakage in class V composite restoration before and after adhesive application

    Directory of Open Access Journals (Sweden)

    loghman rezaei

    2018-03-01

    Full Text Available Introduction: Nowadays, the main focus of dental studies is on adhesive dental materials; since clinical long-term success of bonded restorations depended more on marginal microleakage minimization. So, the aim of this study was Evaluation of Diode laser irradiation effect on microleakage in class V composite restoration before and after adhesive application. Materials and methods: In this in vitro-experimental study, standard class V cavity was prepared on lingual and buccal surfaces of 60 premolar teeth. For evaluation of microleakage, 60 teeth were divided randomly into four groups A, B, C, D (n=15: A primer + adhesive (Clearfil TM SE Bond, B primer + Diode laser + adhesive (940nm wave-length, 21J total energy, 0.7W power, 30s irradiation time C primer + adhesive + Diode laser D primer + Diode laser + adhesive + Diode laser. Then, restoration was completed by Z250 composite. For data analyzing, we used SPSS 16 software. For statistical analysis, we used Non-parametric Kruskal-Wallis & Mann-Whitney tests at 0.05% significance level.  Results: According to non-parametric Kruskal-Wallis test, microleakage scores had not significant difference before and after laser irradiation on gingival margins (p=0.116. But, in occlusal margins the results were significant among the groups (p=0.015. Also according to non-parametric Mann-Whitney tests among the occlusal microleakage scores, group B and D (Diode laser irradiation after primer and Diode laser irradiation after primer and adhesive showed significant results. Conclusion: This study findings showed that in 6th generation adhesives, Diode laser irradiation on self-etch primer before bonding have significant effect on reduction of occlusal marginal microleakage in class V cavities although there was no significant positive effect of Diode laser on gingival margins.

  4. Diode lasers: From laboratory to industry

    Science.gov (United States)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  5. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  6. Effectiveness of a diode laser in addition to non-surgical periodontal therapy: study of intervention.

    Science.gov (United States)

    Crispino, Antonio; Figliuzzi, Michele Mario; Iovane, Claudio; Del Giudice, Teresa; Lomanno, Simona; Pacifico, Delfina; Fortunato, Leonzio; Del Giudice, Roberto

    2015-01-01

    Chronic periodontitis affects 47% of adult population over the age of 30. The first phase of periodontal treatment is always represented by scaling and root planning (SRP), that is a causal, non-surgical therapy that recognizes as primary aims the control of bacterial infection and the reduction of periodontal plaque-associated inflammation. Yet, another innovative causal therapy is represented by the irradiation of periodontal pockets with laser. To evaluate the effect of a 940-nm diode laser as an adjunct to SRP in patients affected by periodontitis. Sixty-eight adult patients with moderate-to-severe periodontitis were sequentially enrolled and undergone to periodontal examination (V1) in order to detect gingival index (GI), plaque index (PI) and probing depth (PD). The patients were randomly divided into two groups: the first (n=34) received SRP treatment alone, the control group (n=34) received SRP and 940-nm diode laser therapy. Data were analyzed by Student's t-test, with two tails; for all clinical parameters, both groups reported statistically significant differences compared to basal values (pdiode laser was associated with more evident results. Considered the better clinical outcomes, diode laser can be routinely associated with SRP in the treatment of periodontal pockets of patients with moderate-to-severe periodontitis.

  7. Transurethral vaporesection of prostate: diode laser or thulium laser?

    Science.gov (United States)

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  8. Characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode-pumped Nd:YAG ceramic laser

    International Nuclear Information System (INIS)

    Kim, Duck-Lae; Kim, Byung-Tai

    2010-01-01

    The characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode Nd:YAG ceramic laser were investigated. The thermal lensing effect was compensated for by using a compensator, which was 25 mm away from the laser rod, with a focal length of 30 mm and an effective clear aperture of 22 mm. Using a compensator, the divergence and the beam propagation factor M 2 of the output beam were 5.5 mrad and 2.4, respectively, under a pump power of 12W. The high-frequency components in the compensated laser beam were removed.

  9. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  10. Laser diode technology and applications

    International Nuclear Information System (INIS)

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  11. Effect of different diode laser powers in photodynamic therapy

    CSIR Research Space (South Africa)

    Maduray, K

    2010-09-01

    Full Text Available ?, Radiation and Oncology 37, p 131-135. Fig. 2: The cell viability of fibroblast cells after photosensitization with 50 µg/ml of ZnTSPc and photoactivation using a light dose of 4.5 J/cm2 an emitting output power of 31.8 mW from a CW laser source. Fig...

  12. Experimental diode laser-assisted microvascular anastomosis.

    Science.gov (United States)

    Reali, U M; Gelli, R; Giannotti, V; Gori, F; Pratesi, R; Pini, R

    1993-05-01

    An experimental study to evaluate a diode-laser approach to microvascular end-to-end anastomoses is reported. Studies were carried out on the femoral arteries and veins of Wistar rats, and effective welding of vessel tissue was obtained at low laser power, by enhancing laser absorption with indocyanine green (Cardio-green) solution. The histologic and surgical effects of this laser technique were examined and compared with those of conventional microvascular sutured anastomoses.

  13. Enhanced vbasis laser diode package

    Science.gov (United States)

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  14. A 1,470 nm diode laser in stapedotomy : Mechanical, thermal, and acoustic effects

    NARCIS (Netherlands)

    Koenraads, Simone P.C.; de Boorder, Tjeerd; Grolman, Wilko; Kamalski, Digna M.A.

    2017-01-01

    Background and Objectives: Multiple laser systems have been investigated for their use in stapes surgery in patients with otosclerosis. The diode 1,470 nm laser used in this study is an attractive laser system because it is easily transported and relatively inexpensive in use. This wavelength has

  15. Effect of laser-assisted bleaching with Nd:YAG and diode lasers on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim

    2015-12-01

    The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching.

  16. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  17. Diode laser-assisted transcanalicular dacryocystorhinostomy: the effect of age on the results

    Directory of Open Access Journals (Sweden)

    Fahrettin Akay

    2015-06-01

    Full Text Available ABSTRACT Purpose: The aim of this study was to explore the effect of age on the success of transcanalicular diode laser-assisted dacryocystorhinostomy (TCDCR. Methods: Seventy patients (70 eyes who underwent transcanalicular diode laser-assisted dacryocystorhinostomy for the treatment of nasolacrimal duct obstruction as a primary surgery were included in this retrospective, nonrandomized study. The patients were divided into two groups according to age. Mean ages were 21.3 ± 3.3 in group 1 and 60.3 ± 7.3 in group 2. The records of the 3-, 6-, and 12-month follow-up examinations were evaluated, and the anatomical and functional outcomes were noted. Functional success was defined as the absence of epiphora as indicated by the patient. Anatomical success was determined as patency of the neo-ostium with irrigation. Results: At the 3-month follow-up, 67% cases in group 1 showed anatomical success and 52% showed functional success; in group 2, the rates were 100% and 92%, respectively. Functional and anatomical success rates were the same for both the 6- and 12-month visits; 46% in group 1 and 76% in group 2. The results in group 2 were significantly better at all three follow-up visits (p<0.05. Conclusions: This study clearly showed that the older patients experienced better transcanalicular diode laser-assisted dacryocystorhinostomy results than the younger patients. The diminished inflammatory response in the older population may be a possible contributing factor to these results.

  18. The Effect of Diode Laser on Planktonic Enterococcus faecalis in Infected Root Canals in an Ex Vivo Model.

    Science.gov (United States)

    Cretella, Gilda; Lajolo, Carlo; Castagnola, Raffaella; Somma, Francesco; Inchingolo, MariaTeresa; Marigo, Luca

    2017-04-01

    This study examined the bactericidal effect of diode laser irradiation against intracanal Enterococcus faecalis. m total of 128 extracted single-rooted and single-canal teeth were treated with ProTaper instruments (Dentsply Maillefer, Ballaigues, Switzerland). A total of 120 root canals were inoculated with E. faecalis for 21 days, and the samples were randomly divided into five groups: Group 1 (n = 24) samples were irrigated with only saline solution (positive controls); Group 2 (n = 24) was treated with only 5.25% sodium hypochlorite; Group 3 (n = 24) was irrigated with saline solutions activated by diode laser; Group 4 (n = 24) was treated with 5.25% sodium hypochlorite activated by diode laser; and Group 5 (n = 24) was irrigated with saline solution with methylene blue dye activated by the diode laser Fox (Sweden & Martina, Padova, Italy); additionally, eight teeth were not contaminated and their canals were irrigated with saline solution and used as a negative control. The Uro-Quick system was used to determine the microbial residual charge. The data were analyzed using Pearson's chi-square test (p  0.001). Evidence indicates that the diode laser was not more effective than sodium hypochlorite in reducing free bacteria.

  19. Biostimulative effects of 809 nm diode laser on cutaneous skin wounds

    Science.gov (United States)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2015-03-01

    The use of low-level laser therapy (LLLT) for therapeutic purposes in medicine has become widespread recently. There are many studies in literature supporting the idea of therapeutic effects of laser irradiation on biological tissues. The aim of this study is to investigate the biostimulative effect of 809nm infrared laser irradiation on the healing process of cutaneous incisional skin wounds. 3-4 months old male Wistar Albino rats weighing 300 to 350 gr were used throughout this study. Lowlevel laser therapy was applied through local irradiation of 809nm infrared laser on open skin incisional wounds of 1 cm length. Each animal had six identical incisions on their right and left dorsal region symmetrical to each other. The wounds were separated into three groups of control, 1 J/cm2 and 3 J/cm2 of laser irradiation. Two of these six wounds were kept as control group and did not receive any laser application. Rest of the incisions was irradiated with continuous diode laser of 809nm in wavelength and 20mW power output. Two of them were subjected to laser irradiation of 1 J/cm2 and the other two were subjected to laser light with energy density of 3 J/cm2. Biostimulation effects of irradiation were studied by means of tensile strength tests and histological examinations. Wounded skin samples were morphologically examined and removed for mechanical and histological examinations at days 3, 5 and 7 following the laser applications. Three of the six fragments of skin incisions including a portion of peripheral healthy tissue from each animal were subjected to mechanical tests by means of a universal tensile test machine, whereas the other three samples were embedded in paraffin and stained with hematoxylin and eosin for histological examinations. The findings of the study show that tissue repair following laser irradiation of 809nm has been accelerated in terms of tissue morphology, strength and cellular content. These results seem to be consistent with the results of many

  20. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  1. Antimicrobial effect of pleomeleangustifolia pheophytin A activation with diode laser to streptococcus mutans

    Science.gov (United States)

    Alfat Sunarko, Sinari; Ekasari, Wiwied; Dyah Astuti, Suryani

    2017-05-01

    The main purpose of this research is to identify potential of Pheophytin A. as photosensitizer a agent to inactivate Streptococcus muttans using laser diode of 405nm. Pheophytina is known as chlorophyll derivate that losses magnesium ion at the center of porphyrin ring structure. In this research, phrophytin was extracted from Suji leaf (Pleomeleangustifolia). To determine the antimicrobial effect of treatments on S. mutans, samples were divided into three groups as follows: (1) Groups A(treated with Pheophytin A. and laser 405 nm at varying energy density of 2.5; 5, 7.5; 10.0; 12.5; 15.0; 17.5 and 20.0 J/cm2), (2) Group C-(negative control, no treated), (3) Group C+ (treated only with pheophytin). The experiments were repeated at least three times for each group. The results were analyzed using analysis of variance and the Tukey test. A P value ≤0.05 was considered to indicate a statistically significant difference. The decrement of percentage of number of bacterial colonyes growth was defined as: | (Σ sample colony - Σ control colony)/ Σ control colony | x 100%. The result showed that the incubation of Pheophytin A. using irradiation from laser diode of 405nm have a significant effect towards the decrement in bacterial growth. The most decreased percentage colony of S. mutans occurred on the incubation of pheophytin a treatment and laser irradiation 405nm with density 20 J/cm2 is 61.9%. This showed that pheophytin a functions as a photosesitizer activator to inactivate S. mutans bacteria.

  2. Antimicrobial effect of pleomeleangustifolia pheophytin A activation with diode laser to streptococcus mutans

    International Nuclear Information System (INIS)

    Sunarko, Sinari Alfat; Astuti, Suryani Dyah; Ekasari, Wiwied

    2017-01-01

    The main purpose of this research is to identify potential of Pheophytin A. as photosensitizer a agent to inactivate Streptococcus muttans using laser diode of 405nm. Pheophytina is known as chlorophyll derivate that losses magnesium ion at the center of porphyrin ring structure. In this research, phrophytin was extracted from Suji leaf (Pleomeleangustifolia). To determine the antimicrobial effect of treatments on S. mutans , samples were divided into three groups as follows: (1) Groups A(treated with Pheophytin A. and laser 405 nm at varying energy density of 2.5; 5, 7.5; 10.0; 12.5; 15.0; 17.5 and 20.0 J/cm 2 ), (2) Group C - (negative control, no treated), (3) Group C + (treated only with pheophytin). The experiments were repeated at least three times for each group. The results were analyzed using analysis of variance and the Tukey test. A P value ≤0.05 was considered to indicate a statistically significant difference. The decrement of percentage of number of bacterial colonyes growth was defined as: | (Σ sample colony - Σ control colony)/ Σ control colony | x 100%. The result showed that the incubation of Pheophytin A. using irradiation from laser diode of 405nm have a significant effect towards the decrement in bacterial growth. The most decreased percentage colony of S. mutans occurred on the incubation of pheophytin a treatment and laser irradiation 405nm with density 20 J/cm 2 is 61.9%. This showed that pheophytin a functions as a photosesitizer activator to inactivate S. mutans bacteria. (paper)

  3. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Swift, G.M.; Guertin, S.; Schwank, J.R.; Armendariz, M.G.; Hash, G.L.; Choquette, K.D.

    1999-01-01

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*10 11 protons/cm 2 .s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  4. The synergistic effect on osteogenic differentiation of human mesenchymal stem cells by diode laser-treated stimulating human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Kao, Chia-Tze; Huang, Tsui-Hsien; Wu, Yu-Tin; Hsu, Tuan-Ti; Chen, Yi-Wen; Shie, Ming-You

    2016-01-01

    Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair. (letter)

  5. The synergistic effect on osteogenic differentiation of human mesenchymal stem cells by diode laser-treated stimulating human umbilical vein endothelial cells

    Science.gov (United States)

    Kao, Chia-Tze; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Wu, Yu-Tin; Chen, Yi-Wen; Shie, Ming-You

    2016-02-01

    Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair.

  6. Clinical effectiveness of diode laser therapy as an adjunct to non-surgical periodontal treatment: a randomized clinical study.

    Science.gov (United States)

    Dukić, Walter; Bago, Ivona; Aurer, Andrej; Roguljić, Marija

    2013-08-01

    The aim of this randomized clinical study is to evaluate the effect of a 980-nm diode laser as an adjunct to scaling and root planing (SRP) treatment. Thirty-five patients with chronic periodontitis were selected for the split-mouth clinical study. SRP was performed using a sonic device and hand instruments. Quadrants were equally divided between the right and left sides. Teeth were treated with SRP in two control quadrants (control groups [CG]), and the diode laser was used adjunctively with SRP in contralateral quadrants (laser groups [LG]). Diode laser therapy was applied to periodontal pockets on days 1, 3, and 7 after SRP. Baseline data, including approximal plaque index (API), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL), were recorded before the treatment and 6 and 18 weeks after treatment. Changes in PD and CAL were analyzed separately for initially moderate (4 to 6 mm) and deep (7 to 10 mm) pockets. The results were similar for both groups in terms of API, BOP, PD in deep pockets, and CAL. The laser group showed only significant PD gain in moderate pockets during the baseline to 18-week (P 0.05). The present study indicates that, compared to SRP alone, multiple adjunctive applications of a 980-nm diode laser with SRP showed PD improvements only in moderate periodontal pockets (4 to 6 mm).

  7. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  8. Radiation effects in light emitting diodes, laser diodes, photodiodes and optocouplers

    International Nuclear Information System (INIS)

    Lischka, H.; Henschel, H.; Koehn, O.; Lennartz, W.; Schmidt, H.U.

    1994-01-01

    A variety of commercially available LEDs, LDs, PDs, and optocouplers from two German manufacturers were irradiated at a flash X-ray source, a 60 Co gamma ray source, and a 14 MeV neutron generator. Light output and emission spectrum of the LEDs and LDs were measured before and after irradiation at the 60 Co source. With the PDs we measured the dark current and the photo current before and after 60 Co irradiation. Determination of the sensitivity against neutrons was made off-line. With PDs we measured the photo current induced by pulsed X-rays. The GaAs LED showed a maximum decrease of output power of 28 dB after a total gamma dose of 10 6 Gy and LDs a threshold current shift of 80% after neutron fluences of 4 - 10 14 cm -2 (1 MeV). Irradiations of PDs and APDs with 60 Co gammas up to a total dose of 10 6 Gy as well as irradiations with neutrons up to fluences of ≤ 4 - 10 14 cm -2 (1 MeV) led to significant changes of the device parameters. The main effect was a strong increase of the dark current. The consequence was a reduction of the minimum detectable light power. Optocouplers are very sensitive to ionizing radiation. Gammas as well as neutrons led to a decrease of the CTR and a change of the bandwidth up to a complete failure (after neutron irradiation). (author). 9 refs., 11 figs., 4 tabs

  9. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  10. Effects of 980 diode laser treatment combined with scaling and root planing on periodontal pockets in chronic periodontitis patients

    Science.gov (United States)

    Fallah, Alireza

    2010-02-01

    Objective: This study compared the effect of 980 Diode laser + scaling and root planing (SRP) versus SRP alone in the treatment of chronic periodontitis. Method: 21 healthy patients with moderate periodontitis with a probing depth of at least 5mm were included in the study. A total of 42 sites were treated during 6weeks with a combination of 980 Diode laser and SRP (21 sites) or SRP alone (21 sites). The gingival index (GI), probing pocket depth (PPD) and bleeding on probing (BOP) were examined at the baseline and after 6 weeks after the start of treatment. Results: Both groups showed statistically significant improvements in GI, BOP and PPD after treatment. The results also showed significant improvement from laser+ SRP group to SRP alone group. Conclusion: The present data suggest that treatment of chronic periodontitis with either 980 Diode laser + SRP or SRP alone results in statistically significant improvements in the clinical parameters. The combination of 980 Diode laser irradiation in the gingival sulcus and SRP, was significantly better as compared to SRP alone.

  11. Effects of a 1,450 nm diode laser on facial sebum excretion.

    Science.gov (United States)

    Laubach, Hans-Joachim; Astner, Susanne; Watanabe, Kanna; Clifford, Joan; Rius-Diaz, Francisca; Zurakowski, David; Manstein, Dieter

    2009-02-01

    Laser therapy with a 1,450 nm diode laser is a clinically effective treatment for acne vulgaris, although the mechanism of action is unknown. To investigate this, we conducted a small, prospective, controlled clinical trial to assess this laser's effects on the facial sebum excretion rate (SER). Fourteen healthy volunteers without active acne were enrolled in this study and received three laser treatments on test areas of the nose and forehead. Nine subjects completed the treatment regimen and were available for follow-up. SER was measured with Sebumeter prior to the first treatment, and at 1 week and 1 month after the third treatment. Photographs were taken and subjective assessment of skin oiliness and pore size determined by questionnaires at 1 month follow-up. No significant reduction in SER was observed comparing treated with control on all treatment sites (P>0.05) on the nose. Reduction in the absolute SER was observed for both test and control sites on the forehead, reaching significance on the treatment site (P = 0.04) and marginal significance on the control site (P = 0.08). While our study was designed to detect only large changes in SER, we conclude that three 1,450 nm laser treatment sessions did not cause marked changes in SER compared to the control (i.e., >44%). Thus, major destruction of sebaceous glands as a result of this treatment is unlikely. However, reduced sebum production was observed on both treatment and control sides at 1 month. Therefore alternative mechanisms should also be considered to explain the clinical efficacy of this treatment for acne vulgaris. (c) 2009 Wiley-Liss, Inc.

  12. Diode Laser for Laryngeal Surgery: a Systematic Review.

    Science.gov (United States)

    Arroyo, Helena Hotz; Neri, Larissa; Fussuma, Carina Yuri; Imamura, Rui

    2016-04-01

    Introduction The diode laser has been frequently used in the management of laryngeal disorders. The portability and functional diversity of this tool make it a reasonable alternative to conventional lasers. However, whether diode laser has been applied in transoral laser microsurgery, the ideal parameters, outcomes, and adverse effects remain unclear. Objective The main objective of this systematic review is to provide a reliable evaluation of the use of diode laser in laryngeal diseases, trying to clarify its ideal parameters in the larynx, as well as its outcomes and complications. Data Synthesis We included eleven studies in the final analysis. From the included articles, we collected data on patient and lesion characteristics, treatment (diode laser's parameters used in surgery), and outcomes related to the laser surgery performed. Only two studies were prospective and there were no randomized controlled trials. Most of the evidence suggests that the diode laser can be a useful tool for treatment of different pathologies in the larynx. In this sense, the parameters must be set depending on the goal (vaporization, section, or coagulation) and the clinical problem. The literature lacks studies on the ideal parameters of the diode laser in laryngeal surgery. The available data indicate that diode laser is a useful tool that should be considered in laryngeal surgeries. Thus, large, well-designed studies correlated with diode compared with other lasers are needed to better estimate its effects.

  13. Effects of 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets on Shear Bond Strength.

    Science.gov (United States)

    Stein, Steffen; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-01-01

    The aim of this study was to measure the effect of irradiation with a novel 445-nm diode laser on the shear bond strength (SBS) of ceramic brackets before debonding. Thirty ceramic brackets (In-Ovation ® C, GAC) were bonded in standard manner to the planed and polished buccal enamel surfaces of 30 caries-free human third molars. Each tooth was randomly allocated to the laser or control group, with 15 samples per group. The brackets in the laser group were irradiated with the diode laser (SIROLaser Blue ® ; Sirona) on three sides of the bracket bases for 5 sec each (lateral-coronal-lateral, a total of 15 sec) immediately before debonding. SBS values were measured for the laser group and control group. To assess the adhesive remnant index (ARI) and the degree of enamel fractures, micrographs of the enamel surface were taken with 10-fold magnification after debonding. The SBS values were significantly lower statistically in the laser group in comparison with the control group (p bracket fractures or enamel fractures occurred in either group after debonding. Irradiation of ceramic brackets with the novel diode laser before debonding significantly reduces the SBS values. This is of clinical importance, as it means that the risk of damage to the teeth, bracket fractures, and the overall treatment time can be reduced.

  14. Effectiveness of soft tissue diode laser in treatment of oral mucosal lesions

    Directory of Open Access Journals (Sweden)

    Amanpreet Kaur

    2017-01-01

    Full Text Available Soft tissue diode lasers are becoming popular among clinicians due to their potential value in surgical procedures providing surface sterilization, dry surgical field, and increased patient acceptance. Two patients with different soft tissue lesions were selected, and soft tissue diode laser was used for excision and wound healing was assessed by visual method with photographs. No discomfort to the patient during and after the laser procedure was observed. Inspite of using minimal local anesthesia, avoiding placement of sutures, and not prescribing any antibiotics, minimal bleeding, no edema, and good wound healing was observed. We conclude that lasers treatments can be superior to conventional approaches with regards to easy ablation, decontamination, and hemostasis, and are less painful during and after the procedure.

  15. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  16. The Effect of Diode Laser Treatment for Root Canal Disinfection on Fracture Resistance and Micro-hardness of the Tooth

    International Nuclear Information System (INIS)

    Elmiligy, H.H; Diab, A.H.; Sabet, N.E.; Saafan, A.M.

    2014-01-01

    This study evaluated the effect of diode laser treatment for root canal disinfection on fracture resistance and micro-hardness of the tooth. Sixty freshly extracted mandibular and maxillary premolars were accessed under coolant then root canals were flared up to apical preparation size 40 MFA coupled with 5.25% NaOCl as an irrigant. Teeth were divided into two groups, control group (group I) and lased group (group II) that was lased by diode laser with average power 2 w through fibrooptic into the canal 2 mm shorter than the apex. Each tooth was embedded in acrylic block, and then subjected to the fracture resistance test. Each root was then sectioned transversely and polished to record dentin Vickers hardness. Data was analysed with student t-test then with linear regression test. The Lased samples presented a significantly higher resistance to fracture than unlased samples. There was no statistically significant differences found between Vickers hardness (HV) of lased and unlased samples and there was no relation between fracture resistance and microhardness. Diode laser (980 nm) treatment had no adverse effect on dentin microhardness, also it increased the fracture resistance of dentin. Diode laser (980 nm) treatment could attain better function ability and maintenance of tooth after endodontic treatment.

  17. Effective of diode laser on teeth enamel in the teeth whitening treatment

    Science.gov (United States)

    Klunboot, U.; Arayathanitkul, K.; Chitaree, R.; Emarat, N.

    2011-12-01

    This research purpose is to investigate the changing of teeth color and to study the surface of teeth after treatment by laser diode at different power densities for tooth whitening treatment. In the experiment, human-extracted teeth samples were divided into 7 groups of 6 teeth each. After that laser diode was irradiated to teeth, which were coated by 38% concentration of hydrogen peroxide, during for 20, 30 and 60 seconds at power densities of 10.9 and 52.1 W/cm2. The results of teeth color change were described by the CIEL*a*b* systems and the damage of teeth surface were investigated by scanning electron microscopy (SEM). The results showed that the power density of the laser diode could affect the whiteness of teeth. The high power density caused more luminous teeth than the low power density did, but on the other hand the high power density also caused damage to the teeth surface. Therefore, the laser diode at the low power densities has high efficiency for tooth whitening treatment and it has a potential for other clinical applications.

  18. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students

    Science.gov (United States)

    Lisboa, Pedro; Sotomayor, Joo; Ribeiro, Paulo

    2010-01-01

    The construction of a diode laser polarimeter apparatus by undergraduate students is described. The construction of the modular apparatus by undergraduate students gives them an insight into how it works and how the measurement of a physical or chemical property is conducted. The students use the polarimeter to obtain rotation angle values for the…

  19. Diode laser prostatectomy (VLAP): initial canine evaluation

    Science.gov (United States)

    Kopchok, George E.; Verbin, Chris; Ayres, Bruce; Peng, Shi-Kaung; White, Rodney A.

    1995-05-01

    This study evaluated the acute and chronic effects of diode laser (960 nm) prostatectomy using a Prolase II fiber in a canine model (n equals 5). The laser fiber consists of a 1000 um quartz fiber which reflects a cone of laser energy, at 45 degree(s) to the axis of the fiber, into the prostatic urethra (Visual Laser Ablation of Prostate). Perineal access was used to guide a 15.5 Fr cystoscope to the level of the prostate. Under visual guidance and continual saline irrigation, 60 watts of laser power was delivered for 60 seconds at 3, 9, and 12 o'clock and 30 seconds at the 6 o'clock (posterior) positions for a total energy fluence of 12,600 J. One prostate received an additional 60 second exposure at 3 and 9 o'clock for a total fluence of 19,800 J. The prostates were evaluated at one day (n equals 1) and 8 weeks (n equals 4). The histopathology of laser effects at one day show areas of necrosis with loss of glandular structures and stromal edema. Surrounding this area was a zone of degenerative glandular structures extending up to 17.5 mm (cross sectional diameter). The histopathology of the 8 week laser treated animals demonstrated dilated prostatic urethras with maximum cross- sectional diameter of 23.4 mm (mean equals 18.5 +/- 3.9 mm). This study demonstrates the effectiveness of diode laser energy for prostatic tissue coagulation and eventual sloughing. The results also demonstrate the safety of diode laser energy, with similar tissue response as seen with Nd:YAG laser, for laser prostatectomy.

  20. Progress in semiconductor laser diodes: SPIE volume 723

    International Nuclear Information System (INIS)

    Eichen, E.

    1987-01-01

    This book contains proceedings arranged under the following session headings: High power diode lasers; single emitters and arrays; Ultrahigh speed modulation of semiconductor diode lasers; Coherence and linewidth stabilized semiconductor lasers; and Growth, fabrication, and evaluation of laser diodes

  1. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  2. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  3. Diode laser irradiation of rat blood and its effect on hemoglobin and plasma

    International Nuclear Information System (INIS)

    Saad-El-Din, A.A.; El-Ahdaal, M.A.; Omran, M.F.

    2002-01-01

    Blood was exposed to diode laser irradiation of wavelength 830 nm and maximum powe of 31.4 MW, with exposure times 15, 30, 45 and 60 minutes. Hemoglobin IR spectra and X-ray crystallography, plasma Na + , K + , Ca + +. cholesterol concentrations and viscosity were measured. There were changes in hemoglobin amide groups as well as changes in the X-ray in hemoglobin structure. Decreases in both Na concentration and plasma viscosity occurred at 15 and 30 minutes of laser exposure. On increasing time to 45 and 60 minutes, the Na concentration and viscosity were increased. K, Ca and cholesterol concentration were decreased linearly with time. Na / K ratio was increased also with time of exposure. The results have been indicated that the diode laser affect the secondary structure of hemoglobin, membranes structures and plasma

  4. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    Science.gov (United States)

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald

    2014-08-01

    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation

  5. Effect of diode laser in the treatment of patients with nonspecific chronic low back pain: a randomized controlled trial.

