WorldWideScience

Sample records for dimers controls heterotrimeric

  1. Splice Isoforms of Phosducin-like Protein Control the Expression of Heterotrimeric G Proteins*

    Science.gov (United States)

    Gao, Xueli; Sinha, Satyabrata; Belcastro, Marycharmain; Woodard, Catherine; Ramamurthy, Visvanathan; Stoilov, Peter; Sokolov, Maxim

    2013-01-01

    Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins. PMID:23888055

  2. The role of inhibitory heterotrimeric G proteins in the control of in vivo heart rate dynamics

    Science.gov (United States)

    Zuberi, Zia; Birnbaumer, Lutz; Tinker, Andrew

    2008-01-01

    Multiple isoforms of inhibitory Gα-subunits (Gαi1,2,3, as well as Gαo) are present within the heart, and their role in modulating pacemaker function remains unresolved. Do inhibitory Gα-subunits selectively modulate parasympathetic heart rate responses? Published findings using a variety of experimental approaches have implicated roles for Gαi2, Gαi3, and Gαo in parasympathetic signal transduction. We have compared in vivo different groups of mice with global genetic deletion of Giα1/Gαi3, Gαi2, and Gαo against littermate controls using implanted ECG telemetry. Significant resting tachycardia was observed in Gαi2−/− and Gαo−/− mice compared with control and Gαi1−/−/Gαi3−/− mice (P heart rate variation was seen exclusively in Gαo−/− mice. Using heart rate variability (HRV) analysis, compared with littermate controls (4.02 ms2 ± 1.17; n = 6, Gαi2−/−) mice have a selective attenuation of high-frequency (HF) power (0.73 ms2 ± 0.31; n = 5, P heart rate was attenuated in Gαi2−/− mice (0.08 ± 0.04; n = 6) compared to control (0.27 ± 0.04; n = 7 P heart rate modulation in mice with Gαi2 deletion. Mice with Gαo deletion also have a defect in short-term heart rate dynamics, but this is qualitatively different to the effects of atropine, tertiapinQ, and Gαi2 deletion. In contrast, Gαi1 and Gαi3 do not appear to be essential for parasympathetic responses in vivo. PMID:18832081

  3. Heterotrimeric G protein signaling in polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Park, Frank

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.

  4. Active control of nano dimers response using piezoelectric effect

    Science.gov (United States)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  5. Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Magdalena Delcado-Cerezo; Paul Schulze-Lefert; Shauna Somerville; José Manuel Estevez; Staffan Persson; Antonio Molina; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Pawel Bednarek

    2012-01-01

    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi.The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens.Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2).Accordingly,we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina.To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance,we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P cucumerina.This analysis,together with metabolomic studies,demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi,such as the salicylic acid,jasmonic acid,ethylene,abscisic acid,and tryptophan-derived metabolites signaling,as these pathways were not impaired in agb1 and agg1 agg2 mutants.Notably,many mis-regulated genes in agb1 plants were related with cell wall functions,which was also the case in agg1 agg2 mutant.Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants,and that mutant walls had similar FTIR spectratypes,which differed from that of wild-type plants.The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

  6. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity.

    Science.gov (United States)

    Wichmann, Christian; Becker, Yvonne; Chen-Wichmann, Linping; Vogel, Vitali; Vojtkova, Anna; Herglotz, Julia; Moore, Sandra; Koch, Joachim; Lausen, Jörn; Mäntele, Werner; Gohlke, Holger; Grez, Manuel

    2010-07-29

    RUNX1/ETO, the fusion protein resulting from the chromosomal translocation t(8;21), is one of the most frequent translocation products in acute myeloid leukemia. Several in vitro and in vivo studies have shown that the homo-tetramerization domain of ETO, the nervy homology region 2 (NHR2), is essential for RUNX1/ETO oncogenic activity. We analyzed the energetic contribution of individual amino acids within the NHR2 to RUNX1/ETO dimer-tetramer transition and found a clustered area of 5 distinct amino acids with strong contribution to the stability of tetramers. Substitution of these amino acids abolishes tetramer formation without affecting dimer formation. Similar to RUNX1/ETO monomers, dimers failed to bind efficiently to DNA and to alter expression of RUNX1-dependent genes. RUNX1/ETO dimers do not block myeloid differentiation, are unable to enhance the self-renewal capacity of hematopoietic progenitors, and fail to induce leukemia in a murine transplantation model. Our data reveal the existence of an essential structural motif (hot spot) at the NHR2 dimer-tetramer interface, suitable for a molecular intervention in t(8;21) leukemias.

  7. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  8. Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Dustin E Bosch

    Full Text Available Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.

  9. Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica

    Science.gov (United States)

    Muller, Robin E.; Giguère, Patrick M.; Machius, Mischa; Willard, Francis S.; Temple, Brenda R. S.; Siderovski, David P.

    2012-01-01

    Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism. PMID:23166501

  10. Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Danveer; Raghuwanshi, Mohit; Pavan Kumar, G. V. [Photonics and Optical Nanoscopy Laboratory, Department of Physics and Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008 (India)

    2012-09-10

    We experimentally studied plasmon-polariton-assisted light propagation in serially coupled silver nanowire (Ag-NW) dimers and probed their dependence on bending-angle between the nanowires and polarization of incident light. From the angle-dependence study, we observed that obtuse angles between the nanowires resulted in better transmission than acute angles. From the polarization studies, we inferred that light emission from junction and distal ends of Ag-NW dimers can be systematically controlled. Further, we applied this property to show light routing and polarization beam splitting in obtuse-angled Ag-NW dimer. The studied geometry can be an excellent test-bed for plasmonic circuitry.

  11. Plasmid control of 6-aminohexanoic acid cyclic dimer degradation enzymes of Flavobacterium sp. KI72.

    Science.gov (United States)

    Negoro, S; Shinagawa, H; Nakata, A; Kinoshita, S; Hatozaki, T; Okada, H

    1980-07-01

    Flavobacterium sp. K172, which is able to grow on 6-aminohexanoic acid cyclic dimer as the sole source of carbon and nitrogen, and plasmid control of the responsible enzymes, 6-aminohexanoic acid cyclic dimer hydrolase and 6-aminohexanoic acid linear oligomer hydrolase, were studied. The wild strain of K172 harbors three kinds of plasmid, pOAD1 (26.2 megadaltons), pOAD2 (28.8 megadaltons), and pOAD3 (37.2 megadaltons). The wild strain K172 was readily cured of its ability to grow on the cyclic dimer by mitomycin C, and the cyclic dimer hydrolase could not be detected either as catalytic activity or by antibody precipitation. No reversion of the cured strains was detected. pOAD2 was not detected in every cured strain tested but was restored in a transformant. The transformant recovered both of the enzyme activities, and the cyclic dimer hydrolase of the transformant was immunologically identical with that of the wild strain. All of the strains tested, including the wild, cured, and transformant ones, possessed identical pOAD3 irrespective of the metabolizing activity. Some of the cured strains possessed pOAD1 identical with the wild strain, but the others harbored plasmids with partially altered structures which were likely to be derived from pOAD1 by genetic rearrangements such as deletion, insertion, or substitution. These results suggested that the genes of the enzymes were borne on pOAD2.

  12. Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer

    CERN Document Server

    Liu, Zhenzhen; Zhang, Qiang; Zhang, Xiaoming; Tao, Keyu

    2015-01-01

    We report collective dark states controlled transmission in metal-dielectric-metal waveguides with a stub coupled to two twin cavities, namely, plasmonic waveguide-stub-dimer systems. In absence of one individual cavity in the dimer, plasmon induced transparency (PIT) is possible when the cavity and the stub have the same resonance frequency. However, it is shown that the hybridized modes in the dimer collectively generate two dark states which make the stub-dimer "invisible" to the straight waveguide, splitting the original PIT peak into two in the transmission spectrum. Simultaneously, the original PIT peak becomes a dip due to dark state interaction, yielding anti-PIT-like modulation of the transmission. With full-wave electromagnetic simulation, we demonstrate that this transition is controlled by the dimer-stub separation and the dimer-stub relative position. All results are analytically described by the temporal coupled mode theory. Our results may be useful in designing densely integrated optical circu...

  13. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  14. Heterotrimeric G protein signalling in the plant kingdom

    Science.gov (United States)

    Urano, Daisuke; Chen, Jin-Gui; Botella, José Ramón; Jones, Alan M.

    2013-01-01

    In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies. PMID:23536550

  15. Heterotrimeric G protein signalling in the plant kingdom.

    Science.gov (United States)

    Urano, Daisuke; Chen, Jin-Gui; Botella, José Ramón; Jones, Alan M

    2013-03-27

    In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.

  16. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity.

    Directory of Open Access Journals (Sweden)

    Miyoung Kim

    Full Text Available BACKGROUND: Translationally Controlled Tumor Protein (TCTP found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF. Human recombinant HRF (HrHRF has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn. METHODS AND FINDINGS: We found that only NH(2-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP. Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS: Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.

  17. Diversity of heterotrimeric G-protein γ subunits in plants

    Directory of Open Access Journals (Sweden)

    Trusov Yuri

    2012-10-01

    Full Text Available Abstract Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX. According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  18. Dimerization of TOC receptor GTPases and its implementation for the control of protein import into chloroplasts.

    Science.gov (United States)

    Aronsson, Henrik; Jarvis, Paul

    2011-06-01

    Pre-protein import into chloroplasts is facilitated by multiprotein translocon complexes in the envelope membranes. Major components of the TOC (translocon at the outer envelope membrane of chloroplasts) complex are the receptor proteins Toc33 and Toc159. These two receptors are related GTPases, and they are predicted to engage in homodimerization and/or heterodimerization. Although such dimerization has been studied extensively, its exact function in vivo remains elusive. In this issue of the Biochemical Journal, Oreb et al. present evidence that homodimerization of Toc33 prevents nucleotide exchange, thereby locking the receptor in the GDP-loaded state and preventing further activity. Pre-protein arrival is proposed to release this lock, through disruption of the dimer and subsequent nucleotide exchange. The Toc33-bound pre-protein is then able to progress to downstream steps in the translocation mechanism, with GTP hydrolysis defining another important control point as well as preparing the receptor for the next pre-protein client. These new results are discussed in the context of previous findings pertaining to TOC receptor dimerization and function.

  19. Plasmonic Dimer Metamaterials and Metasurfaces for Polarization Control of Terahertz and Optical Waves

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu

    2013-01-01

    We explore the capabilities of planar metamaterials and metasurfaces to control and transform the polarization of electromagnetic radiation, and present a detailed covariant multipole theory of dimer-based metamaterials. We show that various optical properties, such as optical activity, elliptical...... dichroism or polarization conversion can be achieved in metamaterials made of simple shapes, such as nanorods, just by varying their geometrical arrangement. By virtue of the Babinet principle, the proposed theory is extended to inverted structures (membranes) where rods are replaced by slots. Such free...

  20. Heterotrimeric G-proteins: a short history.

    Science.gov (United States)

    Milligan, Graeme; Kostenis, Evi

    2006-01-01

    Some 865 genes in man encode G-protein-coupled receptors (GPCRs). The heterotrimeric guanine nucleotide-binding proteins (G-proteins) function to transduce signals from this vast panoply of receptors to effector systems including ion channels and enzymes that alter the rate of production, release or degradation of intracellular second messengers. However, it was not until the 1970s that the existence of such transducing proteins was even seriously suggested. Combinations of bacterial toxins that mediate their effects via covalent modification of the alpha-subunit of certain G-proteins and mutant cell lines that fail to generate cyclic AMP in response to agonists because they either fail to express or express a malfunctional G-protein allowed their identification and purification. Subsequent to initial cloning efforts, cloning by homology has defined the human G-proteins to derive from 35 genes, 16 encoding alpha-subunits, five beta and 14 gamma. All function as guanine nucleotide exchange on-off switches and are mechanistically similar to other proteins that are enzymic GTPases. Although not readily accepted initially, it is now well established that beta/gamma complexes mediate as least as many functions as the alpha-subunits. The generation of chimeras between different alpha-subunits defined the role of different sections of the primary/secondary sequence and crystal structures and cocrystals with interacting proteins have given detailed understanding of their molecular structure and basis of function. Finally, further modifications of such chimeras have generated a range of G-protein alpha-subunits with greater promiscuity to interact across GPCR classes and initiated the use of such modified G-proteins in drug discovery programmes.

  1. Energetics and control of ultracold isotope-exchange reactions between heteronuclear dimers in external fields

    CERN Document Server

    Tomza, Michał

    2015-01-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000$\\,$MHz thus resulting in cold or ultracold products. For these chemical reactions there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. The exothermic isotope-exchange reactions can be tuned to become endothermic by employing a laser-induced state-selective Stark shift control thus providing a ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over quantum states of both reactants and products.

  2. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields

    Science.gov (United States)

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products.

  3. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    Science.gov (United States)

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  4. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    Science.gov (United States)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-01-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct. PMID:27681031

  5. Reversible Dimerization of Acid-Denatured ACBP Controlled by Helix A4

    DEFF Research Database (Denmark)

    Fieber, Wolfgang; Kragelund, Birthe Brandt; Meldal, Morten Peter;

    2005-01-01

    of dimers and revealed a cooperative stabilization of helix A4 in this process. This emphasizes its special role in the structure formation in the denatured state of ACBP. No dimers are formed in the presence of guanidine hydrochloride, which underlines the fundamental difference between the nature...

  6. Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Xing-Hai Jin

    2017-01-01

    Full Text Available Our previous study showed that dimerized translationally controlled tumor protein (dTCTP plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2, binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC, thymus and activation-regulated chemokine (TARC and thymic stromal lymphopoietin (TSLP. These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.

  7. Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces.

    Science.gov (United States)

    Zhang, Zibin; Yu, Guocan; Han, Chengyou; Liu, Jiyong; Ding, Xia; Yu, Yihua; Huang, Feihe

    2011-09-16

    Two new copillar[5]arenes were prepared. They are arranged in two completely different motifs, a cyclic dimer containing two monomers with two different conformations that are mirror images of each other and linear supramolecular polymers in the solid state. Not only has it been shown that to form this kind of dimer is a unique feature associated with pillar[5]arene macrocycles but also it was demonstrated that weak van der Waals forces can be used to control the self-organization of monomers during their supramolecular polymerization process.

  8. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  9. Structural features of the KPI domain control APP dimerization, trafficking, and processing.

    Science.gov (United States)

    Ben Khalifa, Naouel; Tyteca, Donatienne; Marinangeli, Claudia; Depuydt, Mathieu; Collet, Jean-François; Courtoy, Pierre J; Renauld, Jean-Christophe; Constantinescu, Stefan; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2012-02-01

    The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.

  10. Controlled state-to-state atom-exchange reaction in an ultracold atom-dimer mixture

    CERN Document Server

    Rui, Jun; Liu, Lan; Zhang, De-Chao; Liu, Ya-Xiong; Nan, Jue; Zhao, Bo; Pan, Jian-Wei

    2016-01-01

    Ultracold molecules offer remarkable opportunities to study chemical reactions at nearly zero temperature. Although significant progresses have been achieved in exploring ultracold bimolecular reactions, the investigations are usually limited to measurements of the overall loss rates of the reactants. Detection of the reaction products will shed new light on understanding the reaction mechanism and provide a unique opportunity to study the state-to-state reaction dynamics. Here we report on the direct observation of an exoergic atom-exchange reaction in an ultracold atom-dimer mixture. Both the atom and molecule products are observed and the quantum states are characterized. By changing the magnetic field, the reaction can be switched on or off, and the reaction rate can be controlled. The reaction is efficient and we have measured a state-to-state reaction rate of up to $1.1(3)\\times10^{-9}$cm$^{3}/$s from the time evolution of the reactants and products. Our work represents the realization of a controlled q...

  11. Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

    Science.gov (United States)

    Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan

    2013-05-01

    The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.

  12. G domain dimerization controls dynamin's assembly-stimulated GTPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Chappie, Joshua S.; Acharya, Sharmistha; Leonard, Marilyn; Schmid, Sandra L.; Dyda, Fred (NIH); (Scripps)

    2010-06-14

    Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 {angstrom} resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF{sub 4}{sup -}. The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

  13. Universality in bosonic dimer-dimer scattering

    Energy Technology Data Exchange (ETDEWEB)

    Deltuva, A. [Centro de Fisica Nuclear, Universidade de Lisboa, P-1649-003 Lisboa (Portugal)

    2011-08-15

    Bosonic dimer-dimer scattering is studied near the unitary limit using momentum-space equations for the four-particle transition operators. The impact of the Efimov effect on the dimer-dimer scattering observables is explored, and a number of universal relations is established with high accuracy. The rate for the creation of Efimov trimers via dimer-dimer collisions is calculated.

  14. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses.

    Science.gov (United States)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K

    2016-08-28

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  15. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R.; Zhang, Hao; Schwarz, Toni; Leung, Daisy W.; Basler, Christopher F.; Gross, Michael L.; Amarasinghe, Gaya K.

    2016-08-04

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  16. Electromagnetic polarization controlled perfect switching effect with high refractive index dimers. the beam-splitter configuration

    CERN Document Server

    Barreda, Angela I; Litman, Amelie; Gonzalez, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2016-01-01

    High Refractive Index (HRI) dielectric particles smaller than the wavelength, isolated or forming a designed ensemble are ideal candidates as new multifunctional elements for building optical devices. Their directionality effects are traditionally analyzed through forward and backward measurements, even if these directions are not suitable for practical purposes. Here we present unambiguous experimental evidence in the microwave range that, for a dimer of HRI spherical particles, a perfect switching effect (perfect means off = null intensity) is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization (polarization switching). Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell equations allows generalizing our results to other frequency range ...

  17. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    Science.gov (United States)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl- channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl- transport.

  18. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna (UW)

    2017-04-10

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  19. De rol van heterotrimere G-eiwitten in de ontwikkeling en virulentie van Phytophthora infestans

    NARCIS (Netherlands)

    Latijnhouwers, M.

    2003-01-01

    Onderzoek naar de ziekteverwekker Phytophthora infestans die de aardappelziekte veroorzaakt. Samenvatting van het proefschrift van Maita J.M. Latijnhouwers getiteld: 'The role of heterotrimeric G-proteins in development and virulence of Phytophthora infestans'

  20. Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats.

    Science.gov (United States)

    Sommer, Jens Bak; Bach, Anders; Malá, Hana; Gynther, Mikko; Bjerre, Ann-Sofie; Gram, Marie Gajhede; Marschner, Linda; Strømgaard, Kristian; Mogensen, Jesper; Pickering, Darryl S

    2017-08-21

    Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.

  1. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins1[OPEN

    Science.gov (United States)

    Hackenberg, Dieter; Quatrano, Ralph

    2016-01-01

    In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P. patens genome also codes for a unique assortment of G-protein components, which includes two copies of Gβ and Gγ genes, but no canonical Gα. Instead, a single gene encoding an extra-large Gα (XLG) protein exists in the P. patens genome. Here, we demonstrate that in P. patens the canonical Gα is biochemically and functionally replaced by an XLG protein, which works in the same genetic pathway as one of the Gβ proteins to control its development. Furthermore, the specific G-protein subunits in P. patens are essential for its life cycle completion. Deletion of the genomic locus of PpXLG or PpGβ2 results in smaller, slower growing gametophores. Normal reproductive structures develop on these gametophores, but they are unable to form any sporophyte, the only diploid stage in the moss life cycle. Finally, the mutant phenotypes of ΔPpXLG and ΔPpGβ2 can be complemented by the homologous genes from Arabidopsis, AtXLG2 and AtAGB1, respectively, suggesting an overall conservation of their function throughout the plant evolution. PMID:27550997

  2. D-dimer to guide the intensity of anticoagulation in Chinese patients after mechanical heart valve replacement: a randomized controlled trial.

    Science.gov (United States)

    Zhang, L; Zheng, X; Long, Y; Wu, M; Chen, Y; Yang, J; Liu, Z; Zhang, Z

    2017-08-01

    Essentials Low anticoagulation intensity reduces bleeding but increases thrombosis during warfarin therapy. Elevated D-dimer level is associated with increased thrombosis events. D-dimer can be used to find potential thrombosis in those receiving low intensity therapy. D-dimer-guided therapy may be the optimal strategy for those with mechanical heart valve replacement. Background Controversies remain regarding the optimal anticoagulation intensity for Chinese patients after mechanical heart valve replacement despite guidelines having recommended a standard anticoagulation intensity. Objectives To investigate whether D-dimer could be used to determine the optimal anticoagulation intensity in Chinese patients after mechanical heart valve replacement. Patients/Methods This was a prospective, randomized controlled clinical study. A total of 748 patients following mechanical heart valve replacement in Wuhan Asia Heart Hospital were randomized to three groups at a ratio of 1 : 1 : 1. Patients in two control groups received warfarin therapy based on constant standard intensity (international normalized ratio [INR], 2.5-3.5; n = 250) and low intensity (INR, 1.8-2.6; n = 248), respectively. In the experimental group (n = 250), warfarin therapy was initiated at low intensity, then those with elevated D-dimer levels were adjusted to standard intensity. All patients were followed-up for 24 months until the occurrence of endpoints, including bleeding events, thrombotic events and all-cause mortality. Results A total of 718 patients were included in the analysis. Fifty-three events occurred during follow-up. There was less hemorrhage (3/240 vs. 16/241; hazard ratio [HR], 0.18; 95% confidence interval [CI], 0.07-0.45) and all-cause mortality (4/240 vs. 12/241; HR, 0.33; 95% CI, 0.12-0.87) observed in the D-dimer-guided group than in the standard-intensity group. A lower incidence of thrombotic events was also observed in the D-dimer-guided group when compared with the

  3. Control over the oxidative reactivity of metalloporphyrins. Efficient electrosynthesis of meso,meso-linked zinc porphyrin dimer.

    Science.gov (United States)

    Dime, Abdou K D; Devillers, Charles H; Cattey, Hélène; Habermeyer, Benoît; Lucas, Dominique

    2012-01-21

    The electrochemical oxidation of zinc(II) 5,15-p-ditolyl-10-phenylporphyrin at its first oxidation potential leads to the formation of the corresponding meso-meso porphyrin dimer as the main product. The number of electrons abstracted, the addition of the hindered base 2,6-lutidine as well as operating in DMF, instead of a CH(2)Cl(2)/CH(3)CN mixture are the key parameters to obtain high yields of the desired coupling product. Indeed, when the electrolyses are carried out in the CH(2)Cl(2)/CH(3)CN mixture, the unexpected zinc(II) 5-chloro-10,20-p-ditolyl-15-phenyl porphyrin is produced as a by-product, the chlorine atom originating from the CH(2)Cl(2) solvent. The monomer and the dimer are characterised by electrochemical analysis. The signature of the dimer is clearly distinguished on the cyclic voltammogram of the monomer on condition of the prior addition of 2,6-lutidine as a hindered base, indicating that the dimerisation process is thus strongly accelerated. Besides, unprecedented X-ray crystallographic structures of the monomer and the meso-meso dimer are presented and their respective structural parameters are compared.

  4. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    Science.gov (United States)

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.

  5. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  6. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    Science.gov (United States)

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview.

  7. Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability.

    Science.gov (United States)

    Nilson, Sarah E; Assmann, Sarah M

    2010-02-01

    Phenotypic plasticity is the ability of one genotype to display different phenotypes under different environmental conditions. Although variation for phenotypic plasticity has been documented in numerous species, little is known about the genetic mechanisms underlying phenotypic plasticity. Given their widespread roles in hormonal and environmental signaling, we examined whether genes which encode heterotrimeric G proteins are plasticity genes. We grew multiple alleles of heterotrimeric G-protein mutants, together with wild-type Arabidopsis thaliana, under different watering regimes to determine the contributions of G-protein genes to phenotypic plasticity for a number of developmental and reproduction-related traits. G-protein mutations did not affect significantly the amount of phenotypic variation within an environment for any trait, but did affect significantly the amount of phenotypic plasticity for certain traits. AGB1, which encodes the beta subunit of the heterotrimeric G protein in Arabidopsis, is a plasticity gene and regulates reproductive trait plasticity in response to water availability, resulting in increased fitness (defined as seed production) under drought stress.

  8. Effects of dimeric PSD-95 inhibition on excitotoxic cell death and outcome after controlled cortical impact in rats

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were...... assessed in a water maze at two weeks post-trauma, and at four weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects......Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also...

  9. Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration

    Science.gov (United States)

    Barreda, Ángela I.; Saleh, Hassan; Litman, Amelie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2017-01-01

    Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale.

  10. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  11. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  12. Protein dimerization. Inside job.

    Science.gov (United States)

    Metzger, H

    1994-04-01

    In a sophisticated combination of genetic engineering and organic synthesis, a general method for dimerizing recombinant intracellular proteins has been devised; the usefulness of the method should now be testable.

  13. Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean.

    Directory of Open Access Journals (Sweden)

    Swarup Roy Choudhury

    Full Text Available Heterotrimeric G-proteins comprised of Gα, Gβ and Gγ proteins are important signal transducers in all eukaryotes. The Gγ protein of the G-protein heterotrimer is crucial for its proper targeting at the plasma membrane and correct functioning. Gγ proteins are significantly smaller and more diverse than the Gα and Gβ proteins. In model plants Arabidopsis and rice that have a single Gα and Gβ protein, the presence of two canonical Gγ proteins provide some diversity to the possible heterotrimeric combinations. Our recent analysis of the latest version of the soybean genome has identified ten Gγ proteins which belong to three distinct families based on their C-termini. We amplified the full length cDNAs, analyzed their detailed expression profile by quantitative PCR, assessed their localization and performed yeast-based interaction analysis to evaluate interaction specificity with different Gβ proteins. Our results show that ten Gγ genes are retained in the soybean genome and have interesting expression profiles across different developmental stages. Six of the newly identified proteins belong to two plant-specific Gγ protein families. Yeast-based interaction analyses predict some degree of interaction specificity between different Gβ and Gγ proteins. This research thus identifies a highly diverse G-protein network from a plant species. Homologs of these novel proteins have been previously identified as QTLs for grain size and yield in rice.

  14. GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins

    Science.gov (United States)

    Louet, Maxime; Martinez, Jean; Floquet, Nicolas

    2012-01-01

    After extra-cellular stimulation of G-Protein Coupled Receptors (GPCRs), GDP/GTP exchange appears as the key, rate limiting step of the intracellular activation cycle of heterotrimeric G-proteins. Despite the availability of a large number of X-ray structures, the mechanism of GDP release out of heterotrimeric G-proteins still remains unknown at the molecular level. Starting from the available X-ray structure, extensive unconstrained/constrained molecular dynamics simulations were performed on the complete membrane-anchored Gi heterotrimer complexed to GDP, for a total simulation time overcoming 500 ns. By combining Targeted Molecular Dynamics (TMD) and free energy profiles reconstruction by umbrella sampling, our data suggest that the release of GDP was much more favored on its phosphate side. Interestingly, upon the forced extraction of GDP on this side, the whole protein encountered large, collective motions in perfect agreement with those we described previously including a domain to domain motion between the two ras-like and helical sub-domains of Gα. PMID:22829757

  15. Superbackscattering nanoparticle dimers.

    Science.gov (United States)

    Liberal, Iñigo; Ederra, Iñigo; Gonzalo, Ramón; Ziolkowski, Richard W

    2015-07-10

    The theory and design of superbackscattering nanoparticle dimers are presented. We analytically derive the optimal configurations and the upper bound of their backscattering cross-sections. In particular, it is demonstrated that electrically small nanoparticle dimers can enhance the backscattering by a factor of 6.25 with respect to single dipolar particles. We demonstrate that optimal designs approaching this theoretical limit can be found by using a simple circuit model. The study of practical implementations based on plasmonic and high-permittivity particles has been also addressed. Moreover, the numerical examples reveal that the dimers can attain close to a fourfold enhancement of the single nanoparticle response even in the presence of high losses.

  16. Superbackscattering Nanoparticle Dimers

    CERN Document Server

    Liberal, Iñigo; Gonzalo, Ramón; Ziolkoski, Richard W

    2015-01-01

    The theory and design of superbackscattering nanoparticle dimers are presented. We analytically derive the optimal configurations and the upper bound of their backscattering cross-sections. In particular, it is demonstrated that electrically small nanoparticle dimers can enhance the backscattering by a factor of 6.25 with respect to single dipolar particles. We demonstrate that optimal designs approaching this theoretical limit can be found by using a simple circuit model. The study of practical implementations based on plasmonic and high-permittivity particles reveal that fourfold enhancement factors might be attainable even with realistic losses.

  17. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid.

    Science.gov (United States)

    Lubkowski, Krzysztof; Smorowska, Aleksandra; Grzmil, Barbara; Kozłowska, Agnieszka

    2015-03-18

    The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer-coated materials and the thickness of the covering layers were examined using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis. The mechanical properties of these materials were determined with a strength-testing machine. Nutrient release was measured in water using spectrophotometry, potentiometry, and conductivity methods. The results of the nutrient release experiments from these polymer-coated materials were compared with the requirements for controlled-release fertilizers. A conceptual model is presented describing the mechanism of nutrient release from the materials prepared in this study. This model is based on the concentrations of mineral components inside the water-penetrated fertilizer granules, the diffusion properties of the nutrients in water, and a diffusion coefficient through the polymer layer. The experimental kinetic data on nutrient release were interpreted using the sigmoidal model equation developed in this study.

  18. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.

  19. Heterotrimeric G protein participated in modulation of cytoplasmic calcium concentration in pollen cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhonglin; MA Ligeng; WANG Xuechen; SUN Daye

    2003-01-01

    Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.

  20. Alkane dimers interaction

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2010-01-01

    The interaction energies of a series of n-alkane dimers, from methane to decane, have been investigated with Density Functional Theory (DFT), using the MGGA-M06-L density functional. The results are compared both to the available wavefunction-based values as well as to dispersion corrected DFT...

  1. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    Science.gov (United States)

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  2. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    Science.gov (United States)

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop.

  3. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.

  4. Purification and SAXS analysis of the integrin linked kinase, PINCH, parvin (IPP heterotrimeric complex.

    Directory of Open Access Journals (Sweden)

    Amy L Stiegler

    Full Text Available The heterotrimeric protein complex containing the integrin linked kinase (ILK, parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS, we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.

  5. Alkylation of a human telomere sequence by heterotrimeric chlorambucil PI polyamide conjugates.

    Science.gov (United States)

    Kashiwazaki, Gengo; Bando, Toshikazu; Shinohara, Ken-ichi; Minoshima, Masafumi; Kumamoto, Hana; Nishijima, Shigeki; Sugiyama, Hiroshi

    2010-04-15

    We designed and synthesized human telomere alkylating N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates (1-6). The C-type conjugates 1-3 possessed a chlorambucil moiety at the C terminus, whereas the N-type conjugates 4-6 had one of these moieties at the N terminus. The DNA alkylating activity of these conjugates was evaluated by high-resolution denaturing polyacrylamide gel electrophoresis using a 220bp DNA fragment containing the human telomere repeat sequence 5'-(GGGTTA)(4)-3'/5'-(TAACCC)(4)-3'. C-type conjugates are designed to alkylate the G-rich-strand-containing 5'-GGGTTA-3' and N-type conjugates were designed to alkylate the complementary C-rich strand-containing 5'-TAACCC-3' sequence. The difference between conjugates 1-3 and 4-6 lies in the linker region between the polyamide moiety and chlorambucil. Conjugates 1 and 4 efficiently alkylated the 5'-GGTTAGGGTTA-3' and 5'-CCCTAACCCTAA-3' sequences, respectively, by recognizing 11bp in the presence of distamycin A (Dist), in a heterotrimeric manner: one long alkylating polyamide conjugate (1-6) and two short partners (Dist). Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Heterotrimeric G proteins in green algae: an early innovation in the evolution of the plant lineage.

    Science.gov (United States)

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophyaceaen green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions.

  7. Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis.

    Science.gov (United States)

    Kamimura, Yoichiro; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-04-19

    Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range ofDictyosteliumcells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis.

  8. The acrylonitrile dimer ion

    Science.gov (United States)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  9. Stereo- and regio-selectivity in the photosensitized dimerization of 1, 3-dimethylthymine in solution

    Institute of Scientific and Technical Information of China (English)

    HEI Xiaoming; SONG Qinhua; TANG Wenjian; WANG Hongbo; GUO Qingxiang; YU Shuqin

    2005-01-01

    The effects of reaction pathway and temperature on stereo- and regio-selectivity of photocycloaddition of 1, 3-dimethylthymine (DMT) which gives four cyclobutane type dimers in solution using acetone as the photosensitizer, are investigated by measuring the product distribution. It is demonstrated that the ground-state aggregation between DMT molecules mainly leads to (h-t)dimers, and the diffusion-controlled triplet dimerization is favorable to the formation of (h-h) dimers.

  10. Evolution, expression differentiation and interaction specificity of heterotrimeric G-protein subunit gene family in the mesohexaploid Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Gulab C Arya

    Full Text Available Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1, three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3, and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5 genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica

  11. Prediction and identification of the effectors of heterotrimeric G proteins in rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Kuan; Xu, Chaoqun; Huang, Jian; Liu, Wei; Zhang, Lina; Wan, Weifeng; Tao, Huan; Li, Ling; Lin, Shoukai; Harrison, Andrew; He, Huaqin

    2017-03-01

    Heterotrimeric G protein signaling cascades are one of the primary metazoan sensing mechanisms linking a cell to environment. However, the number of experimentally identified effectors of G protein in plant is limited. We have therefore studied which tools are best suited for predicting G protein effectors in rice. Here, we compared the predicting performance of four classifiers with eight different encoding schemes on the effectors of G proteins by using 10-fold cross-validation. Four methods were evaluated: random forest, naive Bayes, K-nearest neighbors and support vector machine. We applied these methods to experimentally identified effectors of G proteins and randomly selected non-effector proteins, and tested their sensitivity and specificity. The result showed that random forest classifier with composition of K-spaced amino acid pairs and composition of motif or domain (CKSAAP_PROSITE_200) combination method yielded the best performance, with accuracy and the Mathew's correlation coefficient reaching 74.62% and 0.49, respectively. We have developed G-Effector, an online predictor, which outperforms BLAST, PSI-BLAST and HMMER on predicting the effectors of G proteins. This provided valuable guidance for the researchers to select classifiers combined with different feature selection encoding schemes. We used G-Effector to screen the effectors of G protein in rice, and confirmed the candidate effectors by gene co-expression data. Interestingly, one of the top 15 candidates, which did not appear in the training data set, was validated in a previous research work. Therefore, the candidate effectors list in this article provides both a clue for researchers as to their function and a framework of validation for future experimental work. It is accessible at http://bioinformatics.fafu.edu.cn/geffector. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili.

    Directory of Open Access Journals (Sweden)

    Hanne L P Tytgat

    Full Text Available Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.

  13. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls

    Institute of Scientific and Technical Information of China (English)

    Qing Wei; Wenbin Zhou; Guangzhen Hu; Jiamian Wei; Hongquan Yang; Jirong Huang

    2008-01-01

    The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However,its role in phytochrome A (phyA) signaling remains elusive. In this study,we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death,which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Ga mutant gpal but aggravated in the Gβ mutant agbl in comparison with the wild type (WT),indicative of antagonistic roles of GPAI and AGB1 in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide633),which generates reactive oxygen species (ROS)on exposure to WL,is required for FR-preconditioned cell death. Moreover,ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly,the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the cell death. In addition,we observe that agbl is more sensitive to H2O2 than WT seedlings,indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together,we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death of Arabidopsis hypocotyls.Apossible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.

  14. Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean.

    Science.gov (United States)

    Choudhury, Swarup Roy; Pandey, Sona

    2013-05-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling.

  15. Dynamics of a bouncing dimer

    CERN Document Server

    Dorbolo, S; Tsimring, L S; Kudrolli, A

    2005-01-01

    We investigate the dynamics of a dimer bouncing on a vertically oscillated plate. The dimer, composed of two spheres rigidly connected by a light rod, exhibits several modes depending on initial and driving conditions. The first excited mode has a novel horizontal drift in which one end of the dimer stays on the plate during most of the cycle, while the other end bounces in phase with the plate. The speed and direction of the drift depend on the aspect ratio of the dimer. We employ event-driven simulations based on a detailed treatment of frictional interactions between the dimer and the plate in order to elucidate the nature of the transport mechanism in the drift mode.

  16. Universal dimer-dimer scattering in lattice effective field theory

    CERN Document Server

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam

    2016-01-01

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in many different fields including atomic, nuclear and particle physics. In the limit of large fermion-fermion scattering length $a_\\mathrm{ff}$ and zero range interaction, all properties of the system scale proportionally with the only length scale $a_\\mathrm{ff}$. We consider the case where there are bound dimers and calculate the scattering phase shifts for the two-dimer system near threshold using lattice effective field theory. From the scattering phase shifts, we extract the universal dimer-dimer scattering length $a_\\mathrm{dd}/a_\\mathrm{ff}=0.645(89)$ and effective range $r_\\mathrm{dd}/a_\\mathrm{ff}=-0.413(79)$.

  17. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences.

    Science.gov (United States)

    Copenhaver, Philip F; Kögel, Donat

    2017-01-01

    Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer's disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth

  18. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins.

    Science.gov (United States)

    Sprang, Stephen R; Chen, Zhe; Du, Xinlin

    2007-01-01

    This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is

  19. Extracellular ATP Promotes Stomatal Opening of Arabidopsis thaliana through Heterotrimeric G Protein Subunit and Reactive Oxygen Species

    Institute of Scientific and Technical Information of China (English)

    Li-Hua Hao; Wei-Xia Wang; Chen Chen; Yu-Fang Wang; Ting Liu; Xia Li; Zhong-Lin Shang

    2012-01-01

    In recent years,adenosine tri-phosphate(ATP)has been reported to exist in apoplasts of plant cells as a signal molecule.Extracellular ATP(eATP)plays important roles in plant growth,development,and stress tolerance.Here,extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness.ADP,GTP,and weakly hydrolyzable ATP analogs(ATPγS,Bz-ATP,and 2meATP)showed similar effects,whereas AMP and adenosine did not affect stomatal movement.Apyrase inhibited stomatal opening.ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor(diphenylene iodonium)or deoxidizer(dithiothreitol),and was impaired in null mutant of NADPH oxidase(atrbohD/F).Added ATP triggered ROS generation in guard cells via NADPH oxidase.ATP also induced Ca2+ influx and H+ efflux in guard cells.In atrbohD/F,ATP-induced ion flux was strongly suppressed.In null mutants of the heterotrimeric G protein α subunit,ATP-promoted stomatal opening,cytoplasmic ROS generation,Ca2+ influx,and H+ efflux were all suppressed.These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein,ROS,cytosolic Ca2+,and plasma membrane H+-ATPase.

  20. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  1. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Science.gov (United States)

    Santos-Valle, Patricia; Guijarro-Muñoz, Irene; Cuesta, Angel M; Alonso-Camino, Vanesa; Villate, Maider; Alvarez-Cienfuegos, Ana; Blanco, Francisco J; Sanz, Laura; Alvarez-Vallina, Luis

    2012-01-01

    Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  2. Wave-packet dynamics in alkaline dimers. Investigation and control through coherent excitation with fs-pulses; Wellenpaketdynamik in Alkali-Dimeren. Untersuchung und Steuerung durch kohaerente Anregung mit fs-Pulsen

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, F.N.B.

    2007-07-01

    During my PhD thesis I investigated alkaline dimers with coherent control in a molecular beam as well as with pump-probe spectroscopy in a magneto-optical trap (MOT). The aim of the coherent control experiments were the isotope selective ionization with phase- and amplitude-shaped fs-pulses. Chapter 4 described the gained results of isotope selective ionization of NaK and KRb in a molecular beam by using different pulse formers. For the NaK dimer was the reached optimization factor R{sub Ph} and {sub Ampl}{sup 770}=R{sub max}/R{sub min}=25 between maximization and minimization of the isotopomer ratio ({sup 23}Na{sup 39}K){sup +}/({sup 23}Na{sup 41}K){sup +} with phase and amplitude modulation of the fs-pulse with a central wavelength of {lambda}=770 nm. From the electronic ground-state X(1){sup 1}{sigma}{sup +};{nu}''=0 transfers a one-photon-excitation population in the first excited A(2) {sup 1}{sigma}{sup +} state. The coherent control experiment on KRb was used to maximize and minimize the isotopomer ratio ({sup 124}KRb){sup +}/({sup 126}KRb){sup +}. It was the first coherent control experiment with a spectral resolution of 1.84 cm{sup -1}/Pixel. For the phase and amplitude optimization was the received optimization factor between minimization and maximization of the isotopomer ratio R{sub Ph} and {sub Ampl}=R{sub max}/R{sub min}=7 at a central wavelength of 840 nm. The results showed a stepwise excitation process from the electronic ground-state in the first excited (2){sup 1}{sigma}{sup +} state with a further excitation, that is possible over three resonant energy potential curves into the ionic ground-state. In the second part of my thesis I realized pump-probe spectroscopy of Rb{sub 2} dimers in a dark SPOT. (orig.)

