WorldWideScience

Sample records for dimensionless parameters

  1. Dimensionless parameters, scaling laws, and the implications for ETG

    Energy Technology Data Exchange (ETDEWEB)

    Castle, G.G.

    1995-04-20

    ETG will be useful in resolving several physical issues relevant to Spherical Tokamak Reactor concepts. First, it will provide a test of whether transport is Bohm or gyro-Bohm in nature. The second point is that ETG will operate in a completely different range of {rho}* space from other high performance machines, opening up a previously inaccessible region of parameter space. ETG is also a (very) high-{beta} machine. It would be the only device that would have all of its parameters except {rho}* similar to those of a Spherical tokamak Reactor. If it turns out that the transport scales definitively as either Bohm or gyro-Bohm, then extrapolation to reactor conditions with significantly lower values of {rho}* would become more credible. It is also shown that in general one cannot obtain a power law relation in the dimensionless variables for the confinement tim from a power law fit to the engineering variables. It is shown, however, that if T{sub i}/T{sub e} and n{sub i}/n{sub e} are constant or if a modified definition of certain dimensionless variables is adopted, then such a power law conversion is possible.

  2. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    Science.gov (United States)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  3. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    1998-02-01

    The scalings of heat transport with safety factor (q), normalized collisionality (v), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak. The measured ρ* β and v scalings of heat transport indicate that E x B transport from drive wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝ q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝ q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝ q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β, v and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensionless) parameters with the exception of weaker power degradation

  4. A dimensionless parameter for classifying hemodynamics in intracranial

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Rupture of an intracranial aneurysm (IA) is a disease with high rates of mortality. Given the risk associated with the aneurysm surgery, quantifying the likelihood of aneurysm rupture is essential. There are many risk factors that could be implicated in the rupture of an aneurysm. However, the most important factors correlated to the IA rupture are hemodynamic factors such as wall shear stress (WSS) and oscillatory shear index (OSI) which are affected by the IA flows. Here, we carry out three-dimensional high resolution simulations on representative IA models with simple geometries to test a dimensionless number (first proposed by Le et al., ASME J Biomech Eng, 2010), denoted as An number, to classify the flow mode. An number is defined as the ratio of the time takes the parent artery flow transports across the IA neck to the time required for vortex ring formation. Based on the definition, the flow mode is vortex if An>1 and it is cavity if AnOSI on the human subject IA. This work was supported partly by the NIH grant R03EB014860, and the computational resources were partly provided by CCR at UB. We thank Prof. Hui Meng and Dr. Jianping Xiang for providing us the database of aneurysms and helpful discussions.

  5. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.; Ballet, B.; Carlstrom, T.N.; Cordey, J.G.; DeBoo, J.C.; Gohil, P.; Groebner, R.J.; Rice, B.W.; Thomas, D.M.; Wade, M.R.; Waltz, R.E.

    1998-01-01

    The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ * ) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ * , β and ν scalings of heat transport indicate that ExB transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ * , β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. copyright 1998 American Institute of Physics

  6. Experimental determination of the dimensionless scaling parameter of energy transport in tokamaks

    International Nuclear Information System (INIS)

    Luce, T.C.; Petty, C.C.

    1995-07-01

    Controlled fusion experiments have focused on the variation of the plasma characteristics as the engineering or control parameters are systematically changed. This has led to the development of extrapolation formulae for prediction of future device performance using these same variables as a basis. Recently, it was noticed that present-day tokamaks can operate with all of the dimensionless variables which appear in the Vlasov-Maxwell system of equations at values projected for a fusion powerplant with the exception of the parameter ρ * , the gyroradius normalized to the machine size. The scaling with this parameter is related to the benefit of increasing the size of the machine either directly or effectively by increasing the magnetic field. It is exactly this scaling which is subject to systematic error in the inter-machine databases and the cost driver for any future machine. If this scaling can be fixed by a series of single machine experiments, much as the current and power scalings have been, the confidence in the prediction of future device performance would be greatly enhanced. While carrying out experiments of this type, it was also found that the ρ * scaling can illuminate the underlying physics of energy transport. Conclusions drawn from experiments on the DIII-D tokamak in these two areas are the subject of this paper

  7. Flexibility, stroke, and dimensionless parameters: the importance of telling the whole story for swimming micro-organisms in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2015-11-01