    Science.gov (United States)

    Vallone, Francesco; Benedicenti, Stefano; Sorrenti, Eugenio; Schiavetti, Irene; Angiero, Francesca

    2014-09-01

    Low back pain is a common, highly debilitating condition, whose severity is variable. This study evaluated the efficacy of treatment with Ga-Al-As diode laser (980 nm) with a large diameter spot (32 cm(2)), in association with exercise therapy, in reducing pain. The present study aimed to evaluate the pain reduction efficacy of treatment with the Ga-Al-As diode laser (980 nm) in combination with exercise therapy, in patients with chronic low back pain (CLBP). This study evaluated 100 patients with CLBP (mean age 60 years) who were randomly assigned to two groups. The laser plus exercises group (Laser+EX: 50 patients) received low-level laser therapy (LLLT) with a diode laser, 980 nm, with a specific handpiece [32 cm(2) irradiation spot size, power 20 W in continuous wave (CW), fluence 37.5J/cm(2), total energy per point 1200 J] thrice weekly, and followed a daily exercise schedule for 3 weeks (5 days/week). The exercises group (EX: 50 patients) received placebo laser therapy plus daily exercises. The outcome was evaluated on the visual analogue pain scale (VAS), before and after treatment. At the end of the 3 week period, the Laser+EX group showed a significantly greater decrease in pain than did the EX group. There was a significant difference between the two groups, with average Δ VAS scores of 3.96 (Laser+EX group) and 2.23 (EX group). The Student's t test demonstrated a statistically significant difference between the two groups, at pdiode laser (980 nm) with large diameter spot size, in association with exercise therapy, appears to be effective. Such treatment might be considered a valid therapeutic option within rehabilitation programs for nonspecific CLBP.

  6. Effects of increased low-level diode laser irradiation time on extraction socket healing in rats.

    Science.gov (United States)

    Park, Joon Bong; Ahn, Su-Jin; Kang, Yoon-Goo; Kim, Eun-Cheol; Heo, Jung Sun; Kang, Kyung Lhi

    2015-02-01

    In our previous studies, we confirmed that low-level laser therapy (LLLT) with a 980-nm gallium-aluminum-arsenide diode laser was beneficial for the healing of the alveolar bone in rats with systemic disease. However, many factors can affect the biostimulatory effects of LLLT. Thus, we attempted to investigate the effects of irradiation time on the healing of extraction sockets by evaluating the expressions of genes and proteins related to bone healing. The left and right first maxillary molars of 24 rats were extracted. Rats were randomly divided into four groups in which extraction sockets were irradiated for 0, 1, 2, or 5 min each day for 3 or 7 days. Specimens containing the sockets were examined using quantitative real-time reverse transcription polymerase chain reaction and western blotting. LLLT increased the expressions of all tested genes, Runx2, collagen type 1, osteocalcin, platelet-derived growth factor-B, and vascular endothelial growth factor, in a time-dependent manner. The highest levels of gene expressions were in the 5-min group after 7 days. Five minutes of irradiation caused prominent increases of the expression of all tested proteins after both 3 and 7 days. The expression level of each protein in group 4 was higher by almost twofold compared with group 1 after 7 days. Laser irradiation for 5 min caused the highest expressions of genes and proteins related to bone healing. In conclusion, LLLT had positive effects on the early stages of bone healing of extraction sockets in rats, which were irradiation time-dependent.

  7. Diode laser-pumped Ho:YLF laser

    International Nuclear Information System (INIS)

    Hemmati, H.

    1987-01-01

    The author reports laser action in Ho:YLF at 2.06 μm following optical pumping with a cw diode laser array. Diode laser-pumped Nd-YAG and Ho:YAG have been reported recently. Lasers with a wavelength of 2 μm have medical and optical communication applications. The diode laser light is focused with a 60-mm focal length lens onto the YLF crystal. A high-reflectivity mirror with 100-mm radius of curvature was used as the output coupler. The lasing threshold was at 5 mWof incident power. This is higher than expected considering that a high reflector was used as the output coupler. However, a more uniform cooling of the crystal is expected to lower the lasing threshold. With 100 mW of pump power coupled into the crystal, --20 mW of 2-μm radiation was observed from this unoptimized setup. The 2-μm laser output is highly sensitive to output coupler alignment, YLF crystal temperature, and pump laser wavelength. The 20% optical conversion efficiency achieved in his preliminary measurements is expected to be improved by better crystal cooling, proper matching of laser wavelength to crystal absorption, variations in the concentration of Ho and sensitizers and use of a proper output coupler. A study of the parameters mentioned above and the effect of crystal temperature on the laser output is under way

  8. Effects of the infrared diode low intensity laser therapy for oral mucositis: a clinical trial

    International Nuclear Information System (INIS)

    Freire, Maria do Rosario Santos

    2004-01-01

    Chemotherapy associated or not with radiotherapy and surgery may be used for treating patients presenting some pathogenies such as cancer. Many side effects are visibly in the mouth in several forms as a consequence of this treatment and oral mucositis is the most common, with great prevalence, causing degrees of morbidity and even death. This research is about improving the quality of life for these patients by using of laser radiation through a GaAlAs active medium, in a continuous manner, with a low power ( 60 mW), the diode laser acting at 780 nm wavelength infrared, with a energy density 7,5 J/cm 2 and 6,0 J/cm 2 , for the therapeutic and preventive groups respectively, and a third control group without radiation. Two protocols were studied in patients during 5-fluorouracil chemotherapic regime and combinations, because nowadays polychemotherapy is used, an associations of drugs, for a neoadjuvant treatment, adjuvant, potentionalize or palliative means, for the chemotherapy treatment. In a context of 60 patients, 16 patients had received the laser irradiations doses, 10 days for the therapeutic protocols and 11 days for the preventive irradiations. The therapeutic group presented a 50% of the total healing process and significant decrease in symptoms of pain (VAS=0 with p =0,01). For the preventive irradiations (D-5, D, D+5), that means the day of the QT, 5 days before the chemotherapy regime starts until 5 days later, only 1 patient had some kind of ulceration during more than four months of control. Results of the present study showed to be effective and promising for both employed protocols, therapeutic and preventive. Further studies must be developed in order to improve the present results. (author)

  9. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel

    International Nuclear Information System (INIS)

    Ebel, Patricia

    2003-01-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm 2 , 282,84 mJ/cm 2 and 325,38 mJ/cm 2 , respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 μm diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  10. Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.

    Science.gov (United States)

    Kerridge-Johns, William R; Damzen, Michael J

    2018-03-19

    Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.

  11. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts.

    Science.gov (United States)

    Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-01-04

    Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.

  12. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  13. Low level diode laser accelerates wound healing.

    Science.gov (United States)

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  14. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    Science.gov (United States)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  15. Paramecium: a promising non-animal bioassay to study the effect of 808 nm infrared diode laser photobiomodulation.

    Science.gov (United States)

    Amaroli, Andrea; Parker, Steven; Dorigo, Gianluca; Benedicenti, Alberico; Benedicenti, Stefano

    2015-01-01

    Photobiostimulation and photobiomodulation (PBM) are terms applied to the manipulation of cellular behavior using low intensity light sources, which works on the principle of inducing a biological response through energy transfer. The aim of this investigation was to identify a laboratory assay to test the effect of an infrared diode laser light (808 nm) on cell fission rate. Sixty cells of Paramecium primaurelia were divided in two groups of 30. The first group (test group) was irradiated, at a temperature of 24°C, for 50 sec by a 808 nm diode laser with a flat top handpiece [1 cm of spot diameter, 1 W in continuous wave (CW), 50 sec irradiation time, 64 J/cm(2) of fluence]. The second group (control group) received no laser irradiation. All cells were transferred onto a depression slide, fed, and incubated in a moist chamber at a temperature of 24°C. The cells were exposed and monitored for 10 consecutive fission rates. Changes in temperature and pH were also evaluated. The exposed cells had a fission rate rhythm faster than the control cells, showing a binary fission significantly (pParamecium's lettuce infusion medium were observed. The 808 nm infrared diode laser light, at the irradiation parameters used in our work, results in a precocious fission rate in P. primaurelia cells, probably through an increase in metabolic activity, secondary to an energy transfer.

  16. Passive harmonic mode locking by mode selection in Fabry-Perot diode lasers with patterned effective index.

    Science.gov (United States)

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2010-07-01

    We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.

  17. Experimental studies for improvement of thermal effects in a high-power fiber-coupled diode laser module operating at 808 nm

    Science.gov (United States)

    El-Sherif, Ashraf F.; Hussein, Khalid; Hassan, Mahmoud F.; Talat, Mahmoud M.

    2012-03-01

    High power diode laser module operating at 808 nm is required for different applications, such as developing an efficient high power Nd3+-doped solid state laser and Tm3+ -doped silica fiber laser, industrial, medical and military applications. Optical and thermal images characterization for a fiber-coupled high power diode laser module is presented experimentally for 6.6 Watt output optical power .An external temperature controller system was designed, which stabilizes the central wavelength at 808 nm at 25°C over a wide range of diode laser driving current from 1A to 6 A. without this cooling system, the wavelength changes by 0.35nm/°C for temperature changes from 20°C to 40°C at the same range of the driving current. In this paper we have present a methodology for temperature reduction of a 808 nm high power diode laser module, based on dynamically thermal control, which is known as dynamic thermal management. Stabilization of the output wavelength has been done by using proportional speed control (PSC) of a CPU cooling fan with certain scheme of straight fins heat sink. Two electronic circuits based on pulse width modulation (PWM) in microcontroller and comparators IC have been used. This technique can be considered as an effective mechanism for reducing temperature and power dissipation to make stabilization of the diode laser output wavelength by preventing heat accumulation from the thermo electric cooling (TEC) inside the diode laser module confirmed by thermal images.

  18. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  19. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  20. Laser diode package with enhanced cooling

    Science.gov (United States)

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  1. The effect of diode laser and topical steroid on serum level of TNF-alpha in oral lichen planus patients.

    Science.gov (United States)

    Othman, Nagwa-Abdelhamid; Shaker, Olfat-Gamil; Elshenawy, Hanaa-Mohamed; Abd-Elmoniem, Wessam; Eldin, Amany-Mohy; Fakhr, Mariam-Yehia

    2016-12-01

    Oral lichen planus (OLP) is a common chronic inflammatory mucosal disease with a multifactorial etiology. It is a T-cell mediated autoimmune disease in which the cytotoxic CD8+T cells trigger apoptosis of the basal cells of oral epithelium. Various treatment regimens have been employed for management of symptomatic OLP. This study was carried out to evaluate the effect of topical steroids as well as laser on the clinical signs and symptoms detected by reticular, atrophic, erosive score (RAE score) and tumor necrosis factor- α (TNF-α) level in the serum of patients with symptomatic OLP. The study was conducted on twenty-four patients (18 females and 6 males) with symptomatic OLP that were allocated into two groups. Each included twelve patients. The first group treated either with diode laser (970nm SIROLaser Advance class IIIb, SIRONA The Dental Company, Germany) twice weekly with maximum of ten sessions while the second group were treated with topical corticosteroids (0.1% triamcinolone acetonide orabase, Kenacort-A Orabase Pomad, DEVA HOLDING A.Ș, Istanbul, Turkey) for four weeks. Corticosteroids group showed less clinical signs and symptoms of reticular, atrophic, erosive RAE score ( p =0.02) and TNF-α serum level ( p =0.028) than diode laser group with no reported therapy side effects or complications in any of the treated patients. Topical steroids reduce pain, reticular, atrophic, erosive RAE score and TNF-α serum level more than laser treatment. Moreover, laser treatment can be used as an alternative treatment when steroids are contraindicated for the treatment of symptomatic OLP. Key words: Oral lichen planus, diode laser, topical steroid, RAE score, TNF-α.

  2. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  3. AASERT-97 Development of New Diode Lasers

    National Research Council Canada - National Science Library

    Peyghambarian, Nasser

    2001-01-01

    This research explored new ways for diode laser fabrications. Focused was on the development of efficient organic light emitting materials and the fabrication of laser structures incorporating these materials...

  4. Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia.

    Science.gov (United States)

    Barikbin, Behrooz; Khodamrdi, Zeinab; Kholoosi, Leila; Akhgri, Mohammad Reza; Haj Abbasi, Majid; Hajabbasi, Mojgan; Razzaghi, Zahra; Akbarpour, Samaneh

    2017-05-17

    This study aimed to evaluate the effectiveness of a combined set of low level diode laser scanner (665 nm and 808nm) on hair growth, and assessment of safety and effectiveness of a new laser scanner on hair growth treatment procedure in androgenic alopecia. 90 patients (18 to 70 years) with androgenic alopecia were randomized into three groups. The first group (n=30) received 655 nm red light using laser hat, the second group (n=30) received 655 nm red laser plus 808 nm infrared laser using a laser scanner of hair growth device (with the patent number: 77733) and the third group (n=30) received no laser as the control group. Patients in laser scanner group had better results and showed a higher increase in terminal hair density compared with laser hat group (mean of 9.61 versus 9.16 per cm 2 ). We found significant decrease in terminal hair density from baseline in control group (mean -1.8 per cm 2 , plaser scanner of the hair growth group compared with laser hat and the control group. The study showed that treatment with new laser devise had a promising result without any observable adverse effects.

  5. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  6. Compact laser-diode-based femtosecond sources

    International Nuclear Information System (INIS)

    Brown, C T A; Cataluna, M A; Lagatsky, A A; Rafailov, E U; Agate, M B; Leburn, C G; Sibbett, W

    2004-01-01

    This paper describes the development of compact femtosecond laser systems that are capable of being directly pumped by laser diodes or are based directly on laser diodes. The paper demonstrates the latest results in a highly efficient vibronic based gain medium and a diode-pumped Yb:KYW laser is reported that has a wall plug efficiency >14%. A Cr 4+ :YAG oscillator is described that generates transform-limited pulses of 81 fs duration at a pulse repetition frequency of >4 GHz. The development of Cr 3+ :LiSAF lasers that can be operated using power supplies based on batteries is briefly discussed. We also present a summary of work being carried out on the generation of fs-pulses from laser diodes and discuss the important issues in this area. Finally, we outline results obtained on the generation of pulses as short as 550 fs directly from a two-section quantum dot laser without any external pulse compression

  7. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  8. Modeling of thermal and optical effects in dental pulp during the irradiation with neodymium and diode lasers

    International Nuclear Information System (INIS)

    Farhat, Patricia Bahls de Almeida

    2003-01-01

    During the development of applications of high intensity lasers in the enamel and dentine, adverse thermal effects into the entire dental structure, including the pulp, must be verified. The measurement of the temperature in the intact pulp, however, is not a solved problem. For this purpose, models have been used frequently, using extracted teeth, with pulpal cavities filled with materials that simulate only thermal properties of the pulp. Current models, however, do not simulate optical properties of the pulp, not taking the remaining radiation in the pulp chamber into account. The aim of this study was to verify if the remaining radiation from neodymium and diode lasers that reach the pulp chamber, at the models using extracted bovine teeth, can cause local thermal effects. For this purpose, two models were developed, using extracted bovine teeth with their pulp chambers filled with water (simulating pulp thermal characteristics) without (model 1) and with (model 2) an optical absorbent. Models were radiated with 1 W. The obtained results show that, for both lasers, the temperature rise in model 2 pulp chamber is: up to 11 % higher than in the model 1 when the enamel is radiated; and up to 37% higher than in the model 1 when dentine is radiated (1 mm from the pulp), indicating that the level of the remaining radiation is relevant for the construction of models excited by the neodymium and diode lasers. (author)

  9. Laser diagnostics on magnetically insulated flashover pulsed ion diodes

    International Nuclear Information System (INIS)

    Horioka, K.; Tazima, N.; Fukui, T.; Kasuya, K.

    1989-01-01

    Our recent experimental results on the characteristics of a flashover-type applied-B magnetically insulated pulsed ion diode are described. The main issues are to investigate the cause of impurity of the extracted beam and to examine the effect of neutral particles on the diode characteristics. In the experiment, our main efforts were placed on laser diagnostics of the diode gap behavior. (author)

  10. Effects of diode laser welding with dye-enhanced glue on tensile strength of sutures commonly used in urology.

    Science.gov (United States)

    Kirsch, A J; Chang, D T; Kayton, M L; Libutti, S K; Connor, J P; Hensle, T W

    1996-01-01

    Tissue welding using laser-activated protein solders may soon become an alternative to sutured tissue approximation. In most cases, approximating sutures are used both to align tissue edges and provide added tensile strength. Collateral thermal injury, however, may cause disruption of tissue alignment and weaken the tensile strength of sutures. The objective of this study was to evaluate the effect of laser welding on the tensile strength of suture materials used in urologic surgery. Eleven types of sutures were exposed to diode laser energy (power density = 15.9 W/cm2) for 10, 30, and 60 seconds. Each suture was compared with and without the addition of dye-enhanced albumin-based solder. After exposure, each suture material was strained (2"/min) until ultimate breakage on a tensometer and compared to untreated sutures using ANOVA. The strength of undyed sutures were not significantly affected; however, violet and green-dyed sutures were in general weakened by laser exposure in the presence of dye-enhanced glue. Laser activation of the smallest caliber, dyed sutures (7-0) in the presence of glue caused the most significant loss of tensile strength of all sutures tested. These results indicate that the thermal effects of laser welding using our technique decrease the tensile strength of dyed sutures. A thermally resistant suture material (undyed or clear) may prevent disruption of wounds closed by laser welding techniques.

  11. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  12. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    Science.gov (United States)

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  13. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  14. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  15. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    Directory of Open Access Journals (Sweden)

    Sanjiv K Gupta

    2012-01-01

    Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate.

  16. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  17. Tunable diode-pumped-LNA laser

    International Nuclear Information System (INIS)

    Cassimi, A.; Hardy, V.; Hamel, J.; Leduc, M.

    1987-01-01

    Diode-pumped crystals provided recently new compact laser devices. We report the first end pumping of a La x Nd 1-x MgAl 11 O 19 (LNA) crystal using a 200mW diode array (Spectra Diode Lab). We also report the first results obtained with a 1mW diode (SONY). This C.W. laser can be tuned from 1.048μm to 1.086μm. Without selective elements in the cavity, the laser emits around 1.054μm with a threshold of 24mW and a slope efficiency of 4.4% (output mirror of transmission T = 1%) when pumped by the diode array. With the selective elements, the threshold increases to 100mW and we obtain a power of 4mW for a pump power of 200mW

  18. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  19. Effects of Diode Laser, Gaseous Ozone, and Medical Dressings on Enterococcus faecalis Biofilms in the Root Canal Ex Vivo

    Directory of Open Access Journals (Sweden)

    Kerstin Bitter

    2017-01-01

    Full Text Available The objective was to compare the antibacterial effects of adjunctive disinfection using diode laser and gaseous ozone compared to the medical dressings calcium hydroxide (Ca(OH2 and chlorhexidine gel (CHX-Gel on Enterococcus faecalis biofilms in human root canals ex vivo. Root canals of 180 human extracted teeth were infected by E. faecalis and divided into 3 main groups (G: G1, control; G2, instrumentation and irrigation using 0.9% NaCl; G3, instrumentation and irrigation using 1% NaOCl. In each main group, the following treatments were applied: gaseous ozone, diode laser, and medical dressings of Ca(OH2 or CHX-Gel for 7 days (n=15. Reduction of colony forming units (CFUs inside the root canal of planktons and frequencies of adherent bacteria after treatment were calculated. Bacterial reduction was significantly affected by the irrigation protocol (p0.05; chi-square test. Instrumentation and irrigation using NaOCl combined with ozone or laser application resulted in comparable bacterial reduction on E. faecalis to the application of medical dressings.

  20. Diode lasers and their applications in spectrometry

    International Nuclear Information System (INIS)

    Pavone, F.S.

    1997-01-01

    The impact of semiconductor diode laser in different fields ranging from communications to spectroscopy is becoming huge and pushes the research into developing sources satisfying the different requirements. For applications related to trace gas detection, the low amplitude noise in the light source of semiconductor diode laser is sufficient to obtain interesting results. Trace gas of molecular species as methane is interesting for different reason: it plays an important role in both radiative transport an photochemistry in the atmosphere

  1. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  2. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  3. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  4. Development and optimization of a diode laser for photodynamic therapy.

    Science.gov (United States)

    Lim, Hyun Soo

    2011-01-01

    This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes.

  5. Diode laser hair removal around ileo-colo ostomys is safe, effective and beneficial: a pilot study

    NARCIS (Netherlands)

    van der Ploeg-Westerveld, Jos; Wagter, Jacqueline; van Gemert, Martin J. C.; Neumann, H. A. M.; Bour, H.; Zwart, A.

    2007-01-01

    BACKGROUND AND OBJECTIVE: Hair removal around an ileo-colo ostomy can cause a number of problems. We compared laser hair removal with mechanical shaving around the ostomy. METHOD: Eleven patients were selected with hairy skin around the ostomy for therapy with an AlGaAs diode laser at 800 nm. Three

  6. Developments in lead-salt diode lasers

    International Nuclear Information System (INIS)

    Partin, D.L.

    1985-01-01

    Lead-chalcogenide diode lasers are useful as mid-infrared sources (2-1/2 <λ<30 μm), but have generally operated CW below 100K. A new materials system, PbEuSeTe, has been used to fabricate diode lasers operating from 10K (at 6.5 μm wavelength) up to 174K CW (at 4.4 μm) and up to 280K pulsed (at 3.8 μm). These are large optical cavity single quantum well devices grown by molecular beam epitaxy. These are currently the highest diode laser operating temperatures ever achieved at these wavelengths to our knowledge. Single ended output powers as high as 1 mW single mode (5 mW multimode) have been attained from mesa stripe diodes. These characteristics make these devices attractive for long wavelength fiber optic sensor/communications systems. The performance limits of these devices are discussed

  7. Diode laser for abdominal tissue cauterization

    Science.gov (United States)

    Durville, Frederic M.; Rediker, Robert H.; Connolly, Raymond J.; Schwaitzberg, Steven D.; Lantis, John

    1999-06-01

    We have developed a new device to effectively and quickly stop bleeding. The new device uses a small, 5 W diode laser to heat-up the tip of a modified medical forceps. The laser beam is totally contained within a protective enclosure, satisfying the requirements for a Class I laser system, which eliminates the need to protective eyewear. The new device is used in a manner similar to that of a bipolar electrocautery device. After visual location, the bleeding site or local vessel(s) is grabbed and clamped with the tips of the forceps-like instrument. The laser is then activated for a duration of typically 5 sec or until traditional visual or auditory clues such as local blubbling and popping indicate that the targeted site is effectively cauterized. When the laser is activated, the tip of the instrument, thus providing hemostasis. The new device was evaluated in animal models and compared with the monopolar and bipolar electrocautery, and also with the recently developed ultrasound technology. It has new been in clinical trials for abdominal surgery since September 1997.

  8. Integrated power conditioning for laser diode arrays

    International Nuclear Information System (INIS)

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-01-01

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation

  9. Effect of diode laser cyclophotocoagulation in treatment of patients with refractory glaucoma

    Directory of Open Access Journals (Sweden)

    Čanadanović Vladimir

    2015-01-01

    Full Text Available Background/Aim. Refractory glaucoma is glaucoma resistant to conventional management (maximally tolerated medical therapy, one or more glaucoma surgeries and glaucoma in cases of neovascularisation after panretinal photocoagulation or cryoablation. The aim of the study was to determine the intraocular pressure (IOP lowering efficacy of transscleral diode laser cyclophotocoagulation (DCPC treatment in the management of pain and IOP in patients with refractory glaucoma. Methods. This nonrandomized, retrospective study, included 95 patients (95 eyes with refractory glaucoma treated at the University Eye Clinic, Clinical Center of Vojvodina, Novi Sad, Serbia, between November 2007 and November 2012 in accordance with the established protocols (16-18 spots, 270°, up to 5J of energy. All the eyes were treated with transscleral DCPC (Iris Medical OcuLight SLx, Iridex Co, Mountain View, USA. Patient's symptoms, bests corrected visual acuity and IOP were recorded 7 days, and 1, 3 and 6 months after the DCPC treatment. Results. Out of 95 patients (95 eyes enrolled in this study 24 (25.2% were with primary (the group I, and 71 (74.5% with secondary (the group II glaucoma. The mean baseline IOP in these two groups was similar: 36.08 ± 8.39 mmHg for the first group and 37.36 ± 8.19 mmHg in the second group. Measurement of the mean IOP in the group I showed the following results: on the day 7 it was 13.96 ± 8.30 mmHg (62.1% decrease of the baseline value, on the day 30 it was 18.44 ± 8.85 mmHg (48.9% decrease regarding the baseline value, after 3 months it was 22.44 ± 7.36 mmHg (37.8% decrease regarding the baseline value, and after 6 months it was 25.92 ± 7.65 mmHg (28.2% decrease regarding the baseline value. Measurement of IOP in the group II showed the following results: on the day 7 it was 15.77 ± 9.73 mmHg (57.8% decrease of the baseline value, on the day 30 it was 20.14 ± 10.20 mmHg (46.1% decrease regarding the baseline value, after 3 months

  10. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  11. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  12. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  13. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  14. The effect of the thermal diode laser (wavelength 808-980 nm) in non-surgical periodontal therapy: a systematic review and meta-analysis

    NARCIS (Netherlands)

    Slot, D.E.; Jorritsma, K.H.; Cobb, C.M.; van der Weijden, F.A.

    2014-01-01

    Focused question What is the adjunctive effect of a diode laser (DL) following non-surgical periodontal debridement (SRP) during the initial phase of periodontal therapy on the clinical parameters of periodontal inflammation. Material and Methods The MEDLINE-PubMed, Cochrane-Central Register of

  15. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  16. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  17. Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.

    Science.gov (United States)

    Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera

    2015-10-02

    One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (plaser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.

  18. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  19. Effect of Nd:YAG and Diode Lasers on Apical Seal of Root Canals Filled with AH Plus and Mineral Trioxide Aggregate-Based Sealers

    Directory of Open Access Journals (Sweden)

    Elham Khoshbin

    2018-01-01

    Full Text Available Objectives: Laser irradiation, as an adjunct to root canal preparation, may increase the success rate of endodontic treatments. This study aimed to assess the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG and diode lasers on the apical seal of the root canals filled with AH Plus® and mineral trioxide aggregate (MTA-based sealers.Materials and Methods: This in-vitro experimental study was conducted on 96 single-rooted, single-canal extracted human teeth with closed apices. The root canals were prepared by using ProTaper® rotary instruments and were randomly divided into six groups (n=16: 940-nm diode laser and AH Plus® sealer (group 1, Nd:YAG laser and AH Plus® sealer (group 2, AH Plus® sealer (group 3, 940-nm diode laser and MTA-based sealer (group 4, Nd:YAG laser and MTA-based sealer (group 5, MTA-based sealer (group 6, as well as positive and negative control groups. A bacterial leakage model was used for microleakage assessment. Qualitative assessment was done by using a scanning electron microscope (SEM. Data were analyzed by two-way analysis of variance (ANOVA at the significance level of 0.05.Results: There were statistically significant differences between the experimental and control groups (P=0.002. The laser-treated groups showed a lower apical microleakage compared to the non-laser-treated groups, although the difference was not statistically significant (P>0.05. No significant differences were noted between the two lasers in terms of the apical microleakage, irrespective of the type of sealer (P>0.05.Conclusions: Laser irradiation, as an adjunct to root canal preparation, has no significant effect on the level of apical microleakage.

  20. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  1. Recent advancements in spectroscopy using tunable diode lasers

    International Nuclear Information System (INIS)

    Nasim, Hira; Jamil, Yasir

    2013-01-01

    Spectroscopy using tunable diode lasers is an area of research that has gone through a dramatic evolution over the last few years, principally because of new exciting approaches in the field of atomic and molecular spectroscopy. This article attempts to review major recent advancements in the field of diode laser based spectroscopy. The discussion covers the developments made so far in the field of diode lasers and illustrates comprehensively the properties of free-running diode lasers. Since the commercially available free-running diode lasers are not suitable for high-precision spectroscopic studies, various techniques developed so far for converting these free-running diode lasers into true narrow linewidth tunable laser sources are discussed comprehensively herein. The potential uses of diode lasers in different spectroscopic fields and their extensive list of applications have also been included, which may be interesting for the novice and the advanced user as well. (topical review)

  2. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  3. Diode Laser Excision of Oral Benign Lesions.

    Science.gov (United States)

    Mathur, Ena; Sareen, Mohit; Dhaka, Payal; Baghla, Pallavi

    2015-01-01

    Lasers have made tremendous progress in the field of dentistry and have turned out to be crucial in oral surgery as collateral approach for soft tissue surgery. This rapid progress can be attributed to the fact that lasers allow efficient execution of soft tissue procedures with excellent hemostasis and field visibility. When matched to scalpel, electrocautery or high frequency devices, lasers offer maximum postoperative patient comfort. Four patients agreed to undergo surgical removal of benign lesions of the oral cavity. 810 nm diode lasers were used in continuous wave mode for excisional biopsy. The specimens were sent for histopathological examination and patients were assessed on intraoperative and postoperative complications. Diode laser surgery was rapid, bloodless and well accepted by patients and led to complete resolution of the lesions. The excised specimen proved adequate for histopathological examination. Hemostasis was achieved immediately after the procedure with minimal postoperative problems, discomfort and scarring. We conclude that diode lasers are rapidly becoming the standard of care in contemporary dental practice and can be employed in procedures requiring excisional biopsy of oral soft tissue lesions with minimal problems in histopathological diagnosis.