  3. Collisional properties of weakly bound heteronuclear dimers

    NARCIS (Netherlands)

    Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.

    2008-01-01

    We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating

  4. Controlled Penetration of a Novel Dimeric Ceramide into and across the Stratum Corneum Using Microemulsions and Various Types of Semisolid Formulations.

    Science.gov (United States)

    Neubert, Reinhard H H; Sonnenberger, Stefan; Dobner, Bodo; Gray, Charles W; Barger, K Natalie; Sevi-Maxwell, Kara; Sommer, Elfi; Wohlrab, Johannes

    2016-01-01

    Ceramides (CERs) are integral parts of the intercellular lipid lamellae of the stratum corneum (SC), which is responsible for the barrier function of the skin. Many skin diseases such as atopic dermatitis and psoriasis are associated with the depletion or disturbance of the level of CERs in the SC. Administration of an exogenous novel dimeric ceramide (dCER) deep into the SC may help to stabilize the SC barrier substantially and to treat some skin disease conditions. Consequently, with the help of the existing technology, it might be possible to formulate various pharmaceutical dosage forms that can facilitate penetration of dCER into the SC. Therefore, the penetration of dCER was studied using a high-performance liquid chromatography/atmospheric-pressure ionization/mass spectrometry method for the detection and quantification of exogenous dCER in the SC as well as other skin layers. Penetration studies were carried out in the Franz diffusion cell using excised human skin ex vivo. Penetration of dCER was studied with 3 model formulations: a colloidal formulation (microemulsion), a cream formulation with ethoxydiglycol as penetration enhancer and a nanoformulation. The highest concentrations of dCER in the different skin layers were found after application of the cream with penetration enhancer. Surprisingly, the lowest concentrations of dCER in the different skin layers were found after application of the microemulsion. © 2016 S. Karger AG, Basel.

  5. Giant enhancement of optical high-order sideband generation and their control in a dimer of two cavities with gain and loss

    Science.gov (United States)

    Li, Jiahui; Li, Jiahua; Xiao, Qian; Wu, Ying

    2016-06-01

    Parity-time (PT ) symmetric systems, which rely on the balanced gain-loss condition and render the Hamiltonian non-Hermitian, have provided a new platform to engineer effective light-matter interactions in recent years. Here we explore the high-order sideband features of the output fields obtained from a PT -symmetric optical system consisting of a passive nonlinear cavity coupled to an active linear cavity. By employing a perturbation technique, we derive analytic formulas used to determine the nonlinear transmission coefficient of optical second-order sideband in this structure. Using experimentally achievable parameters, it is clearly shown that the efficiency of the second-order sideband generation can be greatly enhanced in the PT -symmetric dimer, extremely in the vicinity of the transition point from unbroken- to broken-PT regimes. Moreover, we further analyzed the influences of the system parameters, including the photon-tunneling rate between two cavities, Kerr nonlinearity strength, and optical detuning, on the second-order sideband generation. Subsequently we investigate the higher-order sideband output spectrum by numerical simulations, where the sideband amplitude also is largely enhanced in the PT -symmetric arrangement, compared with the passive-passive double-cavity system. Our obtained results provide a new avenue for acquiring optical high-order sidebands and operating light, which may inspire further applications in chip-scale optical communications and optical frequency combs.

  6. Involvement of heterotrimeric G protein in signal transduc-tion of extracellular calmodu-lin in regulating rbcS expres-sion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulating rbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhanced rbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibited rbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin on rbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum on rbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by hetero-trimeric G proteins antagonist pertussis toxin and nonhy-drolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulate rbcS gene expression.

  7. MspA nanopores from subunit dimers.

    Directory of Open Access Journals (Sweden)

    Mikhail Pavlenok

    Full Text Available Mycobacterium smegmatis porin A (MspA forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore

  8. Adventures in Holographic Dimer Models

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  9. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho.

    Science.gov (United States)

    Fukuhara, S; Chikumi, H; Gutkind, J S

    2000-11-24

    A putative guanine nucleotide exchange factor (GEF), termed leukemia-associated RhoGEF (LARG), was recently identified upon fusion to the coding sequence of the MLL gene in acute myeloid leukemia. Although the function of LARG is still unknown, it exhibits a number of structural domains suggestive of a role in signal transduction, including a PDZ domain, a LH/RGS domain, and a Dbl homology/pleckstrin homology domain. Here, we show that LARG can activate Rho in vivo. Furthermore, we present evidence that LARG is an integral component of a novel biochemical route whereby G protein-coupled receptors (GPCRs) and heterotrimeric G proteins of the G alpha(12) family stimulate Rho-dependent signaling pathways.

  10. Synthesis and Applications of Non-spherical Dimer Colloids

    Science.gov (United States)

    Yoon, Kisun

    Colloids are promising building blocks in material synthesis because of their controllability of size and surface properties. The synthesis of chemically and/or geometrically anisotropic colloidal particles has received attentions with the expectation of building blocks for complex structures. However, the synthesis of anisotropic colloidal particles is by far more difficult than the synthesis of spherical colloidal particles. Lack of monodispersity and productivity of many anisotropic particles often limits their applications as a building block for complex structures. Thus, it is highly desirable to develop methods which can produce a large amount of monodisperse non-spherical particles with controllable asymmetric surface properties. This dissertation details the work for developing such a method. The major result of this dissertation is a synthetic method to produce monodisperse non-spherical colloids with anisotropic surface property in a large quantity. The anisotropic colloid, which we call it as Dimer particle, has two fused lobes like a dumbbell and each lobe's size can be independently controlled. We present a novel method to synthesize sub-micron size Dimer particles. This method can produce a large amount of submicron-sized Dimer particles with good monodispersity and well-controlled shape. Submicron-sized Dimer particles have been highly desired since they can be used as a building block for self assembly using Brownian motion, colloidal surfactant for Pickering emulsion, and photonic materials. To fully take advantage of the anisotropy of the particles, we develop a facile method to tailor the surface property of each lobe independently by asymmetrically coating the particles with gold nanoparticles. This method doesn't need the arrangement of particles onto any type of interfaces. Asymmetric coating of gold nanoparticles can be carried out simply by mixing Dimer particles with gold nanoparticles. The formation mechanism of the submicron-sized Dimer

  11. Diagnostic implication of fibrin degradation products and D-dimer in aortic dissection

    Science.gov (United States)

    Dong, Jian; Duan, Xianli; Feng, Rui; Zhao, Zhiqing; Feng, Xiang; Lu, Qingsheng; Jing, Qing; Zhou, Jian; Bao, Junmin; Jing, Zaiping

    2017-01-01

    Fibrin degradation products (FDP) and D-dimer have been considered to be involved in many vascular diseases. In this study we aimed to explore the diagnostic implication of FDP and D-dimer in aortic dissection patients. 202 aortic dissection patients were collected as the case group, 150 patients with other cardiovascular diseases, including myocardial infarction (MI, n = 45), pulmonary infarction (n = 51) and abdominal aortic aneurysm (n = 54) were collected as non-dissection group, and 27 healthy people were in the blank control group. The FDP and D-dimer levels were detected with immune nephelometry. Logist regression analysis was performed to evaluate the influence of FDP and D-dimer for the aortic dissection patients. ROC curve was used to determine the diagnostic value of FDP and D-dimer. The FDP and D-dimer levels were significantly higher in aortic dissection patients than in non-dissection patients and the healthy controls. FDP and D-dimer were both the risk factors for patients with aortic dissection. From the ROC analysis, diagnostic value of FDP and D-dimer were not high to distinguish aortic dissection patients from the non-dissection patients. However FDP and D-dimer could be valuable diagnostic marker to differentiate aortic dissection patients and healthy controls with both AUC 0.863. PMID:28262748

  12. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  13. NMR Structural Studies on Alamethicin Dimers

    Institute of Scientific and Technical Information of China (English)

    李星

    2003-01-01

    15N labeled alamethicin dimer was synthesized. The structure and dynamics of alamethicin dimers were studied with nuclear magnetic resonance (NMR) spectroscopy. The data from 15N-labeled alamethicin dimer suggest little differences in conformation between the dimer and monomer in the Aib1-Pro14 region. Significant difference in the conformation of the C-terminus are manifest in the NH chemical shifts in the Val15-Pho20 region.

  14. Rubidium dimers in paraffin-coated cells

    CERN Document Server

    Acosta, V M; Windes, D; Corsini, E; Ledbetter, M P; Karaulanov, T; Auzinsh, M; Rangwala, S A; Kimball, D F Jackson; Budker, D

    2010-01-01

    Measurements were made to determine the density of rubidium dimer vapor in paraffin-coated cells. The number density of dimers and atoms in similar paraffin-coated and uncoated cells was measured by optical spectroscopy. Due to the relatively low melting point of paraffin, a limited temperature range of 43-80 deg C was explored, with the lower end corresponding to a dimer density of less than 10^7 cm^(-3). With one-minute integration time, a sensitivity to dimer number density of better than 10^6 cm^(-3) was achieved. No significant difference in dimer density was observed between the cells.

  15. Fiber optic D dimer biosensor

    Science.gov (United States)

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  16. Mechanism of FGF receptor dimerization and activation

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  17. Cooperative binding mode of the inhibitors of R6K replication, pi dimers.

    Science.gov (United States)

    Bowers, Lisa M; Filutowicz, Marcin

    2008-03-28

    The replication initiator protein, pi, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of pi bind to iterons in the gamma origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, pi monomers activate replication, while pi dimers inhibit replication. Recently, it was shown that the monomeric form of pi binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and pi supply are low. Here, we examine cooperative binding of pi dimers and explore the role that these interactions may have in the inactivation of gamma origin. To examine pi dimer/iteron interactions in the absence of competing pi monomer/iteron interactions using wild-type pi, constructs were made with key base changes to each iteron that eliminate pi monomer binding yet have no impact on pi dimer binding. Our results indicate that, in the absence of pi monomers, pi dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by pi dimers.

  18. Optofluidic taming of a colloidal dimer with a silicon nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Pin, C.; Renaut, C. [Groupe d' Optique de Champ Proche - LRC CEA n°DSM-08-36, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS n°6303- Université de Bourgogne, Dijon (France); University Grenoble Alpes, INAC-SP2M-SINAPS, F-38000 Grenoble, France and CEA, INAC-SP2M-SINAPS, F-38000 Grenoble (France); University Grenoble Alpes, CNRS, CEA-Leti Minatec, LTM, F-38054 Grenoble Cedex (France); Cluzel, B., E-mail: benoit.cluzel@u-bourgogne.fr; Fornel, F. de [Groupe d' Optique de Champ Proche - LRC CEA n°DSM-08-36, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS n°6303- Université de Bourgogne, Dijon (France); Peyrade, D. [University Grenoble Alpes, CNRS, CEA-Leti Minatec, LTM, F-38054 Grenoble Cedex (France); Picard, E.; Hadji, E. [University Grenoble Alpes, INAC-SP2M-SINAPS, F-38000 Grenoble, France and CEA, INAC-SP2M-SINAPS, F-38000 Grenoble (France)

    2014-10-27

    We report here the optical trapping of a heterogeneous colloidal dimer above a photonic crystal nanocavity used as an on-chip optical tweezer. The trapped dimer consists of a cluster of two dielectric microbeads of different sizes linked by van der Waals forces. The smallest bead, 1 μm in diameter, is observed to be preferentially trapped by the nanotweezer, leaving the second bead untrapped. The rotational nature of the trapped dimer Brownian motion is first evidenced. Then, in the presence of a fluid flow, control of its orientation and rotation is achieved. The whole system is found to show high rotational degrees of freedom, thereby acting as an effective flow-sensitive microscopic optical ball joint.

  19. Heterotrimeric G-proteins in green algae. An early innovation in the evolution of the plant lineage.

    Science.gov (United States)

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions.

  20. Synthesis of steroidal dimers: Selective amine catalysed steroidal dimerization

    Indian Academy of Sciences (India)

    Shamsuzzaman; Mohd Gulfam Aalam; Tabassum Siddiqui

    2011-07-01

    Some new dimeric steroids namely cholest-5-en-3-spiro-[6',5'-oxa]-5'-cholest-3'-one (2), cholest-5-en-7-spiro-[4',5'-oxa]-5'-cholest-7'-one (4a) and 3-substitutedcholest-5-en-7-spiro-[4',5'-oxa]-3'-substituted-5'-cholestan-7'-ones (4b, c) are synthesized starting from cholest-5-en-3-one (1), cholest-5-en-7-one (3a) and 3-substituted-cholest-5-en-7-ones (3b, c) respectively by using DMAP and xylene. All the synthesized compounds were characterized by using IR, MS and 1H, 13C NMR spectral and elemental analysis.

  1. Plasma D-dimer concentration in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Montagnana Martina

    2006-01-01

    Full Text Available Abstract Background Systemic sclerosis (SSc is an autoimmune disorder of the connective tissue characterized by widespread vascular lesions and fibrosis. Little is known so far on the activation of the hemostatic and fibrinolytic systems in SSc, and most preliminary evidences are discordant. Methods To verify whether SSc patients might display a prothrombotic condition, plasma D-dimer was assessed in 28 consecutive SSc patients and in 33 control subjects, matched for age, sex and environmental habit. Results and discussion When compared to healthy controls, geometric mean and 95% confidence interval (IC95% of plasma D-dimer were significantly increased in SSc patients (362 ng/mL, IC 95%: 361–363 ng/mL vs 229 ng/mL, IC95%: 228–231 ng/mL, p = 0.005. After stratifying SSc patients according to disease subset, no significant differences were observed between those with limited cutaneous pattern and controls, whereas patients with diffuse cutaneous pattern displayed substantially increased values. No correlation was found between plasma D-dimer concentration and age, sex, autoantibody pattern, serum creatinine, erythrosedimentation rate, nailfold videocapillaroscopic pattern and pulmonary involvement. Conclusion We demonstrated that SSc patients with diffuse subset are characterized by increased plasma D-dimer values, reflecting a potential activation of both the hemostatic and fibrinolytic cascades, which might finally predispose these patients to thrombotic complications.

  2. Dimerization of Human Growth Hormone by Zinc

    Science.gov (United States)

    Cunningham, Brian C.; Mulkerrin, Michael G.; Wells, James A.

    1991-08-01

    Size-exclusion chromatography and sedimentation equilibrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn2+-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn2+-hGH dimeric complex may be important for storage of hGH in secretory granules.

  3. Dimer models and Calabi-Yau algebras

    CERN Document Server

    Broomhead, Nathan

    2008-01-01

    In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.

  4. On Dimer Models and Closed String Theories

    OpenAIRE

    Sarkar, Tapobrata

    2007-01-01

    We study some aspects of the recently discovered connection between dimer models and D-brane gauge theories. We argue that dimer models are also naturally related to closed string theories on non compact orbifolds of $\\BC^2$ and $\\BC^3$, via their twisted sector R charges, and show that perfect matchings in dimer models correspond to twisted sector states in the closed string theory. We also use this formalism to study the combinatorics of some unstable orbifolds of $\\BC^2$.

  5. Dimerization of norbornene on zeolite catalysts

    Institute of Scientific and Technical Information of China (English)

    N. G. Grigor’eva; S. V. Bubennov; L. M. Khalilov; B. I. Kutepov

    2015-01-01

    The high activity and selectivity of H‐Beta and H‐ZSM‐12 zeolites in the dimerization of norbornene was established. The norbornene conversion reached 100%in chlorinated paraffin and argon gas medium, with a selectivity of dimer formation of 88%–98%. Four stereo‐isomers of the bis‐2,2’‐norbornylidene structure were identified in the dimer fraction, with the (Z)‐anti‐bis‐2,2’‐norbornylidene prevailing over the others.

  6. Enhanced Chiral Recognition by Cyclodextrin Dimers

    Directory of Open Access Journals (Sweden)

    Bart Jan Ravoo

    2011-07-01

    Full Text Available In this article we investigate the effect of multivalency in chiral recognition. To this end, we measured the host-guest interaction of a β-cyclodextrin dimer with divalent chiral guests. We report the synthesis of carbohydrate-based water soluble chiral guests functionalized with two borneol, menthol, or isopinocampheol units in either (+ or (– configuration. We determined the interaction of these divalent guests with a β-cyclodextrin dimer using isothermal titration calorimetry. It was found that—in spite of a highly unfavorable conformation—the cyclodextrin dimer binds to guest dimers with an increased enantioselectivity, which clearly reflects the effect of multivalency.

  7. Sputtering of dimers off a silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Nietiadi, Maureen L. [Physics Department, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Research Center OPTIMAS, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Rosandi, Yudi [Physics Department, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Research Center OPTIMAS, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia); Kopnarski, Michael [Physics Department, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Research Center OPTIMAS, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Institut fuer Oberflaechen- und Schichtanalytik IFOS GmbH, Trippstadter Strasse 120, D-67663 Kaiserslautern (Germany); Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Physics Department, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Research Center OPTIMAS, University Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2012-10-15

    We present experimental and molecular-dynamics simulation results of the sputtering of a Si surface by 2 keV Ar ions. Results on both the monomer and dimer distributions are presented. In simulation, these distributions follow a generalized Thompson law with power exponent n=2 and n=3, respectively. The experimental data, obtained via plasma post-ionization in an SNMS (secondary neutral mass spectrometry) apparatus, show good agreement with respect to the dimer fraction, and the relative energy distributions of dimers and monomers. The consequences for the dimer sputtering mechanism are discussed.

  8. Edge Magnon Excitation in Spin Dimer Systems

    Science.gov (United States)

    Sakaguchi, Ryo; Matsumoto, Masashige

    2016-10-01

    Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with a zigzag edge, a flat edge magnon mode appears in the disordered phase. In an ordered phase, a finite magnetic moment generates a mean-field potential to the magnon. Since the potential is nonuniform on the edge and bulk sites, it affects the excitation, and the dispersion of the edge mode deviates from the flat shape. We investigate how the edge magnon mode evolves when the phase changes through the quantum phase transition and discuss the similarities to ordered spin systems on a monolayer honeycomb lattice.

  9. The role of heterotrimeric G-proteins in development and virulence of Phytophthora infestans

    NARCIS (Netherlands)

    Latijnhouwers, M.

    2003-01-01

    Ever since the 1840s, when the disease first appeared in Europe and the United States, the threat of new outbreaks of late blight has terrified potato growers. In years when cool and wet weather conditions are prevailing, the disease is most destructive and nearly impossible to control.

  10. The role of heterotrimeric G-proteins in development and virulence of Phytophthora infestans

    NARCIS (Netherlands)

    Latijnhouwers, M.

    2003-01-01

    Ever since the 1840s, when the disease first appeared in Europe and the United States, the threat of new outbreaks of late blight has terrified potato growers. In years when cool and wet weather conditions are prevailing, the disease is most destructive and nearly impossible to control. Dec

  11. The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block.

    Science.gov (United States)

    Ghosh, Pradipta; Rangamani, Padmini; Kufareva, Irina

    2017-04-03

    The canonical process of activation of heterotrimeric G proteins by G protein coupled receptors (GPCRs) is well studied. Recently, a rapidly emerging paradigm has revealed the existence of a new, non-canonical set of cytosolic G protein modulators, guanine exchange modulators (GEMs). Among G proteins regulators, GEMs are uniquely capable of initiating pleiotropic signals: these bifunctional modulators can activate cAMP inhibitory (Gi) proteins and inhibit cAMP-stimulatory (Gs) proteins through a single short evolutionarily conserved module. A prototypical member of the GEM family, GIV/Girdin, integrates signals downstream of a myriad of cell surface receptors, e.g., growth factor RTKs, integrins, cytokine, GPCRs, etc., and translates these signals into G protein activation or inhibition. By their pleiotropic action, GIV and other GEMs modulate several key pathways within downstream signaling network. Unlike canonical G protein signaling that is finite and is triggered directly and exclusively by GPCRs, the temporal and spatial features of non-canonical activation of G protein via GIV-family of cytosolic GEMs are unusually relaxed. GIV uses this relaxed circuitry to integrate, reinforce and compartmentalize signals downstream of both growth factors and G proteins in a way that enables it to orchestrate cellular phenotypes in a sustained manner. Mounting evidence suggests the importance of GIV and other GEMs as disease modulators and their potential to serve as therapeutic targets; however, a lot remains unknown within the layers of the proverbial onion that must be systematically peeled. This perspective summarizes the key concepts of the GEM-dependent G protein signaling paradigm and discusses the multidisciplinary approaches that are likely to revolutionize our understanding of this paradigm from the atomic level to systems biology.

  12. Modification of heterotrimeric G-proteins in Swiss 3T3 cells stimulated with Pasteurella multocida toxin.

    Directory of Open Access Journals (Sweden)

    Rebecca C Babb

    Full Text Available Many bacterial toxins covalently modify components of eukaryotic signalling pathways in a highly specific manner, and can be used as powerful tools to decipher the function of their molecular target(s. The Pasteurella multocida toxin (PMT mediates its cellular effects through the activation of members of three of the four heterotrimeric G-protein families, G(q, G(12 and G(i. PMT has been shown by others to lead to the deamidation of recombinant Gα(i at Gln-205 to inhibit its intrinsic GTPase activity. We have investigated modification of native Gα subunits mediated by PMT in Swiss 3T3 cells using 2-D gel electrophoresis and antibody detection. An acidic change in the isoelectric point was observed for the Gα subunit of the G(q and G(i families following PMT treatment of Swiss 3T3 cells, which is consistent with the deamidation of these Gα subunits. Surprisingly, PMT also induced a similar modification of Gα(11, a member of the G(q family of G-proteins that is not activated by PMT. Furthermore, an alkaline change in the isoelectric point of Gα(13 was observed following PMT treatment of cells, suggesting differential modification of this Gα subunit by PMT. G(s was not affected by PMT treatment. Prolonged treatment with PMT led to a reduction in membrane-associated Gα(i, but not Gα(q. We also show that PMT inhibits the GTPase activity of G(q.

  13. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA

    Science.gov (United States)

    Choudhury, Swarup Roy; Pandey, Sona

    2013-01-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling. PMID:23569109

  14. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum

    Directory of Open Access Journals (Sweden)

    Gummer Joel P A

    2012-07-01

    Full Text Available Abstract Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.

  15. Mahler Measure, Eisenstein Series and Dimers

    NARCIS (Netherlands)

    Stienstra, J.

    2007-01-01

    This note reveals a mysterious link between the partition function of certain dimer models on 2-dimensional tori and the L-function of their spectral curves. It also relates the partition function in certain families of dimer models to Eisenstein series. http://www.arxiv.org/abs/math.NT/0502197

  16. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    temperature (20 degrees C) reduced the rate of, but did not prevent, dimerization. Maltase-glucoamylase (EC 3.2.1.20) only appeared as a dimer when extracted and analyzed under low salt conditions, suggesting a weak association between the two subunits. This finding is consistent with the electronmicroscopic...

  17. Potassium Hexacyanoferrate (III-Catalyzed Dimerization of Hydroxystilbene: Biomimetic Synthesis of Indane Stilbene Dimers

    Directory of Open Access Journals (Sweden)

    Jing-Shan Xie

    2015-12-01

    Full Text Available Using potassium hexacyanoferrate (III–sodium acetate as oxidant, the oxidative coupling reaction of isorhapontigenin and resveratrol in aqueous acetone resulted in the isolation of three new indane dimers 4, 6, and 7, together with six known stilbene dimers. Indane dimer 5 was obtained for the first time by direct transformation from isorhapontigenin. The structures and relative configurations of the dimers were elucidated using spectral analysis, and their possible formation mechanisms were discussed. The results indicate that this reaction could be used as a convenient method for the semi-synthesis of indane dimers because of the mild conditions and simple reaction products.

  18. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  19. Universal four-Boson states in ultracold molecular gases: resonant effects in dimer-dimer collisions.

    Science.gov (United States)

    D'Incao, J P; von Stecher, J; Greene, Chris H

    2009-07-17

    We study the manifestations of universal four-body physics in ultracold dimer-dimer collisions. We show that resonant features associated with three-body Efimov physics and dimer-dimer scattering lengths are universally related. The emergence of universal four-boson states allows for the tunability of the dimer-dimer interaction, thus enabling the future study of ultracold molecular gases with both attractive and repulsive interactions. Moreover, our study of the interconversion between dimers and Efimov trimers shows that B2+B2-->B3+B rearrangement reactions can provide an efficient trimer formation mechanism. Our analysis of the temperature dependence of this reaction provides an interpretation of the available experimental data and sheds light on the possible experimental realization of rearrangement processes in ultracold gases.

  20. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.;

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  1. D-dimer is useful in assessing the vulnerable blood in elderly patients with coronary disease

    Institute of Scientific and Technical Information of China (English)

    Yansong Zheng; Qiang Zeng; Liping Zhang; Liufa Duan; Kunlun He; Qiufu Zheng

    2008-01-01

    Background and objective The value of D-dimer in the risk stratification of patients with coronary artery diseas(CAD)and the relationship between D-dimer and the diseased coronary arteries remains controversial or unclear.especially in the elderly.Thisstudy was to evaluate the usefulness of D-djmer as a biomarker in assessing the vuinerable blood in the elderly patients with coronarydisease.Methods Sixty elderly (≥60 years old)male patients with suspected CAD were enrolled in this prospective study.Patients were divided into CAD group(n=41,10 with stable angina and 31 with unstable angina)and control group(n=19)according to their coronary angiography Results Clinicalinformation including age,body mass index(BMI),smoking index,and thecomplications of Primary hypertension or diabetes.and CAD family history was collected.Venous blood was sampled serially for thedetermination of total cholesterol,HDL cholesterol,LDL cholesterol,triglycerides,apoAl,apoB,glucose,uric acid,homocysteine(Hey),hs-CRP,soluble thrombomodulin(sTM),and marker of fibrinolytic system and hypercoagulability,such as D-dimer,fibrinogen,etc.The extent of coronary atherosclerosis was assessed.using the Gensini scoring system on the basis of coronary angiography.Results Compared with the controls.the patients with CAD had significantly higher levels of D-dimer.D-dimer level wassignificantly correlated to age.hs-CR P.Hcy,and PAI-1.Patients with D-dimer levels in the top triplicate of D-dimer level hadsignificantly higher prevalence of unstable angina compared with patients in the lowest triplicate(OR=4.8,Z=3.28,P=0.001).In anordinal logistic regression.the OR value ofdeveloping more serious CAD augmented 3.1-foid with each increasing triplicate of D-dimer.Patients with unstable angina had a significantly higher level of D-dimer than the controls(P=0.005),and an increasing trend comparedwith patients with stable angina (P=0.059).whereas there was no difference between the patients with stable angina and

  2. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    Science.gov (United States)

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  3. Quantum dimer model for the pseudogap metal

    Science.gov (United States)

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  4. Quantum dimer model for the pseudogap metal.

    Science.gov (United States)

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-08-04

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S = 1/2, charge +e fermionic dimers. The model realizes a "fractionalized Fermi liquid" with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8 × 8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments.

  5. Quantitative analysis of cyclic dimer fatty acid content in the dimerization product by proton NMR spectroscopy.

    Science.gov (United States)

    Park, Kyun Joo; Kim, Minyoung; Seok, Seunghwan; Kim, Young-Wun; Kim, Do Hyun

    2015-01-01

    In this work, (1)H NMR is utilized for the quantitative analysis of a specific cyclic dimer fatty acid in a dimer acid mixture using the pseudo-standard material of mesitylene on the basis of its structural similarity. Mesitylene and cyclic dimer acid levels were determined using the signal of the proton on the cyclic ring (δ=6.8) referenced to the signal of maleic acid (δ=6.2). The content of the cyclic dimer fatty acid was successfully determined through the standard curve of mesitylene and the reported equation. Using the linearity of the mesitylene curve, the cyclic dimer fatty acid in the oil mixture was quantified. The results suggest that the proposed method can be used to quantify cyclic compounds in mixtures to optimize the dimerization process.

  6. Formation of cystine slipknots in dimeric proteins.

    Directory of Open Access Journals (Sweden)

    Mateusz Sikora

    Full Text Available We consider mechanical stability of dimeric and monomeric proteins with the cystine knot motif. A structure based dynamical model is used to demonstrate that all dimeric and some monomeric proteins of this kind should have considerable resistance to stretching that is significantly larger than that of titin. The mechanisms of the large mechanostability are elucidated. In most cases, it originates from the induced formation of one or two cystine slipknots. Since there are four termini in a dimer, there are several ways of selecting two of them to pull by. We show that in the cystine knot systems, there is strong anisotropy in mechanostability and force patterns related to the selection. We show that the thermodynamic stability of the dimers is enhanced compared to the constituting monomers whereas machanostability is either lower or higher.

  7. A New Dimeric Phthalide from Angelica sinensis

    Institute of Scientific and Technical Information of China (English)

    Ling YI; Ping LI; Zhi Ming BI

    2006-01-01

    A new dimeric phthalide named Z, Z'-3.3'a, 7.7'a-diligustilide was isolated from the roots of Angelica sinensis. Its structure was determined using spectroscopic methods and X-ray crystallographic diffraction analysis.

  8. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  9. Formation of Cystine Slipknots in Dimeric Proteins

    OpenAIRE

    Mateusz Sikora; Marek Cieplak

    2013-01-01

    We consider mechanical stability of dimeric and monomeric proteins with the cystine knot motif. A structure based dynamical model is used to demonstrate that all dimeric and some monomeric proteins of this kind should have considerable resistance to stretching that is significantly larger than that of titin. The mechanisms of the large mechanostability are elucidated. In most cases, it originates from the induced formation of one or two cystine slipknots. Since there are four termini in a dim...

  10. Role of Rydberg states in the photostability of heterocyclic dimers: the case of pyrazole dimer.

    Science.gov (United States)

    Zilberg, Shmuel; Haas, Yehuda

    2012-11-26

    A new route for the nonradiative decay of photoexcited, H-bonded, nitrogen-containing, heterocyclic dimers is offered and exemplified by a study of the pyrazole dimer. In some of these systems the N(3s) Rydberg state is the lowest excited singlet state. This state is formed by direct light absorption or by nonradiative transition from the allowed ππ* state. An isomer of this Rydberg state is formed by H atom transfer to the other component of the dimer. The newly formed H-bonded radical pair is composed of two radicals (a H-adduct of pyrazole, a heterocyclic analogue of the NH(4) radical) and the pyrazolium π-radical. It is calculated to have a shallow local minimum and is the lowest point on the PES of the H-pyrazole/pyrazolium radical pair. This species can cross back to the ground state of the original dimer through a relatively small energy gap and compete with the H-atom loss channel, known for the monomer. In both Rydberg dimers, an electron occupies a Rydberg orbital centered mostly on one of the two components of the dimer. This Rydberg Center Shift (RCS) mechanism, proposed earlier (Zilberg, S.; Kahan, A.; Haas, Y. Phys. Chem. Chem. Phys. 2012, 14, 8836), leads to deactivation of the electronically excited dimer while keeping it intact. It, thus, may explain the high photostability of the pyrazole dimer as well as other heterocyclic dimers.

  11. Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays

    Science.gov (United States)

    Zhang, Lei; Dong, Zhaogang; Wang, Ying Min; Liu, Yan Jun; Zhang, Shuang; Yang, Joel Kwang Wei; Qiu, Cheng-Wei

    2015-07-01

    We present a novel strategy capable of dynamically configuring the plasmon-induced transparency (PIT) effect with a polarization-dependent controllability based on a nanoring dimer array. The controllable coupling strength between the superradiant and subradiant modes is due to the polarization-dependent field distributions. It is shown that this dynamically controlled PIT is realized with a modulation depth as high as 95%, and a linear dependence of the coupling strength on polarization angle is deduced using a coupled-oscillator model. We believe that our results will inspire further exciting achievements that utilize various polarization states of the electromagnetic wave and pave a way towards applications using PIT with dynamic controllability such as slow light, optical nonlinearities and chemical/bio-sensing.We present a novel strategy capable of dynamically configuring the plasmon-induced transparency (PIT) effect with a polarization-dependent controllability based on a nanoring dimer array. The controllable coupling strength between the superradiant and subradiant modes is due to the polarization-dependent field distributions. It is shown that this dynamically controlled PIT is realized with a modulation depth as high as 95%, and a linear dependence of the coupling strength on polarization angle is deduced using a coupled-oscillator model. We believe that our results will inspire further exciting achievements that utilize various polarization states of the electromagnetic wave and pave a way towards applications using PIT with dynamic controllability such as slow light, optical nonlinearities and chemical/bio-sensing. Electronic supplementary information (ESI) available: Method, mode supported by single nanoring, transmittance spectrum of single nanoring, comparison of transmittance spectra simulated under different illumination angles, diffraction coupling in the proposed nanoring dimer system, and the coupled Lorentz oscillator model and parameters

  12. Dynamic interplay between adhesive and lateral E-cadherin dimers

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Laur, Oscar Y; Troyanovsky, Regina B;

    2002-01-01

    M. The disappearance of adhesive dimers was counterbalanced by an increase in Trp156-dependent lateral dimers. Increasing the calcium concentration to a normal level rapidly restored the original balance between adhesive and lateral dimers. We also present evidence that E-cadherin dimers in vivo have a short lifetime...

  13. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  14. Dimers of cyclic carbonates: chirality recognition in battery solvents and energy storage.

    Science.gov (United States)

    Kollipost, Franz; Hesse, Susanne; Lee, Juhyon J; Suhm, Martin A

    2011-08-21

    Dimers of ethylene carbonate and propylene carbonate are created in supersonic jet expansions and characterized by FTIR spectroscopy. Fermi resonances are switched on and off by dimerization. There is a unique centrosymmetric dimer of ethylene carbonate in a pronounced case of complementary chirality synchronization, contributing to its energy storage capacity at melting. Two chiral propylene carbonate molecules combine in more intricate ways. If they have the same handedness, one of them is forced into an axial conformation and the binding partner stays in the more stable equatorial structure. If they have opposite handedness, centrosymmetric dimers of either axial or equatorial conformations are formed. This suggests the usefulness of chirality control in elucidating ionic transport mechanisms in battery solvents and asymmetric catalysis in such solvents.

  15. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...

  16. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M;

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  17. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  18. Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans.

    Science.gov (United States)

    Moghal, Nadeem; Garcia, L Rene; Khan, Liakot A; Iwasaki, Kouichi; Sternberg, Paul W

    2003-10-01

    The extent to which excitable cells and behavior modulate animal development has not been examined in detail. Here, we demonstrate the existence of a novel pathway for promoting vulval fates in C. elegans that involves activation of the heterotrimeric Galphaq protein, EGL-30. EGL-30 acts with muscle-expressed EGL-19 L-type voltage-gated calcium channels to promote vulva development, and acts downstream or parallel to LET-60 (RAS). This pathway is not essential for vulval induction on standard Petri plates, but can be stimulated by expression of activated EGL-30 in neurons, or by an EGL-30-dependent change in behavior that occurs in a liquid environment. Our results indicate that excitable cells and animal behavior can provide modulatory inputs into the effects of growth factor signaling on cell fates, and suggest that communication between these cell populations is important for normal development to occur under certain environmental conditions.

  19. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  20. HLA-G Dimers in the Prolongation of Kidney Allograft Survival

    Directory of Open Access Journals (Sweden)

    Maureen Ezeakile

    2014-01-01

    Full Text Available Human leukocyte antigen-G (HLA-G contributes to acceptance of allografts in solid organ/tissue transplantation. Most studies have determined that soluble HLA-G isoforms are systematically detected in serum/plasma of transplanted patients with significantly fewer episodes of acute and/or chronic rejection of allogeneic tissue/organ. Current models of the interactions of HLA-G and its specific receptors explain it as functioning in a monomeric form. However, in recent years, new data has revealed the ability of HLA-G to form disulfide-linked dimeric complexes with high preferential binding and functional activities. Limited data are available on the role of soluble HLA-G dimers in clinical pathological conditions. We describe here the presence of soluble HLA-G dimers in kidney transplant patients. Our study showed that a high level of HLA-G dimers in plasma and increased expression of the membrane-bound form of HLA-G on monocytes are associated with prolongation of kidney allograft survival. We also determined that the presence of soluble HLA-G dimers links to the lower levels of proinflammatory cytokines, suggesting a potential role of HLA-G dimers in controlling the accompanying inflammatory state.

  1. Concentration of D-dimers in healthy cats and sick cats with and without disseminated intravascular coagulation (DIC).

    Science.gov (United States)

    Tholen, Inger; Weingart, Christiane; Kohn, Barbara

    2009-10-01

    The objective of this prospective study was to measure concentrations of D-dimers in 48 cats with various diseases and in 20 healthy cats to evaluate the sensitivity and specificity for D-dimers to diagnose disseminated intravascular coagulation (DIC). The cats were classified as having DIC if an underlying disease and at least three of the following criteria were present: thrombocytopenia, prolonged activated partial thromboplastin time, prothrombin time or thrombin time, schistocytes and/or a reduced antithrombin activity. D-dimer concentrations were measured using a semi-quantitative latex agglutination (LA) test (Accuclot D-Dimer, Sigma Diagnostics). The D-dimer test was positive for 8/12 cats with DIC and for 16/36 sick cats without DIC. D-dimers were negative for all healthy control cats. The comparison of the sick cats with DIC and those without DIC revealed a specificity and sensitivity of the D-dimer test of 56% and 67%; a comparison of the results for healthy cats and cats with DIC revealed a specificity and sensitivity of 100% and 67%, respectively. The D-dimer LA test is only of limited value for the diagnosis of DIC in cats.

  2. Geometric Reid's recipe for dimer models

    CERN Document Server

    Bocklandt, Raf; Velez, Alexander Quintero

    2013-01-01

    Crepant resolutions of three-dimensional toric Gorenstein singularities are derived equivalent to noncommutative algebras arising from consistent dimer models. By choosing a special stability parameter and hence a distinguished crepant resolution $Y$, this derived equivalence generalises the Fourier-Mukai transform relating the $G$-Hilbert scheme and the skew group algebra $\\CC[x,y,z]\\ast G$ for a finite abelian subgroup of $\\SL(3,\\CC)$. We show that this equivalence sends the vertex simples to pure sheaves, except for the zero vertex which is mapped to the dualising complex of the compact exceptional locus. This generalises results of Cautis-Logvinenko and Cautis-Craw-Logvinenko to the dimer setting, though our approach is different in each case. We also describe some of these pure sheaves explicitly and compute the support of the remainder, providing a dimer model analogue of results from Logvinenko.

  3. Partition-DFT on the Water Dimer

    CERN Document Server

    Gómez, Sara; Restrepo, Albeiro; Wasserman, Adam

    2016-01-01

    As is well known, the ground-state symmetry group of the water dimer switches from its equilibrium $C_{s}$-character to $C_{2h}$-character as the distance between the two oxygen atoms of the dimer decreases below $R_{\\rm O-O}\\sim 2.5$ \\AA{}. For a range of $R_{\\rm O-O}$ between 1 and 5 \\AA{}, and for both symmetries, we apply Partition Density Functional Theory (PDFT) to find the unique monomer densities that sum to the correct dimer densities while minimizing the sum of the monomer energies. We calculate the work involved in deforming the isolated monomer densities and find that it is slightly larger for the $C_s$ geometry for all $R_{\\rm O-O}$. We discuss how the PDFT densities and the corresponding partition potentials support the orbital-interaction picture of hydrogen-bond formation.

  4. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  5. Kosterlitz Thouless Universality in Dimer Models

    CERN Document Server

    Chandrasekharan, S; Chandrasekharan, Shailesh; Strouthos, Costas G.

    2003-01-01

    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.

  6. A Novel Dimer of α-Tocopherol

    Directory of Open Access Journals (Sweden)

    Anjan Patel

    2008-01-01

    Full Text Available Decomposition of the complex 4, formed between the α-tocopherol ortho-quinone methide (2 and NMMO, by fast heating from −78∘C to 70∘C in inert solvents produces a novel α-tocopherol dimer with 6H,12H-dibenzo[b,f][1,5]dioxocine structure (5 which—in contrast to the well-known spiro-dimer of α-tocopherol (3—is symmetrical. This is the first example of a direct reaction of the highly transient zwitterionic, aromatic precursor 2a in the formation of the ortho-quinone methide 2.

  7. Synthesis of Methoxyethyl Nucleoside Dimer Phosphoramidates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gi Weon; Kang, Yong Han [Hanyang University, Ansan (Korea, Republic of)

    2016-05-15

    Four types of methoxyethyl (MOE) nucleoside phosphoramidites, which are categorized as second-generation building blocks of antisense oligonucleotide drugs, were synthesized. Also, three types of MOE nucleoside dimer phosphoramidites were synthesized to increase the efficiency and oligomer purity in solid phase synthesis. The block-like dimer phosphoramidites can prevent or minimize the formation of the (N-1) mer impurity, thereby affording the fabrication of pure oligonucleotides and reducing the synthesis time by performing coupling reactions in the order of 2 + 2 + 2.