    The question of how fluid elasticity affects the swimming performance of micro-organisms is complicated and has been the subject of many recent experimental and theoretical studies. The Deborah number, De = λω , is typically used to characterize the strength of the fluid elasticity in these studies, and for swimmers is expressed as the product of the elastic relaxation time and the frequency of the swimmer stroke. In simulations of undulatory flexible swimmers in an Oldroyd-B-type fluid, we find that varying the frequency of the stroke and varying the relaxation time separately results in a significantly different dependence of swimming speed for the same De . Thus the elastic effects on swimming cannot be characterized by a single dimensionless number. The Weissenberg number, defined as the product of elastic relaxation time and characteristic strain rate (Wi = λγ˙), is another dimensionless parameter useful for describing complex fluids. For a fixed swimmer frequency, varying the relaxation time will also vary the Weissenberg number. We conjecture that the different behavior is a consequence of a Weissenberg-number transition in the fluid, which additionally depends on the amplitude of the swimmer stroke.

  8. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    Science.gov (United States)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  9. Dimensionless numbers in additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  10. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  11. A noteworthy dimensionless constant in gravitation theory

    International Nuclear Information System (INIS)

    Fayos, F.; Lobo, J.A.; Llanta, E.

    1986-01-01

    A simple problem of gravitation is studied classically and in the Schwarzchild framework. A relationship is found between the parameters that define the trajectories of two particles (the first in radial motion and the second in a circular orbit) which are initially together and meet again after one revolution of particle 2. Dimensional analysis is the clue to explain the appearance of a dimensionless constant in the Newtonian case. (author)

  12. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  13. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  14. Classification of whole wheat flour using a dimensionless number.

    Science.gov (United States)

    Sehn, Georgia Ane Raquel; Steel, Caroline Joy

    2017-11-01

    The rheological standards currently used for classifying refined wheat flour for technological quality of bread are also used for whole wheat flours. The aim of this study was to evaluate the rheological and technological behavior of different whole wheat flours, as well as pre-mixes of refined wheat flour with different replacement levels of wheat bran, to develop a dimensionless number that assigns a numerical scale using results of rheological parameters to solve this problem. Through farinograph and extensograph results, most whole wheat flours evaluated presented parameters recommended for bread making, according to the current classification. However, the specific volume of breads elaborated with these flours was not suitable, that is, the rheological analyses were not able to predict the specific volume of pan bread. The development of the Sehn-Steel dimensionless number allowed establishing a classification of whole wheat flours as "suitable" (Sehn-Steel dimensionless number between 62 and 200) or "unsuitable" for the production of pan bread (Sehn-Steel dimensionless number lower than 62). Moreover, an equation that can predict the specific volume of whole pan bread through this dimensionless number was developed.

  15. Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis

    International Nuclear Information System (INIS)

    Cheng, Chin-Hsiang; Yang, Hang-Suin

    2014-01-01

    In the present study, optimization of rhombic drive mechanism used in a beta-type Stirling engine is performed based on a dimensionless theoretical model toward maximization of shaft work output. Displacements of the piston and the displacer with the rhombic drive mechanism and variations of volumes and pressure in the chambers of the engine are firstly expressed in dimensionless form. Secondly, Schmidt analysis is incorporated with Senft's shaft work theory to build a dimensionless thermodynamic model, which is employed to yield the dimensionless shaft work. The dimensionless model is verified with experimental data. It is found that the relative error between the experimental and the theoretical data in dimensionless shaft work is lower than 5.2%. This model is also employed to investigate the effects of the influential geometric parameters on the shaft work, and the optimization of these parameters is attempted. Eventually, design charts that help design the optimal geometry of the rhombic drive mechanism are presented in this report. - Highlights: • Specifically dealing with optimization of rhombic-drive mechanism used in Stirling engine based on dimensionless model. • Propose design charts that help determine the optimal geometric parameters of the rhombic drive mechanism. • Complete study of influential factors affecting the shaft work output

  16. Patterns in new dimensionless quantities containing melting temperature, and their dependence on pressure

    Directory of Open Access Journals (Sweden)

    U. WALZER

    1980-06-01

    Full Text Available The relationships existing between melting temperature and other
    macroscopic physical quantities are investigated. A new dimensionless
    quantity Q(1 not containing the Grtineisen parameter proves to be suited for serving in future studies as a tool for the determination of the melting temperature in the outer core of the Earth. The pressure dependence of more general dimensionless quantities Q„ is determined analytically and, for the chemical elements, numerically, too. The patterns of various interesting dimensionless quantities are shown in the Periodic Table and compared.