  4. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2004-01-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm 2 , 3.7 J/cm 2 , 5.6 J/cm 2 , 7.4 J/cm 2 and 9.3 J/cm 2 ) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  5. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    Science.gov (United States)

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  6. Synergistic skin heat shock protein expression in response to combined laser treatment with a diode laser and ablative fractional lasers.

    Science.gov (United States)

    Paasch, Uwe; Sonja, Grunewald; Haedersdal, Merete

    2014-06-01

    Diode laser-based skin heating has been shown to minimise scars by interfering with wound healing responses through the induction of heat shock proteins (HSP). HSP are also induced after ablative fractional laser (AFXL) wound healing. AFXL itself is highly recommended for scar treatment. Therefore, the sequential combination of both modalities may produce superior outcomes. The aim of this study was to examine the pretreatment effects of a diode laser before AFXL on wound healing responses in terms of HSP up-regulation in an in vitro model. Immediate responses and responses on days 1, 3 or 6 post-procedure were studied in an in vitro porcine skin model (n = 240). Untreated samples served as control. Immunohistochemical investigation (Hsp70) was performed in all untreated controls, diode laser-, AFXL-, and in diode laser + AFXL-treated samples. Hsp70 was shown to be up-regulated by all interventions between days 1 and 6 after interventions. The largest effect was caused by the combination of a diode laser and an AFXL procedure. Diode laser exposure induces a skin HSP response that can be further enhanced by sequential AFXL treatment. Clinical studies are necessary to investigate the dose response of HSP on scar formation and refine suitable laser exposure settings.

  7. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy.

    Science.gov (United States)

    Belletti, Silvana; Uggeri, Jacopo; Mergoni, Giovanni; Vescovi, Paolo; Merigo, Elisabetta; Fornaini, Carlo; Nammour, Samir; Manfredi, Maddalena; Gatti, Rita

    2015-01-01

    Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate "in vitro" the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm(2) on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45-15 J/cm(2)), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm(2), CW irradiation determined a little decrease (5%) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10% increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.

  8. A comparative evaluation: Oral leukoplakia surgical management using diode laser, CO2 laser, and cryosurgery.

    Science.gov (United States)

    Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G

    2017-06-01

    The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.

  9. Nonimaging concentrators for diode-pumped slab lasers

    Science.gov (United States)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  10. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  11. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  12. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  13. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta

    2011-01-01

    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  14. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    Science.gov (United States)

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  15. Diode laser welding of aluminum to steel

    International Nuclear Information System (INIS)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-01-01

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  16. A new design of pulsed laser diode driver system for multistate quantum key distribution

    Science.gov (United States)

    Abdullah, M. S.; Jamaludin, M. Z.; Witjaksono, G.; Mokhtar, M. H. H.

    2011-07-01

    In this paper, we describe a new design of laser diode driver system based on MOSFET current mirror and digital signal controller (DSC). The system is designed to emit stream pairs of photons from three semiconductor laser diodes. The DSC is able to switch between the three laser diodes at constant rate. The duty cycle is maintained at 1% in order to reduce its thermal effect and thus prolong the laser diodes' life cycles. The MOSFET current mirror circuits are capable of delivering constant modulation current with peak current up to 58 mA to each laser diode. This laser driver system will allow the generating biphotons automatically with qubit rate around 8-13% for μ less than or equal to 1, thus making it practical for six-states quantum key distribution implementation.

  17. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  18. Diode laser for the treatment of telangiectasias following hemangioma involution.

    Science.gov (United States)

    Cerrati, Eric W; O, Teresa M; Chung, Hoyun; Waner, Milton

    2015-02-01

    Infantile hemangiomas are well known for their rapid growth during the first 6 to 9 months of life, followed by a spontaneous but slow involution. The standard of care is to treat these lesions at an early age with propranolol to expedite the involution process; however, surgery still remains an active component in the management. Medical treatment with propranolol or natural involution will often result in residual telangiectasias. We evaluated the efficacy of using a diode laser as a treatment for telangiectasias following cervicofacial infantile hemangioma involution. Case series with chart review. Tertiary care hospital and practice specializing in the care of vascular anomalies. Twenty patients, aged 4 months to 11 years (average 2.69 years), underwent treatment with a 532-nm diode laser to treat the residual telangiectasias following hemangioma involution. All procedures were performed in the operating room. To assess the efficacy, we independently evaluated pre- and posttreatment digital photographs and ranked them on a 0- to 4-point scale (0 = no change and 4 = complete response). Adverse reactions were also recorded. The telangiectasias showed considerable improvement following treatment. In more than half of the patients treated, the affected area demonstrated a complete response. No adverse reactions were noted. A 532-nm diode laser effectively treats the remaining telangiectasias following hemangioma involution. Whether used independently or in conjunction with other treatment modalities, the diode laser should be part of the surgical armamentarium when treating infantile hemangiomas. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  19. Electrical and optical response of a laser diode to transient ionizing radiation

    International Nuclear Information System (INIS)

    Baggio, J.; Brisset, C.; Sommer, J.L.; D'hose, C.; Lalande, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    The authors have studied transient irradiation effects on the optical and electrical responses of a laser diode. The influence of dose rate, ranging from 10 9 to 10 12 rad(Si)/s, has been investigated through a complete experimental study. Dose rate vulnerability of the laser diode has been observed. Electrical and optical transient responses are determined by the dose rate, the diode structure, and its operating point

  20. Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    2012-09-01

    Optics Letters, 28(23):2336–2338, 2003. 48. Lavan, M. “High Energy Laser Systems for Short Range Defense”. Acta Physica Polonica -Series A General Physics...able diode laser spectrometer for the remote sensing of vehicle emissions”. Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60...P. “A review of recent advances in semiconductor laser based gas mon- itors”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54

  1. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  2. Analysis of mode-hopping effect in Fabry–Pérot multiple-quantum well laser diodes via low frequency noise investigation

    DEFF Research Database (Denmark)

    Pralgauskaitė, Sandra; Palenskis, Vilius; Matukas, Jonas

    2013-01-01

    Comprehensive investigation of noise characteristics and radiation spectrum with special attention to the mode-hopping effect of Fabry–Pérot (FP) multiple quantum well laser diodes (LDs) have been carried out: laser radiation spectra, optical and electrical fluctuations and cross-correlation factor...... between them have been measured under stable and mode-hopping operation. At the mode-hopping that occurs at particular operation conditions (injection current and temperature) LD radiation spectrum is unstable in time, very intensive and highly correlated Lorentzian-type optical and electrical...

  3. Endoscopic diode laser therapy for chronic radiation proctitis.

    Science.gov (United States)

    Polese, Lino; Marini, Lucia; Rizzato, Roberto; Picardi, Edgardo; Merigliano, Stefano

    2018-01-01

    The purpose of this study is to determine the effectiveness of endoscopic diode laser therapy in patients presenting rectal bleeding due to chronic radiation proctitis (CRP). A retrospective analysis of CRP patients who underwent diode laser therapy in a single institution between 2010 and 2016 was carried out. The patients were treated by non-contact fibers without sedation in an outpatient setting. Fourteen patients (median age 77, range 73-87 years) diagnosed with CRP who had undergone high-dose radiotherapy for prostatic cancer and who presented with rectal bleeding were included. Six required blood transfusions. Antiplatelet (three patients) and anticoagulant (two patients) therapy was not suspended during the treatments. The patients underwent a median of two sessions; overall, a mean of 1684 J of laser energy per session was used. Bleeding was resolved in 10/14 (71%) patients, and other two patients showed improvement (93%). Only one patient, who did not complete the treatment, required blood transfusions after laser therapy; no complications were noted during or after the procedures. Study findings demonstrated that endoscopic non-contact diode laser treatment is safe and effective in CRP patients, even in those receiving antiplatelet and/or anticoagulant therapy.

  4. Treatment of Gingival Hyperpigmentation by Diode Laser for Esthetical Purposes

    Directory of Open Access Journals (Sweden)

    Hanaa M. El Shenawy

    2015-08-01

    Full Text Available BACKGROUND: Gingival hyperpigmentation is a common esthetical concern in patients with gummy smile or excessive gingival display. Laser ablation has been recognized recently as the most effective, pleasant and reliable technique. It has the advantage of easy handling, short treatment time, hemostasis, decontamination, and sterilization effect. AIM: In the present study we wanted to explore the efficacy of a 980 nm wavelength diode laser in gingival depigmentation clinically by using both VAS and digital imaging method as means of assessment. METHODS: Diode laser ablation was done for 15 patients who requested cosmetic therapy for melanin pigmented gums. The laser beam delivered by fiberoptic with a diameter of 320 µm, the diode laser system has 980 nm wave lengths and 3 W irradiation powers, in a continuous contact mode in all cases, the entire surface of each pigmented maxillary and mandibular gingiva that required treatment was irradiated in a single session. Clinical examination and digital image analysis were done and the patients were followed up for 3 successive months. RESULTS: There was a statistically significant change in prevalence of bleeding after treatment, as none of the cases showed any signs of bleeding 1 week, 1 month and 3 months after ablation. No statistically significant change was observed in the prevalence of swelling after treatment The VAS evaluation demonstrated that only 4 patients complained of mild pain immediately after the procedure. No pain was perceived from the patients in the rest of the follow up period. There was no statistically significant change in prevalence of pain immediately after treatment compared to pain during treatment. There was a decrease in cases with mild pain after 1 week, 1 month as well as 3 months compared to pain during treatment and immediately after treatment. CONCLUSION: Within the limitations of this study, the use of diode laser was shown to be a safe and effective treatment

  5. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  6. Quasi-CW Laser Diode Bar Life Tests

    Science.gov (United States)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  7. Diode lasers optimized in brightness for fiber laser pumping

    Science.gov (United States)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  8. Diode Laser Application in Soft Tissue Oral Surgery

    Science.gov (United States)

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  9. The effectiveness of laser diode induction to Carica Papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms

    International Nuclear Information System (INIS)

    Astuty, S Dewi; Baktir, A

    2017-01-01

    Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λ max = 420 nm) and red areas (λ max = 670 nm). The MIC value of Carica Papaya L. ’s chlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P 2 L 1 group with OD 595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only. (paper)

  10. The effect of soft-laser (diodes radiation on wound healing in cats

    Directory of Open Access Journals (Sweden)

    Julia Maria Matera

    1994-03-01

    Full Text Available Verificou-se o valor do emprego do laser diodo Ga-As-SHLD para auxiliar o processo de cicatrizarão cutânea em felinos. Utilizaram-se 21 animais que foram submetidos à ovariohisterectomia, 9 pertencendo ao grupo controle e 12 submetidos à laserterapia. Os exames anatomopatológicos foram realizados nos dias 2, 4 e 8 de pós-operatório, juntamente com avaliação macroscópica. Concluiu-se que a aplicação do laser diodo Ga-As-SHLD auxiliou o processo cicatricial da ferida cirúrgica por aumento de resistência à tensão.

  11. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  12. Mode-locked solid state lasers using diode laser excitation

    Science.gov (United States)

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  13. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  14. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  15. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  16. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  17. Proton Irradiation Effects in Oxide-Confined Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

    International Nuclear Information System (INIS)

    Armendariz, M.G.; Barnes, C.E.; Choquette, K.D.; Guertin, S.; Hash, G.L.; Schwank, J.R.; Swift, G.M.

    1999-01-01

    Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields

  18. Laser diode self-mixing technique for liquid velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrova, A., E-mail: a.alexandrova@liverpool.ac.uk [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom); Welsch, C.P. [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom)

    2016-09-11

    Using the self-mixing technique, or optical feedback interferometry, fluid velocity measurements of water seeded with titanium dioxide have been performed using a laser diode to measure the effect of the seeding particle concentration and also the pump speed of the flow. The velocimeter utilises commercially available laser diodes with a built-in photodiode for detection of the self-mixing effect. The device has demonstrated an accuracy better than 10% for liquid flow velocities up to 1.5 m/s with a concentration of scattering particles in the range of 0.8–0.03%. This is an improvement of one order of magnitude compared to previous experiments. The proposed velocimeter is to be developed further for application in gas-jet measurements.

  19. High power diode laser remelting of metals

    International Nuclear Information System (INIS)

    Chmelickova, H; Tomastik, J; Ctvrtlik, R; Supik, J; Nemecek, S; Misek, M

    2014-01-01

    This article is focused on the laser surface remelting of the steel samples with predefined overlapping of the laser spots. The goal of our experimental work was to evaluate microstructure and hardness both in overlapped zone and single pass ones for three kinds of ferrous metals with different content of carbon, cast iron, non-alloy structural steel and tool steel. High power fibre coupled diode laser Laserline LDF 3600-100 was used with robotic guided processing head equipped by the laser beam homogenizer that creates rectangular beam shape with uniform intensity distribution. Each sample was treated with identical process parameters - laser power, beam diameter, focus position, speed of motion and 40% spot overlap. Dimensions and structures of the remelted zone, zone of the partial melting, heat affected zone and base material were detected and measured by means of laser scanning and optical microscopes. Hardness progress in the vertical axis of the overlapped zone from remelted surface layer to base material was measured and compared with the hardness of the single spots. The most hardness growth was found for cast iron, the least for structural steel. Experiment results will be used to processing parameters optimization for each tested material separately.

  20. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    Science.gov (United States)

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  1. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  2. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  3. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  4. Evaluation of automatic densitometer with laser diode

    International Nuclear Information System (INIS)

    Larrea Cox, Pedro J.; Hernandez Tabares, Lorenzo; Suarez San Pedro, Cirilo E.; Vazquez Cano, Aradys; Reyes Rodriguez, Marlen de los

    2009-01-01

    The evaluation of a prototype of an automatic transmission scanning densitometer is presented. It contains a semiconductor diode laser as a light source, and is mainly oriented to the analysis of protein electrophoresis. It was developed on the Center for Technological Applications and Nuclear Development (CEADEN). Its technical specifications were established and certified by the National Institute of Researches on Metrology (INIMET), and also the equipment was submitted for assays to the Process Control Laboratory, that belongs to the 'Adalberto Pesant' Enterprise for Sera and Hemo derivatives Products, in Havana city, where it was employed to the partial quality control of products that are made there, achieving satisfactory results. (Author)

  5. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa).

    Science.gov (United States)

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-01-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece. © 2015 The American Society of Photobiology.

  6. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...

  7. Laser lipolysis: skin tightening in lipoplasty using a diode laser.

    Science.gov (United States)

    Wolfenson, Moisés; Hochman, Bernardo; Ferreira, Lydia Massako

    2015-05-01

    New devices have been developed for surgical repair of deformities caused by localized fat deposits associated with skin laxity. The use of these devices requires the adoption of safety parameters. The aim of this study was to investigate skin tightening by laser lipolysis, using a dual-wavelength diode laser. This prospective, cross-sectional study was conducted between June of 2008 and July of 2010 with 41 consecutive patients who underwent laser lipolysis to correct contour deformities. Laser lipolysis was performed with a diode laser operating at two wavelengths (924 and 975 nm) controlled independently, and using three different tip lengths, allowing treatment of small, medium, and large areas of adipose tissue. The procedure was performed under local anesthesia in a surgical setting. To calculate the optimal cumulative energy, a total energy dose of 5 kJ/10 × 10-cm skin area was used as a safety parameter to prevent treatment complications. The circumferences of body regions were measured preoperatively, immediately after surgery, and 90 days later. Measurements were compared using the Wilcoxon test at a significance level of 0.05 (p Laser lipolysis results in progressive skin tightening over time. Therapeutic, IV.

  8. Growth and characterization of visible diode lasers

    International Nuclear Information System (INIS)

    Shealy, J.R.; Bour, D.P.

    1988-01-01

    The (Al x Ga 1-x )yIn 1-y rho material system, lattice matched to GaAs substrates, has received much attention for use in visible laser diodes emitting in the spectral region λ--650-680 nm. When lattice matched to GaAs (y=0.5), this alloy spans a direct band gap range from --1.85 eV (at x=0) to --2.3 eV (near the T-X crossover at chi--0.7) It was only recently that device quality epitaxial layers have been prepared in this material due to difficulties with liquid phase epitaxial (LPE) and halide vapor phase epitaxial growth.Only organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE) growth techniques have successfully produced AlGainP laser material

  9. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  10. Transscleral Diode Laser Cyclophotocoagulation in Refractory Glaucoma

    Directory of Open Access Journals (Sweden)

    Gülfidan Bitirgen

    2012-12-01

    Full Text Available Pur po se: To evaluate the safety and efficacy of transscleral diode laser cyclophotocoagulation (TSDLC in advanced glaucoma refractory to medical or surgical treatment. Ma te ri al and Met hod: The data of subjects who were treated with TSDLC between 2009 and 2011 were retrospectively reviewed. Intraocular pressure before and after treatment, visual acuity, the number of medications and complications were analysed. Success was defined as final IOP of 6-22 mmHg with or without antiglaucomatous medications. Re sults: Thirty seven eyes of 37 patients were included in the study. Mean age of patients and mean follow-up time were 61.73±17.13 years (range: 19-80 years and 8.06±5.81 months (range: 3-22 months, respectively. Mean pretreatment IOP was 38.68±8.94 mmHg and IOP was 26.46±11.34 mmHg (p <0.01 at the second week, whereas it was 24.97±10.84 mmHg (p<0.01 at the last visit. IOP of less than 22 mmHg was achieved in 40.5% of eyes at the last visit. Mean treatment number per eye was 1.48±0.73, and more than one treatment was required in 13 (35.1% eyes. Preoperative and postoperative mean total antiglaucomatous medications were 3.14±1.18 and 2.76±1.23, respectively. No phthisis bulbi or persistent hypotonia developed during the follow-up period. Dis cus si on: TSDLC is an effective and safe method for the treatment of refractory glaucoma. It also served to reduce the number of antiglaucoma medications, thus improving both the quality of life of the patients and their compliance to therapy. (Turk J Ophthalmol 2012; 42: 434-7

  11. A practical guide to handling laser diode beams

    CERN Document Server

    Sun, Haiyin

    2015-01-01

    This book offers the reader a practical guide to the control and characterization of laser diode beams.  Laser diodes are the most widely used lasers, accounting for 50% of the global laser market.  Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens.  The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams.  The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth meas...

  12. Direct diode lasers and their advantages for materials processing and other applications

    Science.gov (United States)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but

  13. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. G. [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China); College of Science, National University of Defense Technology, Changsha, 410073 (China); Jiang, Q. Y.; Zhan, X.; Chen, Y. D.; Luo, H., E-mail: luohui.luo@163.com [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China)

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At low pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.

  14. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  15. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  16. Computer-Assisted Experiments with a Laser Diode

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  17. The application of diode laser in the treatment of oral soft tissues lesions. A literature review.

    Science.gov (United States)

    Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan

    2017-07-01

    Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words: Diode laser, soft tissues, oral cavity, oral surgery.

  18. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    Science.gov (United States)

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  19. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    Science.gov (United States)

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  20. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview.

    Science.gov (United States)

    Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.

  1. Simplified atom trap using a single microwave modulated diode laser

    International Nuclear Information System (INIS)

    Newbury, N.R.; Myatt, C.J.; Wieman, C.E.

    1993-01-01

    We have demonstrated microwave modulation of a diode laser which is operated with optical feedback from a diffraction grating. By directly modulating the diode laser current at frequencies up to 6.8 GHz, we observed 2-30% of the laser power in a single sideband for 20mW of microwave power. Using such a diode laser modulated at 6.6GHz, we have trapped 87 Rb in a vapor cell. With 10mW of microwave power, the number of trapped atoms was only 15% smaller than the number obtained using two lasers in the conventional manner. A microwave modulated diode laser should also be useful for driving stimulated Raman transitions between the hyperfine levels of Rb or Cs

  2. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  3. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  4. Respiratory complications after diode-laser-assisted tonsillotomy.

    Science.gov (United States)

    Fischer, Miloš; Horn, Iris-Susanne; Quante, Mirja; Merkenschlager, Andreas; Schnoor, Jörg; Kaisers, Udo X; Dietz, Andreas; Kluba, Karsten

    2014-08-01

    Children with certain risk factors, such as comorbidities or severe obstructive sleep apnea syndrome (OSAS) are known to require extended postoperative monitoring after adenotonsillectomy. However, there are no recommendations available for diode-laser-assisted tonsillotomy. A retrospective chart review of 96 children who underwent diode-laser-assisted tonsillotomy (07/2011-06/2013) was performed. Data for general and sleep apnea history, power of the applied diode-laser (λ = 940 nm), anesthesia parameters, the presence of postoperative respiratory complications and postoperative healing were evaluated. After initially uncomplicated diode-laser-assisted tonsillotomy, an adjustment of post-anesthesia care was necessary in 16 of 96 patients due to respiratory failure. Respiratory complications were more frequent in younger children (3.1 vs. 4.0 years, p = 0.049, 95 % CI -1.7952 to -0.0048) and in children who suffered from nocturnal apneas (OR = 5.00, p diode-laser power higher than 13 W could be identified as a risk factor for the occurrence of a postoperative oropharyngeal edema (OR = 3.45, p diode-laser-assisted tonsillotomy. We recommend a reduced diode-laser power (<13 W) to reduce oropharyngeal edema.

  5. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  6. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  7. Active stabilization of a diode laser injection lock.

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  8. Development of laser diode pumped Nd:glass slab laser driver for the inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Yasuhara, Ryo

    2002-01-01

    A diode-pumped solid state laser (DPSSL) is promising candidate of reactor driver for Inertial Fusion Energy (IFE). As a first step of a driver development for the IFE, we are developing a laser diode pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generated an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig zag Nd:glass slab is pumped from both sides by 803 nm AIGaAs laser diode (LD) module, each LD module has an emitting area of 420 mm x 10 mm and two LD modules generate in total 218 (max.) kW peak power with 2.6 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in first-stage experiment 8.5 J output energy at 0.5 Hz with a beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. Since the key issue for the IFE DPSSL drive module were almost satisfactory, we have a confidence that a next 100 J x 10 Hz DPSSL module (HALNA 100) can be constructed. Thermal effects in laser slab, Faraday rotator, Faraday isolator and Pockets cell and their managements are discussed.

  9. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  10. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  11. Computer-assisted experiments with a laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Kraftmakher, Yaakov, E-mail: krafty@mail.biu.ac.il [Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-05-15

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The h/e ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a data-acquisition system, the measurements are possible in a short time. The frequency response of the laser diode is determined in the range 10-10{sup 7} Hz. The experiments are suitable for undergraduate laboratories and for classroom demonstrations on semiconductors.

  12. Computer-assisted experiments with a laser diode

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The h/e ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a data-acquisition system, the measurements are possible in a short time. The frequency response of the laser diode is determined in the range 10-10 7 Hz. The experiments are suitable for undergraduate laboratories and for classroom demonstrations on semiconductors.

  13. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    Science.gov (United States)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  14. Modeling of thermal and optical effects in dental pulp during the irradiation with neodymium and diode lasers; Modelagem dos efeitos termicos e opticos na polpa dentaria durante a irradiacao com os lasers de diodo de neodimio

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Patricia Bahls de Almeida

    2003-07-01

    During the development of applications of high intensity lasers in the enamel and dentine, adverse thermal effects into the entire dental structure, including the pulp, must be verified. The measurement of the temperature in the intact pulp, however, is not a solved problem. For this purpose, models have been used frequently, using extracted teeth, with pulpal cavities filled with materials that simulate only thermal properties of the pulp. Current models, however, do not simulate optical properties of the pulp, not taking the remaining radiation in the pulp chamber into account. The aim of this study was to verify if the remaining radiation from neodymium and diode lasers that reach the pulp chamber, at the models using extracted bovine teeth, can cause local thermal effects. For this purpose, two models were developed, using extracted bovine teeth with their pulp chambers filled with water (simulating pulp thermal characteristics) without (model 1) and with (model 2) an optical absorbent. Models were radiated with 1 W. The obtained results show that, for both lasers, the temperature rise in model 2 pulp chamber is: up to 11 % higher than in the model 1 when the enamel is radiated; and up to 37% higher than in the model 1 when dentine is radiated (1 mm from the pulp), indicating that the level of the remaining radiation is relevant for the construction of models excited by the neodymium and diode lasers. (author)

  15. Micropulse diode laser trabeculoplasty -- 180-degree treatment.

    Science.gov (United States)

    Rantala, Elina; Välimäki, Juha

    2012-08-01

    To evaluate the outcome of 180° micropulse diode laser trabeculoplasty (MDLT) in patients with open-angle glaucoma. A retrospective review of 40 eyes of 29 MDLT-treated patients with a minimum follow-up time of 6 months. Successful outcome was defined as follows: (i) a ≥20% or (ii) a ≥3-mmHg decrease of intraocular pressure (IOP), no further need for laser- or incisional surgery and the number of glaucoma medication was the same or less than preoperative. These definitions will from now on be referred to as definition one and definition two. Life-table analysis showed an overall success rate of 2.5% (1/40) and 7.5% (3/40) (according to definitions one and two, respectively) after up to 19 months of follow-up. The average time for failure was by definition one 2.9 months (standard deviation, SD ± 3.5, range 1-12 months) and by definition two 3.3 months (SD ± 3.9, range 1-16 months). There were no intra- or postoperative complications caused by MDLT. Postoperative inflammatory reaction, cells and flare, was scanty. Our results suggest that 180° MDLT is a safe but ineffective treatment in patients with open-angle glaucoma. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  16. Active stabilization of a diode laser injection lock

    Energy Technology Data Exchange (ETDEWEB)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2016-06-15

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  17. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...

  18. Active stabilization of a diode laser injection lock

    International Nuclear Information System (INIS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  19. Diode Laser Raman Scattering Prototype Gas-Phase Environmental Monitoring

    National Research Council Canada - National Science Library

    Benner, Robert

    1999-01-01

    We proposed developing a diode-laser-based, full spectrum Raman scattering instrument incorporating a multipass, external cavity enhancement cell for full spectrum, gas phase analysis of environmental pollutants...

  20. The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: The effects of an 808nm infrared laser diode on cellular respiration.

    Science.gov (United States)

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-07-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. Unfortunately, conflicting literature has led to the labelling of PBM as a complementary or alternative medicine approach. However, past and ongoing clinical and research studies by reputable investigators have re-established the merits of PBM as a genuine medical therapy, and the technique has, in the last decade, seen an exponential increase in the numbers of clinical instruments available, and their applications. This resurgence has led to a clear need for appropriate experimental models to test the burgeoning laser technology being developed for medical applications. In this context, an ethical model that employs the protozoan, Paramecium primaurelia, is proposed. We studied the possibility of using the measure of oxygen consumption to test PBM by irradiation with an infrared or near-infrared laser. The results show that an 808nm infrared laser diode (1W; 64J/cm²) affects cellular respiration in P. primaurelia, inducing, in the irradiated cells, a significantly (p Paramecium can be an excellent tool in biological assays involving infrared and near-infrared PBM, as it combines the advantages of in vivo results with the practicality of in vitro testing. This test represents a fast, inexpensive and straightforward assay, which offers an alternative to both traditional in vivo testing and more expensive mammalian cellular cultures. 2015 FRAME.

  1. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  2. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  3. Laser diodes for sensing applications: adaptive cruise control and more

    Science.gov (United States)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  4. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  5. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    Science.gov (United States)

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  6. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  7. Gas detection by correlation spectroscopy employing a multimode diode laser.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Zhang, Zhiguo

    2008-05-01

    A gas sensor based on the gas-correlation technique has been developed using a multimode diode laser (MDL) in a dual-beam detection scheme. Measurement of CO(2) mixed with CO as an interfering gas is successfully demonstrated using a 1570 nm tunable MDL. Despite overlapping absorption spectra and occasional mode hops, the interfering signals can be effectively excluded by a statistical procedure including correlation analysis and outlier identification. The gas concentration is retrieved from several pair-correlated signals by a linear-regression scheme, yielding a reliable and accurate measurement. This demonstrates the utility of the unsophisticated MDLs as novel light sources for gas detection applications.

  8. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    Science.gov (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  9. Distributed-feedback single heterojunction GaAs diode laser

    International Nuclear Information System (INIS)

    Scifres, D.R.; Burnham, R.D.; Streifer, W.

    1974-01-01

    Laser operation of single-heterojunction GaAl As/GaAs diode lasers using a periodic structure within the gain medium of the device, thereby obviating the need for carefully cleaved end crystal faces to produce feedback, is reported. By varying the grating period, wavelengths from 8430 to 8560 A were observed. The threshold current densities were of the same order as for normal single heterojunction diode lasers. Some advantages in output wavelengths were observed over lasers with cleared faces. (U.S.)