  8. Photon Propagation through Linearly Active Dimers

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2017-06-01

    Full Text Available We provide an analytic propagator for non-Hermitian dimers showing linear gain or losses in the quantum regime. In particular, we focus on experimentally feasible realizations of the PT -symmetric dimer and provide their mean photon number and second order two-point correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon spatially-entangled states. We show that each configuration produces a particular signature that might signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially entangled sources to mention a few possible applications.

  9. Refined conformal spectra in the dimer model

    CERN Document Server

    Rasmussen, Jorgen

    2012-01-01

    Working with Lieb's transfer matrix for the dimer model, we point out that the full set of dimer configurations may be partitioned into disjoint subsets (sectors) closed under the action of the transfer matrix. These sectors are labelled by an integer or half-integer quantum number we call the variation index. In the continuum scaling limit, each sector gives rise to a representation of the Virasoro algebra. We determine the corresponding conformal partition functions and their finitizations, and observe an intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense polymer model as described by a conformal field theory with central charge c=-2.

  10. D-dimer assay in Egyptian patients with Gaucher disease: correlation with bone and lung involvement.

    Science.gov (United States)

    Sherif, Eman M; Tantawy, Azza A G; Adly, Amira A M; Kader, Hossam A; Ismail, Eman A R

    2011-04-01

    Gaucher disease is the most frequent lysosomal storage disorder. Bone and lung involvement are two major causes of morbidity in this disease. D-dimer is a reliable indicator of active microvascular thrombosis, even in patients without overt hypercoagulation. This study aimed to assess D-dimer levels in Gaucher disease, correlating this marker to clinical characteristics and radiological parameters to investigate its role as a potential predictor for the occurrence and severity of skeletal and pulmonary manifestations. The study population consisted of 56 Egyptian patients with Gaucher disease, 36 had type 1 Gaucher disease (64.3%) and 20 had type 3 Gaucher disease (35.7%). Thirty healthy individuals were enrolled as a control group. D-dimer levels were significantly higher in all patients with Gaucher disease compared with controls (P < 0.001). Patients with type 3 showed significantly higher D-dimer concentrations compared with type 1 (P < 0.001). Pulmonary involvement was present in a significant proportion among type 3 Gaucher patients (P < 0.05), whereas bone changes were present in a higher percentage in type 1 compared with type 3 Gaucher patients. D-dimers were significantly higher in patients with abnormal MRI findings of the long bones and in those with ground glass appearance on high-resolution computerized tomography of the chest compared with patients with normal radiology (P < 0.001). Splenectomized patients displayed significantly higher D-dimer levels compared with nonsplenectomized patients (P < 0.001). Our results suggest that D-dimer is significantly elevated in Gaucher disease, particularly type 3, and may be considered as a potential marker of risk prediction of bone and lung involvement that could be used to monitor treatment response.

  11. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Hideki [Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Maruta, Shinsaku, E-mail: maruta@soka.ac.jp [Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  12. A p-quinodimethane-bridged porphyrin dimer.

    Science.gov (United States)

    Zeng, Wangdong; Ishida, Masatoshi; Lee, Sangsu; Sung, Young Mo; Zeng, Zebing; Ni, Yong; Chi, Chunyan; Kim, Dongho; Wu, Jishan

    2013-12-01

    A p-quinodimethane (p-QDM)-bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross-conjugated keto-linked porphyrin dimers 8a and 8b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel-Crafts alkylation of the diol-linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one-photon absorption (OPA, λ(max)=955 nm, ε=45400 M(-1) cm(-1)) and a large two-photon absorption (TPA) cross-section (σ((2))(max)=2080 GM at 1800 nm) in the near-infrared (NIR) region due to its extended π-conjugation and quinoidal character. It also exhibits a short singlet excited-state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground-state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto-linked dimer 8b. This research has revealed that incorporation of a p-QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.

  13. Geometric Reid's recipe for dimer models

    NARCIS (Netherlands)

    Bocklandt, R.; Craw, A.; Quintero Vélez, A.

    2015-01-01

    Crepant resolutions of three-dimensional toric Gorenstein singularities are derived equivalent to noncommutative algebras arising from consistent dimer models. By choosing a special stability parameter and hence a distinguished crepant resolution Y, this derived equivalence generalises the Fourier-M

  14. The Diamagnetic Susceptibility of the Tubulin Dimer

    Directory of Open Access Journals (Sweden)

    Wim Bras

    2014-01-01

    Full Text Available An approximate value of the diamagnetic anisotropy of the tubulin dimer, Δχdimer, has been determined assuming axial symmetry and that only the α-helices and β-sheets contribute to the anisotropy. Two approaches have been utilized: (a using the value for the Δχα for an α-helical peptide bond given by Pauling (1979 and (b using the previously determined anisotropy of fibrinogen as a calibration standard. The Δχdimer≈4×10-27 JT−2 obtained from these measurements are similar to within 20%. Although Cotton-Mouton measurements alone cannot be used to estimate Δχ directly, the value we measured, CMdimer=1.41±0.03×10-8 T−2cm2mg−1, is consistent with the above estimate for Δχdimer. The method utilized for the determination of the tubulin dimer diamagnetic susceptibility is applicable to other proteins and macromolecular assemblies as well.

  15. A new lignan dimer from Mallotus philippensis.

    Science.gov (United States)

    Mai, Nguyen Thi; Cuong, Nguyen Xuan; Thao, Nguyen Phuong; Nam, Nguyen Hoai; Khoi, Nguyen Huu; Minh, Chau Van; Heyden, Yvan Vander; Thuan, Ngo Thi; Tuyen, Nguyen Van; Quetin-Leclercq, Joëlle; Kiem, Phan Van

    2010-03-01

    A new lignan dimer, bilariciresinol (1), was isolated from the leaves of Mallotus philippensis, along with platanoside (2), isovitexin (3), dihydromyricetin (4), bergenin (5), 4-O-galloylbergenin (6), and pachysandiol A (7). Their structures were elucidated by spectroscopic experiments including 1D and 2D NMR and FTICR-MS.

  16. Biological consequences of cyclobutane pyrimidine dimers

    NARCIS (Netherlands)

    Vink, A.A.; Roza, L.

    2001-01-01

    In the skin many molecules may absorb ultraviolet (UV) radiation upon exposure. In particular, cellular DNA strongly absorbs shorter wavelength solar UV radiation, resulting in various types of DNA damage. Among the DNA photoproducts produced the cyclobutane pyrimidine dimers (CPDs) are predominant.

  17. Synthesis of novel 15-membered macrolide dimers

    Institute of Scientific and Technical Information of China (English)

    Shu Tao Ma; Rui Xin Ma; Rui Qing Xian; Bo Jiao

    2009-01-01

    A series of novel dimers of 15-memhered macrolides was synthesized and evaluated. The directs exhibited excellent activity against erythromycin-susceptible S. pneumonia, but did not show any improved activity against erythromycin-resistant S. pneumoniae encoded by erm gene.

  18. Amplitude enhancement by a gold dimer

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin; Jin, Zheng

    2016-10-01

    The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.

  19. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  20. Suppression of electroreductive dimerization of benzaldehyde by addition of. cap alpha. -cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Matsue, T.; Tasaki, C.; Fujihira, M.; Osa, T.

    1983-05-01

    Electrochemical reduction of carbonyl compounds to the corresponding alcohols is an important subject in organic electrochemistry. The effect of ..cap alpha..-cyclodextrin (..cap alpha..-CD) on the electroreduction of benzaldehyde was investigated. The reduction in aqueous system produces benzyl alcohol and 1,2-diphenyl-1,2-ethanediol (hydrobenzoin, dimerization product). The addition of ..cap alpha..-CD caused the decrease in the yield of hydrobenzoin. This suppression effect was observed both in the controlled potential and controlled current electrolyses. This is accounted for by the retardation of the dimerization rate between the neutral radicals, since inclusion of substrate provides severe steric hindrance around the reaction site. The addition had only a small influence on the stereochemistry of hydrobenzoin formed by the dimerization.

  1. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    Science.gov (United States)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  2. A Nove Asymmetric ent—Kauranoid Dimer from Isodon enanderianus

    Institute of Scientific and Technical Information of China (English)

    纳智; 黎胜红; 等

    2002-01-01

    Further investigation on the aerial parts of Isodon enanderianus afforded a novel asymmetric ent-kauranoid dimer,enanderi-nanin J(1).The structure of the dimer was elucidated by means of spectroscopic methods (including 2D NMR tecniques ),Enanderinanin J was a dimer of xerophilusin A and probably formed by [4+2] cycloaddition.

  3. A Novel Asymmetric ent-Kauranoid Dimer from Isodon enanderianus

    Institute of Scientific and Technical Information of China (English)

    NA,Zhi(纳智); LI,Sheng-Hong(黎胜红); XIANG,Wei(项伟); ZHAO,Ai-Hua(赵爱华); LI,Chao-Ming(李朝明); SUN,Han-Dong(孙汉董)

    2002-01-01

    Further investigation on the aerial parts of Isodon enanderianus afforded a novel asymmetric ent-kauranoid dimer, enanuderinaninJ (1). The structure of the dimer was elucidated by means of spectroscopic methods (including 2D NMR techniques ). Enanderinanin J was a dimer of xerophilusin A and probably formed by [ 4 + 2] cycloaddition.

  4. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair.

    Science.gov (United States)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  5. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Val

    Full Text Available Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II. Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

  6. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4

    Science.gov (United States)

    Lee, Chien-Yun; Lin, Chu-Cheng; Liu, Yi-Liang; Liu, Guang-Yaw; Liu, Jyung-Hurng; Hung, Hui-Chih

    2017-01-01

    Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis. PMID:28209966

  7. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4.

    Science.gov (United States)

    Lee, Chien-Yun; Lin, Chu-Cheng; Liu, Yi-Liang; Liu, Guang-Yaw; Liu, Jyung-Hurng; Hung, Hui-Chih

    2017-02-17

    Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis.

  8. Pseudomonas fluorescens and Trichoderma asperellum enhance expression of Gα subunits of the pea heterotrimeric G-protein during Erysiphe pisi infection

    Directory of Open Access Journals (Sweden)

    Jai Singh Patel

    2016-01-01

    Full Text Available We investigated the transcript accumulation patterns of all three subunits of heterotrimeric G-proteins (Gα1&2, Gβ and Gγ in pea under stimulation of two soil-inhabiting rhizosphere microbes Pseudomonas fluorescens OKC and Trichoderma asperellum T42. The microbes were either applied individually or co-inoculated and the transcript accumulation patterns were also investigated after challenging the same plants with a fungal biotrophic pathogen Erysiphe pisi. We observed that mostly the transcripts of Gα 1 and 2 subunits were accumulated when the plants were treated with the microbes (OKC and T42 either individually or co-inoculated. However, transcript accumulations of Gα subunits were highest in the T42 treatment particularly under the challenge of the biotroph. Transcript accumulations of the other two subunits Gβ and Gγ were either basal or even lower than the basal level. There was an indication for involvement of JA-mediated pathway in the same situations as activation of LOX1 and COI1 were relatively enhanced in the microbe co-inoculated treatments. Non-increment of SA content as well as transcripts of SA-dependent PR1 suggested non-activation of the SA-mediated signal transduction in the interaction of pea with E. pisi under the stimuli of OKC and T42. Gα1&2 transcript accumulations were further correlated with peroxidases activities, H2O2 generation and accumulation in ABA in pea leaves under OKC and T42 stimulations and all these activities were positively correlated with stomata closure at early stage of the biotroph challenge. The microbe-induced physiological responses in pea leaves finally led to reduced E. pisi development particularly in OKC and T42 co-inoculated plants. We conclude that OKC and T42 pretreatment stimulate transcript accumulations of the Gα1 and Gα2 subunits of the heterotrimeric G protein, peroxidases activities and phenol accumulation in pea during infection by E. pisi. The signal transduction was

  9. Construction of a ferritin dimer by breaking its symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B; Uenuma, M; Uraoka, Y; Yamashita, I [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-11-05

    Ferritin has a mono-dispersed structure and biomineralization properties that allow it to form various kinds of nanoparticles and play an important role in modern nanotechnology. Independent nanoparticles synthesized in ferritin are valuable, but moreover a pair of nanoparticles can bring new properties different from those of the independent nanoparticles. In this study, by breaking ferritin's symmetry, we successfully produced ferritin dimers which provide real protein frameworks for nanoparticle dimer formation. Identical nickel hydro-oxide nanoparticle dimers were produced by simply biomineralizing ferritin dimers. The method presented here can produce multi-functional ferritin dimers with different kinds of nanoparticles.

  10. Large D-Dimer Fluctuation in Normal Pregnancy

    DEFF Research Database (Denmark)

    Hedengran, Katrine K; Andersen, Malene R; Stender, Steen

    2016-01-01

    pregnancies were recruited. D-dimer was repeatedly measured during pregnancy, at active labor, and on the first and second postpartum days. Percentiles for each gestational week were calculated. Each individual D-dimer was normalized by transformation into percentiles for the relevant gestational age......Introduction. D-dimer levels increase throughout pregnancy, hampering the usefulness of the conventional threshold for dismissing thromboembolism. This study investigates the biological fluctuation of D-dimer in normal pregnancy. Methods. A total of 801 healthy women with expected normal...... normal pregnancy, repeated D-dimer measurements are of no clinical use in the evaluation of thromboembolic events during pregnancy....

  11. Plasmonic rod dimers as elementary planar chiral meta-atoms

    CERN Document Server

    Zhukovsky, Sergei V; Chigrin, Dmitry N

    2011-01-01

    Electromagnetic response of metallic rod dimers is theoretically calculated for arbitrary planar arrangement of rods in the dimer. It is shown that dimers without an in-plane symmetry axis exhibit elliptical dichroism and act as "atoms" in planar chiral metamaterials. Due to a very simple geometry of the rod dimer, such planar metamaterials are much easier in fabrication than conventional split-ring or gammadion-type structures, and lend themselves to a simple analytical treatment based on coupled dipole model. Dependencies of metamaterial's directional asymmetry on the dimer's geometry are established analytically and confirmed in numerical simulations.

  12. Calcium-dependent Dimerization of Human Soluble Calcium Activated Nucleotidase: Characterization of the Dimer Interface

    Energy Technology Data Exchange (ETDEWEB)

    Yang,M.; Horii, K.; Herr, A.; Kirley, T.

    2006-01-01

    Mammals express a protein homologous to soluble nucleotidases used by blood-sucking insects to inhibit host blood clotting. These vertebrate nucleotidases may play a role in protein glycosylation. The activity of this enzyme family is strictly dependent on calcium, which induces a conformational change in the secreted, soluble human nucleotidase. The crystal structure of this human enzyme was recently solved; however, the mechanism of calcium activation and the basis for the calcium-induced changes remain unclear. In this study, using analytical ultracentrifugation and chemical cross-linking, we show that calcium or strontium induce noncovalent dimerization of the soluble human enzyme. The location and nature of the dimer interface was elucidated using a combination of site-directed mutagenesis and chemical cross-linking, coupled with crystallographic analyses. Replacement of Ile{sup 170}, Ser{sup 172}, and Ser{sup 226} with cysteine residues resulted in calcium-dependent, sulfhydryl-specific intermolecular cross-linking, which was not observed after cysteine introduction at other surface locations. Analysis of a super-active mutant, E130Y, revealed that this mutant dimerized more readily than the wild-type enzyme. The crystal structure of the E130Y mutant revealed that the mutated residue is found in the dimer interface. In addition, expression of the full-length nucleotidase revealed that this membrane-bound form can also dimerize and that these dimers are stabilized by spontaneous oxidative cross-linking of Cys{sup 30}, located between the single transmembrane helix and the start of the soluble sequence. Thus, calcium-mediated dimerization may also represent a mechanism for regulation of the activity of this nucleotidase in the physiological setting of the endoplasmic reticulum or Golgi.

  13. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  14. Revisiting the optical $PT$-symmetric dimer

    CERN Document Server

    Morales, J D Huerta; López-Aguayo, S; Rodríguez-Lara, B M

    2016-01-01

    Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of $\\mathcal{PT}$-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical $\\mathcal{PT}$-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar $N$-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.

  15. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  16. Immunoglobulin Free Light Chain Dimers in Human Diseases

    Directory of Open Access Journals (Sweden)

    Batia Kaplan

    2011-01-01

    Full Text Available Immunoglobulin free light chain (FLC kappa (κ and lambda (λ isotypes exist mainly in monomeric and dimeric forms. Under pathological conditions, the level of FLCs as well as the structure of monomeric and dimeric FLCs and their dimerization properties might be significantly altered. The abnormally high fractions of dimeric FLCs were demonstrated in the serum of patients with multiple myeloma (MM and primary systemic amyloidosis (AL, as well as in the serum of anephric patients. The presence of tetra- and trimolecular complexes formed due to dimer-dimer and dimer-monomer interactions was detected in the myeloma serum. Analysis of the amyloidogenic light chains demonstrated mutations within the dimer interface, thus raising the possibility that these mutations are responsible for amyloidogenicity. Increased κ monomer and dimer levels, as well as a high κ/λ monomer ratio, were typically found in the cerebrospinal fluid from patients with multiple sclerosis (MS. In many MS cases, the elevation of κ FLCs was accompanied by an abnormally high proportion of λ dimers. This review focuses on the disease-related changes of the structure and level of dimeric FLCs, and raises the questions regarding their formation, function, and role in the pathogenesis and diagnosis of human diseases.

  17. Kinetic analysis of histamine release due to covalently linked IgE dimers

    Energy Technology Data Exchange (ETDEWEB)

    Dembo, M. (Los Alamos Scientific Lab., NM); Kagey-Sobotka, A.; Lichtenstein, L.M.; Goldstein, B.

    1982-01-01

    We present a kinetic model of histamine release from human basophils due to covalently linked IgE dimers. Comparison of theory with experiment shows that the model gives a good description of histamine release by IgE dimers and allows a number of the parameters of the model to be determined. Comparison with previous models of release by conventional antigens indicates that despite their covalent structure, IgE dimers are subject to the same laws governing inactivation as are antigen produced crosslinks. In addition, the kinetic equation which relates the rate of histamine release to the number of crosslinked Fc/sub e/ receptors per cell is the same for crosslinks formed by IgE dimers as for antigen induced crosslinks. Quantitative fitting of histamine release data also yields a value for the rate constant for crosslink formation by IgE dimer on the cell surface (r/sub x/ approx. = to 5 x 10/sup -10/ cm/sup 2//sec). This rate constant is remarkably high and indicates that the reaction is diffusion controlled.

  18. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.

    Science.gov (United States)

    Wang, Qian; Chen, Xinmei; Wang, Zhixiang

    2015-03-01

    We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated.

  19. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

    Science.gov (United States)

    Ruff, Karen M; Strobel, Scott A

    2014-11-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.

  20. Entanglement and decoherence in a quantum dimer

    Institute of Scientific and Technical Information of China (English)

    Hou Xi-Wen; Hui Zi; Ding Rui-Min; Chen Xiao-Yang; Gao Yu

    2006-01-01

    The dynamical properties of quantum entanglement in an integrable quantum dimer are studied in terms of the reduced-density linear entropy with various coupling parameters and total boson numbers. The characteristic time of decoherence process in the early-time evolution of the linear entropy is obtained, indicating that the characteristic time and the corresponding entropy exhibit a maximum near the position of the corresponding classical separatrix energy.

  1. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.

    Science.gov (United States)

    Atkison, James H; Parnham, Stuart; Marcotte, William R; Olsen, Shaun K

    2016-09-02

    Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct.

  2. Path integrals for dimerized quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2011-01-11

    Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.

  3. Pressure effects on the radical-radical recombination reaction of photochromic bridged imidazole dimers.

    Science.gov (United States)

    Mutoh, Katsuya; Abe, Jiro

    2014-09-07

    The bridged imidazole dimers are some of the attractive fast photochromic compounds which have potential applications to the ophthalmic lenses, real-time hologram and molecular machines. The strategy for expanding their photochromic properties such as the colour variation and tuning the decolouration rates has been vigorously investigated, but the insight into the structural changes along the photochromic reactions has not been demonstrated in detail. Here, we demonstrated the pressure dependence of the radical-radical recombination reaction of the bridged imidazole dimers. The radical-radical interaction can be controlled by applying high pressure. Our results give fundamental information about the molecular dynamics of the bridged imidazole dimers, leading to the development of new functional photochromic machines and pressure-sensitive photochromic materials.

  4. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS

    KAUST Repository

    Kessentini, Sameh

    2014-02-13

    We focus on improving the surface-enhanced Raman scattering (SERS) of dimer nanoantenna by tailoring the shape of the coupled nanoantennas extremities from rounded to straight or slanted ones. A numerical model based on the discrete dipole approximation method-taking into account periodicity, adhesion layer, and roughness-is first validated by comparison with localized surface plasmon resonance (LSPR) and SERS experiments on round-edged dimer nanoantennas and then used to investigate the effect of the straight or slanted gap in the dimer antenna. Simulations show that both LSPR and SERS can be tuned by changing the gap slanting angle. The SERS enhancement factor can also be improved by 2 orders of magnitude compared to the one reached using a rounded gap. Therefore, the slanting angle can be used as a new control parameter in the design of SERS substrates to guarantee stronger field confinement and higher sensitivity, especially as its feasibility is demonstrated. © 2014 American Chemical Society.

  5. Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins.

    Science.gov (United States)

    Vendome, Jeremie; Posy, Shoshana; Jin, Xiangshu; Bahna, Fabiana; Ahlsen, Goran; Shapiro, Lawrence; Honig, Barry

    2011-06-01

    Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal β-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca(2+) ions. We also demonstrate that a conserved proline-proline motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations that transform a monomeric EC2-EC3 domain cadherin construct into a strand-swapped dimer.

  6. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Minjie [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua; Yang, Caiyun [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Meng, Hao; Wang, Dong; Chang, Shuang [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Ye [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Price, Brendan, E-mail: Brendan_Price@dfci.harvard.edu [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  7. 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology.

    Science.gov (United States)

    Kvachnina, Elena; Liu, Guoquan; Dityatev, Alexander; Renner, Ute; Dumuis, Aline; Richter, Diethelm W; Dityateva, Galina; Schachner, Melitta; Voyno-Yasenetskaya, Tatyana A; Ponimaskin, Evgeni G

    2005-08-24

    The neurotransmitter serotonin (5-HT) plays an important role in the regulation of multiple events in the CNS. We demonstrated recently a coupling between the 5-HT4 receptor and the heterotrimeric G13-protein resulting in RhoA-dependent neurite retraction and cell rounding (Ponimaskin et al., 2002). In the present study, we identified G12 as an additional G-protein that can be activated by another member of serotonin receptors, the 5-HT7 receptor. Expression of 5-HT7 receptor induced constitutive and agonist-dependent activation of a serum response element-mediated gene transcription through G12-mediated activation of small GTPases. In NIH3T3 cells, activation of the 5-HT7 receptor induced filopodia formation via a Cdc42-mediated pathway correlating with RhoA-dependent cell rounding. In mouse hippocampal neurons, activation of the endogenous 5-HT7 receptors significantly increased neurite length, whereas stimulation of 5-HT4 receptors led to a decrease in the length and number of neurites. These data demonstrate distinct roles for 5-HT7R/G12 and 5-HT4R/G13 signaling pathways in neurite outgrowth and retraction, suggesting that serotonin plays a prominent role in regulating the neuronal cytoarchitecture in addition to its classical role as neurotransmitter.

  8. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1.

    Science.gov (United States)

    Ferrero-Serrano, Ángel; Assmann, Sarah M

    2016-05-01

    Essential in the Green Revolution was the development of high-yielding dwarf varieties of rice (Oryza sativa L.), but their selection was not based on responses to water limitation. We studied physiological responses to progressive drought of the dwarf rice mutant, d1, in which the RGA1 gene, which encodes the GTP-binding α-subunit of the heterotrimeric G protein, is non-functional. Wild-type (WT) plants cease net carbon fixation 11 days after water is withheld, while d1 plants maintain net photosynthesis for an additional week. During drought, d1 plants exhibit greater stomatal conductance than the WT, but both genotypes exhibit the same transpirational water loss per unit leaf area. This is explained by a smaller driving force for water loss in d1 owing to its lower leaf temperatures, consistent with its more erect architecture. As drought becomes more severe, WT plants show an accelerated decline in photosynthesis, which may be exacerbated by the higher leaf temperatures in the WT. We thus show how a rice mutant with dwarf and erect leaves has a decreased susceptibility to water stress. Accordingly, it may be useful to incorporate RGA1 mutation in breeding or biotechnological strategies for development of drought-resistant rice.

  9. Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis.

    Science.gov (United States)

    Koval, Alexey; Ahmed, Kamal; Katanaev, Vladimir L

    2016-02-15

    Overactivation of the Wnt signalling pathway underlies oncogenic transformation and proliferation in many cancers, including the triple-negative breast cancer (TNBC), the deadliest form of tumour in the breast, taking about a quarter of a million lives annually worldwide. No clinically approved targeted therapies attacking Wnt signalling currently exist. Repositioning of approved drugs is a promising approach in drug discovery. In the present study we show that a multi-purpose drug suramin inhibits Wnt signalling and proliferation of TNBC cells in vitro and in mouse models, inhibiting a component in the upper levels of the pathway. Through a set of investigations we identify heterotrimeric G proteins and regulation of Wnt endocytosis as the likely target of suramin in this pathway. G protein-dependent endocytosis of plasma membrane-located components of the Wnt pathway was previously shown to be important for amplification of the signal in this cascade. Our data identify endocytic regulation within Wnt signalling as a promising target for anti-Wnt and anti-cancer drug discovery. Suramin, as the first example of such drug or its analogues might pave the way for the appearance of first-in-class targeted therapies against TNBC and other Wnt-dependent cancers.

  10. Heterotrimeric Galphaq11 co-immunoprecipitates with surface-anchored GRP78 from plasma membranes of alpha2M*-stimulated macrophages.

    Science.gov (United States)

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2008-05-01

    We have previously shown that a fraction of newly expressed GRP78 is translocated to the cell surface in association with the co-chaperone MTJ-1. Proteinase and methylamine-activated alpha(2)M (alpha(2)M*) bind to cell surface-associated GRP78 activating phosphoinositide-specific phospholipase C coupled to a pertussis toxin-insensitive heterotrimeric G protein, generating IP(3)/calcium signaling. We have now studied the association of pertussis toxin-insensitive Galphaq11, with GRP78/MTJ-1 complexes in the plasma membranes of alpha(2)M*-stimulated macrophages. When GRP78 was immunoprecipitated from plasma membranes of macrophages stimulated with alpha(2)M*, Galphaq11, and MTJ-1 were co-precipitated. Likewise Galphaq11 and GRP78 co-immunoprecipitated with MTJ-1 while GRP78 and MTJ-1 co-immunoprecipitated with Galphaq11. Silencing GRP78 expression with GRP78 dsRNA or MTJ-1 with MTJ-1 dsRNA greatly reduced the levels of Galphaq11 co-precipitated with GRP78 or MTJ-1. In conclusion, we show here that plasma membrane-associated GRP78 is coupled to pertussis toxin-insensitive Galphaq11 and forms a ternary signaling complex with MTJ-1.

  11. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    Science.gov (United States)

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions.

  12. Ionization satellites of the ArHe dimer

    Energy Technology Data Exchange (ETDEWEB)

    Miteva, Tsveta; Klaiman, Shachar; Gokhberg, Kirill [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Gromov, Evgeniy V., E-mail: Evgeniy.Gromov@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Laboratory of Quantum Chemistry, Computer Center, Irkutsk State University, K. Marks 1, 664003 Irkutsk (Russian Federation)

    2014-05-28

    Ionization satellites are key ingredients in the control of post ionization processes such as molecular dissociation and interatomic Coulombic decay. Here, using the high-level ab initio method of multi-reference configuration interaction up to triple excitations, we study the potential energy curves (PECs) of the ionization satellites of the ArHe dimer. With this model system, we demonstrate that the simple model used in alkaline earth metal and rare gas complexes to describe the satellites as a Rydberg electron moving on top of a dicationic core does not fully hold for the rare gas clusters. The more complex valence structure in the rare gas atom leads to the mixing of different electronic configurations of the dimer. This prevents one from assigning a single dicationic parent state to some of the ionization satellites. We further analyze the structure of the different PECs, demonstrating how the density of the Rydberg electron is reflected in the structure of the PEC wherever the simple model is applicable.

  13. Elevation in D-dimer concentrations is positively correlated with gestation in normal uncomplicated pregnancy

    Directory of Open Access Journals (Sweden)

    Jeremiah ZA

    2012-08-01

    Full Text Available Zaccheaus A Jeremiah,1 Teddy C Adias,2 Margaret Opiah,3 Siyeoforiye P George,4 Osaro Mgbere,5 Ekere J Essien61Department of Medical Laboratory Sciences, Niger Delta University, Wilberforce Island, Nigeria; 2Bayelsa State College of Health Technology, Ogbia-Town, Nigeria; 3Department of Maternal and Child Health, Faculty of Nursing, Niger Delta University, Wilberforce Island, Nigeria; 4Postgraduate Hematology Unit, Rivers State University of Science and Technology, Port Harcourt, Nigeria; 5Houston Department of Health and Human Services, Houston, TX, USA; 6Institute of Community Health, University of Houston, Houston, TX, USABackground: D-dimer levels have been reported to increase progressively during pregnancy, but how this affects Nigerian women is not well known.Objective: This study aims to determine the D-dimer concentration and its relationship to other coagulation parameters among pregnant women in Port Harcourt, Nigeria.Method: In a cross-sectional observational study conducted in Port Harcourt, Nigeria, 120 pregnant women and 60 nonpregnant controls, drawn from a tertiary health institution in the Niger Delta, Nigeria, were assessed, using the standard procedures, for the following parameters: D-dimer concentration, prothrombin time, activated partial thromboplastin time, platelet count, hemoglobin, and packed cell volume.Results: The median D-dimer concentration of 153.1 ng/mL in the pregnant group was found to be significantly elevated when compared with the control value of 118.5 ng/mL (t = 2.348, P = 0.021. Conversely, there was a marked depression in the platelet count among pregnant women (193.5 × 109/L when compared with 229.0 × 109/L in the control group (t = 3.424; P = 0.001. There was no statistically significant difference in the values for the prothrombin time and the activated partial thromboplastin time between pregnant and nonpregnant women. D-dimer values correlated positively and significantly with gestation (r = 0

  14. Metal enhanced fluorescence of Ag-nanoshell dimer

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Chen, Bae-Renn; Kuo, Mao-Kuen

    2014-04-01

    The plasmon modes of Ag-nanoshell dimer on metal enhanced fluorescence (MEF) are studied theoretically. The amplified excitation rate of a dimer (two identical Ag nanoshells) illuminated by a plane wave for exciting a molecule located at the gap center is calculated. Subsequently, the apparent quantum yield of the emission of the excited molecule affected by the dimer is investigated. The multiple multipole method is used for the both simulations. Finally, the enhancement factor of the dimer on the overall photoluminescence of the molecule in terms of the two parameters is evaluated. Our results show that Ag-nanoshell dimer is a dual-band photoluminescence enhancer for MEF at the bonding dipole and quadrupole modes. The former is broadband, and the latter narrowband. Both bands depend on the gap size. Moreover, the average enhancement factor of Ag-nanoshell dimer for MEF with a Stokes shift is discussed.

  15. Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis.

    Science.gov (United States)

    Saruwatari, Takayoshi; Yagishita, Fumitoshi; Mino, Takashi; Noguchi, Hiroshi; Hotta, Kinya; Watanabe, Kenji

    2014-03-21

    As dimeric natural products frequently exhibit useful biological activities, identifying and understanding their mechanisms of dimerization is of great interest. One such compound is (−)-ditryptophenaline, isolated from Aspergillus flavus, which inhibits substance P receptor for potential analgesic and anti-inflammatory activity. Through targeted gene knockout in A. flavus and heterologous yeast gene expression, we determined for the first time the gene cluster and pathway for the biosynthesis of a dimeric diketopiperazine alkaloid. We also determined that a single cytochrome P450, DtpC, is responsible not only for pyrroloindole ring formation but also for concurrent dimerization of N-methylphenylalanyltryptophanyl diketopiperazine monomers into a homodimeric product. Furthermore, DtpC exhibits relaxed substrate specificity, allowing the formation of two new dimeric compounds from a non-native monomeric precursor, brevianamide F. A radical-mediated mechanism of dimerization is proposed.

  16. Thermodynamic properties for the sodium dimer

    Science.gov (United States)

    Song, Xiao-Qin; Wang, Chao-Wen; Jia, Chun-Sheng

    2017-04-01

    We present a closed-form expression of the classical vibrational partition function for the improved Rosen-Morse potential energy model. We give explicit expressions for the vibrational mean energy, vibrational specific heat, vibrational free energy, and vibrational entropy for diatomic molecule systems. The properties of these thermodynamic functions for the Na2 dimer are discussed in detail. We find that the improved Rosen-Morse potential model is superior to the harmonic oscillator in calculating the heat capacity for the Na2 molecules.

  17. Thermodynamics of acetylene van der Waals dimerization

    Science.gov (United States)

    Colussi, A. J.; Sander, S. P.; Friedl, R. R.

    1991-01-01

    Integrated band intensities of the 620/cm absorption in (C2H2)2 are measured by FTIR spectroscopy at constant acetylene pressure between 198 and 273 K. These data, in conjunction with ab initio results for (C2H2)2, are used for the statistical evaluation of the equilibrium constant Kp(T) for acetylene-cluster dimerization. The present results are used to clarify the role of molecular clusters in chemical systems at or near equilibrium, in particular in Titan's stratosphere.

  18. The properties of dimers confined between two charged plates.

    Science.gov (United States)

    Hatlo, Marius M; Bohinc, Klemen; Lue, Leo

    2010-03-21

    We consider two like-charged planar surfaces immersed in solution of oppositely charged dimer counterions with a bond length l. To analyze this system, we extend and employ a self-consistent field theory that has been shown to be accurate from the weak to the intermediate through to the strong coupling regimes. In the limit of very short dimers, the results converge to the results for pointlike divalent ions. Near the surfaces, the dimers lie parallel to the charged plates. In the intermediate coupling regime, the dimers are aligned perpendicularly to the surface when they are a distance l from a surface. In the weak coupling regime, the interactions are only repulsive. At slightly higher couplings, there is a minimum in the variation of the free energy with distance at approximately the bond length of the dimers, which arises from bridging conformations of the dimers. In the intermediate coupling regime, an additional minimum in the free energy is observed at much smaller distances, which is due to the correlations between the dimers. For large dimer bond lengths, this minimum is metastable with respect to the previous minimum. However, as the bond length decreases, this minimum becomes the stable, while the minimum associated with the dimer bond length becomes metastable and eventually disappears. For shorter dimer bond length the attractive interaction is the result of correlations between counterions and charges on the surfaces. We find that dimers can mediate attractive interaction between like-charged surfaces in the intermediate coupling regime. The analysis of orientations confirms the bridging mechanism for sufficiently long dimers, whereas at high electrostatic couplings charge correlations contribute to the attraction.

  19. Rotational spectra of propargyl alcohol dimer: A dimer bound with three different types of hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Devendra; Arunan, E., E-mail: arunan@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 (India)

    2014-10-28

    Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer [A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and “Atoms in Molecules” analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O–H⋯O, O–H⋯π, and C–H⋯π. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact.

  20. Synthesis of Symmetrical Biaryls via Rhodium Catalyzed Dimerization of Arylmercurials and Mechanism of the Dimerization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of symmetrical biaryls was synthesized from arylmercuric chlorides and biarylmercurials in the presence of [ClRh(CO)2]2 in hexamethylphosphoramide(HMPA). The mechanism of the [ClRh(CO)2]2 catalyzed dimerization of biarylmercurials was studied, and shown to be mainly intermolecular reaction.

  1. Assembly of Drosophila centromeric nucleosomes requires CID dimerization.

    Science.gov (United States)

    Zhang, Weiguo; Colmenares, Serafin U; Karpen, Gary H

    2012-01-27

    Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.

  2. Disordered clusters of Bak dimers rupture mitochondria during apoptosis

    Science.gov (United States)

    Uren, Rachel T; O’Hely, Martin; Iyer, Sweta; Bartolo, Ray; Shi, Melissa X; Brouwer, Jason M; Alsop, Amber E; Dewson, Grant; Kluck, Ruth M

    2017-01-01

    During apoptosis, Bak and Bax undergo major conformational change and form symmetric dimers that coalesce to perforate the mitochondrial outer membrane via an unknown mechanism. We have employed cysteine labelling and linkage analysis to the full length of Bak in mitochondria. This comprehensive survey showed that in each Bak dimer the N-termini are fully solvent-exposed and mobile, the core is highly structured, and the C-termini are flexible but restrained by their contact with the membrane. Dimer-dimer interactions were more labile than the BH3:groove interaction within dimers, suggesting there is no extensive protein interface between dimers. In addition, linkage in the mobile Bak N-terminus (V61C) specifically quantified association between dimers, allowing mathematical simulations of dimer arrangement. Together, our data show that Bak dimers form disordered clusters to generate lipidic pores. These findings provide a molecular explanation for the observed structural heterogeneity of the apoptotic pore. DOI: http://dx.doi.org/10.7554/eLife.19944.001 PMID:28182867

  3. Dimerization of Indanedioneketene to Spiro-oextanone: A Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Bakalbassis, Evangelos G; Malamidou-Xenikaki, Elizabeth; Spyroudis, Spyros; Xantheas, Sotiris S

    2010-08-20

    Indanedioneketene, a compound resulting from the thermal degradation of the phenyliodonium ylide of lawsone, dimerises quantitatively to a spiro-oxetanone derivative, a key compound for further transformations. A theoretical DFT study of this unusual for α-oxoketenes [2+2] cyclization reaction both in the gas phase and in dichloromethane solution, provides support for a) a single-step, transitionstate (involving a four-membered cyclic ring) charge controlled, concerted mechanism, and b) a [4+2] cyclization reaction, not observed but studied theoretically in this study. A parallel study of an open chain α,α'-dioxoketene dimerization explains the difference in the stability and reactivity observed experimentally between the cyclic and open chain products.

  4. Theoretical Investigation on Triplet Excitation Energy Transfer in Fluorene Dimer

    Institute of Scientific and Technical Information of China (English)

    Yu-bing Si; Xin-xin Zhong; Wei-wei Zhang; Yi Zhao

    2011-01-01

    Triplet-triplet energy transfer in fluorene dimer is investigated by combining rate theories with electronic structure calculations.The two key parameters for the control of energy transfer,electronic conpling and reorganization energy,are calculated based on the diabatic states constructed by the constrained density functional theory.The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation.Succeedingly,the diagonal and off-diagonal fluctuations of thc Hamiltonian are mapped from the correlation functions of those parameters,and the rate is then estimated both from the perturbation theory and wavepacket diffusion method.The results manifest that both the static and dynamic fluctuations enhance the rate significantly,but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.

  5. Quantum Monte Carlo study of the protonated water dimer

    CERN Document Server

    Dagrada, Mario; Saitta, Antonino M; Sorella, Sandro; Mauri, Francesco

    2013-01-01

    We report an extensive theoretical study of the protonated water dimer (Zundel ion) by means of the highly correlated variational Monte Carlo and lattice regularized Monte Carlo approaches. This system represents the simplest model for proton transfer (PT) and a correct description of its properties is essential in order to understand the PT mechanism in more complex acqueous systems. Our Jastrow correlated AGP wave function ensures an accurate treatment of electron correlations. Exploiting the advantages of contracting the primitive basis set over atomic hybrid orbitals, we are able to limit dramatically the number of variational parameters with a systematic control on the numerical precision, crucial in order to simulate larger systems. We investigate energetics and geometrical properties of the Zundel ion as a function of the oxygen-oxygen distance, taken as reaction coordinate. In both cases, our QMC results are found in excellent agreement with coupled cluster CCSD(T) technique, the quantum chemistry "go...

  6. Pathogenic Cysteine Removal Mutations in FGFR Extracellular Domains Stabilize Receptor Dimers and Perturb the TM Dimer Structure.

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-10-09

    Missense mutations that introduce or remove cysteine residues in receptor tyrosine kinases are believed to cause pathologies by stabilizing the active receptor tyrosine kinase dimers. However, the magnitude of this stabilizing effect has not been measured for full-length receptors. Here, we characterize the dimer stabilities of three full-length fibroblast growth factor receptor (FGFR) mutants harboring pathogenic cysteine substitutions: the C178S FGFR1 mutant, the C342R FGFR2 mutant, and the C228R FGFR3 mutant. We find that the three mutations stabilize the FGFR dimers. We further see that the mutations alter the configuration of the FGFR transmembrane dimers. Thus, both aberrant dimerization and perturbed dimer structure likely contribute to the pathological phenotypes arising due to these mutations.

  7. The role of serum D-dimer level in the diagnosis of patients admitted to the emergency department complaining of chest pain.