  17. On the use of dimensionless parameters in acid-base theory: VI. The buffer capacities of equimolar binary mixtures of monovalent weak protolytes as compared to that of bivalent protolytes.

    Science.gov (United States)

    Rilbe, H

    1994-05-01

    The general equation for the relative molar buffer capacity, earlier shown to be valid for bivalent acids, bases, and ampholytes, is shown to hold also for equimolar, binary mixtures of monovalent protolytes if only the parameter s = square root of K1'/4K2' is exchanged for t = s + 1/4s. The same applies to the equations for the mean valence of the two classes of protolytes. As a consequence thereof, the titration and buffer capacity curves of a bivalent protolyte are identical with those of a monovalent protolyte with a pK' value equal to the with those of a monovalent protolyte with a pK' value equal to square root of K1'K2' of the bivalent one (the isoprotic point of an ampholyte). For a hypothetical bivalent acid, base, or ampholyte with s = 1, delta pK' = log 4, this implies that the intrinsic rather than the hybrid dissociation constants are responsible for the titration and buffer capacity curves.

  18. A dimensionless criterion for characterising internal transport barriers in tokamaks

    International Nuclear Information System (INIS)

    Tresset, G.; Litaudon, X.; Moreau, D.

    2000-07-01

    A simple criterion, based on a dimensionless parameter (ρ T * =ρ s /L T ) related to drift wave turbulence stabilisation and anomalous transport theory, is proposed in order to characterise the emergence and the space-time evolution of internal transport barriers (ITB's) during a tokamak discharge. The underlying physics which led us to consider the possible relevance of this parameter as a local indicator of a bifurcated plasma state is the breaking of the gyro-Bohm turbulence scaling by the diamagnetic velocity shear, which has been observed in various numerical simulations [e.g. X. Garbet and R.E. Waltz, Phys. Plasmas 3(1996) 1898]. The presence of an ITB is inferred when ρ T * exceeds a threshold value. The main features like the emergence time, location and even dynamics of ITB's can then be summarized on a single graphical representation consistent with measurement uncertainties. The validity of such a criterion is demonstrated on the Optimized Shear (OS) database of JET in several experimental configurations. Large database analysis and realtime control of OS discharges are envisaged as the most attractive applications. (author)

  19. Development of Dimensionless Index Assessing Low Impact Development in Urban Areas

    Science.gov (United States)

    Jun, S. H.; Lee, E. H.; Kim, J. H.

    2017-12-01

    Because the rapid urbanization and industrialization have increased the impervious area of watersheds, inundation in urban area and water pollution of river by non-point pollutants have caused serious problems for a long time. Low Impact Development (LID) techniques have been implemented for the solution of these problems due to its cost effectiveness for mitigating the water quality and quantity impact on urban areas. There have been many studies about the effectiveness of LID, but there is a lack of research on developing an index for the assessment of LID performance. In this study, the dimensionless reliability index of LID is proposed. The index is developed using Distance Measure Method (DMM). DMM is used to consider the parameters that have different units. The parameters for reliability of LID are the amount of pollutant at the outfall and the flooding volume. Both parameters become dimensionless index by DMM. Weighted factors in dimensionless index are considered to realize the behavior of reliability for the variation of importance to the parameters. LID is applied to an actual area called Gasan city in Seoul, South Korea where inundation is frequently occurred. The reliability is estimated for 16 different rainfall events. For each rainfall event, the parameters with LID installation are compared with those of no LID installation. Depending on which parameter is considered more important, the results showed difference. In conclusion, the optimal locations of LID are suggested as the weighted factors change.

  20. Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br

    2010-07-01

    This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)

  1. Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray-Liebhafsky reaction.

    Science.gov (United States)

    Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D

    2008-12-25

    The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.

  2. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

    Science.gov (United States)

    Monroe, Charles; Beckermann, Christoph

    2014-08-01

    The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear "lambda"-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

  3. An equation for the dimensionless friction factor of consolidated ...

    African Journals Online (AJOL)

    An equation that relates the dimensionless friction factor of a porous medium its Reynolds number, during incompressible and compressible fluid flow through the medium is proposed. The equation is a curve fit of a graph drawn from the results of Ohirhian for water (liquid) and that of Akpokene for Nitrogen (gas) flow ...

  4. Comments Simplification of thermodynamic calculations through dimensionless entropies

    International Nuclear Information System (INIS)

    Pitzer, K.S.; Brewer, L.