  10. Treatment of Dentine Hypersensitivity by Diode Laser: A Clinical Study

    Directory of Open Access Journals (Sweden)

    Romeo Umberto

    2012-01-01

    Full Text Available Introduction. Dentine hypersensitivity (DH is characterized by pain after stimuli that usually provoke no symptoms. This study compared the effectiveness of GaAlAs diode laser alone and with topical sodium fluoride gel (NaF. Materials and Methods. The study was conducted on 10 patients (8 F/2 M, age 25–60 and 115 teeth with DH assessed by air and tactile stimuli measured by Numeric Rating Scale (NRS. Teeth were randomly divided into G1 (34 teeth treated by 1.25% NaF; G2 (33 teeth lased at 0.5 W PW (T on 100 m and T off 100 ms, fluence 62.2 J/cm2 in defocused mode with a 320 μ fiber. Each tooth received three 1′ applications; G3 (48 teeth received NaF gel plus laser at same G2 parameters. NRS was checked at each control. Results. Significant pain reduction was showed. The NRS reduction percentages were calculated, and there was a concrete decrease of DH above all in G3 than G2 and G1. Conclusion. Diode laser is a useful device for DH treatment if used alone and mainly if used with NaF gel.

  11. DFB laser diodes for sensing applications using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Koeth, J; Fischer, M; Legge, M; Seufert, J; Roessner, K; Groninga, H

    2010-01-01

    We present typical device characteristics of novel DFB laser diodes which are employed in various sensing applications including high resolution photoacoustic spectroscopy. The laser diodes discussed are based on a genuine fabrication technology which allows for the production of ultra stable devices within a broad spectral range from 760 nm up to 3000 nm wavelength. The devices exhibit narrow linewidths down to <1 MHz which makes them ideally suited for all photoacoustic sensing applications where a high spectral purity is required. As an example we will focus on a typical medical application where these diodes are used for breath analysis using photoacoustic spectroscopy.

  12. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  13. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  14. [Laservaporization of the prostate: current status of the greenlight and diode laser].

    Science.gov (United States)

    Rieken, M; Bachmann, A; Gratzke, C

    2013-03-01

    In the last decade laser vaporization of the prostate has emerged as a safe and effective alternative to transurethral resection of the prostate (TURP). This was facilitated in particular by the introduction of photoselective vaporization of the prostate (PVP) with a 532 nm 80 W KTP laser in 2002. Prospective randomized trials comparing PVP and TURP with a maximum follow-up of 3 years mostly demonstrated comparable functional results. Cohort studies showed a safe application of PVP in patients under oral anticoagulation and with large prostates. Systems from various manufacturers with different maximum power output and wavelengths are now available for diode laser vaporization of the prostate. Prospective randomized trials comparing diode lasers and TURP are not yet available. In cohort studies and comparative studies PVP diode lasers are characterized by excellent hemostatic properties but functional results vary greatly with some studies reporting high reoperation rates.

  15. Treatment of keloid scars with a 1210-nm diode laser in an animal model.

    Science.gov (United States)

    Philandrianos, Cécile; Bertrand, Baptiste; Andrac-Meyer, Lucile; Magalon, Guy; Casanova, Dominique; Kerfant, Nathalie; Mordon, Serge

    2015-12-01

    A temperature increase can improve wound healing by activation of heat shock protein 70 and stimulation of fibroblasts. Since keloids are a dysfunction of collagen fiber synthesis and organization, this study aimed to evaluate if a 1,210 nm diode laser could have effects in a new animal model of keloid scars. A total of 39 nude mice were used for this study. Phototypes IV and V human keloids were grafted into their backs and after 1 month of healing, the mice were divided into four groups: Control, Laser, Resection, Resection/Laser. In the Laser group, the keloids were treated with a 1,210-nm diode-laser with the following parameters: 4 W; 10 seconds; fluence: 51 J/cm(2) ; spot: 18.9 × 3.7 mm(2) . In the Resection group, surgical intra-lesional excision was performed. In the Resection/Laser group, keloids were treated with the 1,210-nm laser-diode after surgical intra-lesional excision. Temperature measurements were made during the laser treatment. Clinical examination and histological study were performed on the day of treatment and 1 month, 2 months, and 3 months later. Mean temperature measurement was of 44.8°C (42-48°) in the Laser groups. No healing complications or keloid proliferation was observed in any group. Keloid histologic characters were confirmed in all grafts. No histologic particularity was observed in the laser groups in comparison with the Control and Resection groups. First, this keloid animal model appears to be adapted for laser study. Secondly, the 1,210-nm diode laser does not induce keloid thermal damage in vivo. Further studies with different 1,210-nm laser diode parameters should be performed in order to observe significant effects on keloids. © 2015 Wiley Periodicals, Inc.

  16. Blue laser diode (450 nm) systems for welding copper

    Science.gov (United States)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  17. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  18. Experimental transconjunctival diode laser retinal photocoagulation through silicone scleral exoplants.

    Science.gov (United States)

    Nanda, S K; Han, D P

    1995-07-01

    To study the feasibility of inducing a chorioretinal lesion under a previously placed scleral buckle by experimental transconjunctival diode laser photocoagulation. We performed transconjunctival diode laser photocoagulation in the peripheral retinas of seven pigmented rabbit eyes with a silicone exoplant (No. 42 band or No. 276 tire) and seven eyes without an exoplant. Each eye received burns with an intensity of grades 1 to 3 in different quadrants at varying power levels, with a 0.5-second duration and 650-micron spot size. Eyes were enucleated for histopathologic studies 1 day and 1 week after treatment. Although the irradiance emitted through the No. 42 band and the No. 276 tire was attenuated by 17% and 23%, respectively, the range of threshold powers needed to produce grades 1 to 3 burns was similar between eyes with and without a silicone exoplant. At 1 day, full-thickness coagulative necrosis was observed in all lesions, except that the ganglion cell layer and inner nuclear layer were preserved in two of four grade 1 burns and the ganglion cell layer was intact in one of six grade 2 burns. Inner scleral changes were noted acutely in three of five grade 3 lesions. At 1 week, burns of all intensity grades showed a full-thickness atrophic chorioretinal lesion with inner scleral changes. Experimental transconjunctival diode laser photocoagulation through hard silicone elements reproducibly created a chorioretinal lesion with histopathologic findings similar to those of lesions obtained without these elements. Although retinal photocoagulative effects were prominent, inner scleral abnormalities were also observed histologically.

  19. Overview on new diode lasers for defense applications

    Science.gov (United States)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range market.

  20. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser.

    Science.gov (United States)

    Liu, Ying; Gao, Jie; Gao, Yan; Xu, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm(2); Group B: 2 W/CW (continuous mode), 166 J/cm(2); Group C: 3W/CW, 250 J/cm(2); and Group D: 4W/CW, 333 J/cm(2). Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm(2); and Group F: 2.0 W/CW, 166 J/cm(2). The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm(2)) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue.

  1. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser

    Science.gov (United States)

    Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318

  2. High-power pure blue laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M.; Ohizumi, Y.; Hoshina, Y.; Tanaka, T.; Yabuki, Y.; Goto, S.; Ikeda, M. [Development Center, Sony Shiroishi Semiconductor Inc., Miyagi (Japan); Funato, K. [Materials Laboratories, Sony Corporation, Kanagawa (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan)

    2007-06-15

    We successfully developed high-power and long-lived pure blue laser diodes (LDs) having an emission wavelength of 440-450 nm. The pure-blue LDs were grown by metalorganic chemical vapor deposition (MOCVD) on GaN substrates. The dislocation density was successfully reduced to {proportional_to}10{sup 6} cm{sup -2} by optimizing the MOCVD growth conditions and the active layer structure. The vertical layer structure was designed to have an absorption loss of 4.9 cm{sup -1} and an internal quantum efficiency of 91%. We also reduced the operating current density to 6 kA/cm{sup 2} under 750 mW continuous-wave operation at 35 C by optimizing the stripe width to 12 {mu}m and the cavity length to 2000 {mu}m. The half lifetimes in constant current mode are estimated to be longer than 10000 h. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  4. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  5. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  6. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  7. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  8. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    Science.gov (United States)

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  9. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    Science.gov (United States)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  10. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  11. Performance comparison of CO2 and diode lasers for deep-section concrete cutting

    International Nuclear Information System (INIS)

    Crouse, Philip L.; Li, Lin; Spencer, Julian T.

    2004-01-01

    Layer-by-layer laser machining with mechanical removal of vitrified dross between passes is a new technique with a demonstrated capability for deep-section cutting, not only of concrete, but of ceramic and refractory materials in general. For this application fairly low power densities are required. A comparison of experimental results using high-power CO 2 and diode lasers under roughly equivalent experimental conditions, cutting to depths of >100 mm, is presented. A marked improvement in cutting depth per pass is observed for the case of the diode laser. The increased cutting rate is rationalized in terms of the combined effects of coupling efficiency and beam shape

  12. The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Andrea Amaroli

    2018-02-01

    Full Text Available The literature has supported the concept of mesenchymal stromal cells (MSCs in bone regeneration as one of the most important applications in oro-maxillofacial reconstructions. However, the fate of the transplanted cells and their effects on the clinical outcome is still uncertain. Photobiomodulation (PBM plays an important role in the acceleration of tissue regeneration and potential repair. The aim of this in vitro study is to evaluate the effectiveness of PBM with 808 nm diode laser therapy, using a flat-top hand-piece delivery system at a higher-fluence (64 J/cm2 irradiation (1 W, continuous-wave on bone marrow stromal cells (BMSCs. The BMSCs of 3 old female Balb-c mice were analyzed. The cells were divided into two groups: irradiated group and control group. In the former the cells were irradiated every 24 h during 0 day (T0, 5 (T1, 10 (T2, and 15 (T3 days, whereas the control group was non-irradiated. The results have shown that the 64 J/cm2 laser irradiation has increased the Runt-related transcription factor 2 (Runx2. Runx2 is the most important early marker of osteoblast differentiation. The higher-fluence suppressed the synthesis of adipogenic transcription factor (PPARγ, the pivotal transcription factor in adipogenic differentiation. Also, the osteogenic markers such as Osterix (Osx and alkaline phosphatase (ALP were upregulated with an increase in the matrix mineralization. Furthermore, western blotting data demonstrated that the laser therapy has induced a statistically valid increase in the synthesis of transforming growth factor β1 (TGF-β1 but had no effects on the tumor necrosis factor α (TNFα production. The data has statistically validated the down-regulation of the important pro-inflammatory cytokines such as interleukin IL-6, and IL-17 after 808 nm PBM exposition. An increase in anti-inflammatory cytokines such as IL-1rα and IL-10 was observed. These in vitro studies provide for first time the initial proof that the PBM

  13. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  14. Femtosecond Nonlinearities in Indium Gallium Arsenic Phosphide Diode Lasers

    Science.gov (United States)

    Hall, Katherine Lavin

    Semiconductor optical amplifiers are receiving increasing attention for possible applications to broadband optical communication and switching systems. In this thesis we report the results of an extensive experimental study of the ultrafast gain and refractive index nonlinearities in 1.5 μm InGaAsP laser diode amplifiers. The temporal resolution afforded by the femtosecond optical pulses used in these experiments allows us to study carrier interactions with other carriers as well as carrier interactions with the lattice. The 100-200 fs optical pulses used in the pump -probe experiments are generated by an Additive Pulse Modelocked color center laser. The measured group velocity dispersion in the diodes ranged from -0.6 to -0.95 mu m^{-1 }. Differences in the group velocity for TE - and TM-polarized pulses suggested that cross-polarized pump-probe pulses walk off from each other in the diode. This walk-off can diminish the time resolution of some experiments. A novel heterodyne pump-probe technique was developed to distinguish collinear, copolarized, pump and probe pulses that were nominally at the same wavelength. Comparing cross-polarized and copolarized pump-probe results yielded new information about the physical mechanisms responsible for nonlinear gain in the diodes. We observed a gain compression across the entire bandwidth of the diode, associated with carrier heating. The hot carrier distribution cooled back to the lattice temperature with a 0.6 to 1.0 ps time constant, depending on the device structure. In addition, we observed a 0.1 to 0.25 ps delay in onset of carrier heating. Large gain compression due to two photon absorption was also observed. A small portion of the nonlinear gain is attributed to spectral hole burning. Pulsewidth-dependent output saturation energies were explained by a rate equation model that included the effect of carrier heating. Measurements of pump-induced probe phase changes revealed index nonlinearities due to delayed carrier

  15. Local Effects on Lung Parenchyma Using a 600 µm Bare Fiber with the Diode-Pumped Nd:YAG Laser LIMAX® 120

    Directory of Open Access Journals (Sweden)

    Peter Rexin

    2015-12-01

    Full Text Available Lung metastases are frequently removed with an Nd:YAG laser. The aim is to perform a non-anatomic resection of all intraoperatively palpable lung metastases completely in order to preserve the largest possible amount of healthy lung parenchyma. The surgeon can either work with a focusing handpiece or use a laser fiber of the so-called bare fiber with direct contact to the lung parenchyma. We currently use a 600 µm bare fiber for applications involving the lung parenchyma. Precise data on the local effect of the laser fiber on the lung parenchyma are not available, especially with regard to an increase in the laser energy. We want to study this question within the scope of an experimental model in pig lungs by means of systematic and reproducible tests. The lung lobes were removed from animals recently slaughtered in the abattoir and taken to the laboratory immediately, where the lobes were stored such that the surface of the lungs was parallel to the floor. A 600 µm bare fiber was attached to a mounting bracket vertically above the lung surface at a distance of either 0, 5, or 10 mm. This mounting bracket was in turn connected to a hydraulic feed motor. The feed motor is capable of moving the bare fiber forward across the lungs consistently at three different speeds (5 mm/s, 10 mm/s, or 20 mm/s. The bare fiber itself was connected to the diode-pumped Nd: YAG Laser LIMAX® 120 (Gebrüder Martin GmbH & Co KG, Tuttlingen, Germany. We carried out the tests using three different laser powers: 20 W, 60 W, and 120 W. The lung lesions caused by the laser in each of the lungs were resected and sent in for histological analysis. The exact size of the vaporization and coagulation zone was measured using the HE sections, and the respective mean values (with standard deviations were ascertained. For all laser powers, the extent of the vaporization was greatest with a motion speed of 5 mm/s for the respective laser power: 756.4 ± 1.2 µm (20 W, 1411.0 ± 2

  16. Evaluation of the hydrogen peroxide and special colorant effects under irradiation by argon and diode laser on tooth-whitening in vitro

    International Nuclear Information System (INIS)

    Gaspar, Jose Antonio

    2003-01-01

    The aim of this study is to determine if there is any interaction between special colorant found on bleaching agents that have 35 % of hydrogen peroxide on its composition, and argon or diode laser. The first part of the study was to characterize the extrinsic stain obtained through a staining solution containing products present on the day by day diet of the general population. Thirty-two inferior human extracted incisors, free of caries and without filling material were selected for the study. The laser devices employed were Argon laser (AccuCure 3000 TM - Lasermed), wave length 488 nm, with a 200 mW/cm 2 for 30 seconds in continuos mode; and diode laser (L 808 Medical Laser - Lasering do Brasil), wave length 808 ± 10 nm, with 1,6 W/cm 2 for 30 seconds in continuos mode. The application mode done by a scanning movement over the buccal surface. The bleaching agents used were: Opalescence Extra (OE) - Ultradent Products USA, hydrogen peroxide 35%, gel with Carotene to convert light into heat; Pola Office (PO) - SDI - USA single doses of hydrogen peroxide; Whiteness HP (WHP) - FGM - Brasil, hydrogen peroxide 35%; Opus White (OW) - Sharplan - Israel, hydrogen peroxide 35%. The temperature rise measurement was performed with a thermocouple model 120-202-AJ, Fenwal, inserted into the pulpar chamber. The bleaching material was applied on the tooth surface with 2 mm thickness and then the irradiation was perform. The thirty two teeth were randomized in four groups, two for each laser device. The obtain data demonstrated a superior performance of the Argon laser on tooth whitening and also better results concerning the temperature rise. The alteration on tooth coloration was verified through digital spectrophotometer (Shade-Eye EX - Shofu) and quantitative analyses showed statistical differences among the groups. The bleaching results for Argon laser combined with OE and WHP were superior for the other groups. The mean variation of the temperature rise obtained Argon

  17. Seven-laser diode end-pumped Nd

    International Nuclear Information System (INIS)

    Berger, J.; Welch, D.F.; Streifer, W.; Scifres, D.R.; Smith, J.J.; Hoffman, H.J.; Peisley, D.; Radecki, D.

    1988-01-01

    End pumping of solid-state lasers by single semiconductor laser diode arrays (LDAs) is efficient, but the maximum pump power is limited by the source brightness and matching the TEM/sub 00/ Nd:YAG cavity mode. To increase the output power from a solid-state Nd:YAG laser, one option is to employ a multiplicity of LDA to provide more pump power than is available from a single source. The authors report herein a 660-mW cw TEM/sub 00/ Nd:YAG laser, end-pumped by seven LDA, with bundled optical fibers coupling the light from each diode to the Nd:YAG rod end. The maximum electrical-to-optical conversion efficiency attained was 4.7% at 560-mW Nd:YAG output power. The LDAs (SDL-2430-C, 100 μm wide) were mounted on separate thermoelectric coolers to tune emission wavelength to the Nd:YAG absorption bands. The diodes were operated at their rated output power (50,000 h mean time to failure). The 110/125-μm diam 0.37-N.A. fibers were butt coupled to the lasers and glued together into a hexagonal close pack. The authors have obtained the highest average power demonstrated to date in the TEM/sub 00/ mode from a Nd:YAG laser, reliably end-pumped by multiple laser diodes with good efficiency

  18. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  19. GaN-based blue laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao; Yanashima, Katsunori; Funato, Kenji; Asatsuma, Tsunenori; Kobayashi, Toshimasa [CT Development Centre, CNC, Sony Corporation, Atsugi, Kanagawa (Japan); Tojyo, Tsuyoshi; Asano, Takeharu; Kijima, Satoru; Hino, Tomonori; Takeya, Motonobu; Uchida, Shiro; Ikeda, Masao [Sony Shiroishi Semiconductor Inc., Shiroishi, Miyagi (Japan); Tomiya, Shigetaka [Environment and Analyhsis Technology Department, Sony Corporation, Hodogaya, Yokohama (Japan)

    2001-08-13

    We report our recent progress on GaN-based high-power laser diodes (LDs), which will be applied as a light source in high-density optical storage systems. We have developed raised-pressure metal-organic chemical vapour deposition (RP-MOCVD), which can reduce the threading-dislocation density in the GaN layer to several times 10{sup 8} cm{sup -2}, and demonstrated continuous-wave (cw) operation of GaN-based LD grown by RP-MOCVD. Furthermore, we found that the epitaxial lateral overgrowth (ELO) technique is useful for further reducing threading-dislocation density to 10{sup 6} cm{sup -2} and reducing the roughness of the cleaved facet. By using this growth technique and optimizing device parameters, the lifetime of LDs was improved to more than 1000 hours under 30 mW cw operation at 60 deg. C. Our results proved that reducing both threading-dislocation density and consumption power is a valid approach to realizing a practical GaN-based LD. On the other hand, the practical GaN-based LD was obtained when threading-dislocation density in ELO-GaN was only reduced to 10{sup 6} cm{sup -2}, which is a relatively small reduction as compared with threading-dislocation density in GaAs- and InP-based LDs. We believe that the multiplication of non-radiative centres is very slow in GaN-based LDs, possibly due to the innate character of the GaN-based semiconductor itself. (author)

  20. Infrared diode laser spectroscopy of lithium hydride

    International Nuclear Information System (INIS)

    Yamada, C.; Hirota, E.

    1988-01-01

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  1. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    Science.gov (United States)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and

  2. A comparison of diode laser and Er:YAG lasers in the treatment of gingival melanin pigmentation.

    Science.gov (United States)

    Simşek Kaya, Göksel; Yapici Yavuz, Günay; Sümbüllü, Muhammed A; Dayi, Ertunç

    2012-03-01

    This study compared the use of diode and Er:YAG lasers in treating gingival melanin pigmentation (GMP) in terms of gingival depigmentation, local anesthesia requirements, postoperative pain/discomfort, depigmentation effectiveness, and total treatment duration. Twenty patients (13 female, 7 male) referred with GMP were enrolled in the study. Patients were randomly divided into 2 groups. Group 1 was treated with a gallium aluminum arsenide diode laser with a continuous wavelength of 808 nm, and group 2 was treated with an Er:YAG laser with a continuous wavelength of 2,940 nm. Gingival depigmentation was performed by applying the laser at 1 W. Treatment was administered on a weekly basis until a normal pink gingival color was observable in clinical examination and photographs. In addition, patients were asked to evaluate the procedure by using a self-administered questionnaire. Procedures were carried out without the need for any topical or local anesthetic, and no unpleasant events occurred during the actual procedure or the healing period. The total length of treatment was significantly shorter with the diode laser (group 1) than with the Er:YAG laser (group 2; P Diode and Er:YAG lasers administered at 1 W both result in satisfactory depigmentation of GMP. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Determination of QW laser diode degradation based on the emission spectrum

    Directory of Open Access Journals (Sweden)

    Bliznyuk Vladimir

    2017-01-01

    Full Text Available The possibility of laser diodes degradation control by monitoring of their spectrum is shown. For red and infra-red laser diodes, the time dependence of the radiation spectrum width was obtained.

  4. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald

    2003-01-01

    This equipment grant focused on four areas: (1) portable diode laser sensors with new fiber-coupled diode lasers and the support equipment to provide higher power with extended wavelength tuning range and speed; (2...

  5. Diode laser heat treatment of lithium manganese oxide films

    International Nuclear Information System (INIS)

    Pröll, J.; Kohler, R.; Mangang, A.; Ulrich, S.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2012-01-01

    The crystallization of lithium manganese oxide thin films prepared by radio frequency magnetron sputtering on stainless steel substrates under 10 Pa argon pressure is demonstrated by a laser annealing technique. Laser annealing processes were developed as a function of annealing time and temperature with the objective to form an electrochemically active lithium manganese oxide cathode. It is demonstrated, that laser annealing with 940 nm diode laser radiation and an annealing time of 2000 s at 600 °C delivers appropriate parameters for formation of a crystalline spinel-like phase. Characteristic features of this phase could be detected via Raman spectroscopy, showing the characteristic main Raman band at 627 cm -1 . Within cyclic voltammetric measurements, the two characteristic redox pairs for spinel lithium manganese oxide in the 4 V region could be detected, indicating that the film was well-crystallized and de-/intercalation processes were reversible. Raman post-analysis of a cycled cathode showed that the spinel-like structure was preserved within the cycling process but mechanical degradation effects such as film cracking were observed via scanning electron microscopy. Typical features for the formation of an additional surface reaction layer could be detected using X-ray photoelectron spectroscopy.

  6. 3.1 W narrowband blue external cavity diode laser

    Science.gov (United States)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  7. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    . However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy.......A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser...

  8. Mathematical modeling of a passively Q-switched diode laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2009-11-01

    A mathematical model describing the dynamic emission of the intracavity frequency doubling (IFD) of a gain-switched InGaAs/GaAs/KTP and a gain-switched mode-locked two-sections tapered ridge-waveguide InGaAs/GaAs diode laser has been presented. The IFD of a gain-switched and a gain-switched mode-locked two-sections diode laser is modeled where one section is electrically pumped to proved gain while the second section is unpumped (reverse biased) to provide a saturable absorber. (author)

  9. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  10. Diode laser cyclophotocoagulation in Indian eyes: efficacy and safety.

    Science.gov (United States)

    Singh, Kirti; Jain, Divya; Veerwal, Vikas

    2017-02-01

    Diode laser cyclophotocoagulation (DLCP) has emerged as a time-tested procedure for end-stage glaucoma with fewer complications. By means of this study, we have evaluated its wide indications, its efficacy, and safety in darkly pigmented Asian Indian eyes. Ninety-one eyes with uncontrolled glaucoma presenting to glaucoma clinic of a tertiary care center over a period of 6 years were scheduled for DLCP. The semiconductor diode laser with a G probe was used with laser energy delivered about 1.5 mm behind the surgical limbus. The extent of clock hours of laser application was determined by pretreatment intraocular pressure (IOP) and superior area was spared in cases where future filtration surgery was contemplated. The DLCP was repeated earliest at 1 month in case of non-response and a maximum of three laser procedures were performed for any patient. Ninety-one eyes of 89 patients (40 males, 49 females) were included. Common indications included secondary glaucoma (37.3 %), failed trabeculectomies (27.4 %), angle closure glaucoma (17.5 %), etc. Laser power delivered ranged from 990 to 1800 mW, (mean 1396 + 182.14 mW) with an average of 17 spots. Patients improved from pretreatment IOP of 38.18 + 8.96 mmHg (range 20.6-64) to post treatment IOP of 17.86 + 7.75 mmHg (range 10-42). Qualified success was defined as final IOP of 20 mm Hg or less on topical medications that could be achieved in 70 % eyes with one or repeat treatment. Pre op visual acuity ranged from PL+ to 6/18 showing a slight improvement to PL+ to 6/12 post op. A 58.5 % reduction of IOP was noted. No incidence of serious complications was noted during follow-up ranging from 9 months to 3 years. DLCP is an effective and safe tool to be used in Indian population for control of IOP. It can be safely used as a primary modality to bring IOP to permissible levels before trabeculectomy.

  11. Direct-current polarization characteristics of various AlGaAs laser diodes

    Science.gov (United States)

    Fuhr, P. L.

    1984-01-01

    Polarization characteristics of AlGaAs laser diodes having various device geometries have been measured. Measurements were performed with the laser diodes operating under dc conditions. Results show that laser diodes having different device geometries have optical outputs that exhibit varying degrees of polarization purity. Implications of this result, with respect to incoherent polarization-beam combining, are addressed.

  12. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  13. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  14. An in-vitro antimicrobial effect of 405 nm laser diode combined with chlorophylls of alfalfa (Medicago sativa L. on Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Suryani Dyah Astuti

    2018-03-01

    Full Text Available Background: Enterococcus faecalis (E. faecalis is a bacterium commonly detected in the root canals of teeth with post-treatment apical periodontitis or advanced marginal periodontitis. It has the ability to live in an extreme environment and survive as an organism with its virulence factor possibly contributing to the pathogenesis of post-treatment apical and marginal periodontitis. Photodynamic therapy (PDT is an urgently required alternative method of improving therapy effectiveness. Photodynamic therapy combined with conventional endodontic treatment decreases the number of antibioticresistant bacteria and biofilms. Chlorophyll is one of the photosensitizers added to enhance the absorption of light in photodynamic therapy. Purpose: The purpose of this study was to determine the antimicrobial effect of the combination of photodynamic laser therapy and Alfalfa chlorophyll in E. faecalis. Methods: In vitro study using E. faecalis distributed between negative control (C- and positive control (C+, treatment groups using various energy doses of a 405 nm diode laser (2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 J/cm2 with (G1 and without alfalfa chlorophyll as organic photosensitizer (G2. The suspension was inoculated on Tryptocase Soy Agar (TSA and incubated at 37° C for 24 hours. The number of colonyforming units per milliliter (CFU/ml was determined. The results were analyzed by ANOVA with p value ≤0.05. Results: A 405 nm irradiating laser with or without a photosensitizer can decrease E. faecalis viability percentage through the administering of various energy doses. The highest decrease (42% was obtained in the group without a photosensitizer using 20 J/cm2, while 10 J/cm2 in the group with a photosensitizer proved the most effective dose (25%. Conclusion: The results of this study showed a decrease in the viability of E. faecalis exposed to a 405 nm (40 mW laser. An irradiating process using a 405 nm laser without a photosensitizer (Alfalfa

  15. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  16. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.

    2004-01-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Blue laser diode (LD) and light emitting diode (LED) applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, Arpad A [Optoelectronics Industry Development Association (OIDA), 1133 Connecticut Avenue, NW, Suite 600, Washington, DC 20036-4329 (United States)

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  19. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications....... When using our diode laser system, the optical conversion efficiencies from green to near-infrared light reduces to 75 % of the values achieved with the commercial pump laser. Despite this reduction the overall efficiency of the Ti: sapphire laser is still increased by a factor > 2 due to the superior...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  20. Efficacy of diode laser in the management of oral lichen planus.

    Science.gov (United States)

    Misra, Neeta; Chittoria, Nandita; Umapathy, Deepak; Misra, Pradyumna

    2013-03-15

    Oral lichen planus (OLP) is a common chronic disease of uncertain aetiology. Treatment of patients with symptomatic OLP represents a therapeutic challenge. Despite numerous existing remedies, there are many treatment failures. The diode laser therapy is used as a possible alternative method in the treatment of lichen planus. The patient with OLP lesions was treated using diode laser (940 nm) for the symptomatic relief of pain and burning sensation. The patient was assessed before, during and after the completion of the treatment weekly. The treatment was performed for 2 months and the patient showed complete remission of burning sensation and pain (visual analog scale 0%). The follow-up was performed for 7 months and no recurrence of burning sensation was found. Diode laser therapy seems to be an effective alternative treatment for relieving the symptoms of OLP.