    Science.gov (United States)

    Orak, M; Ustündağ, M; Güloğlu, C; Alyan, O; Sayhan, M B

    2010-01-01

    This study investigated D-dimer levels in 241 patients admitted to the emergency department with sudden-onset chest pain. The patient group included those diagnosed with acute coronary syndrome (ACS; i.e., unstable angina pectoris [USAP], non-ST elevated myocardial infarction [NSTEMI], ST-elevated myocardial infarction [STEMI]); the control group included those diagnosed with non-cardiac chest pain. Mean serum levels of D-dimer, creatine kinase-MB (CK-MB) and troponin I (TPI) were compared between the groups. Levels of D-dimer, CK-MB and TPI in the patient group were significantly higher than in the control group. There were also significantly higher D-dimer, CK-MB and TPI levels in the STEMI and NSTEMI patient subgroups compared with the control group. Only the D-dimer level was significantly higher in the USAP subgroup versus the control group. The sensitivity and specificity of D-dimer for ACS were 83.7% and 95.4%, respectively, suggesting that evaluating D-dimer levels might be useful in the emergency room for diagnosing ACS and predicting mortality in patients presenting with acute chest pain.

  8. Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins.

    Science.gov (United States)

    Bondar, Alexey; Lazar, Josef

    2014-01-17

    Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.

  9. A upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list

    Directory of Open Access Journals (Sweden)

    A. J. L. Shillings

    2010-10-01

    Full Text Available The absorption of solar radiation by water dimer molecules in the Earth's atmosphere can potentially act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared in the expected region of the third overtone of the water dimer hydrogen-bonded OHb stretching vibration around 750 nm. The results were obtained using broadband cavity ringdown spectroscopy (BBCRDS, a methodology that allows absorption measurements to be made under controlled laboratory conditions but over absorption path lengths representative of atmospheric conditions. In order to account correctly and completely for overlapping absorption of monomer molecules in the same spectral region, we have also constructed a new list of spectral data (UCL08 for the water monomer in the 750–20 000 cm−1 (13 μm–500 nm range.

    Our results show that the additional lines included in the UCL08 spectral database provide a substantially improved representation of the measured water monomer absorption in the 750 nm region, particularly at wavelengths dominated by weak monomer absorption features. No absorption features which could not be attributed to the water monomer were detected in the BBCRDS experiments up to water mixing ratios more than an order of magnitude greater than those in the ambient atmosphere. The absence of detectable water dimer features leads us to conclude that, in the absence of significant errors in calculated dimer oscillator strengths or monomer/dimer equilibrium constants, the widths of water dimer features present around 750 nm must be substantially greater (~100 cm−1 HWHM than

  10. Evaluation of the Diagnostic Accuracy of Serum D-Dimer Levels in Pregnant Women with Adnexal Torsion

    Directory of Open Access Journals (Sweden)

    Hasan Onur Topçu

    2015-01-01

    Full Text Available We aimed to evaluate the diagnostic accuracy of serum D-dimer levels in pregnant women with adnexal torsion (AT. The pregnant women with ovarian cysts who suffered from pelvic pain were divided into two groups; the first group consisted of the cases with surgically proven as AT (n = 17 and the second group consisted of the cases whose pain were resolved in the course of follow-up period without required surgery (n = 34. The clinical characteristics and serum D-dimer levels were compared between the groups. Patients with AT had a higher rate of elevated serum white blood cell (WBC count (57% vs. 16%, p = 0.04 and serum D-dimer levels (77% vs. 21%, p < 0.01 on admission in the study group than in the control group. Elevated D-dimer and cyst diameter larger than 5 cm yielded highest sensitivity (82% for each; whereas the presence of nausea and vomiting and elevated CRP had the highest specificity (85% and 88%, respectively. This is the first study that evaluates the serum D-dimer levels in humans in the diagnosis of AT, and our findings supported the use of D-dimer for the early diagnosis of AT in pregnant women.

  11. Engineering of a novel Ca²⁺-regulated kinesin molecular motor using a calmodulin dimer linker.

    Science.gov (United States)

    Shishido, Hideki; Maruta, Shinsaku

    2012-06-29

    The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have "on-off" control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca(2+)-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca(2+)-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  12. Dimeric Labdane Diterpenes: Synthesis and Antiproliferative Effects

    Directory of Open Access Journals (Sweden)

    Guillermo Schmeda-Hirschmann

    2013-05-01

    Full Text Available Several diterpenes with the labdane skeleton show biological activity, including antiproliferative effects. Most of the research work on bioactive labdanes has been carried out on naturally occurring diterpenes and semisynthetic derivatives, but much less is known on the effects of diterpene dimers. The aim of the present work was to synthesize dimeric diterpenes from the labdane imbricatolic acid using esters, ethers and the triazole ring as linkers. Some 18 new derivatives were prepared and the compounds were evaluated for antiproliferative activity on human normal fibroblasts (MRC-5 and the following human tumor cell lines: AGS, SK-MES-1, J82 and HL-60. The diethers 8–10, differing in the number of CH2 units in the linker, presented better antiproliferative activity with a maximum effect for the derivative 9. The best antiproliferative effect against HL-60 cells was found for compounds 3 and 17, with IC50 values of 22.3 and 23.2 μM, lower than that found for the reference compound etoposide (2.23 μM. The compounds 9, 17 and 11 were the most active derivatives towards AGS cells with IC50 values of 17.8, 23.4 and 26.1 μM. A free carboxylic acid function seems relevant for the effect as several of the compounds showed less antiproliferative effect after methylation.

  13. Water dimer absorption of visible light

    Directory of Open Access Journals (Sweden)

    J. Hargrove

    2007-07-01

    Full Text Available Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm−1, ΔH°301 K=−16.6±2 kJ mol−1 and ΔS°301 K=−80±10 J mol−1 K−1. This transition peaks at 409.5 nm, could be attributed to the 8th overtone of water dimer and the 532 nm absorption to the 6th overtone. It is possible that some lower overtones previously searched for are less enhanced. These absorptions could increase water vapor feed back calculations leading to higher global temperature projections with currently projected greenhouse gas levels or greater cooling from greenhouse gas reductions.

  14. Modelling study of dimerization in mammalian defensins

    Directory of Open Access Journals (Sweden)

    Verma Chandra

    2006-12-01

    Full Text Available Abstract Background Defensins are antimicrobial peptides of innate immunity functioning by non-specific binding to anionic phospholipids in bacterial membranes. Their cationicity, amphipathicity and ability to oligomerize are considered key factors for their action. Based on structural information on human β-defensin 2, we examine homologous defensins from various mammalian species for conserved functional physico-chemical characteristics. Results Based on homology greater than 40%, structural models of 8 homologs of HBD-2 were constructed. A conserved pattern of electrostatics and dynamics was observed across 6 of the examined defensins; models backed by energetics suggest that the defensins in these 6 organisms are characterized by dimerization-linked enhanced functional potentials. In contrast, dimerization is not energetically favoured in the sheep, goat and mouse defensins, suggesting that they function efficiently as monomers. Conclusion β-defensin 2 from some mammals may work as monomers while those in others, including humans, work as oligomers. This could potentially be used to design human defensins that may be effective at lower concentrations and hence have therapeutic benefits.

  15. Structural Basis of Dimerization-dependent Ubiquitination by the SCFFbx4 Ubiquitin Ligase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Hao, B

    2010-01-01

    The F-box proteins are the substrate recognition subunits of the SCF (Skp1-Cul1-Rbx1-F-box protein) ubiquitin ligase complexes that control the stability of numerous regulators in eukaryotic cells. Here we show that dimerization of the F-box protein Fbx4 is essential for SCF{sup Fbx4} (the superscript denotes the F-box protein) ubiquitination activity toward the telomere regulator Pin2 (also known as TRF1). The crystal structure of Fbx4 in complex with an adaptor protein Skp1 reveals an antiparallel dimer configuration in which the linker domain of Fbx4 interacts with the C-terminal substrate-binding domain of the other protomer, whereas the C-terminal domain of the protein adopts a compact {alpha}/{beta} fold distinct from those of known F-box proteins. Biochemical studies indicate that both the N-terminal domain and a loop connecting the linker and C-terminal domain of Fbx4 are critical for the dimerization and activation of the protein. Our findings provide a framework for understanding the role of F-box dimerization in the SCF-mediated ubiquitination reaction.

  16. Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.

    Science.gov (United States)

    Hallett, Ryan A; Zimmerman, Seth P; Yumerefendi, Hayretin; Bear, James E; Kuhlman, Brian

    2016-01-15

    Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.

  17. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  18. Synthesis of novel organo-phosphorus C60 dimers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Carbon bridged organophosphorus C60 dimers were obtained by the reaction of aminome- thylenebisphosphonate anion with C60 and fully characterized by 1HNMR, 31PNMR, 13CNMR, FT- MALDI-MS, FT-IR, UV-Vis, DEPT and HMBC, and the dimeric compounds undergo hydrolysis by using TMSI.

  19. Local field enhancement: comparing self-similar and dimer nanoantennas

    CERN Document Server

    Pellegrini, Giovanni; Finazzi, Marco; Biagioni, Paolo

    2016-01-01

    We study the local field enhancement properties of self-similar nanolenses and compare the obtained results with the performance of standard dimer nanoantennas. We report that, despite the additional structural complexity, self-similar nanolenses are unable to provide significant improvements over the field enhancement performance of standard plasmonic dimers.

  20. Synthesis,Characterization,and Electrochemical Property of Nanometer Porphyrin Dimer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A nanometer porphyrin dimer was synthesized with fumaryl chloride as a bridge-linked reagent. The characterization was carried out with elemental analyses, 1H NMR, UV-Vis, and IR spectrometries, and then the electrochemical properties of the porphyrins were studied. The authors found that there was moderate electronic communication between the two porphyrin rings in the nanometer porphyrin dimer.

  1. Loop groups, Clusters, Dimers and Integrable systems

    CERN Document Server

    Fock, V V

    2014-01-01

    We describe a class of integrable systems on Poisson submanifolds of the affine Poisson-Lie groups $\\widehat{PGL}(N)$, which can be enumerated by cyclically irreducible elements the co-extended affine Weyl groups $(\\widehat{W}\\times \\widehat{W})^\\sharp$. Their phase spaces admit cluster coordinates, whereas the integrals of motion are cluster functions. We show, that this class of integrable systems coincides with the constructed by Goncharov and Kenyon out of dimer models on a two-dimensional torus and classified by the Newton polygons. We construct the correspondence between the Weyl group elements and polygons, demonstrating that each particular integrable model admits infinitely many realisations on the Poisson-Lie groups. We also discuss the particular examples, including the relativistic Toda chains and the Schwartz-Ovsienko-Tabachnikov pentagram map.

  2. Pseudo-two-dimensional random dimer lattices

    Energy Technology Data Exchange (ETDEWEB)

    Naether, U., E-mail: naether@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC – Universidad de Zaragoza, 50009 Zaragoza (Spain); Mejía-Cortés, C.; Vicencio, R.A. [Departamento de Física and MSI – Nucleus for Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2015-06-05

    We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size is required to observe this threshold, which is very important when considering a possible experimental realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within the localization length and for random binary pseudo-2D arrays localization is observed.

  3. Dimerization and oligomerization of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Ryder, L Rebekka; Steinø, Anne;

    2003-01-01

    protein. Using PAGE, urea gradient gel electrophoresis, capillary electrophoresis and MS, we show that dimerization through the SH group can be induced by lowering the pH to 5-6, heating, or under conditions that favour partial unfolding such as urea concentrations above 2.6 m or SDS concentrations above...... 0.025%. Moreover, we show that calreticulin also has the ability to self-oligomerize through noncovalent interactions at urea concentrations above 2.6 m at pH below 4.6 or above pH 10, at temperatures above 40 degrees C, or in the presence of high concentrations of organic solvents (25%), conditions...... urea or 1% SDS, and heat-induced oligomerization could be inhibited by 8 m urea or 1% SDS when present during heating. Comparison of the binding properties of monomeric and oligomeric calreticulin in solid-phase assays showed increased binding to peptides and denatured proteins when calreticulin...

  4. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  5. Metal membrane with dimer slots as a universal polarizer

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu

    2014-01-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory...... for the electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical...... properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V...

  6. Three types of couplings between asymmetric plasmonic dimers.

    Science.gov (United States)

    Chao, Yen-Chun; Tseng, Hsuan-Chi; Chang, Kao-Der; Chang, Chih-Wei

    2012-01-30

    We report extensive numerical studies on plasmonic dimers of different configurations and find that their coupling effects can be categorized into three types of phenomena. First, like ordinary mechanical systems, the plasmonic dimers can exhibit positive couplings that show anti-crossing behavior. Second, they can also be arranged to exhibit negative couplings that display opposite trends in resonant frequency shifts. Third, when there are surface currents in proximity to each other, the resonance frequencies of the dimers exhibit unusual redshifts that do not have any analogies in conventional systems. Our work suggests that in addition to the well-known electric and magnetic dipolar interactions, contributions from the inductance of displacement currents in the near field cannot be ignored. Overall, asymmetric plasmonic dimers exhibit better sensitivities than the symmetric counterparts and our extensive studies also enable us to identify the plasmonic dimer with the highest sensing capabilities.

  7. The carboxyl terminus of the Galpha-subunit is the latch for triggered activation of heterotrimeric G proteins.

    Science.gov (United States)

    Nanoff, Christian; Koppensteiner, Romana; Yang, Qiong; Fuerst, Elisabeth; Ahorn, Horst; Freissmuth, Michael

    2006-01-01

    The receptor-mimetic peptide D2N, derived from the cytoplasmic domain of the D(2) dopamine receptor, activates G protein alpha-subunits (G(i) and G(o)) directly. Using D2N, we tested the current hypotheses on the mechanism of receptor-mediated G protein activation, which differ by the role assigned to the Gbetagamma-subunit: 1) a receptor-prompted movement of Gbetagamma is needed to open up the nucleotide exit pathway ("gear-shift" and "lever-arm" model) or 2) the receptor first engages Gbetagamma and then triggers GDP release by interacting with the carboxyl (C) terminus of Galpha (the "sequential-fit" model). Our results with D2N were compatible with the latter hypothesis. D2N bound to the extreme C terminus of the alpha-subunit and caused a conformational change that was transmitted to the switch regions. Hence, D2N led to a decline in the intrinsic tryptophan fluorescence, increased the guanine nucleotide exchange rate, and modulated the Mg(2+) control of nucleotide binding. A structural alteration in the outer portion of helix alpha5 (substitution of an isoleucine by proline) blunted the stimulatory action of D2N. This confirms that helix alpha5 links the guanine nucleotide binding pocket to the receptor contact site on the G protein. However, neither the alpha-subunit amino terminus (as a lever-arm) nor Gbetagamma was required for D2N-mediated activation; conversely, assembly of the Galphabetagamma heterotrimer stabilized the GDP-bound species and required an increased D2N concentration for activation. We propose that the receptor can engage the C terminus of the alpha-subunit to destabilize nucleotide binding from the "back side" of the nucleotide binding pocket.

  8. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  9. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list

    Directory of Open Access Journals (Sweden)

    A. J. L. Shillings

    2011-05-01

    Full Text Available Absorption of solar radiation by water dimer molecules in the Earth's atmosphere has the potential to act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared around 750 nm in the expected region of the | 0〈f | 4〉b|0 〉 overtone of the water dimer's hydrogen-bonded OH stretching vibration. The results were obtained using broadband cavity ringdown spectroscopy (BBCRDS, a methodology that allows absorption measurements to be made under controlled laboratory conditions but over absorption path lengths representative of atmospheric conditions. In order to account correctly and completely for the overlapping absorption of monomer molecules in the same spectral region, we have also constructed a new list of spectral data (UCL08 for the water monomer in the 750–20 000 cm−1 (13 μm–500 nm range.

    Our results show that the additional lines included in the UCL08 spectral database provide an improved representation of the measured water monomer absorption in the 750 nm region. No absorption features other than those attributable to the water monomer were detected in BBCRDS experiments performed on water vapour samples containing dimer concentrations up to an order of magnitude greater than expected in the ambient atmosphere. The absence of detectable water dimer features leads us to conclude that, in the absence of significant errors in calculated dimer oscillator strengths or monomer/dimer equilibrium constants, the widths of any water dimer absorption features present around 750 nm are of the order of 100 cm−1 HWHM, and certainly greater

  10. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  11. Structural basis for sequence specific DNA binding and protein dimerization of HOXA13.

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    Full Text Available The homeobox gene (HOXA13 codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of genes during embryonic morphogenesis. Here we present the NMR structure of HOXA13 homeodomain (A13DBD bound to an 11-mer DNA duplex. A13DBD forms a dimer that binds to DNA with a dissociation constant of 7.5 nM. The A13DBD/DNA complex has a molar mass of 35 kDa consistent with two molecules of DNA bound at both ends of the A13DBD dimer. A13DBD contains an N-terminal arm (residues 324 - 329 that binds in the DNA minor groove, and a C-terminal helix (residues 362 - 382 that contacts the ATAA nucleotide sequence in the major groove. The N370 side-chain forms hydrogen bonds with the purine base of A5* (base paired with T5. Side-chain methyl groups of V373 form hydrophobic contacts with the pyrimidine methyl groups of T5, T6* and T7*, responsible for recognition of TAA in the DNA core. I366 makes similar methyl contacts with T3* and T4*. Mutants (I366A, N370A and V373G all have decreased DNA binding and transcriptional activity. Exposed protein residues (R337, K343, and F344 make intermolecular contacts at the protein dimer interface. The mutation F344A weakens protein dimerization and lowers transcriptional activity by 76%. We conclude that the non-conserved residue, V373 is critical for structurally recognizing TAA in the major groove, and that HOXA13 dimerization is required to activate transcription of target genes.

  12. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    Science.gov (United States)

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  13. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  14. Threshold electron attachment and electron impact ionization involving oxygen dimers

    Science.gov (United States)

    Kreil, J.; Ruf, M.-W.; Hotop, H.; Ettischer, I.; Buck, U.

    1998-12-01

    Using two different crossed-beams machines we have carried out the first quantitative study of threshold electron attachment and electron impact-induced ionization and fragmentation involving oxygen dimers (O 2) 2. In the electron attachment experiment we study electron transfer from state-selected Ar **(20d) Rydberg atoms to O 2 molecules and dimers in a skimmed supersonic beam at variable nozzle temperatures ( T0) and stagnation pressures ( p0). The relative dimer density is determined through measurements of Penning ionization by metastable Ne *(3s 3P2,0) atoms and used to estimate the absolute cross-section for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 dimers to be nearly 10 -17 m 2, almost four orders of magnitude larger than that for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 monomers. The fragmentation of the oxygen cluster beam is quantitatively characterized by the transverse helium beam scattering method which allows us to spatially separate different clusters. It is shown that in 70 eV electron impact of (O 2) 2 only 3.6(4)% of the dimers are detected as dimer ions (O 2) 2+. In additional experiments involving SF 6 clusters we show that SF 6 dimers fragment nearly completely upon 70 eV electron impact, yielding SF 5+ ions (probability for (SF 6)·SF 5+ production at most 0.3%).

  15. Asymmetric monometallic nanorod nanoparticle dimer and related compositions and methods

    KAUST Repository

    Han, Yu

    2016-03-31

    The fabrication of asymmetric monometallic nanocrystals with novel properties for plasmonics, nanophotonics and nanoelectronics. Asymmetric monometallic plasmonic nanocrystals are of both fundamental synthetic challenge and practical significance. In an example, a thiol-ligand mediated growth strategy that enables the synthesis of unprecedented Au Nanorod-Au Nanoparticle (AuNR-AuNP) dimers from pre-synthesized AuNR seeds. Using high-resolution electron microscopy and tomography, crystal structure and three-dimensional morphology of the dimer, as well as the growth pathway of the AuNP on the AuNR seed, was investigated for this example. The dimer exhibits an extraordinary broadband optical extinction spectrum spanning the UV, visible, and near infrared regions (300 - 1300 nm). This unexpected property makes the AuNR-AuNP dimer example useful for many nanophotonic applications. In two experiments, the dimer example was tested as a surface- enhanced Raman scattering (SERS) substrate and a solar light harvester for photothermal conversion, in comparison with the mixture of AuNR and AuNP. In the SERS experiment, the dimer example showed an enhancement factor about 10 times higher than that of the mixture, when the excitation wavelength (660 nm) was off the two surface plasmon resonance (SPR) bands of the mixture. In the photothermal conversion experiment under simulated sunlight illumination, the dimer example exhibited an energy conversion efficiency about 1.4 times as high as that of the mixture.

  16. Stochastic optimization-based study of dimerization kinetics

    Indian Academy of Sciences (India)

    Srijeeta Talukder; Shrabani Sen; Ralf Metzler; Suman K Banik; Pinaki Chaudhury

    2013-11-01

    We investigate the potential of numerical algorithms to decipher the kinetic parameters involved in multi-step chemical reactions. To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and combine it with three different optimization techniques (genetic algorithm, simulated annealing and parallel tempering) to obtain the rate constants involved in each reaction step. We find good convergence of the numerical scheme to the rate constants of the process. We also perform a sensitivity test on the reaction kinetic parameters to see the relative effects of the parameters for the associated profile of the monomer/dimer distribution.

  17. Subsurface dimerization in III-V semiconductor (001) surfaces

    DEFF Research Database (Denmark)

    Kumpf, C.; Marks, L.D.; Ellis, D.

    2001-01-01

    We present the atomic structure of the c(8 X 2) reconstructions of InSb-, InAs-, and GaAs-(001) surfaces as determined by surface x-ray diffraction using direct methods. Contrary to common belief, group III dimers are not prominent on the surface, instead subsurface dimerization of group m atoms ...... takes place in the second bilayer, accompanied by a major rearrangement of the surface atoms above the dimers to form linear arrays. By varying the occupancies of four surface sites the (001)-c(8 X 2) reconstructions of III-V semiconductors can be described in a unified model....

  18. Circular dimers of lambda DNA in infected, nonlysogenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, D.; Baran, N.; Folkmanis, A.; Freifelder, D.L.R.

    1977-09-01

    Covalently closed circular dimerss of phage lambda DNA have been found in Escherichia coli infected with lambda. These dimers can be formed by either the lambda Red or Int systems, by a nonrecombinational replicative mechanism requiring the activity of the lambda O and P genes or by joining of the cohesive ends. Dimers mediated by the E. coli Rec system have not been observed. Those formed by the Int system often result from recombination between different DNA molecules; however, the Red-mediated dimer may be a result of replicative extension of a single DNA molecule. Trimers have also been observed but studied only briefly.

  19. Time resolved structural dynamics of butadiyne-linked porphyrin dimers.

    Science.gov (United States)

    Camargo, Franco V A; Hall, Christopher R; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A

    2016-03-01

    In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  20. Time resolved structural dynamics of butadiyne-linked porphyrin dimers

    Directory of Open Access Journals (Sweden)

    Franco V. A. Camargo

    2016-03-01

    Full Text Available In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  1. Multicritical tensor models and hard dimers on spherical random lattices

    CERN Document Server

    Bonzom, Valentin

    2012-01-01

    Random tensor models which display multicritical behaviors in a remarkably simple fashion are presented. They come with entropy exponents \\gamma = (m-1)/m, similarly to multicritical random branched polymers. Moreover, they are interpreted as models of hard dimers on a set of random lattices for the sphere in dimension three and higher. Dimers with their exclusion rules are generated by the different interactions between tensors, whose coupling constants are dimer activities. As an illustration, we describe one multicritical point, which is interpreted as a transition between the dilute phase and a crystallized phase, though with negative activities.

  2. How to use D-dimer in acute cardiovascular care

    DEFF Research Database (Denmark)

    Giannitsis, Evangelos; Mair, Johannes; Christersson, Christina

    2015-01-01

    D-dimer testing is important to aid in the exclusion of venous thromboembolic events (VTEs), including deep venous thrombosis and pulmonary embolism, and it may be used to evaluate suspected aortic dissection. D-dimer is produced upon activation of the coagulation system with the generation and s...... testing. For the exclusion of pulmonary embolism/deep vein thrombosis, age-adjusted cut-offs are recommend. Clinicians must be aware of the validated use of their hospital's D-dimer assay to avoid inappropriate use of this biomarker in routine care....

  3. Third-Order Optical Nonlinearity in Novel Porphyrin Dimers

    Institute of Scientific and Technical Information of China (English)

    PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin

    2008-01-01

    @@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.

  4. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  5. Smectic Phase Formed by DNA Dimers

    Science.gov (United States)

    Salamonczyk, Miroslaw; Gleeson, James; Jakli, Antal; Sprunt, Samuel; Dhont, Jan; Stiakakis, Emmanuel

    The rapidly expanding bio market is driving the development and characterization of new multifunctional materials. In particular, nucleic acids are under intense study for gene therapy, drug delivery and other bio-safe applications [1,2,3]. DNA is well-known to form a cholesteric nematic liquid crystal in its native form; however, much recent research has focused on self-assembly and mesomorphic behavior in concentrated solutions of short DNA helices [4]. Our work focuses on DNA dimers, consisting of 48 base-pair double-stranded helices connected by a 5 to 20 base flexible single strand, and suspended in a natural buffer. Depending on temperature, concentration and length of the flexible spacer, polarizing optical microscopy and small angle x-ray scattering reveal cholesteric nematic and, remarkably, smectic liquid crystalline phases. A model for smectic phase formation in this system will be presented. 1] J.-L. Lim et al., Int. J. of. Pharm. 490 (2015) 2652] D.-H. Kim et al., Nature Biotech. 23 (2005) 2223] K. Liu et al., Chem. Eur. J. 21 (2015) 48984] M. Nakata et al., Science 318 (2007) 1276 NSF DMR 1307674.

  6. Vibrations of the carbon dioxide dimer

    Science.gov (United States)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  7. Apolipoprotein-E forms dimers in human frontal cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Halliday Glenda M

    2010-02-01

    Full Text Available Abstract Background Apolipoprotein-E (apoE plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD. ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing conditions. Results In apoE3 homozygous samples, ~12% of apoE was present as a homodimer and ~2% was detected as a 43 kDa heterodimer. The level of dimerisation was not significantly different when control and AD samples were compared. As expected, these dimerised forms of apoE were not detected in apoE4 homozygous samples but were detected in apoE3/4 heterozygotes at a level approximately 60% lower than seen in the apoE3 homozygous samples. Similar apoE3 dimers were also detected in lysates of SK-N-SH neuroblastoma cells and in freshly prepared rabbit brain homogenates. The addition of the thiol trapping agent, iodoacetamide, to block reactive thiols during both human and rabbit brain sample homogenisation and processing did not reduce the amount of apoE homodimer recovered. These data indicate that the apoE dimers we detected in the human brain are not likely to be post-mortem artefacts. Conclusion The identification of disulphide-linked apoE dimers in human cortical and hippocampal tissues represents a distinct structural difference between the apoE3 and apoE4 isoforms that may have functional consequences.

  8. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors....

  9. Metallothionein dimers studied by nano-spray mass spectrometry.

    Science.gov (United States)

    Hathout, Yetrib; Reynolds, Kristy J; Szilagyi, Zoltan; Fenselau, Catherine

    2002-01-15

    Both transient and stable dimers of metallothionein have been characterized, based on earlier studies using NMR, circular dichroism and size-exclusion chromatography. Here additional characterization is provided by nanospray mass spectrometry. Rapid redistribution of metal ions between monomeric Cd7- and Zn7-metallothionein 2a is monitored by nanospray. An experiment in which theses two forms of the monomeric protein are separated by a dialysis membrane, which will pass metal ions but not proteins, confirms that a transient dimer must form for metal ions to be redistributed. On the other hand, size-exclusion chromatography of reconstituted Zn7- or Cd7-metallothionein revealed the presence of monomeric and dimeric species. These dimers do not equilibrate readily to form monomers and they are shown to be covalent.

  10. 21 CFR 176.120 - Alkyl ketene dimers.

    Science.gov (United States)

    2010-04-01

    ... derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  11. [Antioxidant and antibacterial activities of dimeric phenol compounds].

    Science.gov (United States)

    Ogata, Masahiro

    2008-08-01

    We studied the antioxidant and antibacterial activities of monomeric and dimeric phenol compounds. Dimeric compounds had higher antioxidant activities than monomeric compounds. Electron spin resonance spin-trapping experiments showed that phenol compounds with an allyl substituent on their aromatic rings directly scavenged superoxide, and that only eugenol trapped hydroxyl radicals. We developed a generation system of the hydroxyl radical without using any metals by adding L-DOPA and DMPO to PBS or MiliQ water in vitro. We found that eugenol trapped hydroxyl radicals directly and is metabolized to a dimer. On the other hand, dipropofol, a dimer of propofol, has strong antibacterial activity against Gram-positive bacteria. However, it lacks solubility in water and this property is assumed to limit its efficacy. We tried to improve the solubility and found a new solubilization method of dipropofol in water with the addition of a monosaccharide or ascorbic acid.

  12. Gnetuhainin S, a New Resveratrol Dimer from Gnetum hainanense

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gnetuhainin S, a new resveratrol dimer, was isolated from the lianas of Gnetum hainanense C. Y. Cheng. Its structure and relative configuration were established on the basis of spectroscopic evidence.

  13. UV spectra of benzene isotopomers and dimers in helium nanodroplets

    Science.gov (United States)

    Schmied, Roman; ćarçabal, Pierre; Dokter, Adriaan M.; Lonij, Vincent P. A.; Lehmann, Kevin K.; Scoles, Giacinto

    2004-08-01

    We report spectra of various benzene isotopomers and their dimers in helium nanodroplets in the region of the first Herzberg-Teller allowed vibronic transition 601 1B2u←1A1g (the A00 transition) at ˜260 nm. Excitation spectra have been recorded using both beam depletion detection and laser-induced fluorescence. Unlike for many larger aromatic molecules, the monomer spectra consist of a single "zero-phonon" line, blueshifted by ˜30 cm-1 from the gas phase position. Rotational band simulations show that the moments of inertia of C6H6 in the nanodroplets are at least six-times larger than in the gas phase. The dimer spectra present the same vibronic fine structure (though modestly compressed) as previously observed in the gas phase. The fluorescence lifetime and quantum yield of the dimer are found to be equal to those of the monomer, implying substantial inhibition of excimer formation in the dimer in helium.

  14. DLTS study of the oxygen dimer formation kinetics in silicon

    Science.gov (United States)

    Yarykin, Nikolai; Weber, Jörg

    2009-12-01

    The introduction rates of radiation defects, in particular the X- and M-centers for which the oxygen dimer is a precursor, are investigated as a function of duration of the pre-irradiation heat treatment at 480∘ C in Czochralski-grown silicon both of n- and p-types. The characteristic annealing time to grow the X-center concentration in the n-type crystal is found to be about 1 h in accordance with the model which implies no significant barrier for the dimer formation. The M-center concentration in the p-type crystal is found to be nearly independent of duration of the pre-irradiation annealing after a few minutes transient period. This behavior is ascribed to the stabilization of dimer concentration due to an effective dimer trapping in these samples.

  15. DLTS study of the oxygen dimer formation kinetics in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai, E-mail: nay@iptm.r [Institute of Microelectronics Technology RAS, 142432 Chernogolovka, Moscow Region (Russian Federation); Weber, Joerg [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-12-15

    The introduction rates of radiation defects, in particular the X- and M-centers for which the oxygen dimer is a precursor, are investigated as a function of duration of the pre-irradiation heat treatment at 480 deg. C in Czochralski-grown silicon both of n- and p-types. The characteristic annealing time to grow the X-center concentration in the n-type crystal is found to be about 1 h in accordance with the model which implies no significant barrier for the dimer formation. The M-center concentration in the p-type crystal is found to be nearly independent of duration of the pre-irradiation annealing after a few minutes transient period. This behavior is ascribed to the stabilization of dimer concentration due to an effective dimer trapping in these samples.

  16. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence.

    Science.gov (United States)

    Sarrión, Beatriz; Bernal, Eva; Martín, Victoria Isabel; López-López, Manuel; López-Cornejo, Pilar; García-Calderón, Margarita; Moyá, María Luisa

    2016-08-01

    Several cationic dimeric surfactants have shown high affinity towards DNA. Bis-quaternary ammonium salts (m-s-m) have been the most common type of dimeric surfactants investigated and it is generally admitted that those that posses a short spacer (s≤3) show better efficiency to bind or compact DNA. However, experimental results in this work show that 12-s-12 surfactants with long spacers make the surfactant/ctDNA complexation more favorable than those with short spacers. A larger contribution of the hydrophobic interactions, which control the binding Gibbs energy, as well as a higher average charge of the surfactant molecules bound to the nucleic acid, which favors the electrostatic attractions, could explain the experimental observations. Dimeric surfactants with intermediate spacer length seem to be the less efficient for DNA binding.

  17. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after focal axotomy in rats

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury...... such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact (CCI) model of TBI in rats but no single animal model is currently...... able to mimic the complex and heterogeneous pathophysiology of TBI and hence it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection...

  18. Dimer representations of the Temperley-Lieb algebra

    CERN Document Server

    Morin-Duchesne, Alexi; Ruelle, Philippe

    2014-01-01

    A new spin-chain representation of the Temperley-Lieb algebra $TL_n(\\beta=0)$ is introduced and related to the dimer model. Unlike the usual XXZ spin-chain representations of dimension $2^n$, this dimer representation is of dimension $2^{n-1}$. A detailed analysis of its structure is presented and found to yield indecomposable zigzag modules not appearing in traditional spin-chain scenarios.

  19. Theoretical Study on the Intermolecular Interactions of Tetrazole Dimers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Tetrazole monomers (Ⅰ,Ⅱ) and all of their possible stable dimers (1, 2, 3, 4, 5, 6, 7and 8) were fully optimized by DFT method at the B3LYP/6-311++G** level. Among the eight dimers, there were two 1H-tetrazole dimers, three 2H-tetrazole dimers and three hetero dimers of 1H-tetrazole and 2H-tetrazole. Vibrational frequencies were calculated to ascertain that each structure was stable (no imaginary frequencies). The basis set superposition errors (BSSE) are 2.78,2.28, 2.97, 2.75, 2.74, 2.18, 1.23 and 3.10 kJ/mol, and the zero point energy (ZPE) corrections for the interaction energies are 4.88, 4.18, 3.87, 3.65, 3.54, 3.22, 2.87 and 4.34 kJ/mol for 1, 2, 3, 4, 5, 6,7 and 8, respectively. After BSSE and ZPE corrections, the greatest corrected intermolecular interaction energy ofthe dimers is -43.71 kJ/mol. The charge redistribution mainly occurs on the very small. Natural bond orbital (NBO) analysis was performed to reveal the origin of the interaction. Based on the statistical thermodynamic method, the standard thermodynamic functions, heat capacities (C0p), entropies (S0T) and thermal corrections to enthalpy (H0T), and the changes of thermodynamic properties from monomer to dimer in the temperature range of 200.00 K to 700 K have been obtained. 1H-tetrazole monomer can spontaneously tum into two stable dimers at 298.15 K.

  20. Dimers on Surface Graphs and Spin Structures. I

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2007-01-01

    Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures.......Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures....

  1. Quantum Phase Transitions and Dimerized Phases in Frustrated Spin Ladder

    Institute of Scientific and Technical Information of China (English)

    WEN Rui; LIU Guang-Hua; TIAN Guang-Shan

    2011-01-01

    In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-chain next-nearestneighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.

  2. Dimer representations of the Temperley–Lieb algebra

    Energy Technology Data Exchange (ETDEWEB)

    Morin-Duchesne, Alexi, E-mail: alexi.morin-duchesne@uclouvain.be [Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Louvain-la-Neuve, B-1348 (Belgium); Rasmussen, Jørgen, E-mail: j.rasmussen@uq.edu.au [School of Mathematics and Physics, University of Queensland St Lucia, Brisbane, Queensland 4072 (Australia); Ruelle, Philippe, E-mail: philippe.ruelle@uclouvain.be [Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Louvain-la-Neuve, B-1348 (Belgium)

    2015-01-15

    A new spin-chain representation of the Temperley–Lieb algebra TL{sub n}(β=0) is introduced and related to the dimer model. Unlike the usual XXZ spin-chain representations of dimension 2{sup n}, this dimer representation is of dimension 2{sup n−1}. A detailed analysis of its structure is presented and found to yield indecomposable zigzag modules.

  3. On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers.

    Science.gov (United States)

    Feng, Xintian; Krylov, Anna I

    2016-03-21

    Electronic factors controlling singlet fission (SF) rates are investigated in covalently linked dimers of tetracene. Using covalent linkers, relative orientation of the individual chromophores can be controlled, maximizing the rates of SF. Structures with coplanar and staggered arrangements of tetracene moieties are considered. The electronic structure calculations and three-state kinetic model for SF rates provide explanations for experimentally observed low SF yields in coplanar dimers and efficient SF in staggered dimers. The calculations illuminate the role of the excimer formation in SF process. The structural relaxation in the S1 state leads to the increased rate of the multi-exciton (ME) state formation, but impedes the second step, separation of the ME state into independent triplets. The slower second step reduces SF yield by allowing other processes, such as radiationless relaxation, to compete with triplet generation. The calculations of electronic couplings also suggest an increased rate of radiationless relaxation at the excimer geometries. Thus, the excimer serves as a trap of the ME state. The effect of covalent linkers on the electronic factors and SF rates is investigated. In all considered structures, the presence of the linker leads to larger couplings, however, the effect on the overall rate is less straightforward, since the linkers generally result in less favorable energetics. This complex behavior once again illustrates the importance of integrative approaches that evaluate the overall rate, rather than focusing on specific electronic factors such as energies or couplings.

  4. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  5. Tetramerization reinforces the dimer interface of MnSOD.

    Directory of Open Access Journals (Sweden)

    Yuewei Sheng

    Full Text Available Two yeast manganese superoxide dismutases (MnSOD, one from Saccharomyces cerevisiae mitochondria (ScMnSOD and the other from Candida albicans cytosol (CaMnSODc, have most biochemical and biophysical properties in common, yet ScMnSOD is a tetramer and CaMnSODc is a dimer or "loose tetramer" in solution. Although CaMnSODc was found to crystallize as a tetramer, there is no indication from the solution properties that the functionality of CaMnSODc in vivo depends upon the formation of the tetrameric structure. To elucidate further the functional significance of MnSOD quaternary structure, wild-type and mutant forms of ScMnSOD (K182R, A183P mutant and CaMnSODc (K184R, L185P mutant with the substitutions at dimer interfaces were analyzed with respect to their oligomeric states and resistance to pH, heat, and denaturant. Dimeric CaMnSODc was found to be significantly more subject to thermal or denaturant-induced unfolding than tetrameric ScMnSOD. The residue substitutions at dimer interfaces caused dimeric CaMnSODc but not tetrameric ScMnSOD to dissociate into monomers. We conclude that the tetrameric assembly strongly reinforces the dimer interface, which is critical for MnSOD activity.

  6. Dimeric interactions and complex formation using direct coevolutionary couplings.

    Science.gov (United States)

    dos Santos, Ricardo N; Morcos, Faruck; Jana, Biman; Andricopulo, Adriano D; Onuchic, José N

    2015-09-04

    We develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer's or Parkinson's.

  7. Determining equilibrium constants for dimerization reactions from molecular dynamics simulations.

    Science.gov (United States)

    De Jong, Djurre H; Schäfer, Lars V; De Vries, Alex H; Marrink, Siewert J; Berendsen, Herman J C; Grubmüller, Helmut

    2011-07-15

    With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices are observed in dimeric form. Exactly how the correct value for the free energy is to be calculated, however, is unclear, and indeed several different and contradictory approaches have been used. In particular, results obtained via Boltzmann statistics differ from those determined via the law of mass action. Here, we develop a theory that resolves this discrepancy. We show that for simulation systems containing two molecules, the dimerization free energy is given by a formula of the form ΔG ∝ ln(P(1) /P(0) ). Our theory is also applicable to high concentrations that typically have to be used in molecular dynamics simulations to keep the simulation system small, where the textbook dilute approximations fail. It also covers simulations with an arbitrary number of monomers and dimers and provides rigorous error estimates. Comparison with test simulations of a simple Lennard Jones system with various particle numbers as well as with reference free energy values obtained from radial distribution functions show full agreement for both binding free energies and dimerization statistics.

  8. Monomer and dimer radical cations of benzene, toluene, and naphthalene.

    Science.gov (United States)

    Das, Tomi Nath

    2009-06-11

    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  9. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.

    Science.gov (United States)

    Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng

    2016-01-26

    Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices.