  1. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  2. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  3. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  4. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    International Nuclear Information System (INIS)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-01-01

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A -1 . Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  5. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  6. Thermal properties of high-power diode lasers investigated by means of high resolution thermography

    International Nuclear Information System (INIS)

    Kozłowska, Anna; Maląg, Andrzej; Dąbrowska, Elżbieta; Teodorczyk, Marian

    2012-01-01

    In the present work, thermal effects in high-power diode lasers are investigated by means of high resolution thermography. Thermal properties of the devices emitting in the 650 nm and 808 nm wavelength ranges are compared. The different versions of the heterostructure design are analyzed. The results show a lowering of active region temperature for diode lasers with asymmetric heterostructure scheme with reduced quantum well distance from the heterostructure surface (and the heat sink). Optimization of technological processes allowed for the improvement of the device performance, e.g. reduction of solder non-uniformities and local defect sites at the mirrors which was visualized by the thermography.

  7. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  8. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  9. Diode lasers: A magical wand to an orthodontic practice

    Directory of Open Access Journals (Sweden)

    Vipul Kumar Srivastava

    2014-01-01

    Full Text Available LASER (Light Amplification by Stimulated Emission of Radiation is a powerful source of light, which has innumerable applications in all the fields of science including medicine and dentistry. It is one such technology that has become a desirable and an inseparable alternative to many traditional surgical procedures being held in the field of dentistry, and orthodontics is no exception. The current article describes the uses of a diode laser as an indispensable tool in an orthodontic office.

  10. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  11. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation...

  12. Efficient diode pumped ytterbium-doped fibre laser

    Czech Academy of Sciences Publication Activity Database

    Harun, S.W.; Paul, M.C.; Moghaddam, M.R.A.; Das, S.; Sen, R.; Dhar, Anirban; Pal, M.; Bhadra, S.K.; Ahmad, H.

    2010-01-01

    Roč. 46, č. 1 (2010), s. 68-69 ISSN 0013-5194 Institutional research plan: CEZ:AV0Z20670512 Keywords : Fibre lasers * Oscillator * Diode-pumped Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.001, year: 2010

  13. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  14. Efficacy of diode laser (810 and 940 nm) for facial skin tightening.

    Science.gov (United States)

    Voravutinon, Nataya; Seawthaweesin, Kanikar; Bureethan, Apron; Srivipatana, Anchisa; Vejanurug, Patnapa

    2015-12-01

    Laser treatment has been introduced for facial skin tightening. However, no prior study has used a diode laser to treat facial skin laxity. To evaluate the efficacy and safety of a 810- and 940-nm diode laser (MeDioStarNeXT) for treating facial skin laxity. Thirty patients, with facial skin laxity grading scale II-IV, were enrolled in this study. Each patient underwent four sessions with a 810- and 940-nm diode laser (MeDioStarNeXT) treatment over 3-week intervals. Improvement in the laxity of facial skin was evaluated using a Cutometer MPA 580, spectrophotometer, and a grading scale. Significant improvement was observed with the Cutometer F3 and R7 parameters at 1 and 3 months after complete treatment, respectively. Physician assessment showed significant improvement in the laxity scale at 1 and 6 months after treatment. Approximately 10% of the patients reported mild pain or minor adverse events. Ninety-eight percent of the patients were satisfied with the treatments. Treatment with a diode laser (810 and 940 nm) is safe and may be effective for facial skin tightening. Maintenance treatment is necessary to sustain the effect of treatment. © 2015 Wiley Periodicals, Inc.

  15. Treatment of burning mouth syndrome with a low-level energy diode laser.

    Science.gov (United States)

    Yang, Hui-Wen; Huang, Yu-Feng

    2011-02-01

    To test the therapeutic efficacy of low-level energy diode laser on burning mouth syndrome. Burning mouth syndrome is characterized by burning and painful sensations in the mouth, especially the tongue, in the absence of significant mucosal abnormalities. Although burning mouth syndrome is relatively common, little is known regarding its etiology and pathophysiology. As a result, no treatment is effective in all patients. Low-level energy diode laser therapy has been used in a variety of chronic and acute pain conditions, including neck, back and myofascial pain, degenerative osteoarthritis, and headache. A total of 17 patients who had been diagnosed with burning mouth syndrome were treated with an 800-nm wavelength diode laser. A straight handpiece was used with an end of 1-cm diameter with the fiber end standing 4 cm away from the end of handpiece. When the laser was applied, the handpiece directly contacted or was immediately above the symptomatic lingual surface. The output used was 3 W, 50 msec intermittent pulsing, and a frequency of 10 Hz, which was equivalent to an average power of 1.5 W/cm(2) (3 W × 0.05 msec × 10 Hz = 1.5 W/cm(2)). Depending on the involved area, laser was applied to a 1-cm(2) area for 70 sec until all involved area was covered. Overall pain and discomfort were analyzed with a 10-cm visual analogue scale. All patients received diode laser therapy between one and seven times. The average pain score before the treatment was 6.7 (ranging from 2.9 to 9.8). The results showed an average reduction in pain of 47.6% (ranging from 9.3% to 91.8%). The burning sensation remained unchanged for up to 12 months. Low-level energy diode laser may be an effective treatment for burning mouth syndrome.

  16. Management of Chronic Periodontitis Using Chlorhexidine Chip and Diode Laser-A Clinical Study

    Science.gov (United States)

    Ambooken, Majo; Mathew, Jayan Jacob; Issac, Annie Valayil; Kunju, Ajithkumar Parachalil; Parameshwaran, Renjith Athirkandathil

    2016-01-01

    Introduction The use of adjuncts like chlorhexidine local delivery and diode laser decontamination have been found to improve the clinical outcomes of scaling and root planing in non-surgical periodontal therapy in patients with chronic periodontitis. Aim To evaluate the effects of diode laser and chlorhexidine chip as adjuncts to scaling and root planing in the management of chronic periodontitis. The objective is to evaluate the outcome of chlorhexidine chip and diode laser as adjuncts to scaling and root planing on clinical parameters like Plaque Index, Gingival Index, probing pocket depth and clinical attachment level. Study and Design Department of Periodontics. Randomized clinical trial with split mouth design. Materials and Methods Fifteen chronic periodontitis patients having a probing pocket depth of 5mm-7mm on at least one interproximal site in each quadrant of the mouth were included in the study. After initial treatment, four sites in each patient were randomly subjected to scaling and root planing (control), chlorhexidine chip application (CHX chip group), diode laser (810 nm) decontamination (Diode laser group) or combination of both (Diode laser and chip group). Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD) and clinical attachment level (CAL) were assessed at baseline, one month and three months. Statistical analysis Results were statistically analysed using paired T test, one-way ANOVA, Tukey’s HSD test and repeated measure ANOVA. Results Post-treatment, the test and control sites showed a statistically significant reduction in PI, GI, PPD, and CAL. After three months, a mean PPD reduction of 1.47±0.52 mm in control group, 1.40±0.83 mm in diode laser group, 2.67±0.62 mm in CHX group, and 2.80± 0.77 mm in combination group was seen. The mean gain in CAL were 1.47±0.52 mm in the control group, 1.40±0.83 mm in diode laser group, 2.67± 0.49 mm in CHX group and 2.67± 0.82 mm in combination group respectively. The

  17. Management of Chronic Periodontitis Using Chlorhexidine Chip and Diode Laser-A Clinical Study.

    Science.gov (United States)

    Jose, Kachapilly Arun; Ambooken, Majo; Mathew, Jayan Jacob; Issac, Annie Valayil; Kunju, Ajithkumar Parachalil; Parameshwaran, Renjith Athirkandathil

    2016-04-01

    The use of adjuncts like chlorhexidine local delivery and diode laser decontamination have been found to improve the clinical outcomes of scaling and root planing in non-surgical periodontal therapy in patients with chronic periodontitis. To evaluate the effects of diode laser and chlorhexidine chip as adjuncts to scaling and root planing in the management of chronic periodontitis. The objective is to evaluate the outcome of chlorhexidine chip and diode laser as adjuncts to scaling and root planing on clinical parameters like Plaque Index, Gingival Index, probing pocket depth and clinical attachment level. Department of Periodontics. Randomized clinical trial with split mouth design. Fifteen chronic periodontitis patients having a probing pocket depth of 5mm-7mm on at least one interproximal site in each quadrant of the mouth were included in the study. After initial treatment, four sites in each patient were randomly subjected to scaling and root planing (control), chlorhexidine chip application (CHX chip group), diode laser (810 nm) decontamination (Diode laser group) or combination of both (Diode laser and chip group). Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD) and clinical attachment level (CAL) were assessed at baseline, one month and three months. Results were statistically analysed using paired T test, one-way ANOVA, Tukey's HSD test and repeated measure ANOVA. Post-treatment, the test and control sites showed a statistically significant reduction in PI, GI, PPD, and CAL. After three months, a mean PPD reduction of 1.47±0.52 mm in control group, 1.40±0.83 mm in diode laser group, 2.67±0.62 mm in CHX group, and 2.80± 0.77 mm in combination group was seen. The mean gain in CAL were 1.47±0.52 mm in the control group, 1.40±0.83 mm in diode laser group, 2.67± 0.49 mm in CHX group and 2.67± 0.82 mm in combination group respectively. The differences in PPD reduction and CAL gain between control group and CHX chip and combination

  18. Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser.

    Science.gov (United States)

    Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe

    2014-01-01

    Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.

  19. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  20. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  1. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  2. Dye-enhanced diode laser photocoagulation of choroidal neovascularizations

    Science.gov (United States)

    Klingbeil, Ulrich; Puliafito, Carmen A.; McCarthy, Dan; Reichel, Elias; Olk, Joseph; Lesiecki, Michael L.

    1994-06-01

    Dye-enhanced diode laser photocoagulation, using the dye indocyanine green (ICG), has shown some potential in the treatment of choroidal neovascularizations (CNV). A diode laser system was developed and optimized to emit at the absorption maximum of ICG. In a clinical study at two retinal centers, more than 70 patients, the majority of which had age-related macular degeneration, were treated. Eighteen cases with ill-defined subfoveal CNV were followed an average of 11 months after laser treatment. The results show success in resolving the CNV with an average long-term preservation of visual function equal to or superior to data provided by the Macular Photocoagulation Study for confluent burns of low intensity applied to the CNV. Details of the technique and discussion of the controversies inherent in such a treatment strategy will be presented.

  3. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner

    DEFF Research Database (Denmark)

    Hu, Qi; Pedersen, Christian; Rodrigo, Peter John

    2016-01-01

    We present a novel Doppler lidar that employs a cw diode laser operating at 1.5 μm and a micro-electro-mechanical-system scanning mirror (MEMS-SM). In this work, two functionalities of the lidar system are demonstrated. Firstly, we describe the capability to effectively steer the lidar probe beam...

  4. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  5. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  6. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  7. Ultrastructural analysis of root canal dentine irradiated with 980-nm diode laser energy at different parameters.

    Science.gov (United States)

    Marchesan, Melissa Andréia; Brugnera-Junior, Aldo; Souza-Gabriel, Aline Evangelista; Correa-Silva, Silvio Rocha; Sousa-Neto, Manoel D

    2008-06-01

    The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.

  8. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  9. Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape

    International Nuclear Information System (INIS)

    Zhuber-Okrog, K.

    1996-04-01

    This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)

  10. Resection of the Tooth Apex with Diode Laser

    Directory of Open Access Journals (Sweden)

    Uzunov Tz.

    2014-06-01

    Full Text Available An “in vitro” experimental study has been carried out on 70 extracted teeth. A laser resection of the root apex has been carried out with diode laser beam with a wavelength of - 810 ± 10 nm. Sequentially a radiation with increasing power has been applied, as follows: 1,3 W, 2W, 3W, 4W, 5W, 6W, 7W, in electro surgery mode. Successful resection of the tooth apex has been performed at: 3W; 4W; 5W; 6W and 7W power. It was established that when laser resected the tooth apex carbonizes.

  11. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  12. Comparison of SHG Power Modulation by Wavelength Detuning of DFB- and DBR-Tapered Laser Diodes

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2016-01-01

    of the response of the second harmonic light to perturbations of the infrared laser diode and compare how the response differs for DFB- and DBR-Tapered laser diodes. We show that the visible light can be modulated from CW to kHz with modulation depths above 90% by wavelength detuning the laser diode.......Pulsed visible lasers are used for a number of applications such as laser displays and medical treatments. Generating this visible light by direct frequency doubling of high power diode lasers opens new possibilities on how the power modulation can be performed. We present an investigation...

  13. Subpicosecond gain dynamics in GaAlAs laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, M.P.; Ippen, E.P.

    1987-11-30

    Ultrafast gain dynamics in GaAlAs diode amplifiers have been studied using 100 fs optical pulses. Pulse propagation through the amplifier resulted in temporal broadening and pulse shaping due to both gain saturation and material dispersion. Pump-probe experiments indicate the presence of two processes contributing to the gain dynamics but give no evidence of spectral hole burning. A dynamic carrier heating model is presented to explain all of the observed gain nonlinearities, and the implications of our results on the dynamic response of laser diodes are discussed.

  14. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  15. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  16. Diode laser: In treatment of recurrent verrucous leukoplakia

    Directory of Open Access Journals (Sweden)

    Debanti Giri

    2016-01-01

    Full Text Available Laser first came into light in 1960 and had been used extensively in various fields of medicine. Laser has been experimented in the various dental field, and its utility is being recognized and established well in the dentistry. Lasers are widely used for a number of procedures such as cavity preparation, scaling, and root planning, surgical procedures like excision of soft tissue growths, etc., Improved healing, hemostasis, and sutureless excisions are some of the many advantages of laser over conventional treatment modalities. It is because of these advantages that laser is becoming more and more popular as a treatment option in various aspects of dentistry. We hereby present a case report, where we have used diode laser for surgical management of a proliferative verrucous leukoplakia (PVL, because of its many advantages over conventional methods. It presents very specific characteristics, mainly a more aggressive biological behavior than other forms of leukoplakia expressed by: A tendency toward multifocality (field cancerization; a high prospect of recurrence; and a high rate of malignant transformation, which can range between 40% and 100% in a follow-up period of 4.4–11.6 years. In this case, we evaluated the advantages of diode laser for the treatment of verrucous leukoplakia, where the results that we obtained were excellent. The patient had come for evaluation till the time of complete healing.

  17. Present state of applying diode laser in Toyota Motor Corp.

    Science.gov (United States)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  18. High temperature semiconductor diode laser pumps for high energy laser applications

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  19. Characterization of diode-laser stacks for high-energy-class solid state lasers

    Science.gov (United States)

    Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas

    2014-03-01

    In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.

  20. The effect of pressure and temperature on AlGaInP and AlGaAs laser diodes

    International Nuclear Information System (INIS)

    Adamiec, P.; Swietlik, T.; Dybala, F.; Trzeciakowski, W.; Bercha, A.

    2003-01-01

    InGaP/AlGaInP lasers (emitting from 630 to 690 nm) and GaAs/AlGaAs lasers (emitting at 780 nm) were studied under hydrostatic pressure up tp 20 Kbar and at temperatures from 240 to 300 K. The electrical characteristics, the power-current dependencies and the emission spectra were measured. The emission spectra shifted in agreement with the pressure/temperature variation of the band gaps in active layers of the laser. Since at high pressure the Γ - Χ separation in the conduction band is strongly reduced (both in AlGaInP and AlGaAs), the dominant loss mechanism of the lasers is the electron leakage to Χ minima in the p-claddings. This, in turn, leads to high sensitivity of threshold currents to temperature. The dependence of the threshold currents on pressure and on temperature is in good agreement with the simple theoretical analysis taking into account the carrier leakage and the radiative and nonradiative recombination. Better agreement between the theory and the experiment is obtained assuming drift rather than diffusion leakage. This indicates that threshold currents could be further reduced if the p-doping is improved in the claddings. (author)

  1. Advances in tunable diode laser technology

    Science.gov (United States)

    Lo, W.

    1980-01-01

    The improvement of long-term reliability, the purification of mode properties, and the achievement of higher-temperature operation were examined. In reliability studies a slow increase in contact resistance during room temperature storage for lasers fabricated with In-Au or In-Pt contacts was observed. This increase is actually caused by the diffusion of In into the surface layer of laser crystals. By using a three layered structure of In-Au-Pt or In-Pt-Au, this mode of degradation was reduced. In characterizing the mode properties, it was found that the lasers emit in a highly localized, filamentary manner. For widestripe lasers the emission occurs near the corners of the junction. In order to achieve single-mode operation, stripe widths on the order of 8-10 micrometers are needed. Also, it was found that room temperature electroluminescence is possible near 4.6 micrometers.

  2. Extremely high-brightness kW-class fiber coupled diode lasers with wavelength stabilization

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-06-01

    TeraDiode has produced ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Higher brightness fiber-coupled diode lasers, including a module with 418 W of power coupled to a 100 μm, 0.15 NA fiber, have also been demonstrated.

  3. High speed visible light communication using blue GaN laser diodes

    Science.gov (United States)

    Watson, S.; Viola, S.; Giuliano, G.; Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Watson, M. A.; White, H.; Rowe, D.; Laycock, L.; Kelly, A. E.

    2016-10-01

    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications.

  4. Diode laser assisted minimal invasive sphenoidotomy for endoscopic transphenoidal pituitary surgery: our technique and results.

    Science.gov (United States)

    Lee, Jih-Chin; Lai, Wen-Sen; Ju, Da-Tong; Chu, Yueng-Hsiang; Yang, Jinn-Moon

    2015-03-01

    During endoscopic sinus surgery (ESS), intra-operative bleeding can significantly compromise visualization of the surgical field. The diode laser that provides good hemostatic and vaporization effects and excellent photocoagulation has been successfully applied in endoscopic surgery with several advantages. The current retrospective study demonstrates the feasibility of diode laser-combined endoscopic sinus surgery on sphenoidotomy. The patients who went through endoscopic transphenoidal pituitary surgery were enrolled. During the operation, the quality of the surgical field was assessed and graded by the operating surgeon using the scale proposed by Boezaart. The mean operation time was 37.80 ± 10.90 minutes. The mean score on the quality of surgical field was 1.95. A positive correlation between the lower surgical field quality score and the shorter surgical time was found with statistical significance (P diode laser-assisted sphenoidotomy is a reliable and safe approach of pituitary gland surgery with minimal invasiveness. It is found that application of diode laser significantly improved quality of surgical field and shortened operation time. © 2015 Wiley Periodicals, Inc.

  5. Fibrolipoma of the lip treated by diode laser surgery: A case report

    Directory of Open Access Journals (Sweden)

    Capodiferro Saverio

    2008-09-01

    Full Text Available Abstract Introduction Several neoplasms of the adipose tissue can involve the soft tissues of the head and neck region. These neoplasms are mainly treated surgically and an accurate histological examination is mandatory for a precise diagnosis. Case presentation We report a case of fibrolipoma involving the lower lip of a 43-year-old man, which was successfully treated by diode laser surgery. This approach allowed adequate resection of the neoplasm with minimal damage to the adjacent tissues, thus reducing post-surgical scarring. Conclusion Diode laser surgery for the treatment of benign lesions of the oral mucosa appears to be a convenient alternative to conventional blade surgery and has proved to be effective for the excision of fibrolipoma of the lip. The possibility of avoiding direct suture after excision is surely helpful when aesthetic areas, such as the lip, are surgically treated. For these reasons, and also considering the lower histological alteration of the specimen obtained with diode laser surgery if adequately used, the diode laser is undoubtedly a good alternative to conventional surgery.

  6. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  7. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. Recent progress in diode-pumped mid-infrared vibronic solid-state lasers

    International Nuclear Information System (INIS)

    Sorokina, I.T.; Sorokin, E.; Mirov, S.; Schaffers, K.

    2002-01-01

    Full text: The last few years were marked by the increased interest of researchers towards the new class of transition-metal doped zinc chalcogenides. In particular Cr:ZnSe attracts a lot of attention as broadly tunable continuous-wave (cw), mode-locked and diode-pumped lasers operating around 2.5 mm. This interest is explained by the absence of other comparable tunable room-temperature laser sources in this spectral region. However, another member of the II-VI compounds family Cr:ZnS, has yet remained barely studied as a laser medium. Recently we demonstrated the first continuous-wave room-temperature tunable over more than 280 nm around 2.3 μm Cr 2+ :ZnS laser, pumped with a Co:MgF2 laser and yielding over 100 mW of output power. The most recent result is the development of a compact tunable over 700 nm continuous-wave room-temperature Cr 2+ :ZnS laser, pumped by the diode-pumped Er-fiber laser at 1.6 μm and generating 0.7 W of the linearly polarized radiation. We also demonstrated direct diode-pumping at 1.6 μm of the Cr 2+ :ZnS. Although the Cr:ZnS exhibited lower (relatively to the Cr:ZnSe) efficiency and output power due to the higher passive losses of the available Cr:ZnS samples, the analysis of the spectroscopic and laser data indicates the high potential of Cr:ZnS for compact broadly tunable mid-infrared systems, as well as for high power applications. The physics of the novel diode-pumped laser systems is highly interesting. It comprises the features of the ion-doped dielectric crystalline lasers and semiconductors. For example, we observe in these media, for the first time to our knowledge, a new nonlinear phenomenon, which is analogous to the opto-optical switching process, where the laser output of the diode-pumped continuous-wave Cr:ZnSe and Cr:ZnS lasers around 2.5 μm is modulated by only a few milliwatt of the visible (470-500 nm) and near-infrared radiation (740-770 nm). We present a physical explanation of the observed effect. Refs. 4 (author)

  9. Diode laser for excisional biopsy of peripheral ossifying fibroma

    Directory of Open Access Journals (Sweden)

    Kirti Chawla

    2014-01-01

    Full Text Available Peripheral Ossifying Fibroma is one of the commonest occurring reactive lesions on gingiva. It is associated with local irritational factors and often interferes with speech, mastication and maintenance of oral hygiene, in addition to being aesthetically unpleasant. It is usually treated with surgical excision using scalpel and removal of irritational factors, often resulting in mucogingival defect. Other modalities such as radiosurgery and electrocautery have also been used for its management, but they cause changes in microarchitecture of biopsy specimen, altering the histologic picture for true diagnosis. We are presenting a case of excisional biopsy of this lesion in an adult female using a diode laser with excellent post-operative results, without affecting microarchitecture of biopsy specimen. The patient is being followed for last 1 year and no sign of recurrence has been found. A diode laser may offer a good alternative modality for management of such cases.

  10. Quench Propagation Ignition using Single-Mode Diode Laser

    CERN Document Server

    Trillaud, F; Devred, Arnaud; Fratini, M; Leboeuf, D; Tixador, P

    2005-01-01

    The stability of NbTi-based multifilamentary composite wires subjected to local heat disturbances of short durations is studied in pool boiling helium conditions. A new type of heater is being developed to characterize the superconducting to normal state transition. It relies on a single-mode Diode Laser with an optical fiber illuminating the wire surface. This first paper focuses mainly on the feasibility of this new heater technology and eventually discusses the difficulties related to it. A small overview of Diode Lasers and optical fibers revolving around our application is given. Then, we describe the experimental setup, and present some recorded voltage traces of transition and recovery processes. In addition, we present also some energy and Normal Zone Propagation Velocity data and we outline ameliorations that will be done to the system.

  11. Clinical Application of Diode Laser (980 nm) in Maxillofacial Surgical Procedures.

    Science.gov (United States)

    Aldelaimi, Tahrir N; Khalil, Afrah A

    2015-06-01

    For many procedures, lasers are now becoming the treatment of choice by both clinicians and patients, and in some cases, the standard of care. This clinical study was carried out at Department of Maxillofacial Surgery, Ramadi Teaching Hospital, Rashid Private Hospital and Razi Private Hospital, Anbar Health Directorate, Anbar Province, Iraq. A total of 32 patients including 22 (≈ 70%) male and 10 (≈ 30%) female with age range from 5 months to 34 years old. Chirolas 20 W diode laser emitting at 980 nm was used. Our preliminary clinical findings include sufficient hemostasis, coagulation properties, precise incision margin, lack of swelling, bleeding, pain, scar tissue formation and overall satisfaction were observed in the clinical application. The clinical application of the diode (980 nm) laser in maxillofacial surgery proved to be of beneficial effect for daily practice and considered practical, effective, easy to used, offers a safe, acceptable, and impressive alternative for conventional surgical techniques.

  12. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C. M.; Shaw, R. W.; Jennings, L. W.; Post-Zwicker, A.; Young, J. P.; Ramsey, J. M.

    1997-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining 235 U/( 235 U+ 238 U) isotope ratios in these samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of the measurement is discussed. Application of GD-OGS to other f-transition elements is also described

  13. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C.M.; Shaw, R.W.; Post-Zwicker, A., Young, J.P.; Ramsey, J.M.

    1996-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining isotopic ratios of 235 U/( 235 U + 238 U) in the above samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of he measurement is discussed. Application of the GD-OGS to other f-transition elements is also described

  14. Excision of Mucocele Using Diode Laser in Lower Lip

    Directory of Open Access Journals (Sweden)

    Subramaniam Ramkumar

    2016-01-01

    Full Text Available Mucoceles are nonneoplastic cystic lesions of major and minor salivary glands which result from the accumulation of mucus. These lesions are most commonly seen in children. Though usually these lesions can be treated by local surgical excision, in our case, to avoid intraoperative surgical complications like bleeding and edema and to enable better healing, excision was done using a diode laser in the wavelength of 940 nm.

  15. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    Science.gov (United States)

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  16. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  17. Theoretical and experimental aspects of laser cutting with a direct diode laser

    Science.gov (United States)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  18. Tunable, diode side-pumped Er:YAG laser

    Science.gov (United States)

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  19. Effects of the infrared diode low intensity laser therapy for oral mucositis: a clinical trial; Estudo clinico dos efeitos do laser diodo de baixa intensidade de emissao infravermelha para casos de mucosite bucal

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Maria do Rosario Santos

    2004-07-01

    Chemotherapy associated or not with radiotherapy and surgery may be used for treating patients presenting some pathogenies such as cancer. Many side effects are visibly in the mouth in several forms as a consequence of this treatment and oral mucositis is the most common, with great prevalence, causing degrees of morbidity and even death. This research is about improving the quality of life for these patients by using of laser radiation through a GaAlAs active medium, in a continuous manner, with a low power ( 60 mW), the diode laser acting at 780 nm wavelength infrared, with a energy density 7,5 J/cm{sup 2} and 6,0 J/cm{sup 2}, for the therapeutic and preventive groups respectively, and a third control group without radiation. Two protocols were studied in patients during 5-fluorouracil chemotherapic regime and combinations, because nowadays polychemotherapy is used, an associations of drugs, for a neoadjuvant treatment, adjuvant, potentionalize or palliative means, for the chemotherapy treatment. In a context of 60 patients, 16 patients had received the laser irradiations doses, 10 days for the therapeutic protocols and 11 days for the preventive irradiations. The therapeutic group presented a 50% of the total healing process and significant decrease in symptoms of pain (VAS=0 with p =0,01). For the preventive irradiations (D-5, D, D+5), that means the day of the QT, 5 days before the chemotherapy regime starts until 5 days later, only 1 patient had some kind of ulceration during more than four months of control. Results of the present study showed to be effective and promising for both employed protocols, therapeutic and preventive. Further studies must be developed in order to improve the present results. (author)

  20. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  1. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  2. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  3. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel; Estudo in vitro do efeito do laser diodo sobre a superficie de esmalte dental humano desmineralizado artificialmente

    Energy Technology Data Exchange (ETDEWEB)

    Ebel, Patricia

    2003-07-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm{sup 2}, 282,84 mJ/cm{sup 2} and 325,38 mJ/cm{sup 2}, respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 {mu}m diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  4. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  5. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Claudia Prosperi

    2010-01-01

    Full Text Available A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a stronginterpenetration of adjacent layers was observed.

  6. Assessment of Hematological and Immunological Changes Associated With Diode Laser Turbinoplasty

    International Nuclear Information System (INIS)

    Ibrahim, D.R.

    2013-01-01

    20 patients undergoing laser surgery of the inferior turbinate participated in the present study to compare the pre and post-operative changes of the symptoms and signs of allergic rhinitis, blood picture, IgE, interleukin-4, interleukin-5 and interferon-gamma. After one month of diode laser turbinoplasty, there was improvement in clinical symptoms like nasal obstruction, sneezing and rhinorrhoea. Regarding the blood picture, there was marked relative eosinopenia while the total leucocytic count showed a significant increase. The erythroid series showed almost no changes. The operation was accompanied also with a significant decrease in IgE and interleukin-5, at the same time interleukin-4 and interferon-gamma showed insignificant decrease and increase respectively. These results denoted that diode laser inferior turbinoplasty improves not only the clinical manifestations of allergic rhinitis but it has also an immune effect by modulating T-cell function and tilting the Th 1/Th 2 balance towards Th 1 dominant state.

  7. Development of diode-pumped solid-state laser HALNA for fusion reactor driver

    International Nuclear Information System (INIS)

    Kawashima, Toshiyuki; Kanabe, Tadashi; Matsumoto, Osamu

    2005-01-01

    The diode-pumped slab laser for inertial fusion energy driver has been demonstrated, which produces the 1053-nm output energy of 10 J at 10 Hz. The glass slab laser amplifier has been pumped by quasi-CW 290 kW AlGaAs laser-diode arrays at 803 nm. The optical system can compensate for thermal effects by use of zig-zag optical propagation, image-relayed telescope, and 45deg Faraday rotator. The output energy of 10.6 J at 1 Hz with the optical to optical conversion efficiency of 19.9% has been successfully obtained. Also the 10 Hz operation has been performed with a 5.1 J output energy. (author)

  8. Efficacy and safety of a diode laser in second-stage implant surgery: a comparative study.

    Science.gov (United States)

    El-Kholey, K E

    2014-05-01

    For more than a decade, peri-implant tissues have been treated with soft tissue lasers to create a bloodless flap for implant placement and to uncover implants with minimal bleeding, trauma, and anaesthesia. This study was designed to assess if dental implant uncovering is possible with a diode laser without anaesthesia, and to compare its performance with traditional cold scalpel surgery. Thirty patients with a total of 45 completely osseointegrated implants participated in this study. Patients were divided into two groups. For the study group, second-stage implant surgery was done with a 970nm diode laser. For the control group, the implants were exposed with a surgical blade. Certain parameters were used for evaluation of the two techniques. The use of the diode laser obviated the need for local anaesthesia; there was a significant difference between the two groups regarding the need for anaesthesia (Pdiode laser can be used effectively for second-stage implant surgery, providing both the dentist and the patient with additional advantages over the conventional methods used for implant exposure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Power Scaling of Nonlinear Frequency Converted Tapered Diode Lasers for Biophotonics

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, A.

    2014-01-01

    Diode lasers have proven to be versatile light sources for a wide range of applications. Nonlinear frequency conversion of high brightness diode lasers has recently resulted in visible light power levels in the watts range enabling an increasing number of applications within biophotonics. This re...... and efficiency are included. Application examples within pumping of mode-locked Ti:sapphire lasers and implementation of such lasers in optical coherence tomography are presented showing the application potential of these lasers....

  10. Three hundred patients treated with ultrapulsed 980 nm diode laser for skin disorders

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2016-01-01

    Full Text Available The use of lasers in skin diseases is quite common. In contrast to other laser types, medical literature about 980 nm ultrapulsed diode laser is sparse in dermatology. Herein, we report the use of ultrapulsed diode 980 nm laser in 300 patients with vascular lesions, cysts and pseudocysts, infectious disease, and malignant tumors. This laser is a versatile tool with excellent safety and efficacy in the hands of the experienced user.

  11. Three Hundred Patients Treated with Ultrapulsed 980 nm Diode Laser for Skin Disorders

    Science.gov (United States)

    Wollina, Uwe

    2016-01-01

    The use of lasers in skin diseases is quite common. In contrast to other laser types, medical literature about 980 nm ultrapulsed diode laser is sparse in dermatology. Herein, we report the use of ultrapulsed diode 980 nm laser in 300 patients with vascular lesions, cysts and pseudocysts, infectious disease, and malignant tumors. This laser is a versatile tool with excellent safety and efficacy in the hands of the experienced user. PMID:27688445

  12. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  13. Comparative evaluation of diode laser ablation and surgical stripping technique for gingival depigmentation: A clinical and immunohistochemical study.

    Science.gov (United States)

    Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji

    2017-01-01

    There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t -test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation.

  14. Tuneable diode laser spectroscopy correction factor investigation on ammonia measurement

    Science.gov (United States)

    Li, Nilton; El-Hamalawi, Ashraf; Baxter, Jim; Barrett, Richard; Wheatley, Andrew

    2018-01-01

    Current diesel engine aftertreatment systems, such as Selective Catalyst Reduction (SCR) use ammonia (NH3) to reduce Nitrogen Oxides (NOx) into Nitrogen (N2) and water (H2O). However, if the reaction between NH3 and NOx is unbalanced, it can lead either NH3 or NOx being released into the environment. As NH3 is classified as a dangerous compound in the environment, its accurate measurement is essential. Tuneable Diode Laser (TDL) spectroscopy is one of the methods used to measure raw emissions inside engine exhaust pipes, especially NH3. This instrument requires a real-time exhaust temperature, pressure and other interference compounds in order to adjust itself to reduce the error in NH3 readings. Most researchers believed that exhaust temperature and pressure were the most influential factors in TDL when measuring NH3 inside exhaust pipes. The aim of this paper was to quantify these interference effects on TDL when undertaking NH3 measurement. Surprisingly, the results show that pressure was the least influential factor when compared to temperature, H2O, CO2 and O2 when undertaking NH3 measurement using TDL.

  15. Gradient heating protocol for a diode-pumped alkali laser

    Science.gov (United States)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  16. Comparison of diode laser and Er:YAG lasers in the treatment of ankyloglossia.

    Science.gov (United States)

    Aras, Mutan Hamdi; Göregen, Mustafa; Güngörmüş, Metin; Akgül, Hayati Murat

    2010-04-01

    The purpose of this study was to compare the tolerance of lingual frenectomy with regard to a local anesthesia requirement and comparison of postsurgical discomfort experienced by patients operated on with both diode and erbium:yttrium-aluminium-garnet (Er:YAG) lasers. Ankyloglossia, commonly known as tongue-tie, is a congenital oral anomaly characterized by a short lingual frenulum. A short lingual frenulum may contribute to feeding, speech, and mechanical tongue problems. Sixteen referred patients with tongue mobility complaints were included in this study. A GaAlAs laser device with a continuous wavelength of 808 nm was used in the diode group. Frenulums were incised by applying 2 W of laser power. The Er:YAG laser device with a continuous wavelength of 2940 nm was used in the Er:YAG group. Frenulums were incised by applying 1 W of laser power. The acceptability of the lingual frenectomy without local anesthesia and the degree of the postsurgical discomfort were evaluated. Although the majority of patients (six) could be operated on without local anesthesia in the Er:YAG group, all patients could not be operated on without local anesthetic agent in the diode group. There were no differences between the two groups with regard to pain, chewing, and speaking on the first or seventh day after surgery, whereas patients had more pain in the Er:YAG group than in the diode group the first 3 h after surgery. The results indicate that only the Er:YAG laser can be used for lingual frenectomy without local anesthesia, and there was no difference between the two groups regarding the degree of the postsurgical discomfort except in the first 3 h. In conclusion, these results indicate that the Er:YAG laser is more advantageous than the diode laser in minor soft-tissue surgery because it can be performed without local anesthesia and with only topical anesthesia.

  17. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization; Estudo in vitro dos efeitos promovidos pelo laser de diodo em 960 nm no esmalte dental humano: analise de temperatura, analise morfologica e avaliacao da resistencia a desmineralizacao

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ilka Tiemy

    2004-07-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm{sup 2}, 3.7 J/cm{sup 2}, 5.6 J/cm{sup 2}, 7.4 J/cm{sup 2} and 9.3 J/cm{sup 2}) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  19. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  20. Treatment of inflammatory facial acne vulgaris with combination 595-nm pulsed-dye laser with dynamic-cooling-device and 1,450-nm diode laser.

    Science.gov (United States)

    Glaich, Adrienne S; Friedman, Paul M; Jih, Ming H; Goldberg, Leonard H

    2006-03-01

    The 585-nm pulsed-dye laser and the 1,450-nm diode laser have been found effective for the treatment of mild-to-moderate inflammatory facial acne. This study was designed to evaluate the efficacy and safety of the combined treatment with the 595-nm pulsed-dye laser and the 1,450-nm diode laser for inflammatory facial acne. Fifteen patients with inflammatory facial acne were treated with a combination of the 595-nm pulsed-dye laser and the 1,450-nm diode laser. Patients' subjective response to treatment was evaluated regarding improvement in acne, acne scarring, oiliness, and redness of the skin. All patients had reductions in acne lesion counts. Mean lesion counts decreased 52% (P < 0.01), 63% (P < 0.01), and 84% (P < 0.01) after one, two, and three treatments, respectively. Patients described moderate-to-marked improvement in acne, acne scarring, and post-inflammatory erythema. Adverse effects were limited to mild, transient erythema. The combination of the 595-nm pulsed-dye laser and the 1,450-nm diode laser is safe and effective for the treatment of inflammatory facial acne, acne scarring, and post-inflammatory erythema. 2005 Wiley-Liss, Inc.

  1. Destructive Single-Event Effects in Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  2. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  3. Analysis of the Effect of Double-wavelength Diode Laser for Relase of Pain%双波长半导体激光止痛效果分析

    Institute of Scientific and Technical Information of China (English)

    孙娟; 刘剑; 曹慧英

    2009-01-01

    Objective: Adopting quantified index to observe and analyze the effect of acute and chronic pain through double-wavelength diode laser. Methods: Using diode laser with the wavelength of 650nm / 810nm to irradiate the special tissues or aching points of patient, selecting different frequency, intensity and time to make treatment. Results: VAS scoring: P<0.05, the total efficient rate is 96%. Conclusions: Treatment with double-wavelength diode laser to various acute and chronic pain is just a definitely good curative effect, and it can release the effects of patient sleeping, daily life, communication with people and life interests caused by pain, and finally enhancing the quality of life.%目的:采用量化指标观察分析双波长半导体激光治疗急慢性疼痛的效果.方法:使用波长为650nm/810nm的半导体激光照射患者特定组织或痛点,选择不同功率、光斑、时间进行治疗.结果:VAS评分:P<0.05、治疗总有效率为96%.结论:双波长半导体激光治疗各种急慢性疼痛疗效肯定,并可缓解因疼痛对患者睡眠、日常生活、与人交往和生活兴趣的影响,提高生活质量.

  4. Diode laser surgery versus scalpel surgery in the treatment of fibrous hyperplasia: a randomized clinical trial.

    Science.gov (United States)

    Amaral, M B F; de Ávila, J M S; Abreu, M H G; Mesquita, R A

    2015-11-01

    Fibrous hyperplasia is treated by surgical incision using a scalpel, together with removal of the source of chronic trauma. However, scalpel techniques do not provide the haemostasis that is necessary when dealing with highly vascular tissues. Diode laser surgery can be used in the management of oral tissues due to its high absorption by water and haemoglobin, and has provided good results in both periodontal surgery and oral lesions. The aim of the present study was to compare the effects of diode laser surgery to those of the conventional technique in patients with fibrous hyperplasia. A randomized clinical trial was performed in which surgical and postoperative evaluations were analyzed. On comparison of the laser-treated (study group) patients to those treated with a scalpel (control group), significant differences were observed in the duration of surgery and the use of analgesic medications. Over a 3-week period, clinical healing of the postoperative wound was significantly faster in the control group as compared to the study group. In conclusion, diode laser surgery proved to be more effective and less invasive when compared to scalpel surgery in the management of fibrous hyperplasia. However, wound healing proved to be faster when using scalpel surgery. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Quantitative pump-induced wavefront distortions in laser-diode- and flash-lamp-pumped Nd:YLF laser rods

    International Nuclear Information System (INIS)

    Skeldon, M.D.; Saager, R.B.; Seka, W.

    1999-01-01

    Detailed interferometric measurements of the induced thermal distortions due to laser-diode and xenon flashlamp pumping of Nd:YLF are presented. The thermal distortions are quantified in terms of the primary aberrations of defocus, astigmatism, coma, and spherical. Defocus and astigmatism are shown to dominate the thermal aberrations. The measured defocus and astigmatism are converted to the conventional thermal-focal lengths in two perpendicular directions with respect to the Nd:YLF crystalline c axis for each of the two polarization states σ and π. A comparison of the thermal-focal lengths measured with the xenon flashlamp- and laser-diode-pumped rods is given when the rods are pumped to the same small-signal gain. The authors calculate effective dioptric-power coefficients from the data for comparison to those reported in the literature for krypton-flashlamp pumping. A thermal-time constant of 1.5 s is measured for the laser-diode-pumped Nd:YLF laser rod

  6. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application

    International Nuclear Information System (INIS)

    Quinto Junior, Jose

    2001-01-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  8. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  9. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  10. Pediatric endocanalicular diode laser dacryocystorhinostomy: results of a minimally invasive surgical technique.

    Science.gov (United States)

    Uysal, Ismail Onder; Ozçimen, Muammer; Yener, Halil Ibrahim; Kal, Ali

    2011-09-01

    The purpose of this study was to evaluate the effectiveness of endocanalicular diode laser dacryocystorhinostomy (DCR), which is a minimally invasive surgical technique, in pediatric patients with congenital nasolacrimal duct obstruction (NLDO). A retrospective study was carried out on patients treated between October 2008 and August 2009 for nasolacrimal duct obstruction with an endocanalicular diode laser procedure. Patients diagnosed as having nasolacrimal duct obstruction were included in this study and an endocanalicular diode laser procedure was performed. The main outcome measures were patients' previous treatments, clinical presentation, operative and postoperative complications, postoperative follow-up and resolution of epiphora. Eighteen children (10 girls, 8 boys) with a mean age of 6.11 ± 2.08 years (range, 4-10) underwent 20 endocanalicular laser DCR operations for congenital NLDO. In all eyes (100%), there was a history of epiphora and chronic dacryocystitis; two (10%) presented with acute dacryocystitis. Previous procedures included probing and irrigation of all eyes (100%) and silicone tube intubation in nine eyes (45%). None of the patients underwent any previous DCR operations. During a mean postoperative follow-up period of 20.50 ± 3.24 months (range, 14-24 months), the anatomical success rate (patency of ostium on nasal endoscopy) was 100%, and the clinical success rate (resolution of epiphora) was 85%. Endocanalicular diode laser DCR is an effective treatment modality for pediatric patients with congenital NLDO that compares favorably with the reported success rates of external and endoscopic endonasal DCR. Moreover, it has an added advantage of shorter operative time, less morbidity and avoidance of overnight admission.

  11. Spherical distribution structure of the semiconductor laser diode stack for pumping

    International Nuclear Information System (INIS)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  12. Adjunctive use of the diode laser in non-surgical periodontal therapy: exploring the controversy.

    Science.gov (United States)

    Porteous, Mary Sornborger; Rowe, Dorothy J

    2014-04-01

    Despite the controversy regarding clinical efficacy, dental hygienists use the diode laser as an adjunct to non-surgical periodontal therapy. The technique to maximize successful laser therapy outcome is controversial as well. The purpose of this review is to explore the scientific foundation of the controversy surrounding the use of the diode laser as an adjunct to non-surgical periodontal therapy. Further, this paper addresses the weaknesses in study design, the heterogeneity of methodology in the published clinical studies, especially the laser parameters, and how these issues impact the collective clinical and microbial data, and thus conclusions regarding clinical efficacy. Evaluation of the literature identifies possible mechanisms that could contribute to the varied, often conflicting results among laser studies that are the foundation of the controversy surrounding clinical efficacy. These mechanisms include current paradigms of periodontal biofilm behavior, tissue response to laser therapy being dependent on tissue type and health, and that the successful therapeutic treatment window is specific to the target tissue, biofilm composition, laser wavelength, and laser energy delivered. Lastly, this paper discusses laser parameters used in the various clinical studies, and how their diversity contributes to the controversy. Although this review does not establish clinical efficacy, it does reveal the scientific foundation of the controversy and the need for standardized, well designed randomized controlled clinical trials to develop specific guidelines for using the laser as an adjunct to non-surgical periodontal therapy. Using evidence-based laser guidelines would allow dental hygienists to provide more effective non-surgical periodontal care.

  13. Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, R. T.; Hemmati, H.

    1991-01-01

    The operation of a diode-laser pumped thulium, holmium yttrium-lithium-fluoride laser (Tm,Ho:YLF) in Q-switched mode is reported. Output energies of 200 microjoules in pulses of 22 ns duration are recorded at Q-switch frequencies commensurate with an effective upper laser level lifetime of 6 ms. This lifetime is appreciably longer than that observed in other hosts permitting stored energy extraction of 64 percent, close to the projected maximum performance from these materials.

  14. Diode pumped cascade Er:Y2O3 laser

    International Nuclear Information System (INIS)

    Sanamyan, T

    2015-01-01

    A cascade, diode-pumped, continuous wave (CW), dual-wavelength operation in a 0.5% Er 3+ :Y 2 O 3 cryogenic ceramic laser is demonstrated for the first time. The laser operates on cascaded Er ( 4 I 11/2   →   4 I 13/2   →   4 I 15/2 ) transitions and can deliver 24 and 13 W at 1.6 and 2.7 μm, respectively. The overall efficiency with respect to the absorbed ∼980 nm power was 62%. This is, to our best knowledge, the first demonstration of an efficient, high power, cascade, erbium laser achieved in bulk solid-state lasers. The analysis of the output power, the laser’s wavelengths and slope efficiency for each individual laser transition are presented for pure CW operation mode. Also presented are the temporal behaviors of each laser line as a function of pump pulse duration in the quasi-CW regime. (letter)

  15. Blue diode laser: a new approach in oral surgery?

    Science.gov (United States)

    Fornaini, Carlo; Merigo, Elisabetta; Selleri, Stefano; Cucinotta, Annamaria

    2016-02-01

    The introduction of diode lasers in dentistry had several advantages, principally consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibbers. Up today two diode wavelengths, 810 and 980 nm, were the most utilized in oral surgery but recently a new wavelength emitting in the blue had been proposed. The aim of this ex vivo study was to compare the efficacy of five laser wavelengths (450, 532, 808, 1064 and 1340 nm) for the ablation of soft tissues. Specimens were surgically collected from the dorsal surface of four bovine tongues and irradiated by the five different wavelengths. Thermal increase was measured by two thermocouples, the first at a depth of 0.5 mm, and the second at a depth of 2 mm while initial and final surface temperatures were recorded by IR thermometer. The quality of the incision was histologically evaluated by a pathologist by giving a score from 0 to 5. The time necessary to perform the excision varied between 215 seconds (1340 nm, 5W) and 292 seconds (808 nm, 3W). Surface temperature increase was highest for 1340 nm, 5W and lowest for 405 nm, 4 W. The most significant deep temperature increase was recorded by 1340 nm, 5 W and the lowest by 450 nm, 2 W. The quality of incision was better and the thermal elevation lower in the specimens obtained with shortest laser wavelength (450 nm).

  16. A compact frequency stabilized telecom laser diode for space applications

    Science.gov (United States)

    Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.

    2017-09-01

    We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.

  17. Treating Mucocele in Pediatric Patients Using a Diode Laser: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Sara M. Bagher

    2018-05-01

    Full Text Available A mucocele is the most common minor salivary gland disease and among the most common biopsied oral lesions in pediatric patients. Clinically, a mucocele appears as a round well-circumscribed painless swelling ranging from deep blue to mucosa alike in color. Mucoceles rarely resolve on their own and surgical removal under local anesthesia is required in most cases. Different treatment options are described in the literature, including cryosurgery, intra-lesion injection of corticosteroid, micro-marsupialization and conventional surgical removal using a scalpel, and laser ablation. Therefore, the goal of this paper was to report three cases of mucocele removal in pediatric patients using a diode laser with a one-month follow-up. Mucoceles were removed by a pediatric dentist using a diode laser with a wavelength of 930 nm in continuous mode and a power setting of 1.8 Watts. In all cases, no bleeding occurred during or after the procedure and there was no need for suturing. On clinical examination during the one-month follow-up, in all three cases there was minimal or no scarring, minimal post-operative discomfort or pain, and no recurrence. Diode lasers provide an effective, rapid, simple, bloodless and well accepted procedure for treating mucocele in pediatric patients. Minimal post-operative discomfort and scarring was reported by all the three patients.

  18. Treating Mucocele in Pediatric Patients Using a Diode Laser: Three Case Reports.

    Science.gov (United States)

    Bagher, Sara M; Sulimany, Ayman M; Kaplan, Martin; Loo, Cheen Y

    2018-05-09

    A mucocele is the most common minor salivary gland disease and among the most common biopsied oral lesions in pediatric patients. Clinically, a mucocele appears as a round well-circumscribed painless swelling ranging from deep blue to mucosa alike in color. Mucoceles rarely resolve on their own and surgical removal under local anesthesia is required in most cases. Different treatment options are described in the literature, including cryosurgery, intra-lesion injection of corticosteroid, micro-marsupialization and conventional surgical removal using a scalpel, and laser ablation. Therefore, the goal of this paper was to report three cases of mucocele removal in pediatric patients using a diode laser with a one-month follow-up. Mucoceles were removed by a pediatric dentist using a diode laser with a wavelength of 930 nm in continuous mode and a power setting of 1.8 Watts. In all cases, no bleeding occurred during or after the procedure and there was no need for suturing. On clinical examination during the one-month follow-up, in all three cases there was minimal or no scarring, minimal post-operative discomfort or pain, and no recurrence. Diode lasers provide an effective, rapid, simple, bloodless and well accepted procedure for treating mucocele in pediatric patients. Minimal post-operative discomfort and scarring was reported by all the three patients.

  19. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    Science.gov (United States)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  20. Diode Laser Irradiation in Endodontic Therapy through Cycles - in vitro Study

    Directory of Open Access Journals (Sweden)

    Trišić Dijana

    2017-07-01

    Full Text Available Background/Aim: The aim of this in vitro study was to investigate the influence of irradiation cycles and resting periods, on thermal effects on the external root surface during root canal irradiation of two diode laser systems (940 nm and 975 nm, at output powers of 1 W and 2 W in continuous mode. In previous studies the rising of temperature above 7°C has been reported as biologically accepted to avoid periodontal damage on the external root surface. Material and Methods: Twenty human inferior incisors were randomly distributed into four groups, the 940 nm, and the 975 nm diode laser irradiation, both with an output power of 1 W and 2 W, in continuous mode. The thermographic camera was used to detect temperature variations on the external root surface. Digital radiography of the samples was made. Results: After three cycles of irradiation, at apical third of the root, mean temperature variation by 940 nm diode laser irradiation was 2.88°C for output power of 1 W, and 6.52°C for output power of 2 W. The 975 nm laser caused a higher temperature increase in the apical region, with temperature variation of 13.56°C by an output power of 1 W, and 30.60°C at 2 W, with a statistical significance of p ≤ 0.0001 between two laser systems compared for the same power. The resting periods of 20 s between cycles were enough to lower temperature under 7°C in the case of 1 W and 2 W for 940 nm diode laser, while for 975 nm laser, after three irradiation cycles overheating occurred at both output power rates. Conclusion: Three cycles irradiation of 940 nm diode laser, with resting periods of 20 seconds, allowed safe usage of 1 W and 2 W in CW for endodontic treatment. For 975 nm at a power rate of 1 W, the last resting period drop the temperature near the safe limit and it came under 7°C in a period less than a minute, while at the power of 2 W the resting periods were not long enough for the safe temperature decrease.

  1. Hole transport in c-plane InGaN-based green laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Liu, Jianping, E-mail: jpliu2010@sinano.ac.cn; Tian, Aiqin; Zhang, Feng; Feng, Meixin; Hu, Weiwei; Zhang, Shuming; Ikeda, Masao; Li, Deyao; Zhang, Liqun; Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); School of Nano Technology and Nano Bionics, University of Science and Technology of China, Suzhou 215123 (China)

    2016-08-29

    Hole transport in c-plane InGaN-based green laser diodes (LDs) has been investigated by both simulations and experiments. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density, which reduces carrier injection efficiency of c-plane InGaN-based green LDs. A heavily silicon-doped layer right below the green DQWs can effectively suppress hole overflow from the green DQWs.

  2. Turn-on delay of QD and QW laser diodes: What is the difference?

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Kolykhalova, E D; Deryagin, A G; Maximov, M V; Nadtochiy, A M; Kuchinskii, V I; Mikhrin, S S; Livshits, D A; Viktorov, E A; Erneux, T

    2013-01-01

    Turn-on delay of laser diodes with quantum-sized active media is investigated both theoretically and experimentally. In this research we show the striking difference in turn-on delay of quantum dot and quantum well laser diodes: With quantum-well lasers turn on delay tends to zero in the limit of high pumping, while with quantum dot lasers turn-on delay has the non-vanishing component which is independent of pumping

  3. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    Science.gov (United States)

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P film FOTCs increases exponentially with adjusted R 2  = 0.959 in continuous wave mode, while in pulsed mode with adjusted R 2  = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  4. Comparative evaluation of photoablative efficacy of erbium: yttrium-aluminium-garnet and diode laser for the treatment of gingival hyperpigmentation. A randomized split-mouth clinical trial.

    Science.gov (United States)

    Giannelli, Marco; Formigli, Lucia; Bani, Daniele

    2014-04-01

    The use of lasers in periodontology is a matter of debate, mainly because of the lack of consensual therapeutic protocols. In this randomized, split-mouth trial, the clinical efficacy of two different photoablative dental lasers, erbium:yttrium-aluminum-garnet (Er:YAG) and diode, for the treatment of gingival hyperpigmentation is compared. Twenty-one patients requiring treatment for mild-to-severe gingival hyperpigmentation were enrolled. Maxillary or mandibular left or right quadrants were randomly subjected to photoablative deepithelialization with either Er:YAG or diode laser. Masked clinical assessments of each laser quadrant were made at admission and days 7, 30, and 180 postoperatively by an independent observer. Histologic examination was performed before and soon after treatment and 6 months after irradiation. Patients also compiled a subjective evaluation questionnaire. Both diode and Er:YAG lasers gave excellent results in gingival hyperpigmentation. However, Er:YAG laser induced deeper gingival tissue injury than diode laser, as judged by bleeding at surgery, delayed healing, and histopathologic analysis. The use of diode laser showed additional advantages compared to Er:YAG in terms of less postoperative discomfort and pain. This study highlights the efficacy of diode laser for photoablative deepithelialization of hyperpigmented gingiva. It is suggested that this laser can represent an effective and safe therapeutic option for gingival photoablation.

  5. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C.M.; Shaw, R.W.; Jennings, L.W.; Post-Zwicker, A.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining 235 U/( 235 U+ 238 U) isotope ratios in these samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of the measurement is discussed. Application of GD-OGS to other f-transition elements is also described. copyright 1997 American Institute of Physics

  6. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  7. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  8. Deep modulation of second-harmonic light by wavelength detuning of a laser diode

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    ) master oscillator power amplifier (MOPA) laser diode with separate electrical contacts for the MO and the PA. A modulation depth in excess of 97% from 0.1 Hz to 10 kHz is demonstrated. This is done by wavelength tuning of the laser diode using only a 40 mA adjustment of the current through the MO...

  9. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  10. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  11. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  12. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.; Majid, Mohammed Abdul; Afandy, Rami; Aljabr, Ahmad

    2016-01-01

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III

  13. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    Science.gov (United States)

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  14. The amplitude modulation of laser diode emission with antireflection piezo films on mirrors

    International Nuclear Information System (INIS)

    Abrarov, S.M.; Karimov, Kh.S.; Akhmedov, Kh.M.

    2001-01-01

    Present article is devoted to amplitude modulation of laser diode emission with antireflection piezo films on mirrors. The modulator based on laser diode and the emission amplitude modulation of which is performed by electric field impact on antireflection piezo films applied on mirrors was studied.

  15. Short-Term Audiological Results of Diode Laser in Comparison with Manual Perforation in Stapes Surgery.

    Science.gov (United States)

    Hamerschmidt, Rogerio; Saab, Stephanie Sbizera; Carvalho, Bettina; Carmo, Carolina do

    2018-04-01

    Introduction  Diode laser is a new alternative in stapes surgery for otosclerosis. The present study is the first to compare the short-term results of the surgery performed using diode laser to those obtained through the conventional fenestration technique. Objective  To use audiometry to establish a comparative analysis between the functional results obtained through surgery for otosclerosis using diode laser and the conventional technique. Method  Audiometric evaluation of 12 patients submitted to stapes surgery for otosclerosis, using diode laser or conventional fenestration by needle and drills, between 2014 and 2015. Each group was composed of 6 patients. Pre and post-operative measures were compared for three months in both groups. The speech recognition threshold, the air and bone conduction threshold, as well as the gap between them at 500 Hz, 1 KHz, 2 KHz and 4 KHz were measured. Results  Significant difference in bone conduction and SRT was observed when compared post- and preoperative results in the diode group. However diode and conventional technique groups presented significant differences in air conduction and air-bone gap, suggesting that both can provide functional improvement. Conclusion  Laser stapedotomy is a safe technique with good results. Both laser surgery and the conventional technique have improved the hearing of patients with a discreet advantage for the diode laser. Further prospective and randomized clinical trials are required to disclose all possible benefits of the stapes surgery using diode laser.

  16. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non thermal diode laser.

    Science.gov (United States)

    Ghannam, Magdy M; El Gebaly, Reem; Fadel, Maha

    2016-04-05

    The use of liposomes as drug delivery systems is the most promising technique for targeting drug especially for anticancer therapy. In this study sterically stabilized liposomes was prepared from DPPC/Cholesterol/PEG-PE encapsulated doxorubicin. The effect of lyophilization on liposomal stability and hence expiration date were studied. Moreover, the effect of diode laser on the drug released from liposomesin vitro and in vivo in mice carrying implanted solid tumor were also studied. The results indicated that lyophilization of the prepared liposomes encapsulating doxorubicin led to marked stability when stored at 5 °C and it is possible to use the re-hydrated lyophilized liposomes within 12 days post reconstitution. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells is a promising method in cancer therapy. We can conclude that lyophilization of the liposomes encapsulating doxorubicin lead to marked stability for the liposomes when stored at 5 °C. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells through the use of photosensitive sterically stabilized liposomes loaded with doxorubicin is a promising method. It proved to be applicable and successful for treatment of Ehrlich solid tumors implanted in mice and eliminated toxic side effects of doxorubicin.