  10. Preparation of gold nanoparticle dimers via streptavidin-induced interlinking

    Energy Technology Data Exchange (ETDEWEB)

    Zon, Vera B.; Sachsenhauser, Matthias; Rant, Ulrich, E-mail: rant@wsi.tum.de [Technische Universitaet Muenchen, Walter Schottky Institut (Germany)

    2013-10-15

    There is great interest in establishing efficient means of organizing nanoparticles into complex structures, especially in fields like nano-optical devices. One of the demonstrated routes uses biomolecular scaffolds, like the streptavidin-biotin system, to deterministically separate and structure particle complexes. However, controlled formation of streptavidin-linked nanoparticle dimers or trimers is challenging, and large aggregates are often formed under conditions that are difficult to regulate. Here, we studied the aggregates and interlinking kinetics of biotin-functionalized 20 nm gold nanoparticles in the presence of the interlinking protein, streptavidin. We found two different protein-linker concentration regions where small stable particle aggregates are formed: when the protein and nanoparticle concentrations are similar and when the protein to nanoparticle concentration ratio exceeds intermediate concentrations (10:1-100:1) that promote precipitation of large aggregates. We attribute this behavior to the limited availability of free-linker molecules and the limited availability of free ligand (biotin) on the particle surface for low and high protein concentrations, respectively. Furthermore, we show that the product can be additionally enriched up to 25 % through either centrifugation in sucrose or size-exclusion chromatography. These results provide additional understanding into the assembly of ligand-functionalized nanoparticles with water-soluble linkers and provide a facile way to produce well-defined small aggregates for potential use in, for instance, surface-enhanced spectroscopy.

  11. Roughness effect on the efficiency of dimer antenna based biosensor

    Directory of Open Access Journals (Sweden)

    Dominique Barchiesi

    2012-08-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  12. Products and mechanism of acene dimerization. A computational study.

    Science.gov (United States)

    Zade, Sanjio S; Zamoshchik, Natalia; Reddy, A Ravikumar; Fridman-Marueli, Galit; Sheberla, Dennis; Bendikov, Michael

    2011-07-20

    The high reactivity of acenes can reduce their potential applications in the field of molecular electronics. Although pentacene is an important material for use in organic field-effect transistors because of its high charge mobility, its reactivity is a major disadvantage hindering the development of pentacene applications. In this study, several reaction pathways for the thermal dimerization of acenes were considered computationally. The formation of acene dimers via a central benzene ring and the formation of acene-based polymers were found to be the preferred pathways, depending on the length of the monomer. Interestingly, starting from hexacene, acene dimers are thermodynamically disfavored products, and the reaction pathway is predicted to proceed instead via a double cycloaddition reaction (polymerization) to yield acene-based polymers. A concerted asynchronous reaction mechanism was found for benzene and naphthalene dimerization, while a stepwise biradical mechanism was predicted for the dimerization of anthracene, pentacene, and heptacene. The biradical mechanism for dimerization of anthracene and pentacene proceeds via syn or anti transition states and biradical minima through stepwise biradical pathways, while dimerization of heptacene proceeds via asynchronous ring closure of the complex formed by two heptacene molecules. The activation barriers for thermal dimerization decrease rapidly with increasing acene chain length and are calculated (at M06-2X/6-31G(d)+ZPVE) to be 77.9, 57.1, 33.3, -0.3, and -12.1 kcal/mol vs two isolated acene molecules for benzene, naphthalene, anthracene, pentacene, and heptacene, respectively. If activation energy is calculated vs the initially formed complex of two acene molecules, then the calculated barriers are 80.5, 63.2, 43.7, 16.7, and 12.3 kcal/mol. Dimerization is exothermic from anthracene onward, but it is endothermic at the terminal rings, even for heptacene. Phenyl substitution at the most reactive meso

  13. Dimer-atom-atom recombination in the universal four-boson system

    OpenAIRE

    Deltuva, A.

    2012-01-01

    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.

  14. Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function.

    Science.gov (United States)

    Butturini, Elena; Gotte, Giovanni; Dell'Orco, Daniele; Chiavegato, Giulia; Marino, Valerio; Canetti, Diana; Cozzolino, Flora; Monti, Maria; Pucci, Piero; Mariotto, Sofia

    2016-10-01

    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bonds. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Threshold electron attachment and electron impact ionization involving oxygen dimers

    Energy Technology Data Exchange (ETDEWEB)

    Kreil, J.; Ruf, M.-W.; Hotop, H. [Fachbereich Physik, Universitaet Kaiserslautern, D-67653 Kaiserslautern (Germany); Ettischer, I.; Buck, U. [Max-Planck-Institut fuer Stroemungsforschung, Bunsenstrasse 10, D-37073 Goettingen (Germany)

    1998-12-15

    Using two different crossed-beams machines we have carried out the first quantitative study of threshold electron attachment and electron impact-induced ionization and fragmentation involving oxygen dimers (O{sub 2}){sub 2}. In the electron attachment experiment we study electron transfer from state-selected Ar{sup **}(20d) Rydberg atoms to O{sub 2} molecules and dimers in a skimmed supersonic beam at variable nozzle temperatures (T{sub 0}) and stagnation pressures (p{sub 0}). The relative dimer density is determined through measurements of Penning ionization by metastable Ne{sup *}(3s {sup 3}P{sub 2,0}) atoms and used to estimate the absolute cross-section for O{sub 2}{sup -} formation in collisions of Ar{sup **}(20d) Rydberg atoms with O{sub 2} dimers to be nearly 10{sup -17} m{sup 2}, almost four orders of magnitude larger than that for O{sub 2}{sup -} formation in collisions of Ar{sup **}(20d) Rydberg atoms with O{sub 2} monomers. The fragmentation of the oxygen cluster beam is quantitatively characterized by the transverse helium beam scattering method which allows us to spatially separate different clusters. It is shown that in 70 eV electron impact of (O{sub 2}){sub 2} only 3.6(4)% of the dimers are detected as dimer ions (O{sub 2}){sub 2}{sup +}. In additional experiments involving SF{sub 6} clusters we show that SF{sub 6} dimers fragment nearly completely upon 70 eV electron impact, yielding SF{sub 5}{sup +} ions (probability for (SF{sub 6}){center_dot}SF{sub 5}{sup +} production at most 0.3%). (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Integrability and conformal data of the dimer model

    Science.gov (United States)

    Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe

    2016-04-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.

  17. Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles.

    Science.gov (United States)

    Crow, Matthew J; Seekell, Kevin; Ostrander, Julie H; Wax, Adam

    2011-11-22

    The dimerization of receptors on the cell membrane is an important step in the activation of cell signaling pathways. Several methods exist for observing receptor dimerization, including coimmunoprecipitation, chemical cross-linking, and fluorescence resonance energy transfer (FRET). These techniques are limited in that only FRET is appropriate for live cells, but even that method suffers from photobleaching and bleed-through effects. In this study, we implement an alternative method for the targeting of HER-2 homodimer formation based on the plasmonic coupling of gold nanoparticles functionalized with HER-2 Ab. In the presented studies, SK-BR-3 cells, known to overexpress HER-2, are labeled with these nanoparticles and receptor colocalization is observed using plasmonic coupling. HER-2 targeted nanoparticles bound to these cells exhibit a peak resonance that is significantly red-shifted relative to those bound to similar receptors on A549 cells, which have significantly lower levels of HER-2 expression. This significant red shift indicates plasmonic coupling is occurring and points to a new avenue for assessing dimerization by monitoring their colocalization. To determine that dimerization is occurring, the refractive index of the nanoenvironment of the labels is assessed using a theoretical analysis based on the Mie coated sphere model. The results indicate scattering by single, isolated nanoparticles for the low HER-2 expressing A549 cell line, but the scattering observed for the HER-2 overexpressing SK-BR-3 cell line may only be explained by plasmonic-coupling of proximal nanoparticle pairs. To validate the conformation of nanoparticles bound to HER-2 receptors undergoing dimerization, discrete dipole approximation (DDA) models are used to assess spectra of scattering by coupled nanoparticles. Comparison of the experimental results with theoretical models indicates that NP dimers are formed for the labeling of SK-BR-3 cells, suggesting that receptor

  18. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    Science.gov (United States)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  19. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    Science.gov (United States)

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-01-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity. PMID:27917893

  20. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    Science.gov (United States)

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-12-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.

  1. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1.

    Science.gov (United States)

    Peleg, Y; Metzenberg, R L

    1994-12-01

    NUC-1, a positive regulatory protein of Neurospora crassa, controls the expression of several unlinked target genes involved in phosphorus acquisition. The carboxy-terminal end of the NUC-1 protein has sequence similarity to the helix-loop-helix family of transcription factors. Bacterially expressed and in vitro-synthesized proteins, which consist of the carboxy-terminal portion of NUC-1, bind specifically to upstream sequences of two of its target genes, pho2+ and pho-4+. These upstream sequences contain the core sequence, CACGTG, a target for many helix-loop-helix proteins. A large loop region (47 amino acids) separates the helix I and helix II domains. Mutations and deletion within the loop region did not interfere with the in vitro or in vivo functions of the protein. Immediately carboxy-proximal to the helix II domain, the NUC-1 protein contains an atypical zipper domain which is essential for function. This domain consists of a heptad repeat of alanine and methionine rather than leucine residues. Analysis of mutant NUC-1 proteins suggests that the helix II and the zipper domains are essential for the protein dimerization, whereas the basic and the helix I domains are involved in DNA binding. The helix I domain, even though likely to participate in dimer formation while NUC-1 is bound to DNA, is not essential for in vitro dimerization.

  2. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment

    Science.gov (United States)

    Lum, Jeremy S.; Fernandez, Francesca; Matosin, Natalie; Andrews, Jessica L.; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A.

    2016-01-01

    Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209–328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (−97–99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37–50%) but decreased hippocampal mGluR1α (−50–56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (−31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model. PMID:27721389

  3. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  4. Changes in D-dimer and inflammatory biomarkers before ischemic events in patients with peripheral artery disease: The BRAVO Study.

    Science.gov (United States)

    McDermott, Mary McGrae; Liu, Kiang; Green, David; Greenland, Philip; Tian, Lu; Kibbe, Melina; Tracy, Russell; Shah, Sanjiv; Wilkins, John T; Huffman, Mark; Zhao, Lihui; Huang, Chiang-Ching; Auerbach, Amanda; Liao, Yihua; Skelly, Christopher L; McCarthy, Walter; Lloyd Jones, Donald

    2016-02-01

    Whether circulating biomarker levels increase shortly before an ischemic heart disease (IHD) event is unknown. We studied whether levels of D-dimer, C-reactive protein (CRP), and serum amyloid A (SAA) are higher within 2 months of an IHD event compared to time periods more than 2 months before the IHD event. We assembled 595 participants with peripheral artery disease (PAD) and followed them for up to 3 years. Blood samples were obtained every 2 months. The primary outcome was IHD events: myocardial infarctions, unstable angina, or IHD death. We used a nested case-control design. Fifty participants (cases) had events and were each matched by age, sex, duration in the study, and number of blood draws to two controls without events. Among cases, the mean D-dimer value of 1.105 obtained within 2 months of the event was higher than values obtained 10 months (0.68 mg/L, pevent. Compared to controls, median D-dimer levels in cases were higher 4 months (p=0.017), 6 months (p=0.005), and 8 months (p=0.028) before the event. Values of CRP and SAA obtained within two months of an IHD event not consistently higher than values obtained during the prior months. In PAD participants with an IHD event, D-dimer was higher within 2 months of the event, compared to most values obtained 10 to 32 months previously. D-dimer was also higher in cases as compared to controls during most visits within 8 months of the IHD event.

  5. Mechanism of ubiquitylation by dimeric RING ligase RNF4

    Science.gov (United States)

    Plechanovová, Anna; Jaffray, Ellis G.; McMahon, Stephen A.; Johnson, Kenneth A.; Navrátilová, Iva; Naismith, James H.; Hay, Ronald T.

    2012-01-01

    Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model the “Ile44 hydrophobic patch” of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the thioester bond for catalysis. PMID:21857666

  6. Synthesis of a distinct water dimer inside fullerene C70

    Science.gov (United States)

    Zhang, Rui; Murata, Michihisa; Aharen, Tomoko; Wakamiya, Atsushi; Shimoaka, Takafumi; Hasegawa, Takeshi; Murata, Yasujiro

    2016-05-01

    The water dimer is an ideal chemical species with which to study hydrogen bonds. Owing to the equilibrium between the monomer and oligomer structure, however, selective generation and separation of a genuine water dimer has not yet been achieved. Here, we report a synthetic strategy that leads to the successful encapsulation of one or two water molecules inside fullerene C70. These endohedral C70 compounds offer the opportunity to study the intrinsic properties of a single water molecule without any hydrogen bonding, as well as an isolated water dimer with a single hydrogen bond between the two molecules. The unambiguously determined off-centre position of water in (H2O)2@C70 by X-ray diffraction provides insights into the formation of (H2O)2@C70. Subsequently, the 1H NMR spectroscopic measurements for (H2O)2@C70 confirmed the formation of a single hydrogen bond rapidly interchanging between the encapsulated water dimer. Our theoretical calculations revealed a peculiar cis-linear conformation of the dimer resulting from confinement effects inside C70.

  7. Integrability and conformal data of the dimer model

    CERN Document Server

    Morin-Duchesne, Alexi; Ruelle, Philippe

    2015-01-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a $c=-2$ description. Using Lieb's transfer matrix and its description in terms of the Temperley-Lieb algebra $TL_n$ at $\\beta = 0$, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analysed in the scaling limit and the result for $L_0-\\frac c{24}$ is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of $TL_n$ and are found to yield a $c=-2$ realisation of the Virasoro algebra, familiar from fermionic $bc$ ghost systems. In this realisation, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling lim...

  8. Recognition of HIV TAR RNA by triazole linked neomycin dimers.

    Science.gov (United States)

    Kumar, Sunil; Arya, Dev P

    2011-08-15

    A series of neomycin dimers have been synthesized using 'click chemistry' with varying linker functionality and length to target the TAR RNA region of HIV virus. TAR (trans activation response) RNA region, a 59 base pair stem loop structure located at 5'-end of all nascent HIV-1 transcripts interacts with a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Neomycin, an aminosugar, has been shown to exhibit more than one binding site with HIV TAR RNA. Multiple TAR binding sites of neomycin prompted us to design and synthesize a small library of neomycin dimers using click chemistry. The binding between neomycin dimers and HIV TAR RNA was characterized using spectroscopic techniques including FID (Fluorescent Intercalator Displacement) titration and UV-thermal denaturation. UV thermal denaturation studies demonstrate that neomycin dimer binding increase the melting temperature (T(m)) of the HIV TAR RNA up to 10°C. Ethidium bromide displacement titrations revealed nanomolar IC(50) between neomycin dimers and HIV TAR RNA, whereas with neomycin, a much higher IC(50) in the micromolar range is observed.

  9. Regulation of primate lentiviral RNA dimerization by structural entrapment

    Directory of Open Access Journals (Sweden)

    Lodmell J Stephen

    2008-07-01

    Full Text Available Abstract Background Genomic RNA dimerization is an important process in the formation of an infectious lentiviral particle. One of the signals involved is the stem-loop 1 (SL1 element located in the leader region of lentiviral genomic RNAs which also plays a role in encapsidation and reverse transcription. Recent studies revealed that HIV types 1 and 2 leader RNAs adopt different conformations that influence the presentation of RNA signals such as SL1. To determine whether common mechanisms of SL1 regulation exist among divergent lentiviral leader RNAs, here we compare the dimerization properties of SIVmac239, HIV-1, and HIV-2 leader RNA fragments using homologous constructs and experimental conditions. Prior studies from several groups have employed a variety of constructs and experimental conditions. Results Although some idiosyncratic differences in the dimerization details were observed, we find unifying principles in the regulation strategies of the three viral RNAs through long- and short-range base pairing interactions. Presentation and efficacy of dimerization through SL1 depends strongly upon the formation or dissolution of the lower stem of SL1 called stem B. SL1 usage may also be down-regulated by long-range interactions involving sequences between SL1 and the first codons of the gag gene. Conclusion Despite their sequence differences, all three lentiviral RNAs tested in this study showed a local regulation of dimerization through the stabilization of SL1.

  10. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt; Weksberg, Tiffany E.; Pettitt, Bernard M.

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.

  11. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    Directory of Open Access Journals (Sweden)

    K. Kristensen

    2012-08-01

    periods, and lack of correlation with levels of of cis-pinic and terpenylic acids for both campaigns indicate that the formation of the pinyl-diaterpenyl ester was not controlled by their ambient abundance. In 2009, the concentration of the pinyl-diaterpenyl ester was well correlated with the concentration of DTAA, a supposed precursor of diaterpenylic acid, suggesting that the formation of pinyl-diaterpenyl dimer was closely related to DTAA. Generally, the pinyl-diaterpenyl ester was found at higher concentrations under higher temperature conditions both in the smog-chamber study and in ambient air aerosol samples, and exhibited much higher concentrations at night relative to day-time in line with previous results.

    We conclude that analysis of pinyl dimer esters provides valuable information on pinene oxidation processes and should be included in studies of formation and photochemical aging of biogenic secondary organic aerosols, especially at high temperatures.

  12. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk

    Science.gov (United States)

    Reshef, A; Zanichelli, A; Longhurst, H; Relan, A; Hack, C E

    2015-01-01

    Background Recommended management of attacks of hereditary angioedema (HAE) due to C1 esterase inhibitor (C1-INH) deficiency (C1-INH-HAE) includes therapy with exogenous C1INH. Thrombotic/thromboembolic events (TEE) have been reported with plasma-derived C1INH, but so far none with recombinant human C1INH (rhC1INH). This phase III, randomized, placebo (saline)-controlled study evaluated the safety of rhC1INH 50 IU/kg for the treatment of acute attacks in 74 patients with C1-INH-HAE. Methods Monitoring for TEE and assessment of risk of deep vein thrombosis (DVT) by the Wells prediction rule were performed, and levels of fibrin degradation products (plasma D-dimers) were assessed before study drug administration (baseline), 2 h, and 7 days posttreatment. Results Plasma D-dimer levels were elevated in 80% of the patients (median [25th–75th percentiles]: 2149 [480–5105] μg/l; normal ≤250 μg/l) and were higher in patients with submucosal (abdominal, oropharyngeal–laryngeal) attacks (3095 [890–10000] μg/l; n = 29) compared with subcutaneous (peripheral, facial) attacks (960 [450–4060] μg/l; n = 35). Median plasma D-dimer levels were comparable across treatment groups at baseline (1874 [475–4568] μg/l rhC1INH; 2259 [586–7533] μg/l saline) and 2 h postinfusion (2389 [760–4974] μg/l rhC1INH; 2550 [310–8410] μg/l saline); median plasma D-dimer levels were decreased by Day 7 in both groups (425 [232–3240] μg/l rhC1INH; 418 [246–2318] μg/l saline). No increased risk of DVT was identified, nor any TEE reported in rhC1INH treated or controls. Conclusion Elevated plasma D-dimer levels were associated with acute C1-INH-HAE attacks, particularly with submucosal involvement. However, rhC1INH therapy was not associated with thrombotic events. PMID:25640891

  13. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans.

    Directory of Open Access Journals (Sweden)

    Deepika Mehta

    5 and acarbose, while the truncated form does not because of the lack of extra sugar-binding space formed due to dimerization. CONCLUSION/SIGNIFICANCE: N-terminal domain controls enthalpy-driven thermostabilization, substrate-binding affinity and transglycosylation activity of Gt-Mamy by homodimer formation.

  14. Covalent Dimerization of Interleukin-Like Epithelial-to-Mesenchymal Transition (EMT) Inducer (ILEI) Facilitates EMT, Invasion and Late Aspects of Metastasis.

    Science.gov (United States)

    Kral, Maria; Klimek, Christoph; Kutay, Betül; Timelthaler, Gerald; Lendl, Thomas; Neuditschko, Benjamin; Gerner, Christopher; Sibilia, Maria; Csiszar, Agnes

    2017-08-24

    The interleukin-like epithelial-to-mesenchymal transition (EMT) inducer (ILEI)/FAM3C is a member of the highly homologous FAM3 family and is essential for EMT and metastasis formation. It is upregulated in several cancers, and its altered subcellular localization strongly correlates with poor survival. However, the mechanism of ILEI action, including the structural requirements for ILEI activity, remains elusive. Here, we show that ILEI formed both monomers and covalent dimers in cancer cell lines and in tumors. Using mutational analysis and pulse-chase experiments, we found that the four ILEI cysteines, conserved throughout the FAM3 family and involved in disulfide bond formation were essential for extracellular ILEI accumulation in cultured cells. Modification of a fifth cysteine (C185), unique for ILEI, did not alter protein secretion, but completely inhibited ILEI dimerization. Wild-type ILEI monomers, but not C185A mutants, could be converted into covalent dimers extracellularly upon overexpression by intramolecular-to-intermolecular disulfide bond isomerization. Incubation of purified ILEI with cell culture medium showed that dimerization was triggered by bovine serum in a dose and time dependent manner. Purified ILEI dimers induced EMT and trans-well invasion of cancer cells in vitro. In contrast, ILEI monomers and the dimerization-defective C185A mutant affected only cell motility as detected by scratch assays and cell tracking via time-lapse microscopy. Importantly, tumor cells overexpressing dimeric ILEI caused large tumors and lung metastases in nude mice, while cells overexpressing the dimerization-defective C185A mutant behaved similarly to control cells. These data show that covalent ILEI self-assembly is essential for EMT induction, elevated tumor growth and metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. The value of ischemia-modified albumin compared with d-dimer in the diagnosis of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Ucar Utku

    2008-05-01

    Full Text Available Abstract Study objective The primary aim of this study was to investigate whether IMA levels are helpful in the diagnosis of pulmonary embolism (PE. The secondary aim was to determine whether IMA was more effective alone or in combination with clinical probability scores in the diagnosis of PE. Thirdly, the sensitivity and specificity of IMA is compared with D-dimer both with and without clinical probability scores in patients with suspected PE. Methods Consecutive patients presenting to the emergency department with suspected PE were prospectively recruited, and healthy volunteers were also enrolled as controls. D-dimer and IMA levels were measured for the entire study group. Wells and Geneva scores were calculated and s-CTPA was performed on all suspected PE patients. Results The study population consisted of 130 patients with suspected PE and 59 healthy controls. Mean IMA levels were 0.362 ± 0.11 ABSU for Group A, the PE group (n = 75; 0.265 ± 0.07 ABSU for Group B, the non-PE group (n = 55; and 0.175 ± 0.05 ABSU for Group C, the healthy control group (p Conclusion IMA is a good alternative to D-dimer in PE diagnosis in terms of both cost and efficiency. Used in combination with clinical probability scores, it has a similar positive effect on NPV and sensitivity to that of D-dimer. The PPV of IMA is better than D-dimer, but it is still unable to confirm a diagnosis of PE without additional investigation.

  16. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DEFF Research Database (Denmark)

    Gopalan, Aravind; Klærke, Benedikte; Rajput, Jyoti

    2012-01-01

    Photodissociation lifetimes and fragment channels of gas-phase, protonated YAn (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of ∼200 ns while the protonated dimers show...... rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis...... of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both...

  17. Self-deactivation of water vapor - Role of the dimer

    Science.gov (United States)

    Zuckerwar, A. J.

    1984-01-01

    A phenomenological multiple-relaxation theory of the deactivation rate constant for the nu-2 (1 - 0) bending mode of water vapor is presented which incorporates the role not only of the excited monomer but also of the bound molecular complex, in particular the dimer. The deactivation takes place by means of three parallel processes: (1) collisional deexcitation of the excited monomer, (2) a two-step reaction involving association and spontaneous redissociation of an H2O collision complex, and (3) spontaneous dissociation of the stably bound H2O dimer. Oxygen, but not nitrogen or argon, serves as an effective chaperon for the formation of the activated complex. This observation explains the impurity dependence of the self-deactivation rate constant of water vapor. Analysis of an ultrasonic absorption peak based on the third process yields values for the standard entropy and enthalpy of dissociation of the stably bound H2O dimer.

  18. Characterization of oxygen dimer-enriched silicon detectors

    CERN Document Server

    Boisvert, V; Moll, M; Murin, L I; Pintilie, I

    2005-01-01

    Various types of silicon material and silicon p+n diodes have been treated to increase the concentration of the oxygen dimer (O2i) defect. This was done by exposing the bulk material and the diodes to 6 MeV electrons at a temperature of about 350 °C. FTIR spectroscopy has been performed on the processed material confirming the formation of oxygen dimer defects in Czochralski silicon pieces. We also show results from TSC characterization on processed diodes. Finally, we investigated the influence of the dimer enrichment process on the depletion voltage of silicon diodes and performed 24 GeV/c proton irradiations to study the evolution of the macroscopic diode characteristics as a function of fluence.

  19. Dimer Models from Mirror Symmetry and Quivering Amoebae

    CERN Document Server

    Feng, B; Kennaway, K D; Vafa, C; Feng, Bo; He, Yang-Hui; Kennaway, Kristian D.; Vafa, Cumrun

    2005-01-01

    Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume.

  20. Inequivalent models of irreversible dimer filling: ``Transition state'' dependence

    Science.gov (United States)

    Nord, R. S.; Evans, J. W.

    1990-12-01

    Irreversible adsorption of diatomics on crystalline surfaces is sometimes modeled as random dimer filling of adjacent pairs of sites on a lattice. We note that this process can be implemented in two distinct ways: (i) randomly pick adjacent pairs of sites, jj', and fill jj' only if both are empty (horizontal transition state); or (ii) randomly pick a single site, j, and if j and at least one neighbor are empty, then fill j and a randomly chosen empty neighbor (vertical transition state). Here it is instructive to consider processes which also include competitive random monomer filling of single sites. We find that although saturation (partial) coverages differ little between the models for pure dimer filling, there is a significant difference for comparable monomer and dimer filling rates. We present exact results for saturation coverage behavior for a linear lattice, and estimates for a square lattice. Ramifications for simple models of CO oxidation on surfaces are indicated.

  1. Intrinsic Kinetic Modeling of Thermal Dimerization of C5 Fraction

    Institute of Scientific and Technical Information of China (English)

    Guo Liang; Wang Tiefeng; Li Dongfeng; Wang Jinfu

    2016-01-01

    This work aims to investigate the intrinsic kinetics of thermal dimerization of C5 fraction in the reactive distilla-tion process. Experiments are conducted in an 1000-mL stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy Ea is equal to 6.58×104 J/mol for the cyclopentadiene dimerization re-action. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns.

  2. Ultrafast Dissociation of Metastable CO2 + in a Dimer

    Science.gov (United States)

    Ding, Xiaoyan; Haertelt, M.; Schlauderer, S.; Schuurman, M. S.; Naumov, A. Yu.; Villeneuve, D. M.; McKellar, A. R. W.; Corkum, P. B.; Staudte, A.

    2017-04-01

    We triply ionize the van der Waals bound carbon monoxide dimer with intense ultrashort pulses and study the breakup channel (CO )23 +→C++O++CO+ . The fragments are recorded in a cold target recoil ion momentum spectrometer. We observe a fast CO2 + dissociation channel in the dimer, which does not exist for the monomer. We found that a nearby charge breaks the symmetry of a X3Π state of CO2 + and induces an avoided crossing that allows a fast dissociation. Calculation on the full dimer complex shows the coupling of different charge states, as predicted from excimer theory, gives rise to electronic state components not present in the monomer, thereby enabling fast dissociation with higher kinetic energy release. These results demonstrate that the electronic structure of molecular cluster complexes can give rise to dynamics that is qualitatively different from that observed in the component monomers.

  3. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DEFF Research Database (Denmark)

    Gopalan, Aravind; Klærke, Benedikte; Rajput, Jyoti

    2012-01-01

    channel in the dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical......Photodissociation lifetimes and fragment channels of gas-phase, protonated YAn (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of ∼200 ns while the protonated dimers show...... of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both...

  4. Micellisation and immunoreactivities of dimeric beta-caseins.

    Science.gov (United States)

    Yousefi, Reza; Gaudin, Jean-Charles; Chobert, Jean-Marc; Pourpak, Zahra; Moin, Mostafa; Moosavi-Movahedi, Ali Akbar; Haertle, Thomas

    2009-12-01

    Bovine beta-casein (beta-CN) is a highly amphiphilic micellising phospho-protein showing chaperone-like activity in vitro. Recently, existence of multiple sequential epitopes on beta-CN polypeptide chain in both hydrophilic-polar (psi) and hydrophobic-apolar domains (phi) has been evidenced. In order to clarify specific contribution of polar and apolar domains in micellisation process and in shaping immunoreactivity of beta-CN, its dimeric/bi-amphiphilic "quasi palindromic" forms covalently connected by a disulfide bond linking either N-terminal (C4 beta-CND) or C-terminal domain (C208 beta-CND) were produced and studied. Depending on the C- or N-terminal position of inserted cysteine, each dimeric beta-CN contains one polar/apolar region at the centre and two external hydrophobic/hydrophilic ends. Consequently, such casein dimers have radically different polarities/hydrophobicities on their outside surfaces. Dynamic light scattering (DLS) measurements indicate that these dimeric casein molecules form micelles of different sizes depending on arrangement of polar fragments of the beta-CN mutants in their constrained dimers. Non-aggregated dimers have different hydrodynamic diameters that could be explained by their different geometries. Measurements of fluorescence showed more hydrophobic environment of Trp residues of C208 beta-CND, while in similar experimental conditions Trp residues of C4 beta-CND and native beta-CN were more exposed to the polar medium. Both fluorescence and DLS studies showed greater propensity for micellisation of the dimeric beta-CNs, suggesting that the factors inducing the formation of micelles are stronger in the bi-amphiphilic dimers. 1-anilino-naphthalene-8-sulfonate (ANS) binding studies showed different binding of ANS by these dimers as well as different exposition of ANS binding (hydrophobic) regions in the micellar states. The differences in fluorescence resonance energy transfer (FRET) profiles of C4 beta-CND and C208 beta-CND can

  5. REVISITING THE PUTATIVE TCR Cα DIMERIZATION MODEL THROUGH STRUCTURAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Jia-huai eWang

    2013-01-01

    Full Text Available Despite major advances in T cell receptor (TCR biology and structure, how peptide-MHC complex (pMHC ligands trigger αβ TCR activation remains unresolved. Two views exist. One model postulates that monomeric TCR-pMHC ligation events are sufficient while a second proposes that TCR-TCR dimerization in cis via Cα domain interaction plus pMHC binding is critical. We scrutinized 22 known TCR/pMHC complex crystal structures, and did not find any predicted molecular Cα-Cα contacts in these crystals that would allow for physiological TCR dimerization. Moreover, the presence of conserved glycan adducts on the outer face of the Cα domain preclude the hypothesized TCR dimerization through the Cα domain. Observed functional consequences of Cα mutations are likely indirect, with TCR microclusters at the immunological synapse driven by TCR transmembrane/cytoplasmic interactions via signaling molecules, scaffold proteins and/or cytoskeletal elements.

  6. Microwave Spectrum of the Isopropanol-Water Dimer

    Science.gov (United States)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  7. Dimeric α-Cobratoxin X-ray Structure

    Science.gov (United States)

    Osipov, Alexey V.; Rucktooa, Prakash; Kasheverov, Igor E.; Filkin, Sergey Yu.; Starkov, Vladislav G.; Andreeva, Tatyana V.; Sixma, Titia K.; Bertrand, Daniel; Utkin, Yuri N.; Tsetlin, Victor I.

    2012-01-01

    In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys3 in one protomer and Cys20 of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys26 and Cys30 in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys26-Cys30 in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys26-Cys30 disulfides in αCT-αCT considerably potentiates inhibition of the α3β2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3β2 nAChRs. Our results demonstrate that at least one Cys26-Cys30 disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3β2 nAChR. PMID:22223648

  8. Simulations of coherent nonlinear optical response of molecular vibronic dimers

    CERN Document Server

    Perlík, Václav

    2016-01-01

    We have implemented vibronic dynamics for simulations of the third order coherent response of electronic dimers. In the present communication we provide the full and detailed description of the dynamical model, recently used for simulations of chlorophyll-carotenoid dyads, terylene dimers, or hypericin. We allow for explicit vibronic level structure, by including selected vibrational modes into a "system". Bath dynamics include the Landau-Teller vibrational relaxation, electronic dephasing, and nonlinear vibronic (to bath) coupling. Simulations combine effects of transport and dephasing between vibronic levels. Transport is described by master equation within secular approximation, phase is accumulated in cumulants and its calculation follows the transport pathways during waiting time period.

  9. Dimerization of argon and the properties of its small clusters

    Science.gov (United States)

    Titov, S. V.; Serov, S. A.; Ostrovskii, G. M.

    2016-12-01

    Statistical thermodynamic means are used to study the bound state of a small cluster AN (2 ≤ N ≤ 5) of Lennard-Jones particles in a spherical cavity. The statistical sum is calculated by the Monte Carlo method. For the dimer, integration is reduced to quadratures. The integration region contains only phase space points corresponding to the bound cluster state. Dimerization constant 2A = A2 is calculated via the probability of finding a molecule in the bound state using the example of argon.

  10. Synthesis and polarized photoluminescence of novel phosphorescent cyclometalated platinum dimer

    Institute of Scientific and Technical Information of China (English)

    Shi Ping Jiang; Kai Jun Luo; Ying Han Wang; Xin Wang; Ying Jiang; Yan Yan Wei

    2011-01-01

    A novel phosphorescent cyclometalated platinum dimer with bis-[2-(p-dodecyloxyphenyl) pyridyl]-hexane-l,6-diol as ligand and 1,3-( 1-n-hexyl,3-n-heptadecyl) diketone as ancillary ligand was synthesized. The chemical structure and liquid crystal property of the dimer were characterized by 1H NMR, ESI-MS, polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The aligned film of title compound on the rubbed polyimide film is intensely emissive at room temperature with emission maximum at 516 nm. The luminescence dichroic ratio (I∥/ IL) at 516 nm is 3.1.

  11. β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study.

    Directory of Open Access Journals (Sweden)

    Lenin Domínguez-Ramírez

    Full Text Available β-lactoglobulin (BLG is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control

  12. β-Lactoglobulin's Conformational Requirements for Ligand Binding at the Calyx and the Dimer Interphase: a Flexible Docking Study

    Science.gov (United States)

    Domínguez-Ramírez, Lenin; Del Moral-Ramírez, Elizabeth; Cortes-Hernández, Paulina; García-Garibay, Mariano; Jiménez-Guzmán, Judith

    2013-01-01

    β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding. PMID

  13. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68

    Science.gov (United States)

    Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril

    2016-01-01

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068

  14. A Multidisciplinary Investigation to Determine the Structure and Source of Dimeric Impurities in AMG 517 Drug Substance

    Directory of Open Access Journals (Sweden)

    Maria Victoria Silva Elipe

    2009-01-01

    Full Text Available In the initial scale-up batches of the experimental drug substance AMG 517, a pair of unexpected impurities was observed by HPLC. Analysis of data from initial LC-MS experiments indicated the presence of two dimer-like molecules. One impurity had an additional sulfur atom incorporated into its structure relative to the other impurity. Isolation of the impurities was performed, and further structural elucidation experiments were conducted with high-resolution LC-MS and 2D NMR. The dimeric structures were confirmed, with one of the impurities having an unexpected C-S-C linkage. Based on the synthetic route of AMG 517, it was unlikely that these impurities were generated during the last two steps of the process. Stress studies on the enriched impurities were carried out to further confirm the existence of the C-S-C linkage in the benzothiazole portion of AMG 517. Further investigation revealed that these two dimeric impurities originated from existing impurities in the AMG 517 starting material, N-acetyl benzothiazole. The characterization of these two dimeric impurities allowed for better quality control of new batches of the N-acetyl benzothiazole starting material. As a result, subsequent batches of AMG 517 contained no reportable levels of these two impurities

  15. Quantification of HER expression and dimerization in patients' tumor samples using time-resolved Forster resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Alexandre Ho-Pun-Cheung

    Full Text Available Following the development of targeted therapies against EGFR and HER2, two members of the human epidermal receptor (HER family of receptor tyrosine kinases, much interest has been focused on their expression in tumors. However, knowing the expression levels of individual receptors may not be sufficient to predict drug response. Here, we describe the development of antibody-based time-resolved Förster resonance energy transfer (TR-FRET assays for the comprehensive analysis not only of EGFR and HER2 expression in tumor cryosections, but also of their activation through quantification of HER homo- or heterodimers. First, EGFR and HER2 expression levels were quantified in 18 breast tumors and the results were compared with those obtained by using reference methods. The EGFR number per cell determined by TR-FRET was significantly correlated with EGFR mRNA copy number (P<0.0001. Moreover, our method detected HER2 overexpression with 100% specificity and sensibility, as confirmed by the standard IHC, FISH and qPCR analyses. EGFR and HER2 dimerization was then assessed, using as controls xenograft tumors from cell lines with known dimer expression profiles. Our results show that quantification of HER dimerization provides information about receptor activation that cannot be obtained by quantification of single receptors. Quantifying HER expression and dimerization by TR-FRET assays might help identifying novel clinical markers for optimizing patients' treatment in oncology.

  16. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.

    Science.gov (United States)

    Hellriegel, Christian; Caiolfa, Valeria R; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-09-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.

  17. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy

    Science.gov (United States)

    Li, Guang-Can; Zhang, Yong-Liang; Lei, Dang Yuan

    2016-03-01

    Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film

  18. Biophysical characterization of the dimer and tetramer interface interactions of the human cytosolic malic enzyme.

    Directory of Open Access Journals (Sweden)

    Sujithkumar Murugan

    Full Text Available The cytosolic NADP(+-dependent malic enzyme (c-NADP-ME has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8-10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A, the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A, the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.

  19. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    DEFF Research Database (Denmark)

    Andersen, Tonni Grube; Nintemann, Sebastian; Marek, Magdalena;

    2016-01-01

    into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Forster resonance energy transfer (FRET)-based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting...... proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality....

  20. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  1. Weakly Stabilized Primary Borenium Cations and their Dicationic Dimers

    Science.gov (United States)

    Prokofjevs, Aleksandrs; Kampf, Jeff W.; Solovyev, Andrey; Curran, Dennis P.; Vedejs, Edwin

    2013-01-01

    Hydride abstraction from monocationic hydride bridged salts [H(H2B–L)2]+ [B(C6F5)4]− (L = Lewis base) generates an observable primary borenium cation for L = iPr2NEt, but with L = Me3N, Me2NPr, or several N-heterocyclic carbenes, highly reactive dicationic dimers are formed. PMID:24087933

  2. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  3. FOUR NEW STILBENE DIMERS FROM THE LIANAS OF GNETUM HAINANENSE

    Institute of Scientific and Technical Information of China (English)

    YING-HONG WANG; KAI-SHENG HUANG; MAO LIN

    2001-01-01

    Four new stilbene dimers, gnetuhainins P (1), Q (2), K (3) and L (4), were isolated from the lianas of Gnetum hainanense C. Y. Cheng. Their structures and relative configurations were determined on the basis of spectroscopic evidence, especially 2D NMR techniques.

  4. Dispersion Interactions and the Stability of Amine Dimers

    Science.gov (United States)

    Guttmann, Robin

    2017-01-01

    Abstract Weak, intermolecular interactions in amine dimers were studied by using the combination of a dispersionless density functional and a function that describes the dispersion contribution to the interaction energy. The validity of this method was shown by comparison of structural and energetic properties with data obtained with a conventional density functional and the coupled cluster method. The stability of amine dimers was shown to depend on the size, the shape, and the relative orientation of the alkyl substituents, and it was shown that the stabilization energy for large substituents is dominated by dispersion interactions. In contrast to traditional chemical explanations that attribute stability and condensed matter properties solely to hydrogen bonding and, thus, to the properties of the atoms forming the hydrogen bridge, we show that without dispersion interactions not even the stability and structure of the ammonia dimer can be correctly described. The stability of amine dimers depends crucially on the interaction between the non‐polar alkyl groups, which is dominated by dispersion interactions. This interaction is also responsible for the energetic part of the free energy interaction used to describe hydrophobic interactions in liquid alkanes. The entropic part has its origin in the high degeneracy of the interaction energy for complexes of alkane molecules, which exist in a great variety of conformers, having their origin in internal rotations of the alkane chains. PMID:28794953

  5. A Novel Dimeric Eremophilane from Ligularia virgaurea spp. Oligocephala

    Institute of Scientific and Technical Information of China (English)

    Quan Xiang WU; Xia LIU; Yan Ping SHI

    2005-01-01

    A novel dimeric eremophilane, ligulolide B, was isolated from the alcoholic extract of the whole plant of Ligularia virgaurea spp. oligocephala. The structure was elucidated by various spectroscopic methods including intensive 2D NMR techniques (1H-1H COSY, gHMQC,gHMBC and 1H-1H NOESY) and HR-ESI-MS.