  17. High power visible diode laser for the treatment of eye diseases by laser coagulation

    Science.gov (United States)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  18. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  19. Wound treatment on a diabetic rat model by a 808 nm diode laser

    International Nuclear Information System (INIS)

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; AnaybBaleg, Sana Mohammed; Baktiar, Harzi; Marsin, Faridah M; Sum, Mohamad Bin Md; Nassir, Zaleha; Chong, Pek Lian; Hamid, Asmah

    2015-01-01

    This paper presents a study on the effect of laser irradiation on wound healing. 808 nm diode laser was employed to facilitate the healing of impaired wounds in experimental diabetes using a rat model. Diabetes was induced in male rats by a streptozotocin injection with a dose of 60 mg kg −1 . The disease was verified via measurement of the blood glucose level, which was set having 20 mmol L −1 stability. The rats were randomly distributed into two groups; one served as a control group and the other group was treated with the laser. The power density of the laser used was 0.5 W cm −2 and the wounds were treated for 8 d with the contact time of one second daily. The energy density used was 0.5 J cm −2 . The healing progress was recorded via a digital camera. The recorded images were then transferred into Inspector Matrox and image J programs for the accurate measurement of the healing area. The tissue details of the wound were studied through histology. The wound contraction rate of laser therapy group was found to be two times faster than control group. This indicates that the 808 nm diode laser can accelerate the wound healing process. (paper)

  20. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    International Nuclear Information System (INIS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun

    2015-01-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF 2 disordered crystal was demonstrated. The Y 3+ -codoping in Nd : CaF 2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF 2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier. (letter)

  1. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    Science.gov (United States)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  2. Fast all-optical flip-flop based on a single distributed feedback laser diode.

    Science.gov (United States)

    Huybrechts, Koen; Morthier, Geert; Baets, Roel

    2008-07-21

    Since there is an increasing demand for fast networks and switches, the electronic data processing imposes a severe bottleneck and all-optical processing techniques will be required in the future. All-optical flip-flops are one of the key components because they can act as temporary memory elements. Several designs have already been demonstrated but they are often relatively slow or complex to fabricate. We demonstrate experimentally fast flip-flop operation in a single DFB laser diode which is one of the standard elements in today's telecommunication industry. Injecting continuous wave light in the laser diode, a bistability is obtained due to the spatial hole burning effect. We can switch between the two states by using pulses with energies below 200 fJ resulting in flip-flop operation with switching times below 75 ps and repetition rates of up to 2 GHz.

  3. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  4. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  5. Little evidence for the use of diode lasers as an adjunct to non-surgical periodontal therapy.

    Science.gov (United States)

    Dederich, Douglas N

    2015-03-01

    Medline, PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL) and Embase databases. Randomised controlled trials (RCTs) using thermal diode lasers as an adjunct to non-surgical conventional periodontal initial therapy conducted in patients ≥18 years old written in English or Dutch were considered. Study assessment data extraction and quality assessment was carried out independently by two reviewers. The main outcome variables were probing pocket depth (PPD) and clinical attachment loss (CAL), but plaque scores (PS), bleeding scores (BS) and the Gingival Index (GI) were also considered. Meta-analysis was carried out using a random effects model. Nine studies involving 247 patients were included. Seven studies were of split mouth design and two were parallel group studies. The study designs showed considerable heterogeneity and follow up ranged from six weeks to six months. Meta-analysis found no significant effect on PPD, CAL and PS. There was however a significant effect for GI and BS favouring adjunctive use of the diode laser. The collective evidence regarding adjunctive use of the diode laser with SRP indicates that the combined treatment provides an effect comparable to that of SRP alone. With respect to BS the results showed a small but significant effect favouring the diode laser, however, the clinical relevance of this difference remains uncertainStandard . This systematic review questions the adjunctive use of diode laser with traditional mechanical modalities of periodontal therapy in patients with periodontitis. The strength of the recommendation for the adjunctive use of the diode laser is considered to be 'moderate' for changes in PPD and CAL.

  6. Systematic review of the adjunctive use of diode and Nd:YAG lasers for nonsurgical periodontal instrumentation.

    Science.gov (United States)

    Roncati, Marisa; Gariffo, Annalisa

    2014-04-01

    The aims of this study were (1) to conduct a literature search and systematically evaluate the additional therapeutic effects of pulsed Nd:YAG or diode laser use in patients with periodontitis, (2) to assess evidence supporting the additional benefit of laser-mediated periodontal treatment in conjunction with scaling and root planning (SRP) (not as monotherapy), and (3) to interpret the evidence presented in retrieved publications. Opinions about the additional use of diode lasers in the nonsurgical treatment of plaque-induced periodontal lesions are conflicting. The April 2011 American Academy of Periodontology's "Statement on the Efficacy of Lasers in the Non-Surgical Treatment of Inflammatory Periodontal Disease" asserted that the use of a laser as monotherapy or in addition to nonsurgical periodontal instrumentation conveyed no advantage. After initial screening, 23/77 potentially relevant articles and abstracts identified through electronic and manual searches of the MEDLINE(®)/PubMed database and the Cochrane Central Register of Controlled Trials (1990-2012) were included in this review. A meta-analysis could be performed. The results indicate that Nd:YAG or diode laser, used in an adjunctive capacity to SRP, may provide some additional benefit, in 6 month studies, compared with mechanical debridement. The results show the adjunctive benefits that diode laser treatment can provide when it is used as an adjunct to nonsurgical periodontal treatment in adults with chronic periodontitis. Further long-term, well-designed, parallel randomized clinical trials are needed to assess the effectiveness of the adjunctive use of the diode laser, as well as the appropriate dosimetry and laser settings.

  7. Fiber Bragg Grating vibration sensor with DFB laser diode

    Science.gov (United States)

    Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir

    2012-01-01

    The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.

  8. Defects in degraded GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tomiya, Shigetaka [Materials Analysis Center, GPS, Sony Corporation, 2-1-1 Shin-sakuragaoka, Hodogaya, Yokohama, Kanagawa, 240-0036 (Japan); Goto, Shu; Takeya, Motonobu; Ikeda, Masao [Development Center, Sony Shiroishi Semiconductor, Inc., 3-53-2 Shiratori, Shiroishi, Miyagi, 989-0734 (Japan)

    2003-11-01

    We investigate degraded GaN-based laser diodes (LDs) fabricated on epitaxial lateral overgrown (ELO) GaN layers using transmission electron microscopy. The dislocation density in the wing region of the ELO is of the order of 10{sup 6}/cm{sup 2} and there are approximately ten threading dislocations in the laser stripe. Neither dislocation multiplication from the threading dislocations nor any structural changes of the threading dislocations were observed in the devices, which were degraded within approximately one hundred hours under 30 mW continuous operation at 25 C. We can, therefore, conclude that degradation in GaN-based LDs is not responsible for the recombination enhanced dislocation motion that is usually observed in zincblende structure-based LDs. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Internal optical losses in very thin CW heterojunction laser diodes

    Science.gov (United States)

    Butler, J. K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for CW room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 micron. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane.

  10. Study of pseudo noise CW diode laser for ranging applications

    Science.gov (United States)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  11. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    Science.gov (United States)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  12. Venous Lake of the Lips Treated Using Photocoagulation with High-Intensity Diode Laser

    Science.gov (United States)

    Galletta, Vivian C.; de Paula Eduardo, Carlos; Migliari, Dante A.

    2010-01-01

    Abstract Objective: To evaluate the effectiveness of photocoagulation with high-intensity diode laser in the treatment of venous lake (VL) lesions. Background Data: VL is a common vascular lesion characterized by elevated, usually dome-shaped papules, ranging in color from dark blue to dark purple, seen more frequently in elderly patients. They often occur as single lesions on the ears, face, lips, or neck. Once formed, lesions persist throughout life. Although these lesions are usually asymptomatic, they can bleed if injured. Methods: Seventeen patients (7 men and 10 women) with VL on the lip were treated using a noncontact diode laser (wavelength 808 nm, power output 2–3 W in continuous wave). Results: After only one irradiation exposure, all lesions were successfully treated. Healing was completed in approximately 2 to 3 weeks, and none of the patients experienced complications. Postoperative discomfort and scarring were not present or were minimal. Conclusion: Photocoagulation with high-intensity diode laser is an effective, bloodless procedure for the treatment of VL. PMID:19811083

  13. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Science.gov (United States)

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    Science.gov (United States)

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd

  15. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  16. Endoscopic diode-laser applications in airway surgery

    Science.gov (United States)

    Pankratov, Michail M.; Wang, Zhi; Rebeiz, Elie E.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Gleich, Lyon L.

    1994-09-01

    A technique was developed to secure small mucosal grafts onto the airway wound with fibrin/albumin tissue adhesive mixed with ICG dye and irradiated with a 810 nm diode laser. An in vitro study of the tensile strength produced strong mucosal soldering which was adequate to fix grafts in place. In vivo studies showed that wounds with mucosal grafts were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks. Excellent healing was observed at 6 and 14 days postoperatively and the histology at 28 days found normal epithelium over the vocal cord lesion. This soldering technique is a less traumatic treatment for patients with extensive lesions of the larynx of various origin. Diode laser soldering with ICG-doped fibrin tissue adhesive was evaluated in tracheal anastomosis as a substitute for absorbable sutures. In vitro studies demonstrated strong anastomoses with minimal tissue damage. In vivo animal study showed that these anastomoses had less fibrosis and tissue damage than control animals repaired with sutures only.

  17. Diode Laser and Calcium Hydroxide for Elimination of Enterococcus Faecalis in Root Canal

    Directory of Open Access Journals (Sweden)

    Neda Naghavi

    2014-06-01

    Full Text Available Introduction: The ultimate goal of endodontic treatment is to eliminate the bacterial infection in the root canal system. While mechanical debridement combined with chemical irrigation removes the bulk of microorganisms, residual bacteria are readily detectable in approximately one-half of teeth just prior to obturation. Laser light can be used to destroy bacteria. This in vitro study was performed to evaluate the effect of diode laser and calcium hydroxide on mono-infected dental canals.Methods: Fifty five single-rooted human premolars were prepared and contaminated with Enterococcus faecalis. After three weeks of incubation, the samples were divided into three experimental groups (n = 15 and two control groups (n = 5. In the first and second groups, the teeth were rinsed for 5 min with either sterile saline or 5.25% NaOCl and irradiated with a 810-nm diode laser at 1.5 W output for 5 × 4s. In the third group, the teeth were rinsed with 5.25% NaOCl and then Ca(OH2 paste was inserted in the canals for 1 week. Intracanal bacterial sampling was done and the samples were plated to determine the CFU count. Results: 5.25% NaOCl plus laser was as effective as calcium hydroxide and significantly more effective than sterile saline (P>0.05 in elimination of E. faecalis. Complete elimination of E. faecalis was seen only for the one week calcium hydroxide treatment. Conclusion: Combination therapy with NaOCl irrigation and diode laser irradiation can be recommended as an effective treatment option for elimination of E. faecalis from the root canal system.

  18. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    Science.gov (United States)

    2015-09-01

    Schematic of the 800-nm diode pumped Tm/Ho composite fiber laser 8 Under quasi-continuous wave (Q- CW ) pumping conditions of 1-ms duration and a...Fig. 9 (Top) Schematic of the 800-nm diode -pumped Tm/Ho composite fiber laser with outcoupler. (Left) Q- CW laser performance of the Tm/Ho composite...ARL-TR-7452 ● SEP 2015 US Army Research Laboratory Diode -Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-μm Laser by G

  19. Laser diode stack beam shaping for efficient and compact long-range laser illuminator design

    Science.gov (United States)

    Lutz, Y.; Poyet, J. M.

    2014-04-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is best suited for long-range image recording. Even when the laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) micro-lenses, their beam parameter products BPP are not compatible with direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long-range applications. A solution to overcome these difficulties is to enhance the poor slow-axis BPP by virtually restacking the laser diode stack. We present a beam shaping and homogenization method that is low-cost and efficient and has low alignment sensitivity. After conducting simulations, we have realized and characterized the illuminator. A compact long-range laser illuminator has been set up with a divergence of 3.5×2.6 mrad and a global efficiency of 81%. Here, a projection lens with a clear aperture of 62 mm and a focal length of 571 mm was used.

  20. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  1. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    Science.gov (United States)

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  2. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    Science.gov (United States)

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  3. Lower Energy Endovenous Laser Ablation of the Great Saphenous Vein with 980 nm Diode Laser in Continuous Mode

    International Nuclear Information System (INIS)

    Kim, Hyun S.; Nwankwo, Ikechi J.; Hong, Kelvin; McElgunn, Patrick S.J.

    2006-01-01

    Purpose. To assess clinical outcomes, complication rates, and unit energy applied using 980 nm diode endovenous laser treatment at 11 watts for symptomatic great saphenous vein (GSV) incompetence and reflux disease. Methods. Thirty-four consecutive ablation therapies with a 980 nm diode endovenous laser at 11 watts were studied. The diagnosis of GSV incompetence with reflux was made by clinical evaluation and duplex Doppler examinations. The treated GSVs had a mean diameter of 1.19 cm (range 0.5-2.2 cm). The patients were followed with clinical evaluation and color flow duplex studies up to 18.5 months (mean 12.19 months ± 4.18). Results. Using 980 nm diode endovenous laser ablation in continuous mode, 100% technical success was noted. The mean length of GSVs treated was 33.82 cm (range 15-45 cm). The mean energy applied during the treatment was 1,155.81 joules (J) ± 239.50 (range 545.40-1620 J) for a mean treatment duration of 90.77 sec ± 21.77. The average laser fiber withdrawal speed was 0.35 cm/sec ± 0.054. The mean energy applied per length of GSV was 35.16 J/cm ± 8.43. Energy fluence, calculated separately for each patient, averaged 9.82 J/cm 2 ± 4.97. At up to 18.5 months follow-up (mean 12.19 months), 0% recanalization was noted; 92% clinical improvement was achieved. There was no major complication. Minor complications included 1 patient with hematoma at the percutaneous venotomy site, 1 patient with thrombophlebitis on superficial tributary varices of the treated GSV, 24% ecchymoses, and 32% self-limiting hypersensitivity/tenderness/'pulling' sensation along the treatment area. One patient developed temporary paresthesia. Four endovenous laser ablation treatments (12%) were followed by adjunctive sclerotherapies for improved cosmetic results. Conclusion. Endovenous laser ablation treatment of GSV using a 980 nm diode laser at 11 watts in continuous mode appears safe and effective. Mean energy applied per treated GSV length of 35.16 J/cm or mean

  4. Adiabatic interpretation of a two-level atom diode, a laser device for unidirectional transmission of ground-state atoms

    International Nuclear Information System (INIS)

    Ruschhaupt, A.; Muga, J. G.

    2006-01-01

    We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed

  5. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  6. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    Directory of Open Access Journals (Sweden)

    Leticia Ferreira de Freitas BRIANEZZI

    Full Text Available Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC, water sorption (WS, and water solubility (WSB of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU]. Square-shaped specimens were prepared and assigned into 4 groups (n=5: SB and SU (control groups – no laser irradiation and SB-L and SU-L [SB and SU laser (L – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5 of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10 were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm, irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2. Results Laser irradiation immediately before photopolymerization increased the DC (% of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3, only the dentin bonding system (DBS was a significant factor (pSU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  7. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  8. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    Science.gov (United States)

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  9. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  10. Improving the beam quality of high-power laser diodes by introducing lateral periodicity into waveguides

    Science.gov (United States)

    Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej

    2013-01-01

    Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.

  11. Role of diode lasers (800-980 nm) as adjuncts to scaling and root planing in the treatment of chronic periodontitis: a systematic review.

    Science.gov (United States)

    Qadri, Talat; Javed, Fawad; Johannsen, Gunnar; Gustafsson, Anders

    2015-11-01

    The purpose of this study was to systematically review currently available evidence regarding the role of diode lasers (810-980 nm) as adjuncts to scaling and root planing (SRP) in the treatment of chronic periodontitis (CP). Mechanical instrumentation of periodontal tissues followed by diode laser application leads to complete removal of pocket epithelium compared with conventional SRP. To address the focused question "Is SRP with adjunct diode lasers (810-980 nm) therapy more effective in the treatment of CP than when CP is treated by SRP alone?" databases were searched using the following key words: chronic periodontitis, diode laser, surgical, AND scaling and root planing, periodontal diseases, periodontal therapy, AND periodontal treatment. Original studies were included. Letters to the editor, case reports, commentaries, and reviews were excluded. Ten clinical studies were included. In all studies, patients were systemically healthy, and cigarette smokers were included in two studies. In five studies, SRP plus diode laser application was more effective in the treatment of CP than SRP, and three studies showed no difference. In two studies, there was a moderate reduction in periodontal inflammation using SRP plus diode laser. The diameter of optic fiber, laser wavelengths, power, pulse repetition rate, and duration of laser exposure ranged between 300 μm and 2 mm, 810-980 nm, 0.8-2.5 W, 10-60 Hz, and 10-100 ms, respectively. In CP patients with probing depths ≤5 mm, diode lasers, SRP plus diode laser (800-980 nm) is more effective in the treatment of CP than when SRP is used alone.

  12. Internal optical losses in very thin cw heterojunction laser diodes

    International Nuclear Information System (INIS)

    Butler, J.K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for cw room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 μm. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane. Proper design of the internal structure of the laser avoids large increases of the threshold current density as well as large decreases in the external differential quantum efficiency from interaction with the contact layer. The design curves presented can be used to predict the gain required at threshold for a broad range of structural parameters of interest in low-threshold laser design

  13. Role of noise in the diode-laser spectroscopy of the spectral line profile

    International Nuclear Information System (INIS)

    Nadezhdinskii, Aleksandr I; Plotnichenko, V V; Ponurovskii, Ya Ya; Spiridonov, Maksim V

    2000-01-01

    Questions concerning precise measurements of the spectral-line-profile parameters by diode-laser spectroscopic methods were examined. The instrumental function of a distributed-feedback diode laser (λ =1.53 μm), consisting of the additive contributions of the noise due to spontaneous emission, frequency fluctuations, and intensity fluctuations, was investigated. An analytical formula was obtained for the spectrum of the diode-laser field formed by frequency fluctuations. The spectral density g 0 of the frequency fluctuations, determining the width of the central part of the emission line profile of a diode laser, was found by two independent methods (by fitting to a Doppler-broadened absorption line profile and by finding the intensity of the residual radiation and the saturated-absorption line width). The parameters Ω and Γ of the spectral density of the frequency fluctuations, coupled to the relaxation oscillations and determining the wing of the diode-laser emission line profile, were determined experimentally. By taking into account the instrumental function of the diode laser, involving successive convolution with the recorded emission spectra, it was possible to reproduce correctly the spectral line profile and to solve accurately the problem of the 'optical zero'. The role of the correlation between the intensity noise and the diode-laser frequency was considered. (laser applications and other topics in quantum electronics)

  14. Clinical assessment of diode laser-assisted endoscopic intrasphenoidal vidian neurectomy in the treatment of refractory rhinitis.

    Science.gov (United States)

    Lai, Wen-Sen; Cheng, Sheng-Yao; Lin, Yuan-Yung; Yang, Pei-Lin; Lin, Hung-Che; Cheng, Li-Hsiang; Yang, Jinn-Moon; Lee, Jih-Chin

    2017-12-01

    For chronic rhinitis that is refractory to medical therapy, surgical intervention such as endoscopic vidian neurectomy (VN) can be used to control the intractable symptoms. Lasers can contribute to minimizing the invasiveness of ENT surgery. The aim of this retrospective study is to compare in patients who underwent diode laser-assisted versus traditional VN in terms of operative time, surgical field, quality of life, and postoperative complications. All patients had refractory rhinitis with a poor treatment response to a 6-month trial of corticosteroid nasal sprays and underwent endoscopic VN between November 2006 and September 2015. They were non-randomly allocated into either a cold instrument group or a diode laser-assisted group. Vidian nerve was excised with a 940-nm continuous wave diode laser through a 600-μm silica optical fiber, utilizing a contact mode with the power set at 5 W. A visual analog scale (VAS) was used to grade the severity of the rhinitis symptoms for quality of life assessment before the surgery and 6 months after. Of the 118 patients enrolled in the study, 75 patients underwent cold instrument VN and 43 patients underwent diode laser-assisted VN. Patients in the laser-assisted group had a significantly lower surgical field score and a lower postoperative bleeding rate than those in the cold instrument group. Changes in the VAS were significant in preoperative and postoperative nasal symptoms in each group. The application of diode lasers for vidian nerve transection showed a better surgical field and a lower incidence of postoperative hemorrhage. Recent advancements in laser application and endoscopic technique has made VN safer and more effective. We recommend this surgical approach as a reliable and effective treatment for patients with refractory rhinitis.

  15. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  16. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-03-01

    TeraDiode has produced a fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Further advances of these ultra-bright lasers are also projected.

  17. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  18. Modelling of a diode laser with a resonant grating of quantum wells and an external mirror

    International Nuclear Information System (INIS)

    Vysotskii, D V; Elkin, N N; Napartovich, A P; Kozlovskii, Vladimir I; Lavrushin, B M

    2011-01-01

    A three-dimensional numerical model of a diode laser with a resonant grating of quantum wells (QWs) and an external mirror is developed and used to calculate diode laser pulses that are long compared to the time of reaching a stationary regime and are short enough to neglect heating of the medium. The consistent solutions of the Helmholtz field equation and the system of diffusion equations for inversion in each QW are found. A source of charge carriers can be both an electron beam and a pump laser beam. The calculations yielded the longitudinal and radial profiles of the generated field, as well as its wavelength and power. The effective threshold pump current is determined. In the created iteration algorithm, the calculation time linearly increases with the number of QWs, which allows one to find the characteristics of lasers with a large number of QWs. The output powers and beam divergence angles of a cylindrical laser are calculated for different cavity lengths and pump spot radii. After calculating the fundamental mode characteristics, high-order modes were additionally calculated on the background of the frozen carrier distributions in the QW grating. It is shown that all the competing modes remain below the excitation threshold for the pump powers used in the experiment. The calculated and experimental data for the case of pumping by a nanosecond electron beam are qualitatively compared.

  19. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser

    International Nuclear Information System (INIS)

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-01-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs

  20. [Evaluation of the efficacy of diode laser endocyclophotocoagulation combined with cataract surgery in glaucoma].

    Science.gov (United States)

    Ezzouhairi, S M

    2015-11-01

    Surgical techniques, which reduce the secretion of aqueous humor are underutilized in the surgical management of glaucoma; the diode laser coupled to an endoscope, endocyclophotocoagulation (ECP), is an emerging technology in the treatment of glaucoma. Indeed, thanks to its direct, focal and controllable approach to diode laser treatment of the ciliary processes, ECP renders this a safer technique compared to transscleral diode laser. We present preliminary results and an evaluation of the efficacy of ECP combined with cataract surgery performed at the Al Bassar clinic in Mohammedia, Morocco. We conducted a retrospective study on a series of 82 patients who underwent combined surgery: diode laser endocyclophotocoagulation and cataract for treatment of glaucoma during the period from December 2012 to July 2013. For this study, we recorded: age and gender of the patients, number and power of diode laser spots, pre- and postoperative intraocular pressure (IOP), and the number of anti-glaucoma treatments prescribed pre- and postoperatively (3 months minimum). Technically, a 20-gauge endo-ocular probe is inserted through the corneal incision used for phacoemulsification. The probe is equipped with a light source, a camera and a pulsed 810 nm laser beam; it is connected to an Endo-optiks type generator, which allows for direct visualization of the ciliary processes and their precise treatment. The surgical procedure is both simple and quick. Postoperative follow-up is unchanged from the management of cataract extraction by phacoemulsification. The average age in our series was 69.5 years (range 33-81 years), mean follow-up was 5.7 months. The reduction in intraocular pressure was 28.5%. In 40% of patients, a significant reduction in medications was noted, and in 20%, a total suspension of anti-glaucoma medications. No serious complications were noted in our series. This technique can perfectly fit into the medical, natural and/or surgical armamentarium medical, physical

  1. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  2. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  3. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  4. Diode-pumped Tm:YAP/YVO4 intracavity Raman laser

    International Nuclear Information System (INIS)

    Zhao, Jiaqun; Zhou, Xiaofeng; Wang, Guodong; Cheng, Ping; Xu, Feng

    2017-01-01

    The laser performance based on YVO 4 Raman conversion in a diode-pumped actively Q-switched Tm:YAP laser is demonstrated for the first time. With an incident diode power of 10.9 W and a pulse repetition rate of 1 kHz, the average output powers for the first Stokes laser at 2.4 μm is about 270 mW. (paper)

  5. Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA......). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA....

  6. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  7. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    Science.gov (United States)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  8. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  9. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  10. A randomised controlled trial of coblation, diode laser and cold dissection in paediatric tonsillectomy.

    Science.gov (United States)

    Elbadawey, M R; Hegazy, H M; Eltahan, A E; Powell, J

    2015-11-01

    This study aimed to compare the efficacy of diode laser, coblation and cold dissection tonsillectomy in paediatric patients. A total of 120 patients aged 10-15 years with recurrent tonsillitis were recruited. Participants were prospectively randomised to diode laser, coblation or cold dissection tonsillectomy. Operative time and blood loss were recorded. Pain was recorded on a Wong-Baker FACES(®) pain scale. The operative time (10 ± 0.99 minutes), blood loss (20 ± 0.85 ml) and pain were significantly lower with coblation tonsillectomy than with cold dissection tonsillectomy (20 ± 1.0 minutes and 30 ± 1.0 ml; p = 0.0001) and diode laser tonsillectomy (15 ± 0.83 minutes and 25 ± 0.83 ml; p = 0.0001). Diode laser tonsillectomy had a shorter operative time (p = 0.0001) and less blood loss (p = 0.001) compared with cold dissection tonsillectomy. However, at post-operative day seven, the diode laser tonsillectomy group had significantly higher pain scores compared with the cold dissection (p = 0.042) and coblation (p = 0.04) tonsillectomy groups. Both coblation and diode laser tonsillectomy are associated with significantly reduced blood loss and shorter operative times compared with cold dissection tonsillectomy. However, we advocate coblation tonsillectomy because of the lower post-operative pain scores compared with diode laser and cold dissection tonsillectomy.

  11. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  12. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  13. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  14. Temperature issues with white laser diodes, calculation and approach for new packages

    Science.gov (United States)

    Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge

    2015-01-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.

  15. Surgical performance of a 405-nm diode laser in treatment of soft tissue

    International Nuclear Information System (INIS)

    Kato, J; Akashi, G; Moriya, K; Hirai, Y; Hatayama, H; Inoue, A; Miyazaki, H

    2008-01-01

    The study was conducted to evaluate the surgical performance of a 405-nm diode laser ex vivo. The experiments were carried out using tuna tissue, which was irradiated with a 405-nm diode laser at output powers of 400 mW (694 W/cm 2 ) to 1 W (1735 W/cm 2 ) on a motorized stage moving at a rate of 1 mm/sec. As a control, a 920-nm diode laser was used with the same irradiation conditions. After irradiation, the thickness of ablation and coagulation was measured by stereoscopic microscopy and evaluated statistically. Ablation and coagulation zones were obtained with 405-nm laser irradiation, but not with irradiation at 920 nm. Ablation depth increased significantly with output power and a thick coagulation zone was observed with 405-nm irradiation. The 405-nm diode laser performed well for incising and coagulating soft tissue at a low power density

  16. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    International Nuclear Information System (INIS)

    Pal, Vishwa; Ghosh, R; Prasad, Awadhesh

    2011-01-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  17. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  18. Laser diode with thermal conducting, current confining film

    Science.gov (United States)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A laser diode formed of a rectangular parallelopiped body of single crystalline semiconductor material includes regions of opposite conductivity type indium phosphide extending to opposite surfaces of the body. Within the body is a PN junction at which light can be generated. A stripe of a conductive material is on the surface of the body to which the P type region extends and forms an ohmic contact with the P type region. The stripe is spaced from the side surfaces of the body and extends to the end surfaces of the body. A film of germanium is on the portions of the surface of the P type region which is not covered by the conductive stripe. The germanium film serves to conduct heat from the body and forms a blocking junction with the P type region so as to confine the current through the body, across the light generating PN junction, away from the side surfaces of the body.

  19. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  20. Hyperchaotic Dynamics for Light Polarization in a Laser Diode

    Science.gov (United States)

    Bonatto, Cristian

    2018-04-01

    It is shown that a highly randomlike behavior of light polarization states in the output of a free-running laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and Rayleigh distributions, and Weibull and negative exponential distributions, for the modulus and intensity of the orthogonal linear components of the electric field, respectively. The presented results could be relevant for the generation of single units of compact light source devices to be used in low-dimensional optical hyperchaos-based applications.

  1. Comparison of laser diode response to pulsed electrical and radiative excitations

    International Nuclear Information System (INIS)

    Baggio, J.; Rainsant, J.M.; D'hose, C.; Lalande, P.; Musseau, O.; Leray, J.L.

    1996-01-01

    The authors have studied the electrical and optical response of two laser diodes under transient irradiation. Both diodes exhibit a positive photocurrent, which adds to the bias current, and a decrease of the optical power until extinction when dose rate is increased. Direct carrier generation in the laser cavity is a second order phenomena. The diode overall response is driven by both the substrate photocurrent and the transient conduction of current confinement regions, which decrease the net current density in the cavity and switches-off the laser emission. This behavior is in good agreement with pulsed electrical characterizations and 2D simulations

  2. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  3. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    Science.gov (United States)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  4. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  5. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers......, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion...