  6. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex

    Science.gov (United States)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2012-12-01

    The complex of squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dion, H2SQ) with quinuclidine betaine (1-carboxymethyl-1-azabicyclo[2.2.2]octane inner salt, QNB), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies and by DFT calculations. In the crystal of 1, monoclinic space group P21/n, one proton from H2SQ is transferred to QNB. QNBH+ and HSQ- are linked together by a Osbnd H⋯O hydrogen bond of 2.553(2) Å. Two such QNBH+·HSQ- complexes form a centrosymmetric dimer bridged by two Osbnd H⋯O bonds of 2.536(2) Å. The FTIR spectrum is consistent with the X-ray results. The structures of monomer QNBH+·HSQ- (1a) and dimer [QNB·H2SQ]2 (2) have been optimized at the B3LYP/6-311++G(d,p) level of theory. Isolated dimer 2 optimized back to a molecular aggregate of H2SQ and QNB. The calculated frequencies for the optimized structure of dimer 2 have been used to explain the frequencies of the experimental FTIR spectrum. The interpretation of 1H and 13C NMR spectra has been based on the calculated GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants for monomer 1a.

  7. Entanglement Transfer in a Four-Qubit Dimerized Heisenberg System

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; HUANG Min; WANG Zhao-ming; ZOU Jian

    2008-01-01

    Entanglement transfer is investigated in a dimerized Heisenberg system.Coneurrence as the measure of entanglement is calculated by the time-evolved state starting from an initially entangled state of spin pair.It is shown that perfect entanglement transfer can be realized at 80me special time and suitable interacting.

  8. Dimers of Azurin as model systems for electron transfer

    NARCIS (Netherlands)

    Jongh, Thyra Estrid de

    2006-01-01

    This thesis describes the investigation of crosslinked complexes of the blue copper protein azurin by means of spectroscopic techniques such as Uv-Vis and NMR as well as by X-ray crystallography. These non-physiological dimers serve as model systems for interprotein electron transfer (ET) and allow

  9. Gnapholide: a new guaiac-dimer from Pulicaria gnaphalodes (Asteraceae).

    Science.gov (United States)

    Ali, Muhammad Shaiq; Jahangir, Muhammad; Uzair, Syed Shah; Erian, Ayman Wahba; Tareen, Rasool Bakhsh

    2002-06-01

    The ethyl acetate soluble part of the chloroform extract of Pulicaria gnaphalodes belonging to the family Asteraceae afforded a new sesquiterpene-dimer of guaiane class named as gnapholide and anabsinthin of the same skeleton. The structures of both the compounds were elucidated with the aid of spectroscopic techniques including 2D NMR.

  10. Synthesis and Dimerization Behavior of Five Metallophthalocyanines in Different Solvents

    Directory of Open Access Journals (Sweden)

    Zhenhua Cheng

    2014-01-01

    Full Text Available Metallophthalocyanine (MPc has become one of the metal organic compounds with the largest production and the most widely application, because of its excellent performance in catalytic oxidation. However, aggregation of the MPc in solution, resulting in decreased solubility, greatly limits the performance of application. Studying the behavior of dimerization of MPcs can provide a theoretical basis for solving the problem of the low solubility. So five metallophthalocyanines (FePc, CoPc, NiPc, CuPc, and ZnPc were prepared with improved method and characterized. Dimerization of the five MPcs was measured by UV-Vis spectroscopy separately in N,N-dimethyl formamide (DMF and dimethylsulfoxide (DMSO. The red-shift of maximum absorption wavelength and deviations from Lambert-Beer law with increasing the concentration were observed for all the five MPcs. The dimerization equilibrium constants (K of the five MPcs in DMF were arranged in order of CoPc > ZnPc > CuPc > FePc > NiPc, while in DMSO they were arranged in order of ZnPc > CoPc > FePc > CuPc > NiPc. The type of the central metal and nature of the solvent affect the dimerization of the MPcs.

  11. A novel dimeric procyanidin glucoside from Polygonum aviculare

    Institute of Scientific and Technical Information of China (English)

    Hai Jian Cong; Shu Wei Zhang; Chong Zhang; Yu Jie Huang; Li Jiang Xuan

    2012-01-01

    A novel dimeric procyanidin glucoside,catechin 3-O-acetate-(4α→8)-catechin 3-O-acetate-3′-O-β-D-glucopyranoside (1),along with five flavonoids and one lignan were isolated from the aerial parts of Polygonum aviculare.Their structures were elucidated by spectroscopic analyses including 1D,2D NMR,MS and CD methods.

  12. Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers

    Institute of Scientific and Technical Information of China (English)

    Jian Wu; Xuxing Lu; Qiannan Zhu; Junwei Zhao; Qishun Shen; Li Zhan; Weihai Ni

    2014-01-01

    Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance*1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Cal-culated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.

  13. Entanglement in spin-1/2 dimerized Heisenberg systems

    CERN Document Server

    Sun, Z; Hu, A Z; Li, Y Q; Sun, Zhe; Wang, XiaoGuang; Hu, AnZi; Li, You-Quan

    2005-01-01

    We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of ground-state pairwise entanglement for the four-qubit model by identifying a Z_2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.

  14. Entanglement in Spin-1/2 Dimerized Heisenberg Systems

    Institute of Scientific and Technical Information of China (English)

    SUN Zhe; WANG Xiao-Guang; HU An-Zi; LI You-Quan

    2005-01-01

    We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of groundstate pairwise entanglement for the four-qubit model by identifying a Z2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of the nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.

  15. Determining Equilibrium Constants for Dimerization Reactions from Molecular Dynamics Simulations

    NARCIS (Netherlands)

    De Jong, Djurre H.; Schafer, Lars V.; De Vries, Alex H.; Marrink, Siewert J.; Berendsen, Herman J. C.; Grubmueller, Helmut

    2011-01-01

    With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices c

  16. Construction of covalently coupled, concatameric dimers of 7TM receptors

    DEFF Research Database (Denmark)

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina;

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...

  17. Ising anyons in frustration-free Majorana-dimer models

    Science.gov (United States)

    Ware, Brayden; Son, Jun Ho; Cheng, Meng; Mishmash, Ryan V.; Alicea, Jason; Bauer, Bela

    2016-09-01

    Dimer models have long been a fruitful playground for understanding topological physics. Here, we introduce a class, termed Majorana-dimer models, wherein bosonic dimers are decorated with pairs of Majorana modes. We find that the simplest examples of such systems realize an intriguing, intrinsically fermionic phase of matter that can be viewed as the product of a chiral Ising theory, which hosts deconfined non-Abelian quasiparticles, and a topological px-i py superconductor. While the bulk anyons are described by a single copy of the Ising theory, the edge remains fully gapped. Consequently, this phase can arise in exactly solvable, frustration-free models. We describe two parent Hamiltonians: one generalizes the well-known dimer model on the triangular lattice, while the other is most naturally understood as a model of decorated fluctuating loops on a honeycomb lattice. Using modular transformations, we show that the ground-state manifold of the latter model unambiguously exhibits all properties of the Ising×(px-i py) theory. We also discuss generalizations with more than one Majorana mode per site, which realize phases related to Kitaev's 16-fold way in a similar fashion.

  18. Facile synthesis of dimer phase of coronene and its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, T.; Song, H.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    We synthesized very pure dimer phase of coronene by simple heat-treatment and subsequent sublimation purification. It was found that the dimer phase emits very bright red light under the irradiation of low energy ultra-violet light.

  19. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    Dimeric positive allosteric modulators of ionotropic glutamate receptors were designed, synthesized, and characterized pharmacologically in electrophysiological experiments. The designed compounds are dimers of arylpropylsulfonamides and have been constructed without a linker. The monomeric...

  20. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  1. Modeling the human intestinal mucin (MUC2) C-terminal cystine knot dimer.

    Science.gov (United States)

    Sadasivan, Vatsala D; Narpala, Sandeep R; Budil, David E; Sacco, Albert; Carrier, Rebecca L

    2011-11-01

    Intestinal mucus, a viscous secretion that lines the mucosa, is believed to be a barrier to absorption of many therapeutic compounds and carriers, and is known to play an important physiological role in controlling pathogen invasion. Nevertheless, there is as yet no clear understanding of the barrier properties of mucus, such as the nature of the molecular interactions between drug molecules and mucus components as well as those that govern gel formation. Secretory mucins, large and complex glycoprotein molecules, are the principal determinants of the viscoelastic properties of intestinal mucus. Despite the important role that mucins play in controlling transport and in diseases such as cystic fibrosis, their structures remain poorly characterized. The major intestinal secretory mucin gene, MUC2, has been identified and fully sequenced. The present study was undertaken to determine a detailed structure of the cysteine-rich region within the C-terminal end of human intestinal mucin (MUC2) via homology modeling, and explore possible configurations of a dimer of this cysteine-rich region, which may play an important role in governing mucus gel formation. Based on sequence-structure alignments and three-dimensional modeling, a cystine knot tertiary structure homologous to that of human chorionic gonadotropin (HCG) is predicted at the C-terminus of MUC2. Dimers of this C-terminal cystine knot (CTCK) were modeled using sequence alignment based on HCG and TGF-beta, followed by molecular dynamics and simulated annealing. Results support the formation of a cystine knot dimer with a structure analogous to that of HCG.

  2. Radiation-enhanced optical antenna based on nonperiodic metallic nanoparticle dimer chain

    Science.gov (United States)

    Chen, Xiaolin; Yu, Wenhai; Yue, Wencheng; Yao, Peijun; Liu, Wen

    2015-07-01

    With the aid of multi-sphere dyadic Green's function, we present a design of optical nanoantenna which is composed of a nonperiodic nanoparticle dimer chain. By breaking the periodicity of the dimer chain, the radiative emission of the dimer chain is significantly enhanced because the strong coupling which limits radiation enhancement is inhibited when the separations between dimers are reduced. Our work clearly shows the crucial role of nonperiodicity in the design of the Yagi-Uda nanoantenna.

  3. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  4. Higher order expansions for the entropy of a dimer or a monomer-dimer system on d-dimensional lattices

    CERN Document Server

    Butera, Paolo; Pernici, Mario

    2013-01-01

    Recently an expansion as a power series in 1/d has been presented for the specific entropy of a complete dimer covering of a d-dimensional hypercubic lattice. This paper extends from 3 to 10 the number of terms known in the series. Likewise an expansion for the entropy, dependent on the dimer-density p, of a monomer-dimer system, involving a sum sum_k a_k(d) p^k, has been recently offered. We herein extend the number of the known expansion coefficients from 6 to 20 for the hyper-cubic lattices of general dimension d and from 6 to 24 for the hyper-cubic lattices of dimensions d 2. The computations of this paper have led us to make the following marvelous conjecture: "In the case of the hyper-cubic lattices, all the expansion coefficients, a_k(d), are positive"! This paper results from a simple melding of two disparate research programs: one computing to high orders the Mayer series coefficients of a dimer gas, the other studying the development of entropy from these coefficients. An effort is made to make thi...

  5. Synthesis of β,β'-Porphyrin Dimer Linked by Vinylene

    Institute of Scientific and Technical Information of China (English)

    Jiang, Xuliang; Li, Panli; Wang, Yucheng; Shen, Qi; Tao, Jingchao; Shi, Weimin

    2012-01-01

    Synthesis of a novel β,β'-tetraalkylporphyrin dimer linked by vinylene was discribed, in which the dimer was readily prepared from a porphyrin-derived Wittig reagent and a mono-formylated porphyrin via Wittig reaction. No π-conjugation between the two porphyrin rings was obserbed, and the dimer was in trans form.

  6. A Large Conformational Change of a Bridged β-Cyclodextrin Dimer in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Xiao Qi ZHENG; Yong Hui WANG; Qing Xiang GUO; Li YANG; You Cheng LIU

    2003-01-01

    A novel bridged β-CD dimer in which two β-cyclodextrins were linked by a naphthalene at positions 2 and 7 has been synthesized. 1H and 13CNMR measurements showed that a large change in the conformation of the dimer occurred in aqueous solution. The dimer interacted with methyl and ethyl orange to form stable inclusion complexes via "induced fit" mechanism.

  7. Age- and sex-dependent reference intervals for D-dimer

    DEFF Research Database (Denmark)

    Haase, Christine; Joergensen, Maja; Ellervik, Christina;

    2013-01-01

    A low D-dimer is commonly used to exclude venous thromboembolism in low risk patients. However, the reference intervals are poorly defined and D-dimer has been shown to increase by patient age. We aimed to establish age- and sex-dependent D-dimer reference intervals and to test the consequence...

  8. Sublattice signatures of transitions in a $\\mathcal{PT}$-symmetric dimer lattice

    CERN Document Server

    Harter, Andrew K

    2016-01-01

    Lattice models with non-hermitian, parity and time-reversal ($\\mathcal{PT}$) symmetric Hamiltonians, realized most readily in coupled optical systems, have been intensely studied in the past few years. A $\\mathcal{PT}$-symmetric dimer lattice consists of dimers with intra-dimer coupling $\

  9. Evaluation of stability difference between asymmetric homochiral dimer in (S)-thalidomide crystal and symmetric heterochiral dimer in (RS)-thalidomide crystal

    Science.gov (United States)

    Suzuki, Toshiya; Tanaka, Masahito; Shiro, Motoo; Shibata, Norio; Osaka, Tetsuya; Asahi, Toru

    2010-03-01

    This article discusses differences in physicochemical properties such as solubility and melting point between (S)-thalidomide and (RS)-thalidomide based on crystal structures determined by X-ray diffraction experiments. Investigation of such differences is of great importance because thalidomide has attracted considerable attention again due to its wide-range bioactivity for intractable diseases. In this article, structures of hydrogen-bonded rings were compared between asymmetric homochiral dimers in (S)-thalidomide crystal and symmetric heterochiral dimers in (RS)-thalidomide crystal. The heterochiral dimer was evaluated to be more stable than the homochiral dimer by the energy calculations for hydrogen-bonded rings in those dimers. These results indicate that differences in physicochemical properties between enantiomeric and racemic thalidomides originate from the difference of structural stability between homochiral and heterochiral dimers.

  10. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    Science.gov (United States)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  11. The role of d-dimer as first marker of thrombophilia in women affected by sterility: implications in pathophysiology and diagnosis of thrombophilia induced sterility

    Directory of Open Access Journals (Sweden)

    Di Micco Pierpaolo

    2004-11-01

    Full Text Available Abstract Background D-dimer is considered a marker of hypercoagulable state and of endogenous fibrinolysis, so increased d-dimer is detectable in patients affected by thrombosis. Yet, several studies showed that also infertility, in particular secondary infertility due to recurrent fetal losses, has been often related to thrombotic events, in particular in women carrying thrombotic risk factors such as inherited thrombophilia (MTHFRC677T, PTHRA20210G, Factor V Leiden polimorphisms and/or inhAfter this screening we selected 39erited protein C, protein S, AT III deficiency or acquired thrombophilia (primary antiphospholipid syndrome, acquired protein C, protein S, AT III deficiency, drugs induced thrombophilia. However, because its high predictive negative value in case of suspected thrombosis, increased d-dimer has been often associated to subclinical thrombophilia. The aim of this study is to investigate the role of d-dimer as first marker of thrombophilia in women affected by unexplained infertility and subsequently to search the cause of increased d-dimer, such as inherited and/or acquired thrombophilia. Patients and Methods We selected 79 patients with unexplained primary or secondary infertility. We excluded 40 patients affected by hydrosalpinx, uterine fibroids, uterine malformations, endocrinological and immunological diseases, luteal insufficiency, cytogenetical alterations. All remaining 39 patients were tested for d-dimer and divided in two groups: the patients of group A (25 patients showed increased plasma d-dimer, in group B were included 14 patients with normal plasma level of d-dimer. After this step all 39 patients were screened for MTHFRC677T, PTHRA20210G, Factor V Leiden polimorphisms, protein C, protein S, AT III, anticardiolipin IgM and IgG, lupus anticoagulant. In the control group were included 15 age matched women without sterility problems referred to our outpatient's section of vascular medicine for suspected deep venous

  12. Solution structure of the dimeric cytoplasmic domain of syndecan-4

    DEFF Research Database (Denmark)

    Shin, J; Lee, W; Lee, D

    2001-01-01

    The syndecans, transmembrane proteoglycans which are involved in the organization of cytoskeleton and/or actin microfilaments, have important roles as cell surface receptors during cell-cell and/or cell-matrix interactions. Since previous studies indicate that the function of the syndecan-4...... between peptides at physiological pH. Commensurately, the NMR structures demonstrate that syndecan-4L is a compact intertwined dimer with a symmetric clamp shape in the central variable V region with a root-mean-square deviation between backbone atom coordinates of 0.95 A for residues Leu(186)-Ala(195...... in the center of the dimeric twist similar to our previously reported 4V structure. The overall topology of the central variable region within the 4L structure is very similar to that of 4V complexed with the phosphatidylinositol 4,5-bisphosphate; however, the intersubunit interaction mode is affected...

  13. Acylphenols and dimeric acylphenols from Myristica maxima Warb.

    Science.gov (United States)

    Othman, Muhamad Aqmal; Sivasothy, Yasodha; Looi, Chung Yeng; Ablat, Abdulwali; Mohamad, Jamaludin; Litaudon, Marc; Awang, Khalijah

    2016-06-01

    Giganteone E (1), a new dimeric acylphenol was isolated as a minor constituent from the bark of Myristica maxima Warb. The structure of 1 was established on the basis of 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Malabaricones A-C (2-4), giganteones A and C (5 and 6), maingayones A and B (7 and 8), maingayic acid B (9) and β-sitosteryl oleate (10) were also characterized in this plant for the first time. Compound 10 was identified for the first time in the Myristicaceae. Compounds 2 and 5 were active against human prostate cancer cell-lines, thus making this the first report on the prostate cancer inhibiting potential of acylphenols and dimeric acylphenols. Compounds 1, 4, 5, 7 and 8 exhibited potent DPPH free radical scavenging activity. This is the first report on their free radical scavenging capacity.

  14. Antioxidant Properties of Aminoethylcysteine Ketimine Decarboxylated Dimer: A Review

    Directory of Open Access Journals (Sweden)

    Rosa Marina Matarese

    2011-05-01

    Full Text Available Aminoethylcysteine ketimine decarboxylated dimer is a natural sulfur-containing compound detected in human plasma and urine, in mammalian brain and in many common edible vegetables. Over the past decade many studies have been undertaken to identify its metabolic role. Attention has been focused on its antioxidant properties and on its reactivity against oxygen and nitrogen reactive species. These properties have been studied in different model systems starting from plasma lipoproteins to specific cellular lines. All these studies report that aminoethylcysteine ketimine decarboxylated dimer is able to interact both with reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion, hydroxyl radical, peroxynitrite and its derivatives. Its antioxidant activity is similar to that of Vitamin E while higher than other hydrophilic antioxidants, such as trolox and N-acetylcysteine.

  15. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  16. Probing quantum discord in a Heisenberg dimer compound.

    Science.gov (United States)

    Chakraborty, Tanmoy; Singh, Harkirat; Singh, Sourabh; Gopal, Radha Krishna; Mitra, Chiranjib

    2013-10-23

    A quantitative estimation of quantum discord is performed for a Heisenberg spin 1/2 dimer compound (NH4CuPO4, H2O) by means of experimental magnetic and thermal measurements. Magnetic susceptibility and specific heat data were collected for NH4CuPO4, H2O and analyzed within the framework of the Heisenberg isolated dimer model. Internal energy as a function of temperature is obtained by integrating the specific heat versus temperature data. Subsequently, quantum discord, total correlations and spin-spin correlation function are quantified from susceptibility and internal energy and plotted as a function of temperature. Violation of Bell's inequality is also tested for NH4CuPO4, H2O via both experimental susceptibility and specific heat data signifying the presence of entanglement.

  17. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Paul M.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J., E-mail: p.woods@qub.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-11-10

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  18. Glycolaldehyde Formation via the Dimerization of the Formyl Radical

    Science.gov (United States)

    Woods, Paul M.; Slater, Ben; Raza, Zamaan; Viti, Serena; Brown, Wendy A.; Burke, Daren J.

    2013-11-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  19. Dimerization effect of sucrose octasulfate on rat FGF1

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Artur

    2008-01-01

    Fibroblast growth factors (FGFs) constitute a family of at least 23 structurally related heparin-binding proteins that are involved in regulation of cell growth, survival, differentiation and migration. Sucrose octasulfate (SOS), a chemical analogue of heparin, has been demonstrated to activate FGF...... signalling pathways. The structure of rat FGF1 crystallized in the presence of SOS has been determined at 2.2 A resolution. SOS-mediated dimerization of FGF1 was observed, which was further supported by gel-filtration experiments. The major contributors to the sulfate-binding sites in rat FGF1 are Lys113......, Lys118, Arg122 and Lys128. An arginine at position 116 is a consensus residue in mammalian FGF molecules; however, it is a serine in rat FGF1. This difference may be important for SOS-mediated FGF1 dimerization in rat....

  20. Solitons in a chain of PT-invariant dimers

    CERN Document Server

    Suchkov, Sergey V; Dmitriev, Sergey V; Kivshar, Yuri S

    2011-01-01

    Dynamics of a chain of interacting parity-time invariant nonlinear dimers is investigated. A dimer is built as a pair of coupled elements with equal gain and loss. A relation between stationary soliton solutions of the model and solitons of the discrete nonlinear Schrodinger (DNLS) equation is demonstrated. Approximate solutions for solitons whose width is large in comparison to the lattice spacing are derived, using a continuum counterpart of the discrete equations. These solitons are mobile, featuring nearly elastic collisions. Stationary solutions for narrow solitons, which are immobile due to the pinning by the effective Peierls-Nabarro potential, are constructed numerically, starting from the anti-continuum limit. The solitons with the amplitude exceeding a certain critical value suffer an instability leading to blowup, which is a specific feature of the nonlinear PT-symmetric chain, making it dynamically different from DNLS lattices. A qualitative explanation of this feature is proposed. The instability...

  1. Inhibition of HIV-1 Reverse Transcriptase Dimerization by Small Molecules.

    Science.gov (United States)

    Tintori, Cristina; Corona, Angela; Esposito, Francesca; Brai, Annalaura; Grandi, Nicole; Ceresola, Elisa Rita; Clementi, Massimo; Canducci, Filippo; Tramontano, Enzo; Botta, Maurizio

    2016-04-15

    Because HIV-1 reverse transcriptase is an enzyme whose catalytic activity depends on its heterodimeric structure, this system could be a target for inhibitors that perturb the interactions between the protein subunits, p51 and p66. We previously demonstrated that the small molecule MAS0 reduced the association of the two RT subunits and simultaneously inhibited both the polymerase and ribonuclease H activities. In this study, some analogues of MAS0 were rationally selected by docking studies and evaluated in vitro for their ability to disrupt dimeric assembly. Two inhibitors were identified with improved activity compared to MAS0. This study lays the basis for the rational design of more potent inhibitors of RT dimerization.

  2. Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization

    Science.gov (United States)

    Fahrenkamp, Dirk; Li, Jinyu; Ernst, Sabrina; Schmitz-van de Leur, Hildegard; Chatain, Nicolas; Küster, Andrea; Koschmieder, Steffen; Lüscher, Bernhard; Rossetti, Giulia; Müller-Newen, Gerhard

    2016-10-01

    STAT5 is an essential transcription factor in hematopoiesis, which is activated through tyrosine phosphorylation in response to cytokine stimulation. Constitutive activation of STAT5 is a hallmark of myeloid and lymphoblastic leukemia. Using homology modeling and molecular dynamics simulations, a model of the STAT5 phosphotyrosine-SH2 domain interface was generated providing first structural information on the activated STAT5 dimer including a sequence, for which no structural information is available for any of the STAT proteins. We identified a novel intramolecular interaction mediated through F706, adjacent to the phosphotyrosine motif, and a unique hydrophobic interface on the surface of the SH2 domain. Analysis of corresponding STAT5 mutants revealed that this interaction is dispensable for Epo receptor-mediated phosphorylation of STAT5 but essential for dimer formation and subsequent nuclear accumulation. Moreover, the herein presented model clarifies molecular mechanisms of recently discovered leukemic STAT5 mutants and will help to guide future drug development.

  3. UV resonance Raman analysis of trishomocubane and diamondoid dimers

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Reinhard, E-mail: rene@physik.tu-berlin.de; Thomsen, Christian; Maultzsch, Janina [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Richter, Robert; Merli, Andrea [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Fokin, Andrey A. [Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Department of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev (Ukraine); Koso, Tetyana V.; Schreiner, Peter R. [Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Rodionov, Vladimir N. [Department of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev (Ukraine)

    2014-01-21

    We present resonance Raman measurements of crystalline trishomocubane and diamantane dimers containing a C=C double bond. Raman spectra were recorded with excitation energies between 2.33 eV and 5.42 eV. The strongest enhancement is observed for the C=C stretch vibration and a bending mode involving the two carbon atoms of the C=C bond, corresponding to the B{sub 2g} wagging mode of ethylene. This is associated with the localization of the π-HOMO and LUMO and the elongation of the C=C bond length and a pyramidalization of the two sp{sup 2}-hybridized carbon atoms at the optical excitation. The observed Raman resonance energies of the trishomocubane and diamantane dimers are significantly lower than the HOMO-LUMO gaps of the corresponding unmodified diamondoids.

  4. Role of the Chlorophyll Dimer in Bacterial Photosynthesis

    Science.gov (United States)

    Warshel, Arieh

    1980-06-01

    The role of a special dimer (D) of bacterio-chlorophyll molecules in bacterial photosynthesis was examined by calculations of the rates of electron transfer reactions in a system of the dimer and a bacteriopheophytin (BPh) molecule. It was found that the dependence of the potential surfaces of D on the distance between the monomers allows a fast light-induced electron transfer from D to BPh but only a slow back reaction (reduction of D+ by BPh-). The same potential surfaces allow efficient reduction of D+ by cytochrome c. Possible advantages of greatly different values of the electronic matrix elements for the forward and back reactions are pointed out. It is suggested that the electrostatic interaction between D+ and an ionized group of the protein might play an important role in the photosynthetic reaction.

  5. Dimers on surface graphs and spin structures. II

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2009-01-01

    In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the di......In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function...... of the dimer model on Γ. In the present article, we generalize these results to the case of compact oriented surfaces with boundary. We also show how the operations of cutting and gluing act on discrete spin structures and how they change the partition function. These operations allow to reformulate the dimer...

  6. Mechanism of Processive Movement of Monomeric and Dimeric Kinesin Molecules

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2010-01-01

    Full Text Available Kinesin molecules are motor proteins capable of moving along microtubule by hydrolyzing ATP. They generally have several forms of construct. This review focuses on two of the most studied forms: monomers such as KIF1A (kinesin-3 family and dimers such as conventional kinesin (kinesin-1 family, both of which can move processively towards the microtubule plus end. There now exist numerous models that try to explain how the kinesin molecules convert the chemical energy of ATP hydrolysis into the mechanical energy to “power” their proceesive movement along microtubule. Here, we attempt to present a comprehensive review of these models. We further propose a new hybrid model for the dimeric kinesin by combining the existing models and provide a framework for future studies in this subject.

  7. Dimerization-assisted energy transport in light-harvesting complexes.

    Science.gov (United States)

    Yang, S; Xu, D Z; Song, Z; Sun, C P

    2010-06-21

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 [without a reaction center (RC)] to the LH1 (surrounding the RC) or from the LH2 to another LH2. The excited and unexcited states of a bacteriochlorophyll (BChl) are modeled by a quasispin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  8. Dimerization-assisted energy transport in light-harvesting complexes

    CERN Document Server

    Yang, S; Song, Z; Sun, C P

    2010-01-01

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system, and then calculate the transfer efficiency and average transfer time at a low enough temperature. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  9. Effects of dimerized lysozyme (KLP-602) on the cellular and humoral defence mechanisms in sheatfish (Silurus glanis): in vitro and in vivo study.

    Science.gov (United States)

    Morand, M; Siwicki, A; Pozet, F; Klein, P; Vinaize, J C; Keck, N

    1999-01-01

    This study examined the effects of the dimerized lysozyme (KLP-602) on the immunocompetence cell activity in sheatfish (Silurus glanis) and its influence in vivo on the non-specific defence mechanisms and protection against motile aeromonad septicaemia (MAS). The in vitro study showed that the lysozyme dimer (KLP-602), at concentrations between 5 and 50 micrograms/mL of medium significantly (P < 0.05) increased the respiratory burst activity and potential killing activity of pronephric macrophages, as well as the proliferative ability of pronephric lymphocytes stimulated by ConA and LPS. The in vivo study showed that injecting lysozyme dimer (Lydium-KLP) intraperitoneally at doses of 50 micrograms/kg bw stimulated cell-mediated and humoral-mediated imunity. On day 5, after application of Lydium-KLP in vivo, a statistically higher (P < 0.05) respiratory burst activity and potential killing activity of blood and pronephros phagocytes were observed. A higher proliferative ability of blood and pronephros lymphocytes stimulated by Concanavaline A (ConA) or lipopolysaccharide (LPS) was also observed. At the same time, the myeloperoxidase activity in the PMN cells and the lysozyme activity and total Ig levels in serum were significantly higher (P < 0.05), compared to the control group. A challenge test with Aeromonas hydrophila showed that dimerized lysozyme increased the protection against MAS. Dimerized lysozyme stimulates non-specific cellular and humoral mechanisms and protection against MAS in sheatfish.

  10. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    Science.gov (United States)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  11. Association of atoms into universal dimers using an oscillating magnetic field.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2015-03-13

    In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy. We present a simple expression for the transition rate that takes into account many-body effects through a transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms, the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from atom-atom-dimer recombination. The recombination contribution provides a signature for universal tetramers that are Efimov states consisting of two atoms and a dimer.

  12. Plasmon excitations in the dimers formed by atom chains

    Science.gov (United States)

    Xue, Hong-jie; Hao, Da-peng; Zhang, Ming; Wang, Xiao-mei

    2017-02-01

    Based on the linear response theory in the random-phase approximation and the free-electron gas model, we study the plasmon excitations in the dimers formed by atom chains. With the help of energy absorption spectrum and charge distribution, the evolutions of longitudinal and transverse plasmon, and the effect of the system parameters such as size, atomic separation and electron filling on plasmon are obtained. In addition, the dipole, quadrupole, end and central plasmon are observed.

  13. Multiple-charge transfer and trapping in DNA dimers

    Science.gov (United States)

    Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Zwicknagl, Gertrud

    2010-11-01

    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Philos. Mag. Lett. 83, 699 (2003)10.1080/0950083031000151374] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a superohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and intersite Coulomb matrix element is equal to the reorganization energy which is the case in a guanine/cytosine (GC)-dimer. Charge transfer is completely suppressed for two excess electrons in adenine/thymine (AT)-dimer in an ohmic bath and replaced by damped coherent electron-pair oscillations in a superohmic bath. A finite bond-bond interaction W alters the transfer rate: it increases as function of W when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion.

  14. Wave packet dynamics of potassium dimers attached to helium nanodroplets

    OpenAIRE

    Claas, P.; Droppelmann, G.; Schulz, C. P.; Mudrich, M.; Stienkemeier, F.

    2006-01-01

    The dynamics of vibrational wave packets excited in K$_2$ dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K$^+_2$-formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are obs...

  15. A New Hydroxychavicol Dimer from the Roots of Piper betle

    OpenAIRE

    Huei-Yu Tu; Horng-Liang Lay; Chun-Chien Chien; Chwan-Fwu Lin; Tsong-Long Hwang

    2013-01-01

    A new hydroxychavicol dimer, 2-(g'-hydroxychavicol)-hydroxychavicol (1), was isolated from the roots of Piper betle Linn. along with five known compounds, hydroxychavicol (2), aristololactam A II (3), aristololactam B II (4), piperolactam A (5) and cepharadione A (6). The structures of these isolated compounds were elucidated by spectroscopic methods. Compounds 1 and 2 exhibited inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils.

  16. A New Hydroxychavicol Dimer from the Roots of Piper betle

    Directory of Open Access Journals (Sweden)

    Huei-Yu Tu

    2013-02-01

    Full Text Available A new hydroxychavicol dimer, 2-(g'-hydroxychavicol-hydroxychavicol (1, was isolated from the roots of Piper betle Linn. along with five known compounds, hydroxychavicol (2, aristololactam A II (3, aristololactam B II (4, piperolactam A (5 and cepharadione A (6. The structures of these isolated compounds were elucidated by spectroscopic methods. Compounds 1 and 2 exhibited inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils.

  17. A new hydroxychavicol dimer from the roots of Piper betle.

    Science.gov (United States)

    Lin, Chwan-Fwu; Hwang, Tsong-Long; Chien, Chun-Chien; Tu, Huei-Yu; Lay, Horng-Liang

    2013-02-26

    A new hydroxychavicol dimer, 2-(g'-hydroxychavicol)-hydroxychavicol (1), was isolated from the roots of Piper betle Linn. along with five known compounds, hydroxychavicol (2), aristololactam A II (3), aristololactam B II (4), piperolactam A (5) and cepharadione A (6). The structures of these isolated compounds were elucidated by spectroscopic methods. Compounds 1 and 2 exhibited inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils.

  18. Naturally occurring pentaoxygenated, hexaoxygenated and dimeric xanthones: a literature survey

    Directory of Open Access Journals (Sweden)

    V. Peres

    1997-08-01

    Full Text Available This review gives information on the chemical study of 71 pentaoxygenated, 11 hexaoxygenated and 9 dimeric and more complex xanthones naturally occurring in 7 families, 29 genus and 62 species of higher plants, and 11 described as fern and fungal metabolites. The value of these groups of substances in the connection with the pharmacological activity and the therapeutic use of some species is shown. The structural formulas of 23 isolated compounds and their distribution in the species studied are given.

  19. Excited State Pathways Leading to Formation of Adenine Dimers.

    Science.gov (United States)

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-02

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine).

  20. A DFT study of substituent effects in corannulene dimers.

    Science.gov (United States)

    Josa, Daniela; Rodríguez Otero, Jesús; Cabaleiro Lago, Enrique M

    2011-12-21

    Corannulene dimers made up of corannulene monomers with different curvature and substituents were studied using M06-2X, B97D and ωB97XD functionals and 6-31+G* basis set. Corannulene molecules were substituted with five alternating Br, Cl, CH(3), C(2)H or CN units. Geometric results showed that substituents gave rise to small changes in the curvature of corannulene bowls. So, there was not a clear relationship between the curvature of bowls and the changes on interaction energy generated by addition of substituents in the bowl. Electron withdrawing substituents gave rise to a more positive molecular electrostatic potential (MEP) of the bowl, which was able to get a strong interaction with the negative MEP at the surface of a fullerene. Substitution with CN caused the largest effect, giving rise to the most positive MEP and to a large interaction energy of -24.64 kcal mol(-1), at the ωB97XD/6-31+G* level. Dispersive effects must be taken into account to explain the catching ability of the different substituted corannulenes. For unsubstituted dimers, calculations with DFT-D methods employing ωB97XD and B97D functionals led to similar results to those previously reported at the SCS-MP2/cc-pVTZ level for corannulene dimers (A. Sygula and S. Saebø, Int. J. Quant. Chem., 2009, 109, 65). In particular, the ωB97XD functional led to a difference of only 0.35 kcal mol(-1), regarding MP2 interaction energy for corannulene dimers. On the other hand, the M06-2X functional showed a general considerable underestimation of interaction energies. This functional worked quite well to study trends, but not to obtain absolute interaction energies.

  1. Protein folding modulates the swapped dimerization mechanism of methyl-accepting chemotaxis heme sensors.

    Directory of Open Access Journals (Sweden)

    Marta A Silva

    Full Text Available The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol(-1 for GSU0935 and ΔG = 26.3 kJ.mol(-1 for GSU0582, and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582, which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the β-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it's folding

  2. The dimerization of thiophosgene and trichlorothioacetyl chloride S-imides - Head-to-head and/or head-to-tail?

    DEFF Research Database (Denmark)

    Voss, Jürgen; Buddensiek, Dirk; Senning, Alexander Erich Eugen

    2016-01-01

    -S-NHAr and CCl3CCl2-S-NHR. - According to PM7 and DFT type MO calculations of the enthalpies, the formation of the 1,4,2,5-dithiadiazinanes is thermodynamically favored over that of the 1,4,2,3-isomers. However, the activation energies for the cyclization reaction are lower for the head-to-head dimerization....... Thus, the observed dimerization of thiocarbonyl S-imides under formation of 1,4,2,3-dithiadiazinanes is a kinetically controlled reaction....

  3. Dimer Models, Free Fermions and Super Quantum Mechanics

    CERN Document Server

    Dijkgraaf, R; Reffert, S

    2007-01-01

    This note relates topics in statistical mechanics, graph theory and combinatorics, lattice quantum field theory, super quantum mechanics and string theory. We give a precise relation between the dimer model on a graph embedded on a torus and the massless free Majorana fermion living on the same lattice. A loop expansion of the fermion determinant is performed, where the loops turn out to be compositions of two perfect matchings. These loop states are sorted into co-chain groups using categorification techniques similar to the ones used for categorifying knot polynomials. The Euler characteristic of the resulting co-chain complex recovers the Newton polynomial of the dimer model. We re-interpret this system as supersymmetric quantum mechanics, where configurations with vanishing net winding number form the ground states. Finally, we make use of the quiver gauge theory - dimer model correspondence to obtain an interpretation of the loops in terms of the physics of D-branes probing a toric Calabi-Yau singularity...

  4. On the photophysics and photochemistry of the water dimer

    Energy Technology Data Exchange (ETDEWEB)

    Segarra-Marti, Javier; Merchan, Manuela [Instituto de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, 46071 Valencia (Spain); Roca-Sanjuan, Daniel; Lindh, Roland [Department of Chemistry - Angstroem, Theoretical Chemistry Program, Uppsala University, Box 518, 75120 Uppsala (Sweden)

    2012-12-28

    The photochemistry of the water dimer irradiated by UV light is studied by means of the complete active space perturbation theory//complete active space self-consistent field (CASPT2//CASSCF) method and accurate computational approaches like as minimum energy paths. Both electronic structure computations and ab initio molecular dynamics simulations are carried out. The results obtained show small shifts relative to a single water molecule on the vertical excitation energies of the dimer due to the hydrogen bond placed between the water donor (W{sub D}) and the water acceptor (W{sub A}). A red-shift and a blue-shift are predicted for the W{sub D} and W{sub A}, respectively, supporting previous theoretical and experimental results. The photoinduced chemistry of the water dimer is described as a process occurring between two single water molecules in which the effect of the hydrogen bond plays a minor role. Thus, the photoinduced decay routes correspond to two photodissociation processes, one for each water molecule. The proposed mechanism for the decay channels of the lowest-lying excited states of the system is established as the photochemical production of a hydrogen-bonded H{sub 2}O Horizontal-Ellipsis HO species plus a hydrogen H atom.

  5. Assembly and separation of semiconductor quantum dot dimers and trimers.

    Science.gov (United States)

    Xu, Xiangxing; Stöttinger, Sven; Battagliarin, Glauco; Hinze, Gerald; Mugnaioli, Enrico; Li, Chen; Müllen, Klaus; Basché, Thomas

    2011-11-16

    Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the interparticle distances are clearly larger than those for directly coupled dots proving that the QDs indeed are cross-linked by the dye. Moreover, energy transfer from the QDs to the TDI "bridge" has been observed. Individual oligomers (directly coupled or dye-linked) can be readily deposited on a substrate and studied simultaneously by scanning force and optical microscopy. Our simple and effective scheme is applicable to a wide range of ligand stabilized colloidal nanoparticles and opens the way to a detailed study of electronic coupling in, e.g., QD molecules.

  6. Nonlinearity and trapping in excitation transfer Dimers and Trimers.

    CERN Document Server

    Barvik, I; Schanz, H; Barvik, Ivan; Esser, Bernd; Schanz, Holger

    1995-01-01

    We study the interplay between nonlinearity in exciton transport and trapping due to a sink site for the dimer and the trimer with chain configuration by a numerical integration of the discrete nonlinear Schroedinger equation. Our results for the dimer show, that the formation of a self trapped state due to the nonlinear coupling increases the life time of the exciton substantially. Self trapping can be enhanced by the sink for short times, but for long times it disappears. In the trimer consisting of a subdimer extended by a sink site exists a transition between states localized on the two sites of the subdimer before for larger nonlinear coupling self trapping on one site of the subdimer is observed. For large trapping rates the fear of death effect leads to an increasing life time of the excitation on both, the dimer and the trimer. The sink site is then effectively decoupled. We explain this effect using an asymptotic theory for strong trapping and demonstrate it by direct numerical computation.

  7. Benchmark calculations for elastic fermion-dimer scattering

    CERN Document Server

    Bour, Shahin; Lee, Dean; Meißner, Ulf-G

    2012-01-01

    We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.

  8. Quantum Monte Carlo calculations of the dimerization energy of borane.

    Science.gov (United States)

    Fracchia, Francesco; Bressanini, Dario; Morosi, Gabriele

    2011-09-07

    Accurate thermodynamic data are required to improve the performance of chemical hydrides that are potential hydrogen storage materials. Boron compounds are among the most interesting candidates. However, different experimental measurements of the borane dimerization energy resulted in a rather wide range (-34.3 to -39.1) ± 2 kcal/mol. Diffusion Monte Carlo (DMC) simulations usually recover more than 95% of the correlation energy, so energy differences rely less on error cancellation than other methods. DMC energies of BH(3), B(2)H(6), BH(3)CO, CO, and BH(2)(+) allowed us to predict the borane dimerization energy, both via the direct process and indirect processes such as the dissociation of BH(3)CO. Our D(e) = -43.12(8) kcal/mol, corrected for the zero point energy evaluated by considering the anharmonic contributions, results in a borane dimerization energy of -36.59(8) kcal/mol. The process via the dissociation of BH(3)CO gives -34.5(2) kcal/mol. Overall, our values suggest a slightly less D(e) than the most recent W4 estimate D(e) = -44.47 kcal/mol [A. Karton and J. M. L. Martin, J. Phys. Chem. A 111, 5936 (2007)]. Our results show that reliable thermochemical data for boranes can be predicted by fixed node (FN)-DMC calculations.

  9. Pair density wave superconducting states and statistical mechanics of dimers

    Science.gov (United States)

    Soto Garrido, Rodrigo Andres

    The following thesis is divided in two main parts. Chapters 2, 3 and 4 are devoted to the study of the so called pair-density-wave (PDW) superconducting state and some of its connections to electronic liquid crystal (ELC) phases, its topological aspects in a one dimensional model and its appearance in a quasi-one dimensional system. On the other hand, chapter 5 is focused on the investigation of the classical statistical mechanics properties of dimers, in particular, the dimer model on the Aztec diamond graph and its relation with the octahedron equation. In chapter 2 we present a theory of superconducting states where the Cooper pairs have a nonzero center-of-mass momentum, inhomogeneous superconducting states known as a pair-density-waves (PDWs) states. We show that in a system of spin-1/2 fermions in two dimensions in an electronic nematic spin-triplet phase where rotational symmetry is broken in both real and spin space PDW phases arise naturally in a theory that can be analysed using controlled approximations. We show that several superfluid phases that may arise in this phase can be treated within a controlled BCS mean field theory, with the strength of the spin-triplet nematic order parameter playing the role of the small parameter of this theory. We find that in a spin-triplet nematic phase, in addition to a triplet p-wave and spin-singlet d-wave (or s depending on the nematic phase) uniform superconducting states, it is also possible to have a d-wave (or s) PDW superconductor. The PDW phases found here can be either unidirectional, bidirectional, or tridirectional depending on the spin-triplet nematic phase and which superconducting channel is dominant. In addition, a triple-helix state is found in a particular channel. We show that these PDW phases are present in the weak-coupling limit, in contrast to the usual Fulde-Ferrell-Larkin-Ovchinnikov phases, which require strong coupling physics in addition to a large magnetic field (and often both). In chapter

  10. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, Kelly L.; Hass, Matthew; McArthur, Debbie G.; Ilagan, Ma Xenia G.; Aster, Jon C.; Kopan, Raphael; Blacklow, Stephen C. (WU); (BWH); (DFCI)

    2010-11-12

    Ligand-induced proteolysis of Notch produces an intracellular effector domain that transduces essential signals by regulating the transcription of target genes. This function relies on the formation of transcriptional activation complexes that include intracellular Notch, a Mastermind co-activator and the transcription factor CSL bound to cognate DNA. These complexes form higher-order assemblies on paired, head-to-head CSL recognition sites. Here we report the X-ray structure of a dimeric human Notch1 transcription complex loaded on the paired site from the human HES1 promoter. The small interface between the Notch ankyrin domains could accommodate DNA bending and untwisting to allow a range of spacer lengths between the two sites. Cooperative dimerization occurred on the human and mouse Hes5 promoters at a sequence that diverged from the CSL-binding consensus at one of the sites. These studies reveal how promoter organizational features control cooperativity and, thus, the responsiveness of different promoters to Notch signaling.

  11. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling.

    Science.gov (United States)

    You, Changjiang; Marquez-Lago, Tatiana T; Richter, Christian Paolo; Wilmes, Stephan; Moraga, Ignacio; Garcia, K Christopher; Leier, André; Piehler, Jacob

    2016-12-01

    The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.

  12. Immunoassay for Visualization of Protein-Protein Interactions on Ni-Nitrilotriacetate Support: Example of a Laboratory Exercise with Recombinant Heterotrimeric G[alpha][subscript i2][beta][subscript 1[gamma]2] Tagged by Hexahistidine from sf9 Cells

    Science.gov (United States)

    Bavec, Aljosa

    2004-01-01

    We have developed an "in vitro assay" for following the interaction between the [alpha][subscript i2] subunit and [beta][subscript 1[gamma]2] dimer from sf9 cells. This method is suitable for education purposes because it is easy, reliable, nonexpensive, can be applied for a big class of 20 students, and avoid the commonly used kinetic approach,…

  13. Effects of dimers on cooperation in the spatial prisoner's dilemma game

    CERN Document Server

    Li, Haihong; Dai, Qionglin; Ju, Ping; Zhang, Mei; Yang, Junzhong

    2011-01-01

    We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which ...

  14. Synthesis and photophysical properties of a single bond linked tetracene dimer

    Science.gov (United States)

    Sun, Tingting; Shen, Li; Liu, Heyuan; Sun, Xuan; Li, Xiyou

    2016-07-01

    A tetracene dimer linked directly by a single bond has been successfully prepared by using electron withdrawing groups to improve the stability. The molecular structure of this dimer is characterized by 1H NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure and X-ray crystallography reveal that the tetracene subunits of this dimer adopt an orthogonal configuration. Its absorption spectrum differs significantly from that of its monomeric counterpart, suggesting the presence of strong interactions between the two tetracene subunits. The excited state of this dimer is delocalized on both two tetracene subunits, which is significantly different from that of orthogonal anthracene dimers, but similar with that observed for orthogonal pentacene dimer. Most of the excited states of this dimer decay by radioactive channels, which is different from the localized twisted charge transfer state (LTCT) channel of anthracene dimers and the singlet fission (SF) channel of pentacene dimers. The results of this research suggest that similar orthogonal configurations caused different propertied for acene dimers with different conjugation length.

  15. Correlation analysis between plasma D-dimer levels and orthopedic trauma severity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-dan; LIU Hong-bo; LI Yu-neng; MA Hai-mei; LIU Ya-bo; WANG Man-yi

    2012-01-01

    Background The correlation between the plasma D-dimer level and deep vein thrombosis has not been conclusive in various studies.The aim of this research was to study the relationship between plasma D-dimer levels and the severity of orthopedic trauma by retrospective examination of orthopedic trauma cases.Methods Clinically acute trauma and non-acute trauma patients were selected and their plasma D-dimer levels were measured.Plasma D-dimer levels in patients of these two groups were compared.The relationship between the plasma D-dimer level and the severity of the trauma was also studied.Results There were 548 cases in the acute trauma group and 501 cases in the non-acute trauma group.The levels of plasma D-dimer were significantly higher in the acute trauma group than in the non-acute trauma group (P <0.01).In the acute trauma group,the correlation between the D-dimer level and the number of fractures was a positive linear correlation (r=0.9532).Conclusions Elevated plasma D-dimer is common in trauma patients.The D-dimer level and the number of fractures in the trauma patients are closely correlated.D-dimer is not only an indicator for the diagnosis of deep vein thrombosis and pulmonary embolus,but also an indicator of the severity of trauma in acute trauma patients.

  16. Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene

    Science.gov (United States)

    Khan, Imran; Hong, Jisang

    2016-09-01

    We studied the geometries, electronic structure and magnetic properties of substitutional doping and adsorption of transition metal (Mn, Fe and Co) dimers on phosphorene monolayer in the framework of the generalized gradient approximation (GGA) and GGA + U. Electronic band structures and magnetic properties were dependent on the doping type and dopant materials. For Mn and Fe substitutional and adsorption dimers, we obtained semiconducting band structures with spin polarization. However, we found a half-metallic feature in Co substitutional dimer while the Co adsorption dimer showed a semiconducting behavior without any spin polarization. With GGA + U, all the systems showed spin polarized semiconducting band structures except Co adsorption dimer which remained unaffected. The hybridization between transition metal (TM) and phosphorene sheet contributed to suppressing the magnetic moment of TM dimers. For instance, the total magnetic moments of -2.0, 4.24 and 1.28 μ B/cell for Mn, Fe and Co substitutional dimers were obtained while the Mn and Fe adsorption dimers showed magnetic moments of -1.69 and 0.46 μ B/cell. These magnetic moments were enhanced with GGA + U. The same magnetic ground states were obtained both from GGA and GGA + U approaches except for the Mn dimers. We observed that the Mn and Fe substitutional dimers showed an out-of-plane magnetization while an in-plane magnetization was observed in Co substitutional dimer. The Mn adsorption dimer still displayed a perpendicular magnetization whereas the Fe adsorption dimer had an in-plane magnetization. We found that the both GGA and GGA + U showed the same magnetization direction in all the systems.

  17. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism.

    Science.gov (United States)

    Takach Lapner, Sarah; Julian, Jim A; Linkins, Lori-Ann; Bates, Shannon; Kearon, Clive

    2017-10-05

    Two new strategies for interpreting D-dimer results have been proposed: i) using a progressively higher D-dimer threshold with increasing age (age-adjusted strategy) and ii) using a D-dimer threshold in patients with low clinical probability that is twice the threshold used in patients with moderate clinical probability (clinical probability-adjusted strategy). Our objective was to compare the diagnostic accuracy of age-adjusted and clinical probability-adjusted D-dimer interpretation in patients with a low or moderate clinical probability of venous thromboembolism (VTE). We performed a retrospective analysis of clinical data and blood samples from two prospective studies. We compared the negative predictive value (NPV) for VTE, and the proportion of patients with a negative D-dimer result, using two D-dimer interpretation strategies: the age-adjusted strategy, which uses a progressively higher D-dimer threshold with increasing age over 50 years (age in years × 10 µg/L FEU); and the clinical probability-adjusted strategy which uses a D-dimer threshold of 1000 µg/L FEU in patients with low clinical probability and 500 µg/L FEU in patients with moderate clinical probability. A total of 1649 outpatients with low or moderate clinical probability for a first suspected deep vein thrombosis or pulmonary embolism were included. The NPV of both the clinical probability-adjusted strategy (99.7 %) and the age-adjusted strategy (99.6 %) were similar. However, the proportion of patients with a negative result was greater with the clinical probability-adjusted strategy (56.1 % vs, 50.9 %; difference 5.2 %; 95 % CI 3.5 % to 6.8 %). These findings suggest that clinical probability-adjusted D-dimer interpretation is a better way of interpreting D-dimer results compared to age-adjusted interpretation.

  18. Clinical study on the influence of phloroglucinol on plasma angiotensin II and D-Dimer index in patients with severe pregnancy-induced hypertension.

    Science.gov (United States)

    Ai, Liang; Lan, Xinzhi; Wang, Limin; Xu, Yanjie; Zhang, Bin

    2016-07-01

    To observe the effect of phloroglucinol on plasma angiotensin II and D-dimer index when it was applied to patients with severe pregnancy-induced hypertension. 212 cases of severe pregnancy-induced hypertension patients diagnosed clinically were selected to be randomly divided into the research group and the control group. The research groups were given phloroglucinol, while the control groups were given magnesium sulfate. The plasma angiotensin II and D-dimer index in patients were detected before treatment and after 7 days respectively with statistical analysis of results. The diffidence after treatment was statistically significant (P0.05). It showed that the research group could reduce the plasma D-dimer and angiotensin II index in severe pregnancy-induced hypertension patients, and its effect was significantly better than the control group according to the plasma D-dimer and angiotensin II index changes in patients, it indicated that it was effective of phloroglucinol treatment for patients with pregnancy-induced hypertension disease and superior to the western medicine conventional treatment, worth clinical promotion.

  19. Spectroscopic Characterization of the Water Oxidation Intermediates in the Blue Dimer Ru-Based Catalyst for Artificial Photosynthesis

    Science.gov (United States)

    Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor

    2012-02-01

    Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.

  20. Disulfide Bonds within the C2 Domain of RAGE Play Key Roles in Its Dimerization and Biogenesis

    Science.gov (United States)

    Wei, Wen; Lampe, Leonie; Park, Sungha; Vangara, Bhavana S.; Waldo, Geoffrey S.; Cabantous, Stephanie; Subaran, Sarah S.; Yang, Dongmei; Lakatta, Edward G.; Lin, Li

    2012-01-01

    Background The receptor for advanced glycation end products (RAGE) on the cell surface transmits inflammatory signals. A member of the immunoglobulin superfamily, RAGE possesses the V, C1, and C2 ectodomains that collectively constitute the receptor's extracellular structure. However, the molecular mechanism of RAGE biogenesis remains unclear, impeding efforts to control RAGE signaling through cellular regulation. Methodology and Result We used co-immunoprecipitation and crossing-linking to study RAGE oligomerization and found that RAGE forms dimer-based oligomers. Via non-reducing SDS-polyacrylamide gel electrophoresis and mutagenesis, we found that cysteines 259 and 301 within the C2 domain form intermolecular disulfide bonds. Using a modified tripartite split GFP complementation strategy and confocal microscopy, we also found that RAGE dimerization occurs in the endoplasmic reticulum (ER), and that RAGE mutant molecules without the double disulfide bridges are unstable, and are subjected to the ER-associated degradation. Conclusion Disulfide bond-mediated RAGE dimerization in the ER is the critical step of RAGE biogenesis. Without formation of intermolecular disulfide bonds in the C2 region, RAGE fails to reach cell surface. Significance This is the first report of RAGE intermolecular disulfide bond. PMID:23284645

  1. Supramolecular Dimerization and [2 + 2] Photocycloaddition Reactions of Crown Ether Styryl Dyes Containing a Tethered Ammonium Group: Structure-Property Relationships.

    Science.gov (United States)

    Ushakov, Evgeny N; Vedernikov, Artem I; Lobova, Natalia A; Dmitrieva, Svetlana N; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Howard, Judith A K; Alfimov, Michael V; Gromov, Sergey P

    2015-12-31

    Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution.

  2. Integral equation study of soft-repulsive dimeric fluids

    Science.gov (United States)

    Munaò, Gianmarco; Saija, Franz

    2017-03-01

    We study fluid structure and water-like anomalies of a system constituted by dimeric particles interacting via a purely repulsive core-softened potential by means of integral equation theories. In our model, dimers interact through a repulsive pair potential of inverse-power form with a softened repulsion strength. By employing the Ornstein–Zernike approach and the reference interaction site model (RISM) theory, we study the behavior of water-like anomalies upon progressively increasing the elongation λ of the dimers from the monomeric case (λ =0 ) to the tangent configuration (λ =1 ). For each value of the elongation we consider two different values of the interaction potential, corresponding to one and two length scales, with the aim to provide a comprehensive description of the possible fluid scenarios of this model. Our theoretical results are systematically compared with already existing or newly generated Monte Carlo data: we find that theories and simulations agree in providing the picture of a fluid exhibiting density and structural anomalies for low values of λ and for both the two values of the interaction potential. Integral equation theories give accurate predictions for pressure and radial distribution functions, whereas the temperatures where anomalies occur are underestimated. Upon increasing the elongation, the RISM theory still predicts the existence of anomalies; the latter are no longer observed in simulations, since their development is likely precluded by the onset of crystallization. We discuss our results in terms of the reliability of integral equation theories in predicting the existence of water-like anomalies in core-softened fluids.

  3. Dimerization and DNA recognition rules of mithramycin and its analogues.

    Science.gov (United States)

    Weidenbach, Stevi; Hou, Caixia; Chen, Jhong-Min; Tsodikov, Oleg V; Rohr, Jürgen

    2016-03-01

    The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me(2+))-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM=MTM SDK>MTM SA-Trp>MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents.

  4. Bethe Ansatz Solutions of the Bose-Hubbard Dimer

    Directory of Open Access Journals (Sweden)

    Jon Links

    2006-12-01

    Full Text Available The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2 Lie algebra.

  5. Bis(triphenylphosphine)silver(i) perrhenate, a cyclic dimer.

    Science.gov (United States)

    Deiser, F; Kraus, F; Schmidbaur, H

    2015-04-21

    The 1 : 4 and 1 : 2 complexes of silver perrhenate and triphenylphosphine, [(Ph3P)4Ag](+) ReO4(-) and [(Ph3P)2AgReO4]2, have been prepared and their structures determined in the solid state by X-ray diffraction. The former is composed of independent ions, while in the latter the ions are aggregated into cyclic dimers. The silver centers are tetracoordinated including contact with two bridging perrhenate anions, setting this structure apart from that of its gold analogue [(Ph3P)2Au](+) ReO4(-) where the gold centers are strictly two-coordinate.

  6. It takes two to flirt with a dimeric RNase.

    Science.gov (United States)

    D'Alessio, Giuseppe

    2009-12-01

    In my long RNase-life-time I have had the fortune to entertain with Lelio Mazzarella what I have called special interactions, which not only advanced my knowledge of proteins but also gave pleasure, as one obtains by reading a beautiful book, an inspiring poem, or watching a very good movie. In this article, I recall the more than 30-year long story of these interactions in which "it took two," a structural biologist with his coworkers and a biochemist with his coworkers, to flirt with an unusual, dimeric RNase.

  7. Novel modulated Hexatic Phases in Symmetric Liquid Crystal Dimers

    OpenAIRE

    Date, R; Luckhurst, G.; Shuman, M.; Seddon, J

    1995-01-01

    Homologues of the dimeric α,ω-bis(4-n-alkylanilinebenzylidene-4'-oxy)alkanes (m.OnO.m) have been synthesised with spacer lengths n ranging from 9 to 12 methylene units and with terminal alkyl chain lengths m of 10, 12 and 14. Characterisation of these materials has been carried out by X-ray diffraction, differential scanning calorimetry and optical microscopy. In six of these compounds a novel modulated tilted hexatic phase, denoted S1, has been identified, in which the smectic layers have a ...

  8. Multiple gold-dimer detection from large scattering background

    Science.gov (United States)

    Hong, Xin; Jin, Zheng

    2016-10-01

    Gold nanoparticles exhibit unique plasmonic optical properties in visible to near infrared band. Especially the coupling effect existing at the gap between a closely linked particle pair can make the local field strongly enhanced. These properties make gold particles more attractive to be employed as molecular probes in biomedical related fundamental and clinical researches. However in the bio-system exist many large molecules or groups, whose optical signals can strongly depress the gold particles without detectable. In this paper, we proposed a method to extract the targets which are labelled by gold dimer pairs from large scattering background.

  9. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP...... PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate...

  10. On the integrability of PT-symmetric dimers

    CERN Document Server

    Pickton, J

    2013-01-01

    The coupled discrete linear and Kerr nonlinear Schrodinger equations with gain and loss describing transport on dimers with parity-time (PT) symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT symmetric double-well potentials. It is shown that the models are integrable. A pendulum equation with a linear potential and a constant force for the phase-difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter.

  11. Transport properties of a ladder with two random dimer chains

    Institute of Scientific and Technical Information of China (English)

    Hu Donng-Sheng; Zhu Chen-Ping; Zhang Yong-Mei

    2011-01-01

    We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains.

  12. DNA melting properties of the dityrosine cross-linked dimer of Ribonuclease A.

    Science.gov (United States)

    Dinda, Amit Kumar; Chattaraj, Saparya; Ghosh, Sudeshna; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2016-09-01

    Several DNA binding proteins exist in dimeric form when bound with DNA to be able to exhibit various biological processes such as DNA repair, DNA replication and gene expression. Various dimeric forms of Ribonuclease A (RNase A) and other members of the ribonuclease A superfamily are endowed with a multitude of biological activities such as antitumor and antiviral activity. In the present study, we have compared the DNA binding properties between the RNase A monomer and the dityrosine (DT) cross-linked RNase A dimer, and checked the inhibitory effect of DNA on the ribonucleolytic activity of the dimeric protein. An agarose gel based assay shows that like the monomer, the dimer also binds with DNA. The number of nucleotides bound per monomer unit of the dimer is higher than the number of nucleotides that bind with the each monomer. From fluorescence measurements, the association constant (Ka) values for complexation of the monomer and the dimer with ct-DNA are (4.95±0.45)×10(4)M(-1) and (1.29±0.05)×10(6)M(-1) respectively. Binding constant (Kb) values for the binding of the monomer and the dimer with ct-DNA were determined using UV-vis spectroscopy and were found to be (4.96±1.67)×10(4)M(-1) and (4.32±0.31)×10(5)M(-1) respectively. Circular dichroism studies shows that the dimer possesses significant effect on DNA conformation. The melting profile for the ct-DNA-dimer indicated that the melting temperature (Tm) for the ct-DNA-dimer complex is lower compared to the ct-DNA-monomer complex. The ribonucleolytic activity of the dimer, like the monomer, diminishes upon binding with DNA.

  13. Dimeric boronates derived from the reaction of schiff bases and boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Barba, Victor [Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico). Centro de Investigaciones Quimicas; Santillan, Rosa; Farfan, Norberto [Instituto Politecnico Nacional (IPN), Mexico, D.F. (Mexico). Centro de Investigacion y de Estudios Avanzados. Dept. de Quimica]. E-mail: jfarfan@cinvestav.mx

    2005-05-15

    The one-pot synthesis of dimeric boron complexes is reported. The compounds were obtained by reaction of Schiff bases (tridentate ligands) with trans-{beta}-phenylvinylboronic acid, 3-thiopheneboronic acid and methylboronic acid. Building of the dimeric structures is favored by the presence of intramolecular N{yields}B coordination bonds, resulting in the formation of ten-membered ring heterocycles. An X-ray crystallographic analysis for one of them confirmed the dimeric nature of these compounds. (author)

  14. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    Science.gov (United States)

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveals that dimeric WT PH domain possesses a one-order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically-enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each a full order of magnitude lower than dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion. PMID:23745598

  15. Circular dimers of a lambda DNA in infected, nonlysogenic Escherichia coli.

    Science.gov (United States)

    Freifelder, D; Baran, N; Folkmanis, A; Freifelder, D L

    1977-09-01

    Covalently closed circular dimers of phage lambda DNA have been found in Escherichia coli infected with lambda. These dimers can be formed by either the lambda Red or Int systems, by a nonrecombinational replicative mechanism requiring the activity of the lambda O and P genes or by joining of the cohesive ends. Dimers mediated by the E. coli Rec system have not been observed. Those formed by the Int system often result from recombination between different DNA molecules; however, the Red-mediated dimers may be a result of replicative extension of a single DNA molecule. Trimers have also been observed but studied only briefly.

  16. Dimer and String Formation during Low Temperature Silicon Deposition on Si(100)

    DEFF Research Database (Denmark)

    Smith, A. P.; Jonsson, Hannes

    1996-01-01

    We present theoretical results based on density functional theory and kinetic Monte Carlo simulations of silicon deposition and address observations made in recently reported low temperature scanning tunneling microscopy studies. A mechanism is presented which explains dimer formation on top...... of the substrate's dimer rows at 160 K and up to room temperature, while between-row dimers and longer strings of adatoms (''diluted dimer rows'') form at higher temperature. A crossover occurs at around room temperature between two different mechanisms for adatom diffusion in our model....

  17. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    Energy Technology Data Exchange (ETDEWEB)

    Goffinont, S. [Centre de Biophysique Moleculaire, CNRS, rue C. Sadron, 45071 Orleans (France); Davidkova, M. [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086, Prague 8 (Czech Republic); Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr [Centre de Biophysique Moleculaire, CNRS, rue C. Sadron, 45071 Orleans (France)

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  18. An Analytical Analysis of CDT Coupled to Dimer-like Matter

    CERN Document Server

    Atkin, Max R

    2012-01-01

    We consider a model of restricted dimers coupled to two-dimensional causal dynamical triangulations (CDT), where the dimer configurations are restricted in the sense that they do not include dimers in regions of high curvature. It is shown how the model can be solved analytically using bijections with decorated trees. At a negative critical value for the dimer fugacity the model undergoes a phase transition at which the critical exponent associated to the geometry changes. This represents the first account of an analytical study of a matter model with two-dimensional interactions coupled to CDT.

  19. Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation.

    Science.gov (United States)

    Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans

    2014-01-01

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  20. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere

    DEFF Research Database (Denmark)

    Petaja, Tuukka; Sipila, Mikko; Paasonen, Pauli

    2011-01-01

    Sulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation...... compound(s) with (a) concentration(s) high enough to prevent the dimer evaporation. Such a stabilizing compound should be abundant enough in any natural environment and would therefore not limit the formation of sulfuric acid dimers in the atmosphere....

  1. Solid-phase synthesis of 2{sup '}-O-methoxyethyl oligonucleotides using dimeric phosphoramidate blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gi Weon; Kang, Yong Han [Dept. of Applied Chemistry, Hanyang University, Ansan (Korea, Republic of)

    2016-11-15

    This research focused on the method of using dimeric phosphoramidite blocks to synthesize oligonucleotides for development as oligonucleotide drugs. A 16-mer oligonucleotide with the randomly selected sequence of C*C*T*C*G*C *T*C*T*C*G*C*C* C*G*C was synthesized using CC, GC, and TC dimers, a combination of monomers and dimers, or only monomers as building blocks. Using dimer blocks in this synthetic method provided a significant decrease in critical impurities that had similar properties to the main product, which was confirmed by LC-MS and HPLC analysis.

  2. Vortexlike topological defects in nematic colloids: chiral colloidal dimers and 2D crystals.

    Science.gov (United States)

    Tkalec, U; Ravnik, M; Zumer, S; Musevic, I

    2009-09-18

    We show that chiral ordering of the underlying complex fluid strongly influences defect formation and colloidal interactions. Nonsingular defect loops with a topological charge -2 are observed, with a cross section identical to hyperbolic vortices in magnetic systems. These loops are binding spontaneously formed pairs of colloidal particles and dimers, which are chiral objects. Chiral dimer-dimer interaction weakly depends on the chirality of dimers and leads to the assembly of 2D nematic colloidal crystals of pure or "mixed" chirality, intercalated with a lattice of nonsingular vortexlike defects.

  3. Brug af D-dimer til at udelukke dyb venøs trombose i overekstremiteterne

    DEFF Research Database (Denmark)

    Ahler-Toftehøj, Hans-Ulrik; Mikkelsen, Peter

    2009-01-01

    D-dimer is often used to exclude deep venous thrombosis, primarily in the lower extremities. We describe a 38-year-old man who had deep venous thrombosis in the left vena subclavia in spite of a normal D-dimer. Only one inconclusive survey compares the value of D-dimer and upper extremity deep...... venous thrombosis. We conclude that where deep venous thrombosis of the upper extremities is suspected, you cannot rely on the D-dimer value, but should examine the patient using other modalities such as colour Doppler ultrasound. Udgivelsesdato: 2009-Sep...

  4. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk?

    DEFF Research Database (Denmark)

    Lyngsø, Christina; Erikstrup, Niels; Hansen, Jakob L

    2008-01-01

    . The importance of the RAS is clearly emphasised by the widespread use of drugs targeting this system in clinical practice. These include, renin inhibitors, angiotensin II receptor type I blockers, and inhibitors of the angiotensin converting enzyme. Some of the important effectors within the system are 7......The Renin-Angiotensin System (RAS) is important for the regulation of cardiovascular physiology, where it controls blood pressure, and salt- and water homeostasis. Dysregulation of RAS can lead to severe diseases including hypertension, diabetic nephropathy, and cardiac arrhythmia, and -failure...... be important for receptor function, and in the development of cardiovascular diseases. This is very significant, since "dimers" may provide pharmacologists with novel targets for improved drug therapy. However, we know that 7TM receptors can mediate signals as monomeric units, and so far it has been very...

  5. Optical extinction and scattering cross sections of plasmonic nanoparticle dimers in aqueous suspension

    Science.gov (United States)

    Loumaigne, Matthieu; Midelet, Clyde; Doussineau, Tristan; Dugourd, Philippe; Antoine, Rodolphe; Stamboul, Meriem; Débarre, Anne; Werts, Martinus H. V.

    2016-03-01

    Absolute extinction and scattering cross sections for gold nanoparticle dimers were determined experimentally using a chemometric approach involving singular-value decomposition of the extinction and scattering spectra of slowly aggregating gold nanospheres in aqueous suspension. Quantitative spectroscopic data on plasmonic nanoparticle assemblies in liquid suspension are rare, in particular for particles larger than 40 nm, and in this work we demonstrate how such data can be obtained directly from the aggregating suspension. Our method can analyse, non invasively, the evolution of several sub-populations of nanoparticle assemblies. It may be applied to other self-assembling nanoparticle systems with an evolving optical response. The colloidal systems studied here are based on 20, 50 and 80 nm gold nanospheres in aqueous solutions containing sodium lipoate. In these systems, the reversible dimerisation process can be controlled using pH and ionic strength, and this control is rationalised in terms of DLVO theory. The dimers were identified in suspension by their translational and rotational diffusion through scattering correlation spectroscopy. Moreover, their gigadalton molecular weight was measured using electrospray charge-detection mass spectrometry, demonstrating that mass spectrometry can be used to study nanoparticles assemblies of very high molecular mass. The extinction and scattering cross sections calculated in the discrete-dipole approximation (DDA) agree very well with those obtained experimentally using our approach.Absolute extinction and scattering cross sections for gold nanoparticle dimers were determined experimentally using a chemometric approach involving singular-value decomposition of the extinction and scattering spectra of slowly aggregating gold nanospheres in aqueous suspension. Quantitative spectroscopic data on plasmonic nanoparticle assemblies in liquid suspension are rare, in particular for particles larger than 40 nm, and in this

  6. High performance absorber structure using subwavelength multi-branch dimers

    Science.gov (United States)

    He, Kebo; Su, Guangyao; Liu, Chuanhong; Gou, Fangwang; Zhang, Zhaoyu

    2012-11-01

    As the desire growing of the thin film absorption structure for various sub-wavelength applications such as photo detector, thin-film thermal emitters, thermo photovoltaic cells, and multi-color filters, we proposed a type of subwavelength multi-branch dimers which exhibit several tunable dipole-dipole-like plasmonic resonances and integrated it into metal-insulator-metal structure as the top layer. The structures are studied through numerical calculation by finite element method. When normal incident is considered, the novel structure shows three absorption peaks in the considered wavelength range. One peak has near-perfect absorption and the other two also show excellent absorption.. When different angle oblique incident is considered, the absorption only has slight change, which is useful to an ultrathin absorber structure. In addition, we find that the thickness of the dielectric layer can tune the absorption rates for each absorption peak. In general, the multi-branch dimers can easily tune its absorption rates and spectrum via the change of their geometric parameters such as branch lengths, branch angles, and dielectric layer thickness.

  7. Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic.

    Science.gov (United States)

    Eeftens, Jorine M; Katan, Allard J; Kschonsak, Marc; Hassler, Markus; de Wilde, Liza; Dief, Essam M; Haering, Christian H; Dekker, Cees

    2016-03-01

    Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only ∼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the ∼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. [Retarded excision of pyrimidine dimers in human unstimulated lymphocytes].

    Science.gov (United States)

    Snopov, S A; Roza, L; de Gruijl, F R

    2006-01-01

    Using immuno-labelling of cyclobutane pyrimidine dimers (CPDs) in nuclei of peripheral lymphocytes after their UVC-irradiation and cultivation, we have found that within the first four hours of cultivation the CPD-specific fluorescent signal from cell nuclei increased. Earlier, a similar increase in binding of antibody specific for pyrimidine (6-4) pyrimidone photoproducts to undenatured DNA isolated from UV-irradiated Chinese hamster ovary cells was reported (Mitchell et al., 1986). Our experiments showed that nucleotide excision repair enzyme might induce such of DNA modification in lymphocyte nuclei that increased specific antibody binding to DNA fragments with lesions. We suggest that enzymatic formation of open structures in DNA predominated qualitatively over dual-incision and excision of these fragments, and resulted in the enhanced exposure of the pyrimidine dimers in nuclei to specific antibodies. The results evidence that nucleotid excision repair in unstimualted human lymphocytes being deficient in dual incision and removal of UV-induced DNA lesions appear to be capable of performing chromatin relaxation and pre-incision uncoiling of DNA fragments with lesions.

  9. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Arakawa Kazuharu

    2011-01-01

    Full Text Available Abstract Background During the replication process of bacteria with circular chromosomes, an odd number of homologous recombination events results in concatenated dimer chromosomes that cannot be partitioned into daughter cells. However, many bacteria harbor a conserved dimer resolution machinery consisting of one or two tyrosine recombinases, XerC and XerD, and their 28-bp target site, dif. Results To study the evolution of the dif/XerCD system and its relationship with replication termination, we report the comprehensive prediction of dif sequences in silico using a phylogenetic prediction approach based on iterated hidden Markov modeling. Using this method, dif sites were identified in 641 organisms among 16 phyla, with a 97.64% identification rate for single-chromosome strains. The dif sequence positions were shown to be strongly correlated with the GC skew shift-point that is induced by replicational mutation/selection pressures, but the difference in the positions of the predicted dif sites and the GC skew shift-points did not correlate with the degree of replicational mutation/selection pressures. Conclusions The sequence of dif sites is widely conserved among many bacterial phyla, and they can be computationally identified using our method. The lack of correlation between dif position and the degree of GC skew suggests that replication termination does not occur strictly at dif sites.

  10. Dimerization of a Viral SET Protein Endows its Function

    Energy Technology Data Exchange (ETDEWEB)

    H Wei; M Zhou

    2011-12-31

    Histone modifications are regarded as the most indispensible phenomena in epigenetics. Of these modifications, lysine methylation is of the greatest complexity and importance as site- and state-specific lysine methylation exerts a plethora of effects on chromatin structure and gene transcription. Notably, paramecium bursaria chlorella viruses encode a conserved SET domain methyltransferase, termed vSET, that functions to suppress host transcription by methylating histone H3 at lysine 27 (H3K27), a mark for eukaryotic gene silencing. Unlike mammalian lysine methyltransferases (KMTs), vSET functions only as a dimer, but the underlying mechanism has remained elusive. In this study, we demonstrate that dimeric vSET operates with negative cooperativity between the two active sites and engages in H3K27 methylation one site at a time. New atomic structures of vSET in the free form and a ternary complex with S-adenosyl homocysteine and a histone H3 peptide and biochemical analyses reveal the molecular origin for the negative cooperativity and explain the substrate specificity of H3K27 methyltransferases. Our study suggests a 'walking' mechanism, by which vSET acts all by itself to globally methylate host H3K27, which is accomplished by the mammalian EZH2 KMT only in the context of the Polycomb repressive complex.

  11. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Walter R.P.; Bhattacharyya, Basudeb; Grilley, Daniel P.; Weaver, Todd M. (Wabash); (UW)

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  12. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    Science.gov (United States)

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-10-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations--F45L, V209M and F220C--yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5.

  13. DNA targeting and cleavage by an engineered metalloprotein dimer.

    Science.gov (United States)

    Wong-Deyrup, Siu Wah; Prasannan, Charulata; Dupureur, Cynthia M; Franklin, Sonya J

    2012-03-01

    Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.

  14. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  15. Trans-dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the cis-dimerization interface.

    Science.gov (United States)

    Monteiro, Ana C; Luissint, Anny-Claude; Sumagin, Ronen; Lai, Caroline; Vielmuth, Franziska; Wolf, Mattie F; Laur, Oskar; Reiss, Kerstin; Spindler, Volker; Stehle, Thilo; Dermody, Terence S; Nusrat, Asma; Parkos, Charles A

    2014-05-01

    Junctional adhesion molecule-A (JAM-A) is a tight junction-associated signaling protein that regulates epithelial cell proliferation, migration, and barrier function. JAM-A dimerization on a common cell surface (in cis) has been shown to regulate cell migration, and evidence suggests that JAM-A may form homodimers between cells (in trans). Indeed, transfection experiments revealed accumulation of JAM-A at sites between transfected cells, which was lost in cells expressing cis- or predicted trans-dimerization null mutants. Of importance, microspheres coated with JAM-A containing alanine substitutions to residues 43NNP45 (NNP-JAM-A) within the predicted trans-dimerization site did not aggregate. In contrast, beads coated with cis-null JAM-A demonstrated enhanced clustering similar to that observed with wild-type (WT) JAM-A. In addition, atomic force microscopy revealed decreased association forces in NNP-JAM-A compared with WT and cis-null JAM-A. Assessment of effects of JAM-A dimerization on cell signaling revealed that expression of trans- but not cis-null JAM-A mutants decreased Rap2 activity. Furthermore, confluent cells, which enable trans-dimerization, had enhanced Rap2 activity. Taken together, these results suggest that trans-dimerization of JAM-A occurs at a unique site and with different affinity compared with dimerization in cis. Trans-dimerization of JAM-A may thus act as a barrier-inducing molecular switch that is activated when cells become confluent.

  16. Elevated d-dimer cut-off values for computed tomography pulmonary angiography—d-dimer correlates with location of embolism

    Science.gov (United States)

    Kubak, Mateuzs Piotr; Borthne, Arne; Ruud, Espen Asak; Ashraf, Haseem

    2016-01-01

    Background Acute pulmonary embolism (APE) is a potentially fatal condition, and making a timely diagnosis can be challenging. Computed tomography pulmonary angiography (CTPA) has become the modality of choice, and this contributes to the increasing load on emergency room CT scanners. Our purpose was to investigate whether an elevated d-dimer cut-off could reduce the demand for CTPA while maintaining a high sensitivity and negative predictive value (NPV). Methods We retrospectively reviewed all patients referred for CTPA with suspicion of APE in 2012, and collected d-dimer values and CTPA results. We investigated the diagnostic performance of d-dimer using a 0.5 mg/L cut-off and an age adjusted cut-off. We also evaluated a new and elevated cut-off. Cases were categorized according to their CTPA result into: no embolism, peripheral embolism, lobar embolism and central embolism. Finally we investigated a possible correlation between d-dimer values and location of embolism. Results We included 1,051 CTPAs, from which 216 (21%) showed pulmonary embolism. There were concomitant d-dimer analyses in 822 CTPA examinations. The current 0.5 mg/L cut-off achieved a sensitivity and NPV of 99%. The age-adjusted cut-off achieved a sensitivity and NPV of 98%, and our suggested cut-off of 0.9 mg/L achieved a sensitivity and NPV of 97%. Conclusions We conclude that the elevated d-dimer cut-off of 0.9 mg/L achieved a high sensitivity and NPV, while reducing the number of CTPA by 27%. The correlation between d-dimer values and location of embolisms supports the suggestion of an elevated d-dimer value. PMID:27386486

  17. Anti-parallel dimer and tetramer formation of propylene carbonate

    Directory of Open Access Journals (Sweden)

    Ayana Tagawa

    2017-09-01

    Full Text Available Raman scattering and infrared (IR absorption spectra of enantiopure (R-propylene carbonate ((RPC and racemic propylene carbonate (PC were recorded at room temperature, 25 °C, in benzene (Bz solution and in the pure liquid state to investigate the presence of dimers and other higher order intermolecular associations. (RPC and PC both demonstrated a strong C=O stretching vibrational band. The band exhibited changes in its shape and resonance wavenumber highly dependent on the concentrations of PCs, whereas a difference between the chirality of (RPC and PC had little influence. In an extremely dilute condition, doubly split bands were observed at 1807 and 1820 cm-1 in both Raman and IR spectra, which are assigned to the characteristic bands of isolated monomeric PCs. An additional band appeared at 1795 cm-1 in a dilute to concentrated regime, and its magnitude strengthened with increasing concentrations accompanied with slight increasing in the magnitude of 1807 cm-1 band in Raman spectra, while an increase in the magnitude of 1807 cm-1 band was clearly greater than that of 1795 cm-1 band in IR spectra. The spectrum changes at 1795 and 1807 cm-1 were attributed to characteristics of anti-parallel dimer formation of PCs caused by strong dipole-dipole interactions between C=O groups. Moreover, another additional signal was clearly observed at 1780-1790 cm-1 in a concentrated regime, and became the primary signal in the pure liquid state with slight increasing in the intensity of 1795 cm-1 band in Raman spectra. On the other hand, in IR spectra the observed increasing of 1780-1790 cm-1 band was much less than that of 1795 cm-1 band. These newly found spectrum changes in the concentrated regime are attributed to the formation of anti-parallel tetramers of PCs based on the characteristics of band selection rule found in Raman and IR spectra. Equilibrium constants for the anti-parallel dimer (KD and tetramer formation (KT of PCs in Bz solution and in

  18. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  19. N-annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption.

    Science.gov (United States)

    Luo, Jie; Lee, Sangsu; Son, Minjung; Zheng, Bin; Huang, Kuo-Wei; Qi, Qingbiao; Zeng, Wangdong; Li, Gongqiang; Kim, Dongho; Wu, Jishan

    2015-02-23

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  20. Multi-Component Protein - Protein Docking Based Protocol with External Scoring for Modeling Dimers of G Protein-Coupled Receptors.