  6. Thermographic and spectrophotometric analysis of the extrinsic tooth bleaching using a diode laser and a LED system. In vitro

    International Nuclear Information System (INIS)

    Micheli, Paola Racy de

    2004-01-01

    The aim of this study was to evaluate the intra-pulpal temperature change, as well as to compare the bleaching power of a 38% hydrogen peroxide (Opalescence Xtra Boost- Ultradent. Inc), when activated with a diode laser, with a LED system and without activation, in the extrinsic tooth bleaching in vitro. Ten mandibular human incisors, a thermocouple, 45 bovine incisors and a spectrophotometer (Shade Eye- Shofu) for the color analysis. The samples were divided into 3 groups: 38% hydrogen peroxide activated by a diode laser (ZAP lasers, wavelength 808 nm ± 5, power of 1,4 W); 38% hydrogen peroxide activated by LED (Bright LEC-Mmoptics, wavelength 470 nm ± 25, power of 380 mW); 38% hydrogen peroxide without activation. After the artificial pigmentation, the bleaching agent acted for the same time in the 3 groups, differing only by the type of activation. The results of temperature showed that the LED activation was safer than the diode laser, which, in some measures exceeded the limit of 5.6 deg C. The luminosity of the samples did not show significantly statistics differences in none of the groups and moments of this study. The diode laser and LED activation did not influenced at the bleaching power of the peroxide, which showed effective for removing stains, with great capacity of bleaching bovine tooth artificially darkened. (author)

  7. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  8. Compact 2100 nm laser diode module for next-generation DIRCM

    Science.gov (United States)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  9. An analysis of transient thermal properties for high power GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Seungtaek; Kang, Sung Bok; Kim, Young Jin; Jeong, Hoon; Lee, Kyeongkyun; Kim, Jongseok [Korea Institute of Industrial Technology, 35-3 Hongcheon-Ri, Ipjang-Myeon, Cheonan, Chungnam 331-825 (Korea); Lee, Sangdon; Suh, Dongsik [QSI Co., Ltd., 315-9 Cheonheung-Ri, Sungger-Eup, Cheonan, Chungnam 330-836 (Korea); Yi, Jeong Hoon; Choi, Yoonho; Jung, Seok Gu; Noh, Minsoo [LG Electronics Advanced Research Institute, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (Korea)

    2010-07-15

    Thermal properties of 405 nm GaN-based laser diodes were investigated by employing a transient heating response method based on the temperature dependence of diode forward voltage. Thermal resistances of materials consisting of packaged laser diodes were differentiated in transient thermal response curves at a current below threshold current. With a current above threshold current, no significant change in thermal resistances and difference between junction-up and junction-down laser diodes was observed at pulses shorter than 3 sec. From an analysis with long current injections, thermal resistance of a packaged laser diode with a junction-up bonding was {proportional_to}45 C/W which was higher than that of a junction-down bonded laser diode by {proportional_to}10 C/W. Further analyses based on parameters obtained from voltage recovery curves indicated that the time constant for cooling is directly related to the thermal resistance and thermal capacitance of a laser diode package. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata.

    Science.gov (United States)

    Waiz, Makram; Saleh, Anmar Z; Hayani, Raafa; Jubory, Samar O

    2006-04-01

    Alopecia areata is a rapid and complete loss of hair in one or several patches, usually on the scalp, affecting both males and females equally. It is thought to be an autoimmune disease which is treated with different modalities with variable success. Laser treatment of different wavelengths has been used in the management of this problem. To study the effect of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata.Methods. Sixteen patients with 34 resistant patches that had not responded to different treatment modalities for alopecia areata were enrolled in this study. In patients with multiple patches, one patch was left as a control for comparison. Patients were treated on a four-session basis, once a week, with a pulsed diode laser (904 nm) at a pulse rate of 40/s. A photograph was taken of each patient before and after treatment. The treated patients were 11 males (68.75%) and five females (31.25%). Their ages ranged between 4 and 50 years with a mean of 26.6+/-SD of +/-13.8, and the durations of their disease were between 12 months and 6 years with a mean of 13.43+/-SD of +/-18.34. Regrowth of hair was observed in 32 patches (94%), while only two patches (6%) failed to show any response. No regrowth of hair was observed in the control patches. The regrowth of hair appeared as terminal hair with its original color in 29 patches (90.6%), while three patches (9.4%) appeared as a white villous hair. In patients who showed response, the response was detected as early as 1 week after the first session in 24 patches (75%), while eight patients (25%) started to show response from the second session. The pulsed infrared diode laser is an effective mode of therapy with a high success rate for resistant patches of alopecia areata.

  11. Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm

    Czech Academy of Sciences Publication Activity Database

    Jambunathan, Venkatesan; Horáčková, Lucie; Navrátil, Petr; Lucianetti, Antonio; Mocek, Tomáš

    2016-01-01

    Roč. 128, č. 12 (2016), s. 1328-1331 ISSN 1041-1135 R&D Projects: GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : Diode-pumped * cryogenic * volume Bragg grating * Yb doped * solid state lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  12. Influence of the laser-diode temperature on crystal absorption and ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we studied the influence of heat loaded into the laser crystal in an end- pumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 ...

  13. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  14. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  15. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  16. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  17. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    Science.gov (United States)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and

  18. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.

    2016-01-01

    Diode-pumping Ti: sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-la...

  19. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    Science.gov (United States)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  20. Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.; Hoogerwerf, A. C.; Boïko, D. L., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch [Centre Suisse d' Electronique et de Microtechnique SA (CSEM), CH-2002 Neuchâtel (Switzerland); Sulmoni, L.; Lamy, J.-M.; Grandjean, N. [Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-02-16

    In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injected photons.

  1. An absolute distance interferometer with two external cavity diode lasers

    International Nuclear Information System (INIS)

    Hartmann, L; Meiners-Hagen, K; Abou-Zeid, A

    2008-01-01

    An absolute interferometer for length measurements in the range of several metres has been developed. The use of two external cavity diode lasers allows the implementation of a two-step procedure which combines the length measurement with a variable synthetic wavelength and its interpolation with a fixed synthetic wavelength. This synthetic wavelength is obtained at ≈42 µm by a modulation-free stabilization of both lasers to Doppler-reduced rubidium absorption lines. A stable reference interferometer is used as length standard. Different contributions to the total measurement uncertainty are discussed. It is shown that the measurement uncertainty can considerably be reduced by correcting the influence of vibrations on the measurement result and by applying linear regression to the quadrature signals of the absolute interferometer and the reference interferometer. The comparison of the absolute interferometer with a counting interferometer for distances up to 2 m results in a linearity error of 0.4 µm in good agreement with an estimation of the measurement uncertainty

  2. Curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery: description of use and review of the relevant literature.

    Science.gov (United States)

    McCaffer, C J; Pabla, L; Watson, C

    2018-04-01

    The use of lasers in cholesteatoma surgery is common and well accepted. The most commonly used laser fibres are straight and non-adjustable; these have several limitations. This paper describes the use of an alternative laser fibre. This 'How I Do It' paper describes and illustrates the use of an alternative curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery. The curved, adjustable laser fibre allows accurate and atraumatic disease removal when the use of a straight laser fibre may be less effective or accurate. It reduces potential damage to delicate structures without the need for extra drilling or bone removal. It is suggested that the curved adjustable laser fibre is superior to the traditional straight fibre for cholesteatoma surgery.

  3. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  4. Developing a Methodology for Elaborating a Pulsed Optical Safety Area for High Power Laser Diodes

    National Research Council Canada - National Science Library

    Yankov, Plamen

    2006-01-01

    The laser diodes are efficient sources of optical radiation. The maximum optical peak power depends on the pulse duration of the driving current pulse - reducing the pulse duration the safety peak power is increased...

  5. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  6. Efficacy and persistence of tooth bleaching using a diode laser with three different treatment regimens.

    Science.gov (United States)

    Al Quran, Firas A M; Mansour, Yasar; Al-Hyari, Sabaa; Al Wahadni, Ahed; Mair, Lawrence

    2011-01-01

    Studies have measured the effectiveness of tooth bleaching, however there are very few studies that have measured the persistence in color change after a 6-month follow-up. This study assessed the efficacy of the laser bleaching process using different regimens, and the persistence of color change over a 6-month period. Sixty patients divided into three equal groups were subjected to bleaching using a diode laser with 34% hydrogen peroxide. Group 1: patients subjected to one session of laser bleaching. Group 2: patients subjected to two sessions of laser bleaching with a 1-week interval. Group 3: the same as Group 2 but followed by home bleaching once a month for 3 months. The color was assessed four times: before bleaching, directly after bleaching, 3 months after bleaching, and 6 months after bleaching. All teeth had a significant color change at 6 months, but all teeth had regressed from the maximum value. There was significantly less regression in color for Group 3, followed by Groups 2 and 1, respectively. The combined technique of in-office laser bleaching for two sessions with a 1-week interval, followed by home bleaching once a month for 3 months gave more persistence in color change. In-office power bleaching using a laser assisted hydrogen peroxide system repeated after a week, combined with home bleaching once a month for 3 months, is an effective bleaching regimen with less color regression after 6 months compared to a regimen of in-office bleaching alone.

  7. Effect of diode laser irradiation on the apical sealing of MTA retrofillings Efeito da irradiação de laser de diodo no selamento apical em retrobturações com MTA

    Directory of Open Access Journals (Sweden)

    Eliana Barbosa de Souza

    2006-09-01

    Full Text Available Apical sealing is essential for the success of paraendodontic surgery, so any procedure that may favor an adequate sealing of the apical remainder should be performed. The purpose of this study was to evaluate the influence of diode laser irradiation on the apical sealing of root-end cavities with MTA retrofillings. Root canals in twenty extracted human teeth were shaped with K-files and filled with gutta-percha. The apexes were cut off and root-end preparations were performed. The roots were divided randomly in 2 groups. Group 1 (ten specimens was retrofilled with MTA. Group 2 was irradiated with diode laser, with 1 W for 20 seconds, on the apical surface and root end cavity before retrofilling with MTA. The specimens had their external surfaces impermeabilized with cyanoacrylate, except for the apical surface, and were then immersed in 1% rhodamine B dye for 72 h and placed in plaster stone. After that, the specimens were submitted to longitudinal abrasion until half of the root remained. The linear dye leakage was observed in these mid-roots between the root canal wall and retrofilling. The linear dye leakage was measured with Image Lab software, and the results were statistically analyzed with Student's t test. There were no statistically significant differences between the two groups (p > 0.05. The diode laser irradiation did not improve the apical sealing of MTA retrofillings under the conditions of this in vitro study.O selamento apical é fundamental para o sucesso da cirurgia parendodôntica. Assim, procedimentos que melhorem o selamento do remanescente apical devem ser utilizados. O objetivo deste estudo foi verificar se a irradiação de laser de diodo poderia aumentar o selamento apical em cavidades retrógradas obturadas com MTA. Foram utilizadas 20 raízes de dentes humanos extraídos que, após preparo com lima tipo K, tiveram seus canais obturados com guta-percha. Os ápices foram cortados e sofreram preparo de cavidades retr

  8. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  9. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    Science.gov (United States)

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  10. High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser

    DEFF Research Database (Denmark)

    Zhou, Binbin; Wei, Z.Y.; Zou, Y.W.

    2010-01-01

    A highly efficient diode-end-pumped femtosecond Yb:yttrium aluminum garnet (YAG) ceramic laser was demonstrated. Pumped by a 968 nm fiber-coupled diode laser, 1.9 W mode-locked output power at a repetition rate of 64.27 MHz was obtained with 3.5 W absorbed pump power, corresponding to a slope...... efficiency of 76%. Our measurement showed that the pulse duration was 418 fs with the central wavelength of 1048 nm....

  11. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  12. Emission characteristics of laser and superluminescent diodes with a gradient-index waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, A.E.; Garmash, I.A.; Goldobin, I.S.; Eliukhin, V.A.; Pak, G.T.

    1987-05-01

    A study is made of the emission characteristics of laser and superluminescent diodes with gradient-index waveguides based on Al(x)Ga(1-x)As solid solutions, operating in the CW mode at room temperature. The coupling coefficients for a single-mode fiber are 25 and 18 percent for laser and superluminescent diodes, respectively, when an interface device consisting of three microlenses is used. 6 references.

  13. Novel High Power Type-I Quantum Well Cascade Diode Lasers

    Science.gov (United States)

    2017-08-30

    Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved

  14. Complicações na dacriocistorrinostomia transcanalicular com laser diodo: complications Transcanalicular dacryocystorhinostomy with diode laser

    Directory of Open Access Journals (Sweden)

    Eduardo Alonso Garcia

    2009-08-01

    Full Text Available OBJETIVO: Analisar as complicações da aplicação do laser de diodo para o tratamento da obstrução nasolacrimal adquirida. MÉTODOS: Foram realizados 44 procedimentos (dacriocistorrinostomia transcanalicular com laser de diodo com intubação bicanalicular de silicone sob anestesia local entre fevereiro de 2002 a novembro de 2007 em 41 pacientes (3 bilateralmente, sendo 32 mulheres e 9 homens. RESULTADOS: As complicações mais frequentes no intraoperatório foram: dificuldade de passar a sonda de Crawford (13,6% e passagem da fibra óptica dificultada (11,3%. No pós-operatório, a epífora foi a ocorrência mais frequente (15,9%, seguida pela retirada acidental do silastic (11,3%. CONCLUSÃO: Os índices de complicações intra e pós-operatórias se equivalem aos artigos publicados com a mesma técnica cirúrgica (e mesmo tipo de laser.PURPOSE: To evaluate the complications of the use of diode laser in the treatment of acquired nasolacrimal obstruction. METHODS: Forty four procedures (transcanalicular dacryocystorhinostomy with diode laser with bicanalicular silicone tube intubation and local anesthesia where performed from February 2002 to November 2007 in 41 patients (3 bilaterally, 32 women and 9 men. RESULTS: The most common intraoperative complications were disability to pass the Crawford probe (13.6% and the laser probe (11.3%. Regarding postoperative complications, epiphora was the event of higher frequency (15.9% followed by the non-intentional silastic extrusion by the patient (11.3%. CONCLUSION: Intraoperative and postoperative complications rate were similar of others articles that demonstrated the same surgical technique (with same laser.

  15. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  16. High power diode lasers emitting from 639 nm to 690 nm

    Science.gov (United States)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  17. Blue diode laser versus traditional infrared diode laser and quantic molecular resonance scalpel: clinical and histological findings after excisional biopsy of benign oral lesions

    Science.gov (United States)

    Gobbo, Margherita; Bussani, Rossana; Perinetti, Giuseppe; Rupel, Katia; Bevilaqua, Lorenzo; Ottaviani, Giulia; Biasotto, Matteo

    2017-12-01

    This study aims to compare the use of the innovative blue diode laser (BLUE group) with two traditional surgical techniques: the infrared diode laser (IR group) and the quantic molecular resonance scalpel (QMR group) in the excision of benign oral lesions. Ninety-three patients underwent surgical excision of a benign oral lesion and were followed up for 30 days for pain (0 to 10 visual analogue scale), bleeding, and painkillers' assumption (yes/no). A blind pathologist evaluated the thermal damage along the cutting margin. Although referred pain was lowest in the BLUE group from day 7 on (plaser minimizes risk of bleeding with limited thermal damage.

  18. Thermal analysis of GaN laser diodes in a package structure

    International Nuclear Information System (INIS)

    Feng Mei-Xin; Jiang De-Sheng; Zeng Chang; Li Zeng-Cheng; Yang Hui; Zhang Shu-Ming; Liu Jian-Ping; Wang Hui; Wang Huai-Bing; Wang Feng

    2012-01-01

    Using the finite-element method, the thermal resistances of GaN laser diode devices in a TO 56 package for both epi-up configuration and epi-down configuration are calculated. The effects of various parameters on the thermal characteristics are analysed, and the thicknesses of the AlN submount for both epi-up configuration and epi-down configuration are optimized. The obtained result provides a reference for the parameter selection of the package materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. How does external feedback cause AlGaAs-based diode lasers to degrade?

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The effect of external feedback on the degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is studied. For this purpose, early stages of gradual degradation are induced by accelerated aging at high power levels. While the quantum well that actually experiences the highest...... total optical load remains unaffected, severe impact by point defects is observed on the cladding layers and the waveguide. Extended defects such as dislocations, however, are not observed in such early stages of degradation, which are accompanied by gradual power loss of a few percent only....

  20. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  1. Route to broadband chaos in a chaotic laser diode subject to optical injection.

    Science.gov (United States)

    Wang, An-Bang; Wang, Yun-Cai; Wang, Juan-Fen

    2009-04-15

    We experimentally and numerically demonstrate a route to bandwidth-enhanced chaos that is induced by an additional optical injection for a chaotic laser diode with optical feedback. The measured and calculated optical spectra consistently reveal that the mechanism of bandwidth enhancement is the interaction between the injection and chaotic laser field via beating. The bandwidth can be maximized only when the injected light is detuned into the edge of the optical spectrum of the chaotic laser field and the beating frequency exceeds the original bandwidth. The simulated dynamics maps indicate that 20 GHz broadband chaos can be obtained by commonly used laser diodes.

  2. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  3. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    Science.gov (United States)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  4. A comparative study of modified transcanalicular diode laser dacryocystorhinostomy versus conventional transcanalicular diode laser dacryocystorhinostomy.

    Science.gov (United States)

    Feijó, Eduardo Damous; Caixeta, Juliana Alves; de Souza Nery, Ana Carla; Limongi, Roberto Murillo; Matayoshi, Suzana

    2017-08-01

    External dacryocystorhinostomy (DCR) is the gold standard surgical technique for the treatment of primary acquired nasolacrimal duct obstruction (PANDO). However, new techniques such as endoscopic DCR and transcanalicular dacryocystorhinostomy (T-DCR) are being studied in an attempt to reduce surgical time, avoid external scarring and preserve the lacrimal pump while achieving the same efficacy. The purpose of this study was to compare the efficacy between conventional T-DCR and modified transcanalicular dacryocystorhinostomy (MT-DCR) in patients with PANDO. MT-DCR is performed to remove nasal mucosa prior to laser osteotomy. This is a comparative, prospective, interventionist and randomized study. Patients with PANDO were selected to undergo MT-DCR or T-DCR by blocked randomization. PANDO was diagnosed based on clinical presentation, dye disappearance test and dacryocystography. All of the procedures were performed by the same surgery team members. Anatomical success outcome was defined as positive lacrimal syringing and functional success outcome was defined as the absence or improvement of epiphora. A total of 44 surgical procedures were performed (22 MT-DCR and 22 T-DCR). In the case of MT-DCR, the anatomical and functional success rates after 12 months were 90 and 86%, respectively. After T-DCR, these rates were 77 and 72%, respectively (p = 0.162). MT-DCR and T-DCR are both safe and fast procedures with low morbidity and well-tolerated.

  5. Investigation of diode-laser pumped thulium-doped fluoride lasers

    International Nuclear Information System (INIS)

    Matos, Paulo Sergio Fabris de

    2006-01-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  6. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  7. Theoretical study on the thermal and optical features of a diode side-pumped alkali laser

    Science.gov (United States)

    Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You

    2018-03-01

    As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.

  8. Diode and Nd:YAG laser in a case of refractory acne keloidalis nuchae

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Chittoria

    2015-03-01

    Full Text Available Acne keloidalis nuchae (AKN is a disease of unclear etiology that mainly affects males. Medical treatment of AKN is difficult, with refractory cases often requiring ablation by laser or surgical resection. We report herein, a 23-year-old male with refractory AKN treated successfully with combined laser ablation, using an 810-nm diode laser and a 1064-nm Nd:YAG laser.

  9. Modulation of distributed feedback (DFB) laser diode with the autonomous Chua's circuit: Theory and experiment

    Science.gov (United States)

    Talla Mbé, Jimmi Hervé; Woafo, Paul

    2018-03-01

    We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.

  10. 2000W high beam quality diode laser for direct materials processing

    Science.gov (United States)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  11. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  12. Efficient Ho:LuLiF4 laser diode-pumped at 1.15 μm.

    Science.gov (United States)

    Wang, Sheng-Li; Huang, Chong-Yuan; Zhao, Cheng-Chun; Li, Hong-Qiang; Tang, Yu-Long; Yang, Nan; Zhang, Shuai-Yi; Hang, Yin; Xu, Jian-Qiu

    2013-07-15

    We report the first laser operation based on Ho(3+)-doped LuLiF(4) single crystal, which is directly pumped with 1.15-μm laser diode (LD). Based on the numerical model, it is found that the "two-for-one" effect induced by the cross-relaxation plays an important role for the laser efficiency. The maximum continuous wave (CW) output power of 1.4 W is produced with a beam propagation factor of M(2) ~2 at the lasing wavelength of 2.066 μm. The slope efficiency of 29% with respect to absorbed power is obtained.

  13. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  14. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  15. Update on the use of diode laser in the management of benign prostate obstruction in 2014.

    Science.gov (United States)

    Lusuardi, Lukas; Mitterberger, Michael; Hruby, Stephan; Kunit, Thomas; Kloss, Birgit; Engelhardt, Paul F; Sieberer, Manuela; Janetschek, Günter

    2015-04-01

    To determine the status quo in respect of various diode lasers and present the techniques in use, their results and complications. We assess how these compare with transurethral resection of the prostate and other types of laser in randomized controlled trials (RCTs). When adequate RCTs were not available, case studies and reports were evaluated. Laser for the treatment of benign prostatic hyperplasia (BPH) has aroused the interest and curiosity of urologists as well as patients. The patient associates the term laser with a successful and modern procedure. The journey that started with coagulative necrosis of prostatic adenoma based on neodymium: yttrium-aluminum-garnet (Nd:YAG) laser has culminated in endoscopic "enucleation" with holmium laser. Diode laser is being used in urology for about 10 years now. Various techniques have been employed to relieve bladder outlet obstruction due to BPH. The diode laser scenario is marked by a diversity of surgical techniques and wavelengths. We summarize the current published literature in respect of functional results and complications. More randomized controlled studies are needed to determine the position and the ideal technique of diode laser treatment for BPH.

  16. The Versatility of 980 nm Diode Laser in Dentistry: A Case Series.

    Science.gov (United States)

    Derikvand, Nahid; Chinipardaz, Zahra; Ghasemi, Sara; Chiniforush, Nasim

    2016-01-01

    Introduction: Laser surgery has been considered a popular alternative over conventional modalities in dentistry during the last few years. Among different types of lasers, diode lasers have gained special attention in oral soft tissue surgery. Case Reports: Five patients were referred to a private office. After careful evaluation of medical history and oral examination, oral diagnosis and treatment plan of each patient was established as follows: (1) A 21-year-old female with ankyloglossia (tongue-tie); (2) A 65-year-old female with a poor denture fit needing vestibuloplasty and frenectomy; (3) A 10-year-old male patient with pigmented gingiva in mandible and maxilla; (4) A 14-year-old female needing exposure of maxillary right canine for bracket bonding; and (5) A 25-year-old female patient who has a gingival maxillary frenum with a nodule. The treatment plan for all the patients was laser surgery with diode laser at 980 nm, in continuous mode. Results: All the patients experienced normal healing process with no postoperative complications. Favorable outcomes of laser surgery were observed on follow-up sessions. Conclusion: Considering the versatility of the 980 nm diode laser in oral soft tissue surgeries and the advantages of laser surgery, this study suggests the use of 980 nm diode laser in this regard.

  17. Photobiomodulation by helium neon and diode lasers in an excisional wound model: A single blinded trial

    Directory of Open Access Journals (Sweden)

    Snehil Dixit

    2012-01-01

    Full Text Available Background: Application of different kinds of lasers in clinical and experimental studies causes photobiomodulation that works at localized cellular and humoral level on various biological systems. Increased numbers of fibroblasts, myofibroblast, and degranulation of mast cells have been the observed benefits post-irradiation. Objective: Was to find out the effect of irradiation with energy densities of 3.38 J/cm 2 , 8 J/cm 2 , and 18 J/cm 2 on animal tissue (albino wistar rats in an excisional wound model and to assess changes in biochemical (hydroxyproline and histopathological levels in excisional wound model. Materials and Methods: The animals were divided into 4 groups, which were labeled as L1, diode laser (18 J/cm 2 , L2 Helium-neon (He-Ne, 8 J/cm 2 , L3 diode laser (3.38 J/cm 2 , and sham treatment for control was depicted by C, respectively. Histological and hydroxyproline analysis was performed on 7, 14, 21 days of post-wounding. One-way analysis of variance, ANOVA and Bonferroni′s multiple comparison tests were done for tissue hydroxyproline levels. Results: There was no significant increase in the hydroxyproline content (P < 0.005 when observed in study group and compared to controls. Whereas significant epithelizations was seen in group treated with He-Ne laser of intensity of 8 J/cm 2 . Conclusion: The experimental observations suggest that low intensity helium-neon laser of 8 J/cm 2 intensity facilitated photo stimulation by tissue repair, but failed to show significant tissue hydroxyproline levels in excisional wound model.

  18. Evaluation of the hydrogen peroxide and special colorant effects under irradiation by argon and diode laser on tooth-whitening in vitro; Avaliacao do efeito de corantes especiais e peroxido de hidrogenio irradiados por laser de argonio e laser de diodo no clareamento dental 'in vitro'

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Jose Antonio

    2003-07-01

    The aim of this study is to determine if there is any interaction between special colorant found on bleaching agents that have 35 % of hydrogen peroxide on its composition, and argon or diode laser. The first part of the study was to characterize the extrinsic stain obtained through a staining solution containing products present on the day by day diet of the general population. Thirty-two inferior human extracted incisors, free of caries and without filling material were selected for the study. The laser devices employed were Argon laser (AccuCure 3000 TM - Lasermed), wave length 488 nm, with a 200 mW/cm{sup 2} for 30 seconds in continuos mode; and diode laser (L 808 Medical Laser - Lasering do Brasil), wave length 808 {+-} 10 nm, with 1,6 W/cm{sup 2} for 30 seconds in continuos mode. The application mode done by a scanning movement over the buccal surface. The bleaching agents used were: Opalescence Extra (OE) - Ultradent Products USA, hydrogen peroxide 35%, gel with Carotene to convert light into heat; Pola Office (PO) - SDI - USA single doses of hydrogen peroxide; Whiteness HP (WHP) - FGM - Brasil, hydrogen peroxide 35%; Opus White (OW) - Sharplan - Israel, hydrogen peroxide 35%. The temperature rise measurement was performed with a thermocouple model 120-202-AJ, Fenwal, inserted into the pulpar chamber. The bleaching material was applied on the tooth surface with 2 mm thickness and then the irradiation was perform. The thirty two teeth were randomized in four groups, two for each laser device. The obtain data demonstrated a superior performance of the Argon laser on tooth whitening and also better results concerning the temperature rise. The alteration on tooth coloration was verified through digital spectrophotometer (Shade-Eye EX - Shofu) and quantitative analyses showed statistical differences among the groups. The bleaching results for Argon laser combined with OE and WHP were superior for the other groups. The mean variation of the temperature rise

  19. Evaluation of the hydrogen peroxide and special colorant effects under irradiation by argon and diode laser on tooth-whitening in vitro; Avaliacao do efeito de corantes especiais e peroxido de hidrogenio irradiados por laser de argonio e laser de diodo no clareamento dental 'in vitro'

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Jose Antonio

    2003-07-01

    The aim of this study is to determine if there is any interaction between special colorant found on bleaching agents that have 35 % of hydrogen peroxide on its composition, and argon or diode laser. The first part of the study was to characterize the extrinsic stain obtained through a staining solution containing products present on the day by day diet of the general population. Thirty-two inferior human extracted incisors, free of caries and without filling material were selected for the study. The laser devices employed were Argon laser (AccuCure 3000 TM - Lasermed), wave length 488 nm, with a 200 mW/cm{sup 2} for 30 seconds in continuos mode; and diode laser (L 808 Medical Laser - Lasering do Brasil), wave length 808 {+-} 10 nm, with 1,6 W/cm{sup 2} for 30 seconds in continuos mode. The application mode done by a scanning movement over the buccal surface. The bleaching agents used were: Opalescence Extra (OE) - Ultradent Products USA, hydrogen peroxide 35%, gel with Carotene to convert light into heat; Pola Office (PO) - SDI - USA single doses of hydrogen peroxide; Whiteness HP (WHP) - FGM - Brasil, hydrogen peroxide 35%; Opus White (OW) - Sharplan - Israel, hydrogen peroxide 35%. The temperature rise measurement was performed with a thermocouple model 120-202-AJ, Fenwal, inserted into the pulpar chamber. The bleaching material was applied on the tooth surface with 2 mm thickness and then the irradiation was perform. The thirty two teeth were randomized in four groups, two for each laser device. The obtain data demonstrated a superior performance of the Argon laser on tooth whitening and also better results concerning the temperature rise. The alteration on tooth coloration was verified through digital spectrophotometer (Shade-Eye EX - Shofu) and quantitative analyses showed statistical differences among the groups. The bleaching results for Argon laser combined with OE and WHP were superior for the other groups. The mean variation of the temperature rise

  20. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.