    Science.gov (United States)

    Kaczor, Agnieszka A; Guixà-González, Ramon; Carrió, Pau; Poso, Antti; Dove, Stefan; Pastor, Manuel; Selent, Jana

    2015-04-01

    In order to apply structure-based drug design techniques to GPCR complexes, it is essential to model their 3D structure. For this purpose, a multi-component protocol was derived based on protein-protein docking which generates populations of dimers compatible with membrane integration, considering all reasonable interfaces. At the next stage, we applied a scoring procedure based on up to eleven different parameters including shape or electrostatics complementarity. Two methods of consensus scoring were performed: (i) average scores of 100 best scored dimers with respect to each interface, and (ii) frequencies of interfaces among 100 best scored dimers. In general, our multi-component protocol gives correct indications for dimer interfaces that have been observed in X-ray crystal structures of GPCR dimers (opsin dimer, chemokine CXCR4 and CCR5 dimers, κ opioid receptor dimer, β1 adrenergic receptor dimer and smoothened receptor dimer) but also suggests alternative dimerization interfaces. Interestingly, at times these alternative interfaces are scored higher than the experimentally observed ones suggesting them to be also relevant in the life cycle of studied GPCR dimers. Further results indicate that GPCR dimer and higher-order oligomer formation may involve transmembrane helices (TMs) TM1-TM2-TM7, TM3-TM4-TM5 or TM4-TM5-TM6 but not TM1-TM2-TM3 or TM2-TM3-TM4 which is in general agreement with available experimental and computational data.

  1. A Model for Dimerization of the SOX Group E Transcription Factor Family.

    Science.gov (United States)

    Ramsook, Sarah N; Ni, Joyce; Shahangian, Shokofeh; Vakiloroayaei, Ana; Khan, Naveen; Kwan, Jamie J; Donaldson, Logan W

    2016-01-01

    Group E members of the SOX transcription factor family include SOX8, SOX9, and SOX10. Preceding the high mobility group (HMG) domain in each of these proteins is a thirty-eight amino acid region that supports the formation of dimers on promoters containing tandemly inverted sites. The purpose of this study was to obtain new structural insights into how the dimerization region functions with the HMG domain. From a mutagenic scan of the dimerization region, the most essential amino acids of the dimerization region were clustered on the hydrophobic face of a single, predicted amphipathic helix. Consistent with our hypothesis that the dimerization region directly contacts the HMG domain, a peptide corresponding to the dimerization region bound a preassembled HMG-DNA complex. Sequence conservation among Group E members served as a basis to identify two surface exposed amino acids in the HMG domain of SOX9 that were necessary for dimerization. These data were combined to make a molecular model that places the dimerization region of one SOX9 protein onto the HMG domain of another SOX9 protein situated at the opposing site of a tandem promoter. The model provides a detailed foundation for assessing the impact of mutations on SOX Group E transcription factors.

  2. Genetic predictors of fibrin D-dimer levels in healthy adults

    NARCIS (Netherlands)

    N.L. Smith (Nicholas); J.E. Huffman (Jennifer E.); D.P. Strachan (David); J. Huang (Jian); A. Dehghan (Abbas); S. Trompet (Stella); L.M. Lopez (Lorna M.); S.Y. Shin (So Youn); J. Baumert (Jens); V. Vitart (Veronique); J.C. Bis (Joshua); S.H. Wild (Sarah); A. Rumley (Ann); Q. Yang (Qiong Fang); A.G. Uitterlinden (André); D.J. Stott (David. J.); G. Davies (Gareth); A.M. Carter (Angela M.); B. Thorand (Barbara); O. Polašek (Ozren); B. McKnight (Barbara); H. Campbell (Harry); A.R. Rudnicka (Alicja); M.H. Chen (Min-hsin); B.M. Buckley (Brendan M.); S.E. Harris (Sarah); A. Peters (Annette); D. Pulanic (Drazen); T. Lumley (Thomas); A.J.M. de Craen (Anton J.M.); D.C. Liewald (David C.); C. Gieger (Christian); I. Ford (Ian); A.J. Gow (Alan J.); M. Luciano (Michelle); D.J. Porteous (David J.); X. Guo (Xiuqing); N. Sattar (Naveed); A. Tenesa (Albert); M. Cushman (Mary Ann); P.E. Slagboom (Eline); P.M. Visscher (Peter M.); T.D. Spector (Tim); T. Illig (Thomas); I. Rudan (Igor); E.G. Bovill (Edwin G.); A.F. Wright (Alan); W.L. McArdle (Wendy); G.H. Tofler (Geoffrey); A. Hofman (Albert); R.G.J. Westendorp (Rudi); J.M. Starr (John); P.J. Grant (Peter J.); M. Karakas (Mahir); N.D. Hastie (Nicholas D.); B.M. Psaty (Bruce); J.F. Wilson (James); G.D.O. Lowe (Gordon); C.J. O'Donnell (Christopher); J.C.M. Witteman (Jacqueline); J.W. Jukema (Jan Wouter); I.J. Deary (Ian); N. Soranzo (Nicole); W. Koenig (Wolfgang); C. Hayward (Caroline)

    2011-01-01

    textabstractBACKGROUND: Fibrin fragment D-dimer, one of several peptides produced when crosslinked fibrin is degraded by plasmin, is the most widely used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wi

  3. D-dimer concentration outliers are not rare in at-term pregnant women.

    Science.gov (United States)

    Wang, Yu; Gao, Jie; Du, Juan

    2016-06-01

    To determine the D-dimer levels in pregnant women at term and the differences between pregnant women with different D-dimer levels. The plasma D-dimer concentrations in pregnant women at term were identified in a cross-sectional study. The clinical indicators that are potentially relevant to D-dimer levels were compared between the pregnant women with different D-dimer levels (i.e., normal, mildly increased, and severely increased). There were always some D-dimer concentration outliers in the pregnant women at term regardless of the presence or absence of complications, and there were no significant differences in maternal age, gestational age, gravidity, parity, blood count, blood coagulation, or liver function between the pregnant women with different D-dimer levels. D-dimer levels may vary significantly during pregnancy for unknown reasons. This variation, particularly in pregnant women at term, might lead to questionable diagnostic information regarding coagulation. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Evidence for the dimerization-mediated catalysis of methionine sulfoxide reductase A from Clostridium oremlandii.

    Science.gov (United States)

    Lee, Eun Hye; Lee, Kitaik; Kwak, Geun-Hee; Park, Yeon Seung; Lee, Kong-Joo; Hwang, Kwang Yeon; Kim, Hwa-Young

    2015-01-01

    Clostridium oremlandii MsrA (CoMsrA) is a natively selenocysteine-containing methionine-S-sulfoxide reductase and classified into a 1-Cys type MsrA. CoMsrA exists as a monomer in solution. Herein, we report evidence that CoMsrA can undergo homodimerization during catalysis. The monomeric CoMsrA dimerizes in the presence of its substrate methionine sulfoxide via an intermolecular disulfide bond between catalytic Cys16 residues. The dimeric CoMsrA is resolved by the reductant glutaredoxin, suggesting the relevance of dimerization in catalysis. The dimerization reaction occurs in a concentration- and time-dependent manner. In addition, the occurrence of homodimer formation in the native selenoprotein CoMsrA is confirmed. We also determine the crystal structure of the dimeric CoMsrA, having the dimer interface around the two catalytic Cys16 residues. A central cone-shaped hole is present in the surface model of dimeric structure, and the two Cys16 residues constitute the base of the hole. Collectively, our biochemical and structural analyses suggest a novel dimerization-mediated mechanism for CoMsrA catalysis that is additionally involved in CoMsrA regeneration by glutaredoxin.

  5. Variations in the heterogeneity of the decay of the fluorescence in six procyanidin dimers

    Science.gov (United States)

    Donghwan Cho; Rujiang Tian; Lawrence J. Porter; Richard W. Hemingway; Wayne L. Mattice

    1990-01-01

    The decay of the fluorescence has been measured in 1,4-dioxane for six dimers of (2R,3R)-(-)-epicatechin and (2R,3S)-(+)-catechin, hereafter denoted simply epicatechin and catechin. The dimers are epicatechin-(4β→8)-catechin, epicatechin-(4β→8)-epicatechin...

  6. Random sampling for the monomer-dimer model on a lattice

    NARCIS (Netherlands)

    J. van den Berg (Rob); R.M. Brouwer (Rachel)

    1999-01-01

    textabstractIn the monomer-dimer model on a graph, each matching (collection of non-overlapping edges) ${M$ has a probability proportional to $lambda^{|M|$, where $lambda > 0$ is the model parameter, and $|M|$ denotes the number of edges in $M$. An approximate random sample from the monomer-dimer

  7. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions

    Science.gov (United States)

    Kang, K.; Piao, S. H.; Choi, H. J.

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I -N coexistence concentration of charged fd-virus suspensions.

  8. Factors associated with D-dimer levels in HIV-infected individuals

    DEFF Research Database (Denmark)

    Borges, Alvaro H; O'Connor, Jemma L; Phillips, Andrew N

    2014-01-01

    with measured D-dimer levels were included (N = 9,848). Factors associated with D-dimer were identified by linear regression. Covariates investigated were: age, gender, race, body mass index, nadir and baseline CD4+ count, plasma HIV RNA levels, markers of inflammation (C-reactive protein [CRP], interleukin-6...

  9. The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer

    DEFF Research Database (Denmark)

    Danielsson, Jens; Liljedahl, Leena; Ba´ra´ny-Wallje, Elsa

    2008-01-01

    . Sml1 belongs to the class of intrinsically disordered proteins with a high degree of dynamics and very little stable structure. Earlier suggestions for a dimeric structure of Sml1 were confirmed, and from translation diffusion NMR measurements, a dimerization dissociation constant of 0.1 mM at 4...... natively disordered proteins....

  10. DFT molecular simulations of solvated glucose dimers: explicit vs. implicit water

    Science.gov (United States)

    The behavior of Glucose dimers in solution is investigated at the DFT level of theory via optimization and constant energy DFT molecular dynamics. The effect of the solvent on the dimer is treated two different ways: using the implicit solvation method COSMO alone to treat the bulk water behavior an...

  11. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding.

    Science.gov (United States)

    Liko, Idlir; Degiacomi, Matteo T; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V

    2016-07-19

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.

  12. Fourier transform infrared spectroscopy and theoretical study of dimethylamine dimer in the gas phase.

    Science.gov (United States)

    Du, Lin; Kjaergaard, Henrik G

    2011-11-10

    Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.

  13. Self-assembly of Asymmetric Dimer Particles in Supported Copolymer Bilayer

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2011-01-01

    Using self-consistent field and density functional theories, we investigate the self-assembly behavior of asymmetric dimer particles in a supported AB block copolymer bilayer. Asymmetric dimer particles are amphiphilic molecules composed by two different spheres. One prefers to A block of copolymers and the other likes B block when they are introduced into the copolymer bilayer. The two layer structure of the dimer particles is formed within the bilayer.Due to the presence of the substrate surface, the symmetry of the two leaflets of the bilayer is broken, which may lead to two different layer structures of dimer particles within each leaflet of the bilayer. With the increasing concentration of the asymmetric dimer particles,in-plane structure of the dimer particles undergoes sparse square, hexagonal, dense square, and cylindrical structures. In a further condensed packing, a bending cylindrical structure comes into being. Here we verify that the entropic effect of copolymers, the enthalpy of the system and the steric repulsion of the dimer particles are three important factors determing the self-assembly of dimer particles within the supported copolymer bilayer.

  14. Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability.

    Science.gov (United States)

    Jeong, Daham; Choi, Jae Min; Choi, Youngjin; Jeong, Karpjoo; Cho, Eunae; Jung, Seunho

    2013-08-14

    Rhizobium species produce cyclosophoraose (Cys), which is an unbranched cyclic β-(1,2)-glucan. We synthesized novel cationic cyclosophoraose dimer (Cys dimer) and its structure was confirmed via NMR spectroscopy and MALDI-TOF mass spectrometry analysis. In this study, we investigated the complexation of hardly soluble drug fisetin (3,3',4',7-tetrahydroxyflavone) with Cys dimer to improve the solubility of fisetin, and its solubility was increased up to 6.5-fold. The solubility of fisetin with Cys dimer showed 2.4-fold better than with β-cyclodextrin. The fisetin-Cys dimer complex was characterized by using, phase solubility diagram, 2D NMR, FT-IR spectroscopy, SEM, DSC analysis and molecular modeling. Through the molecular docking simulations, complexation ability of fisetin with host molecules were in the following order: Cys dimer>Cys monomer>β-CD. The fisetin-Cys dimer complex showed also higher cytotoxicity to HeLa cells than free fisetin, indicating that the Cys dimer to improve bioavailability of fisetin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluation of Serum D-dimer Levels in Children with Pneumonia

    Directory of Open Access Journals (Sweden)

    Nilgün Selçuk Duru

    2016-03-01

    Full Text Available Aim: The aim of this study was to investigate the relationship of plasma D-dimer levels with duration of hospitalization and radiological and laboratory findings in patients with pneumonia. Methods: Forty-seven patients with pneumonia (31 boys and 16 girls, mean age: 4.2±4.7 years were included in the study. The patients were divided into two groups according to duration of hospitalization and three groups according to radiological findings. D-dimer and other laboratory findings were compared between the groups. Results: The mean serum D-dimer level was 1333.5±1364.4 ng/L. There was no statistically significant difference in D-dimer, leukocyte, erythrocyte sedimentation rate (ESR and C-reactive protein (CRP between the groups divided according to duration of hospitalization. In addition, there was no statistically difference in D-dimer levels between the groups divided according to radiological findings. Age, percentage of neutrophils, ESR and fibrinogen levels were higher in patients with lobar pneumonia when compared with the other groups and CRP level was higher in lobar pneumonia group when compared to interstitial pneumonia group. D-dimer levels were negatively correlated with age and positively correlated with ESR, CRP, and fibrinogen. Conclusion: In our study, D-dimer levels were high in patient with pneumonia. Further studies with a larger number of patients are necessary to determine the role of D-dimer levels as an acutephase reactant in patients with pneumonia

  16. Programmed dissociation of dimer and trimer origami structures by aptamer-ligand complexes.

    Science.gov (United States)

    Wu, Na; Willner, Itamar

    2017-01-26

    Dimer- and trimer-origami frames are bridged by duplexes that include caged, sequence-specific, anti-ATP and/or anti-cocaine aptamer sequences. The programmed dissociation of the origami dimers or trimers in the presence of ATP and/or cocaine ligands is demonstrated. The processes are followed by AFM imaging and by electrophoretic experiments.

  17. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  18. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutio...

  19. Genetic predictors of fibrin D-dimer levels in healthy adults

    NARCIS (Netherlands)

    N.L. Smith (Nicholas); J.E. Huffman (Jennifer E.); D.P. Strachan (David); J. Huang (Jian); A. Dehghan (Abbas); S. Trompet (Stella); L.M. Lopez (Lorna M.); S.Y. Shin (So Youn); J. Baumert (Jens); V. Vitart (Veronique); J.C. Bis (Joshua); S.H. Wild (Sarah); A. Rumley (Ann); Q. Yang (Qiong Fang); A.G. Uitterlinden (André); D.J. Stott (David. J.); G. Davies (Gareth); A.M. Carter (Angela M.); B. Thorand (Barbara); O. Polašek (Ozren); B. McKnight (Barbara); H. Campbell (Harry); A.R. Rudnicka (Alicja); M.H. Chen (Min-hsin); B.M. Buckley (Brendan M.); S.E. Harris (Sarah); A. Peters (Annette); D. Pulanic (Drazen); T. Lumley (Thomas); A.J.M. de Craen (Anton J.M.); D.C. Liewald (David C.); C. Gieger (Christian); I. Ford (Ian); A.J. Gow (Alan J.); M. Luciano (Michelle); D.J. Porteous (David J.); X. Guo (Xiuqing); N. Sattar (Naveed); A. Tenesa (Albert); M. Cushman (Mary Ann); P.E. Slagboom (Eline); P.M. Visscher (Peter M.); T.D. Spector (Tim); T. Illig (Thomas); I. Rudan (Igor); E.G. Bovill (Edwin G.); A.F. Wright (Alan); W.L. McArdle (Wendy); G.H. Tofler (Geoffrey); A. Hofman (Albert); R.G.J. Westendorp (Rudi); J.M. Starr (John); P.J. Grant (Peter J.); M. Karakas (Mahir); N.D. Hastie (Nicholas D.); B.M. Psaty (Bruce); J.F. Wilson (James); G.D.O. Lowe (Gordon); C.J. O'Donnell (Christopher); J.C.M. Witteman (Jacqueline); J.W. Jukema (Jan Wouter); I.J. Deary (Ian); N. Soranzo (Nicole); W. Koenig (Wolfgang); C. Hayward (Caroline)

    2011-01-01

    textabstractBACKGROUND: Fibrin fragment D-dimer, one of several peptides produced when crosslinked fibrin is degraded by plasmin, is the most widely used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wi

  20. Synthesis and antiviral activity of new dimeric inhibitors against HIV-1

    DEFF Research Database (Denmark)

    Danel, Krzysztof; Larsen, Louise M.; Pedersen, Erik Bjerreg.

    2008-01-01

    by Sonogashira reaction, ‘click' chemistry or Pd-catalyzed oxidative coupling. The iodo precursor 5 turned out as a potent compound against wild type and mutated HIV-1 virus. All dimeric compounds showed lower activity against HIV-1 than MKC-442, except the asymmetric dimer of AZT and 1a which showed an activity...

  1. Two-dimensional spectroscopy of molecular excitons in a model dimer system

    Science.gov (United States)

    Halpin, Alexei

    The physics of molecular excitons has been the subject of many recent studies using electronic two-dimensional photon-echo spectroscopy (2DPE), particularly in the context of light harvesting in photosynthesis. Since the spectra for multichromophoric aggregates are congested, particularly so at room temperature, we present a study of a model dimer comprised of identical chromophores with a well defined electronic coupling strength, to provide clear signatures for coherences between vibronic excitons in 2D spectra. We begin by describing the design of a broadband passively phase-stabilized interferometer for collection of 2D spectra, which also allows for the investigation of state preparation in 2D spectroscopy by using shaped excitation pulses. In experiments on the model dimer we observe strong oscillating off-diagonal features in the 2D spectra which are present only before the onset of dephasing, which occurs in less than 100 fs due to strong system-bath coupling. This is in contrast with the parent dye, where low amplitude oscillations associated with Raman active vibrations persist for several ps following excitation. The results of this comparative study indicate that the signals observed earlier in photosynthetic proteins likely reflect vibrational motion in isolated pigments, and not delocalized quantum coherence. While long-lived vibrational coherences are of questionable biological relevance at face value, we conclude with a discussion on initial findings using coherently controlled 2D spectroscopy, where we observe long-lived signatures associated to vibronic coherences at room temperature. These results point to new directions of study using multidimensional spectroscopy to unravel the role of coherence in excitation energy transfer in molecular aggregates in an experimentally direct fashion.

  2. Real-space investigation of energy transfer in heterogeneous molecular dimers

    Science.gov (United States)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-01

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  3. Real-space investigation of energy transfer in heterogeneous molecular dimers.

    Science.gov (United States)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-20

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  4. Monomer-dimer tatami tilings of square regions

    CERN Document Server

    Erickson, Alejandro

    2011-01-01

    We prove that the number of monomer-dimer tilings of an $n\\times n$ square grid, with $m

  5. Entanglement in the supermolecular dimer [Mn4]2

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-Tan; Chen Gang; He Ming-Ming; Liang Jiu-Qing

    2006-01-01

    This paper investigates the entanglement in the supermolecular dimer [Mn4]2 consisting of a pair of single molecular magnets with antiferromagnetic exchange-coupling J. The conventional von Neumann entropy as a function of the exchange-coupling is calculated explicitly for all eigenstates with the quantum number range from M = M1 + M2 = -9to 0. It is shown that the yon Neumann entropy is not a monotonic function of the coupling strength. However, it is significant that the entropy of entanglement has the maximum values and the minimum values for most eigenstates,which is extremely useful in the quantum computing. It also presents the time-evolution of entanglement from various initial states. The results are useful in the design of devices based on the entanglement of two molecular magnets.

  6. [Clinical use of D-dimer in patients with cancer].

    Science.gov (United States)

    Lecumberri, Ramón; Pegenaute, Carlota; Páramo, José A

    2011-10-15

    There is a well-known close relationship between cancer and the haemostatic system. Plasma D-dimer (DD) is a marker of fibrin generation and lysis. In the clinical practice, its main use is in the diagnostic algorithms of venous thromboembolism (VTE), and it is one of the diagnostic criteria of disseminated intravacular coagulation. In patients with cancer, the specificity of DD is lower than in the general population, reducing its usefulness. However, there is a growing evidence that points out a possible application of DD in the clinical management of cancer patients as a predictor of VTE, marker of hidden cancer in patients with idiopathic VTE, or even as an independent prognostic factor of response to chemotherapy and survival. In this review, the current evidence supporting the use of DD in cancer patients is critically exposed and discussed.

  7. Analysis of Photoassociation Spectra for Giant Helium Dimers

    CERN Document Server

    Léonard, J; Walhout, M; Van der Straten, P; Leduc, M

    2004-01-01

    We perform a theoretical analysis to interpret the spectra of purely long-range helium dimers produced by photoassociation (PA) in an ultra-cold gas of metastable helium atoms. The experimental spectrum obtained with the PA laser tuned closed to the $2^3S_1\\leftrightarrow 2^3P_0$ atomic line has been reported in a previous Letter. Here, we first focus on the corrections to be applied to the measured resonance frequencies in order to infer the molecular binding energies. We then present a calculation of the vibrational spectra for the purely long-range molecular states, using adiabatic potentials obtained from perturbation theory. With retardation effects taken into account, the agreement between experimental and theoretical determinations of the spectrum for the $0_u^+$ purely long-range potential well is very good. The results yield a determination of the lifetime of the $2^3P$ atomic state.

  8. The infrared spectrum of the 12C 18O dimer

    Science.gov (United States)

    McKellar, A. R. W.

    2004-08-01

    The infrared spectrum of ( 12C 18O) 2 has been studied for the first time using a tunable diode laser spectrometer in the 2095 cm -1 region to probe a pulsed supersonic jet expansion. Very dilute gas mixtures of CO in He were used, resulting in small consumption of 12C 18O sample gas, as well as cold and simple spectra. The results were analyzed using a term value scheme to obtain model-independent energies for 7 rotational levels belonging to 2 stacks in the lower state, vCO=0, and 22 levels belonging to 7 stacks in the upper state, vCO=1. The two ground state isomers of the CO dimer were found to be separated by only 0.639 cm -1 for ( 12C 18O) 2. These results provide a foundation for future studies of the millimeter wave spectrum.

  9. Collective plasmon modes in a compositionally asymmetric nanoparticle dimer

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The plasmon coupling phenomenon of heterodimers composed of silver, gold and copper nanoparticles of 60 nm in size and spherical in shape were studied theoretically within the scattered field formulation framework. In-phase dipole coupled σ-modes were observed for the Ag-Au and Ag-Cu heterodimers, and an antiphase dipole coupled π-mode was observed for the Ag-Au heterodimer. These observations agree well with the plasmon hybridization theory. However, quadrupole coupled modes dominate the high energy wavelength range from 357-443 nm in the scattering cross section of the D=60 nm Ag-Au and Ag-Cu heterodimer. We demonstrate for the first time that collective plasmon modes in a compositionally asymmetric nanoparticle dimer have to be predicted from the dipole-dipole approximation of plasmon hybridization theory together with the interband transition effect of the constitutive metals and the retardation effect of the nanoparticle size.

  10. Beryllium dimer: a bond based on non-dynamical correlation.

    Science.gov (United States)

    El Khatib, Muammar; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Helal, Wissam; Leininger, Thierry; Tenti, Lorenzo; Angeli, Celestino

    2014-08-21

    The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains.

  11. Twists of Pl\\"ucker coordinates as dimer partition functions

    CERN Document Server

    Scott, Jeanne

    2013-01-01

    The homogeneous coordinate ring of the Grassmannian Gr(k,n) has a cluster structure defined in terms of planar diagrams known as Postnikov diagrams. The cluster corresponding to such a diagram consists entirely of Pl\\"ucker coordinates. We introduce a twist map on Gr(k,n) related to the BZ-twist, and give an explicit Laurent expansion for the twist of an arbitrary Pl\\"ucker coordinate, in terms of the cluster variables associated with a fixed Postnikov diagram. The expansion arises as a (scaled) dimer partition function of a weighted version of the bipartite graph dual to the Postnikov diagram, modified by a boundary condition determined by the Pl\\"ucker coordinate.

  12. Dimerous Electron and Quantum Interference beyond the Probability Amplitude Paradigm

    CERN Document Server

    Kassandrov, Vladimir V

    2011-01-01

    We generalize the formerly proposed relationship between a special complex geometry (originating from the structure of biquaternion algebra) and induced real geometry of (extended) space-time. The primordial dynamics in complex space allows for a new realization of the "one electron Universe" of Wheeler-Feynman (the so called "ensemble of duplicons") and leads to a radical concept of "dimerous" (consisting of two identical matter pre-elements, "duplicons") electron. Using this concept, together with an additional phase-like invariant (arising from the complex pre-geometry), we manage to give a visual classical explanation for quantum interference phenomena and, in particular, for the canonical two-slit experiment. Fundamental relativistic condition of quantum interference generalizing the de Broglie relationship is obtained, and an experimentally verifiable distinction in predictions of quantum theory and presented algebrodynamical scheme is established.

  13. Environment-assisted quantum transport and trapping in dimers

    CERN Document Server

    Muelken, Oliver

    2010-01-01

    We study the dynamics and trapping of excitations for a dimer with an energy off-set $\\Delta$ coupled to an external environment. Using a Lindblad quantum master equation approach, we calculate the survival probability $\\Pi(t)$ of the excitation and define different lifetimes $\\tau_s$ of the excitation, corresponding to the duration of the decay of $\\Pi(t)$ in between two predefined values. We show that it is not possible to always enhance the overall decay to the trap. However, it is possible, even for not too small environmental couplings and for values of $\\Delta$ of the order ${\\cal O}(1)$, to decrease certain lifetimes $\\tau_s$, leading to faster decay of $\\Pi(t)$ in these time intervals: There is an optimal environmental coupling, leading to a maximal decay for fixed $\\Delta$.

  14. Computational Study of Monosubstituted Azo(tetrazolepentazolium)-Based Ionic Dimers.

    Science.gov (United States)

    Pimienta, Ian S O

    2015-06-04

    The structures of monosubstituted azo(tetrazolepentazolium) cations (N11CHR(+)), oxygen-rich anions such as N(NO2)2(-), NO3(-), and ClO4(-), and the corresponding ion pairs are investigated using ab initio quantum chemistry calculations. The substituents (R) used are H, F, CH3, CN, NH2, OH, OCH3, N3, NF2, and C2H3. The stability of the protonated cation is explored by examining the decomposition pathway of the protonated cation (N11CH2(+)) to yield molecular N2 fragments. The heats of formation of these cations, which are based on isodesmic (bond type conserving) reactions, are dependent on the nature of the substituents. Ionic dimer structures are obtained, but side reactions including proton transfer, binding, and hydrogen bonding are observed in the gas phase. Implicit solvation studies are performed to determine the solution properties of the ion pairs.

  15. An alternative RNA polymerase I structure reveals a dimer hinge.

    Science.gov (United States)

    Kostrewa, Dirk; Kuhn, Claus-D; Engel, Christoph; Cramer, Patrick

    2015-09-01

    RNA polymerase I (Pol I) is the central, 14-subunit enzyme that synthesizes the ribosomal RNA (rRNA) precursor in eukaryotic cells. The recent crystal structure of Pol I at 2.8 Å resolution revealed two novel elements: the `expander' in the active-centre cleft and the `connector' that mediates Pol I dimerization [Engel et al. (2013), Nature (London), 502, 650-655]. Here, a Pol I structure in an alternative crystal form that was solved by molecular replacement using the original atomic Pol I structure is reported. The resulting alternative structure lacks the expander but still shows an expanded active-centre cleft. The neighbouring Pol I monomers form a homodimer with a relative orientation distinct from that observed previously, establishing the connector as a hinge between Pol I monomers.

  16. Charge transfer excitons in C60-dimers and polymers

    CERN Document Server

    Harigaya, K

    1996-01-01

    Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.

  17. Dimer site-bond percolation on a triangular lattice

    Science.gov (United States)

    Ramirez, L. S.; De la Cruz Félix, N.; Centres, P. M.; Ramirez-Pastor, A. J.

    2017-02-01

    A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S{\\cap}B and S{\\cup}B ) have been considered. In S{\\cap}B (S{\\cup}B ), two points are said to be connected if a sequence of occupied sites and (or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.

  18. A New Asymmetric ent-Kauranoid Dimer from Rabdosia rubescens

    Institute of Scientific and Technical Information of China (English)

    LU Hai-ying; LIANG Jing-yu

    2012-01-01

    Objective To study the ent-kaurane diterpenoids from Rabdosia rubescens.Methods The compounds were isolated by chromatographies and their structures were identified by spectral analyses.Results Four compounds were isolated,and they were identified as bisrubescensin E (1),2α,3α,24-trihydroxyurs-12-en-28-oic acid (2),2α,3α,24-trihydroxyurs-12,20-(30)-dien-28-oic acid (3),and 6,7-dihydroxycoumarin (4).Conclusion Compound 1 is a new asymmetric ent-kauranoid dimer.Compound 2 is isolated from the plant for the first time.Compounds 3 and 4 are isolated from the plants ofRabdosia (B1.) Hassk for the first time.

  19. Bright solitons in a PT-symmetric chain of dimers

    CERN Document Server

    Kirikchi, Omar B; Susanto, Hadi

    2016-01-01

    We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anti-continuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, on the contrary of the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quart...

  20. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Enggrob, Kirsten L.; King, S. M.

    2013-01-01

    The formation of carboxylic acids and dimer esters from alpha-pinene oxidation was investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of alpha-pinene ozonolysis in dry air...... and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low- and high-temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation...... products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural...

  1. Dimerization of the yeast eukaryotic translation initiation factor 5A requires hypusine and is RNA dependent.

    Science.gov (United States)

    Gentz, Petra M; Blatch, Gregory L; Dorrington, Rosemary A

    2009-02-01

    Post-translational modification of the highly conserved K51 residue of the Saccharomyces cerevisiae eukaryotic translation initiation factor 5A (eIF5A) to form hypusine, is essential for its many functions including the binding of specific mRNAs. We characterized hypusinated yeast eIF5A by size-exclusion chromatography and native PAGE, showing that the protein exists as a homodimer. A K51R mutant, which was not functional in vivo eluted as a monomer and inhibition of hypusination abolished dimerization. Furthermore, treatment of dimeric eIF5A with RNase A resulted in disruption of the dimer, leading us to conclude that RNA binding is also required for dimerization of eIF5A. We present a model of dimerization, based on the Neurospora crassa structural analogue, HEX-1.

  2. Microwave Measurements of Maleimide and its Doubly Hydrogen Bonded Dimer with Formic ACID*

    Science.gov (United States)

    Pejlovas, Aaron M.; Kang, Lu; Kukolich, Stephen G.

    2016-06-01

    The microwave spectra were measured for the maleimide monomer and the maleimide-formic acid doubly hydrogen bonded dimer using a pulsed-beam Fourier transform microwave spectrometer. Many previously studied doubly hydrogen bonded dimers are formed between oxygen containing species, so it is important to also characterize and study other dimers containing nitrogen, as hydrogen bonding interactions with nitrogen are found in biological systems such as in DNA. The transition state of the dimer does not exhibit C_2_V symmetry, so the tunneling motion was not expected to be observed based on the symmetry, but it would be very important to also observe the tunneling process for an asymmetric dimer. Single-line b-type transitions were observed, so the tunneling motion was not observed in our microwave spectra. The hydrogen bond lengths were determined using a nonlinear least squares fitting program. *Supported by the NSF CHE-1057796

  3. Changes in fibrin D-dimer, fibrinogen, and protein S during pregnancy

    DEFF Research Database (Denmark)

    Hansen, Anette Tarp; Andreasen, Birgitte Horst; Salvig, Jannie Dalby

    2010-01-01

    Background. Pregnancy is a hypercoagulable state with a 5- to 10- fold higher risk of venous thromboembolism. Existing reference intervals for fibrin D-dimer (D-dimer), functional fibrinogen (fibrinogen) and protein S, free antigen (protein S) are based on non-pregnant patients and reference...... intervals for pregnant patients are warranted. Objectives. The aim of the present study was to contribute to the establishment of reference intervals for D-dimer, fibrinogen and protein S during pregnancy and to discuss the use of the analyses during pregnancy. Methods. We included 55 healthy pregnant women....... Changes during pregnancy in plasma D-dimer, protein S and fibrinogen were confirmed. Further clinical studies are needed to clarify a clinical useful cut-off point for D-dimer in pregnancy. We suggest careful attention to a low peripartum fibrinogen, since it indicates an increased bleeding risk. We...

  4. Application of Bruggeman and Maxwell Garnett homogenization formalisms to random composite materials containing dimers

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    The homogenization of a composite material comprising three isotropic dielectric materials was investigated. The component materials were randomly distributed as spherical particles, with the particles of two of the component materials being coupled to form dimers. The Bruggeman and Maxwell Garnett formalisms were developed to estimate the permittivity dyadic of the homogenized composite material (HCM), under the quasi-electrostatic approximation. Both randomly oriented and identically oriented dimers were accommodated; in the former case the HCM is isotropic, whereas in the latter case the HCM is uniaxial. Representative numerical results for composite materials containing dielectric--dielectric dimers demonstrate close agreement between the estimates delivered by the Bruggeman and Maxwell Garnett formalisms. For composite materials containing metal--dielectric dimers with moderate degrees of dissipation, the estimates of the two formalisms are in broad agreement, provided that the dimer volume fractions are...

  5. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties.

    Science.gov (United States)

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-03

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  6. Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane.

    Science.gov (United States)

    Ott, P; Brodbeck, U

    1984-08-08

    Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.

  7. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    Science.gov (United States)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2017-08-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  8. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  9. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  10. Structural insights into lipid-dependent reversible dimerization of human GLTP

    Energy Technology Data Exchange (ETDEWEB)

    Samygina, Valeria R.; Ochoa-Lizarralde, Borja [CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio (Spain); Popov, Alexander N. [European Synchrotron Radiation Facility, 38043 Grenoble (France); Cabo-Bilbao, Aintzane; Goni-de-Cerio, Felipe [CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio (Spain); Molotkovsky, Julian G. [Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow 117997 (Russian Federation); Patel, Dinshaw J. [Memorial Sloan–Kettering Cancer Center, New York, NY 10021 (United States); Brown, Rhoderick E., E-mail: reb@umn.edu [University of Minnesota, Austin, MN 55912 (United States); Malinina, Lucy, E-mail: reb@umn.edu [CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio (Spain)

    2013-04-01

    It is shown that dimerization is promoted by glycolipid binding to human GLTP. The importance of dimer flexibility in wild-type protein is manifested by point mutation that ‘locks’ the dimer while diversifying ligand/protein adaptations. Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the ‘portal entrance’ of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization. In all crystal forms, the hsGLTP–SF complexes displayed homodimeric structures supported by similarly organized intermolecular interactions. The dimerization interface always involved the lipid sphingosine chain, the protein C-terminus (C-end) and α-helices 6 and 2, but the D48V mutant displayed a ‘locked’ dimer conformation compared with the hinge-like flexibility of wild-type dimers. Differences in contact angles, areas and residues at the dimer interfaces in the ‘flexible’ and ‘locked’ dimers revealed a potentially important role of the dimeric structure in the C-end conformation of hsGLTP and in the precise positioning of the key residue of the glycolipid recognition centre, His140. ΔY207 and ΔC-end deletion mutants, in which the C-end is shifted or truncated, showed an almost complete loss of transfer activity. The new structural insights suggest that ligand-dependent reversible dimerization plays a role in the function of human GLTP.

  11. Resolution of DL-Pantolactone with Ethyldiamine Bridged Dimer Permethyβ-Cyclodextrin as GC Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ethyldiamine bridged dimer permethy-β-CD and other cyclodextrins were used as GC stationary phase to resolute DL-pantolactone.It is found that this CD dimer has a good selectivity for DL-pantolactone.

  12. Novel Air Stable Organic Radical Semiconductor of Dimers of Dithienothiophene, Single Crystals, and Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Hantang; Dong, Huanli; Li, Yang; Jiang, Wei; Zhen, Yonggang; Jiang, Lang; Wang, Zhaohui; Chen, Wei; Wittmann, Angela; Hu, Wenping

    2016-09-01

    Singly linked and vinyl-linked dimers of dithienothiophenes exhibit different electronic behaviors. Single crystals of the singly linked dimer show a high conductivity of 0.265 S cm(-1) , five orders of magnitude higher than that of the vinyl-linked dimer. The huge increase in the hole density of singly linked dimers results from the formation of radicals, which can be reversibly tuned by facile thermal de-doping.

  13. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    Energy Technology Data Exchange (ETDEWEB)

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  14. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob

    2015-01-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl h...... active, but more oxidation-resistant dimer. ...

  15. Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus.

    Science.gov (United States)

    Kerns, Robert J; Rybak, Michael J; Kaatz, Glenn W; Vaka, Flamur; Cha, Raymond; Grucz, Richard G; Diwadkar, Veena U

    2003-07-07

    We previously demonstrated that piperazinyl-linked fluoroquinolone dimers possess potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. In this study, we report the preparation and evaluation of a series of incomplete dimers toward ascertaining structural features of piperazinyl-linked ciprofloxacin dimers that render these agents refractory to fluoroquinolone-resistance mechanisms in Staphylococcus aureus.

  16. [Negative D-dimers and exclusion of venous thromboembolism--own experience].

    Science.gov (United States)

    Dworakowska, Dorota; Kazimierska, Ewa; Weyer-Hepka, Jolanta; Skibowska-Bielińska, Anna; Swiatkowska-Stodulska, Renata; Lubińska, Monika; Czestochowska, Eugenia

    2005-12-01

    The assessment of D-dimer concentration has become essential step during diagnostic algorithm of venous thromboembolism (VTE). This test characterizes high sensitivity but limited specificity. Negative D-dimer with high probability excludes VTE. The aim of this study was to assess the percentage of patients treated in Department of Internal Medicine, Endocrinology and Haemostatic Disorders, Medical University of Gdańisk, who in spite of clinical signs of VTE showed normal D-dimer level. Between 2000 and 2004 in our department 57 cases with recent deep vein thrombosis (DVT) were diagnosed, in 2 cases with co-existence of pulmonary embolism (PE). The D-dimer concentration was assessed in patients' plasma with the use of immunoturbidometry. Between 57 cases with VTE, 7 patients (12%) showed normal D-dimer level (<500 microg/ml). This group consisted of 4 men and 3 women, aged from 40 to 82 years (the mean age of 58 years). In all 7 cases DVT was diagnosed, in 2 patients with concomitent PE. The final diagnosis was confirmed by compression ultrasonography and pulmonary scintigraphy. Our analysis underlines the observation that occurrence of VTE and negative d-dimer concentration is possible and may probably be related to methodological limitations. However, the lack of increase of D-dimer could also be caused by fibrinolysis alteration.

  17. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    Science.gov (United States)

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form.

  18. The E2 Domains of APP and APLP1 Share a Conserved Mode of Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    S Lee; Y Xue; J Hulbert; Y Wang; X Liu; B Demeler; Y Ha

    2011-12-31

    Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid {beta}-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, one from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 {angstrom} resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.

  19. Thermal entanglement in an orthogonal dimer-plaquette chain with alternating Ising-Heisenberg coupling.

    Science.gov (United States)

    Paulinelli, H G; de Souza, S M; Rojas, Onofre

    2013-07-31

    In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising-Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet-triplet disordered and one triplet-singlet disordered phase, beside a dimer ferromagnetic-antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers.

  20. Influence of linker length and composition on enzymatic activity and ribosomal binding of neomycin dimers.

    Science.gov (United States)

    Watkins, Derrick; Kumar, Sunil; Green, Keith D; Arya, Dev P; Garneau-Tsodikova, Sylvie

    2015-07-01

    The human and bacterial A site rRNA binding as well as the aminoglycoside-modifying enzyme (AME) activity against a series of neomycin B (NEO) dimers is presented. The data indicate that by simple modifications of linker length and composition, substantial differences in rRNA selectivity and AME activity can be obtained. We tested five different AMEs with dimeric NEO dimers that were tethered via triazole, urea, and thiourea linkages. We show that triazole-linked dimers were the worst substrates for most AMEs, with those containing the longer linkers showing the largest decrease in activity. Thiourea-linked dimers that showed a decrease in activity by AMEs also showed increased bacterial A site binding, with one compound (compound 14) even showing substantially reduced human A site binding. The urea-linked dimers showed a substantial decrease in activity by AMEs when a conformationally restrictive phenyl linker was introduced. The information learned herein advances our understanding of the importance of the linker length and composition for the generation of dimeric aminoglycoside antibiotics capable of avoiding the action of AMEs and selective binding to the bacterial rRNA over binding to the human rRNA.