    1979-01-01

    The advantages of using thermodynamic quantities divided by the gas constant (H/R, G/R, etc,) in calculations are described. It is recommended that thermodynamic tables be presented in this form, so that the entries are either dimensionless or in units of kelvins

  5. A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

    Science.gov (United States)

    Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo

    2018-02-01

    The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.

  6. Development and evaluation of a dimensionless mechanistic pan coating model for the prediction of coated tablet appearance.

    Science.gov (United States)

    Niblett, Daniel; Porter, Stuart; Reynolds, Gavin; Morgan, Tomos; Greenamoyer, Jennifer; Hach, Ronald; Sido, Stephanie; Karan, Kapish; Gabbott, Ian

    2017-08-07

    A mathematical, mechanistic tablet film-coating model has been developed for pharmaceutical pan coating systems based on the mechanisms of atomisation, tablet bed movement and droplet drying with the main purpose of predicting tablet appearance quality. Two dimensionless quantities were used to characterise the product properties and operating parameters: the dimensionless Spray Flux (relating to area coverage of the spray droplets) and the Niblett Number (relating to the time available for drying of coating droplets). The Niblett Number is the ratio between the time a droplet needs to dry under given thermodynamic conditions and the time available for the droplet while on the surface of the tablet bed. The time available for drying on the tablet bed surface is critical for appearance quality. These two dimensionless quantities were used to select process parameters for a set of 22 coating experiments, performed over a wide range of multivariate process parameters. The dimensionless Regime Map created can be used to visualise the effect of interacting process parameters on overall tablet appearance quality and defects such as picking and logo bridging. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Can we calculate the fundamental dimensionless constants of physics

    International Nuclear Information System (INIS)

    Barut, A.O.

    1987-07-01

    We review some dynamical models to calculate the dimensionless constants α=e 2 /4πε 0 (h/2π)c, β=M p /m e (or β'=m μ /m e ), γ=G Fermi m e 2 /c(h/2π) 3 and δ=G Newton m e 2 /(e 2 /4πε 0 ) which are associated with the four different manifestations (electromagnetic, strong, weak and gravitational) of a possible single interaction. (author). 15 refs

  8. Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2008-06-01

    Full Text Available The quantitative significance for a planetary magnetosphere of plasma sources associated with a moon of the planet can be assessed only by expressing the plasma mass input rate in dimensionless form, as the ratio of the actual mass input to some reference value. Traditionally, the solar wind mass flux through an area equal to the cross-section of the magnetosphere has been used. Here I identify another reference value of mass input, independent of the solar wind and constructed from planetary parameters alone, which can be shown to represent a mass input sufficiently large to prevent corotation already at the source location. The source rate from Enceladus at Saturn has been reported to be an order of magnitude smaller (in absolute numbers than that from Io at Jupiter. Both reference values, however, are also smaller at Saturn than at Jupiter, by factors ~40 to 60; expressed in dimensionless form, the estimated mass input from Enceladus may be larger than that from Io by factors ~4 to 6. The magnetosphere of Saturn may thus, despite a lower mass input in kg s−1, intrinsically be more heavily mass-loaded than the magnetosphere of Jupiter.

  9. Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2008-06-01

    Full Text Available The quantitative significance for a planetary magnetosphere of plasma sources associated with a moon of the planet can be assessed only by expressing the plasma mass input rate in dimensionless form, as the ratio of the actual mass input to some reference value. Traditionally, the solar wind mass flux through an area equal to the cross-section of the magnetosphere has been used. Here I identify another reference value of mass input, independent of the solar wind and constructed from planetary parameters alone, which can be shown to represent a mass input sufficiently large to prevent corotation already at the source location. The source rate from Enceladus at Saturn has been reported to be an order of magnitude smaller (in absolute numbers than that from Io at Jupiter. Both reference values, however, are also smaller at Saturn than at Jupiter, by factors ~40 to 60; expressed in dimensionless form, the estimated mass input from Enceladus may be larger than that from Io by factors ~4 to 6. The magnetosphere of Saturn may thus, despite a lower mass input in kg s−1, intrinsically be more heavily mass-loaded than the magnetosphere of Jupiter.

  10. Homeostasis and Heterostasis: from Invariant to Dimensionless Numbers

    Directory of Open Access Journals (Sweden)

    BRUNO GÜNTHER

    2003-01-01

    Full Text Available In the present paper we have examined the applicability of dimensionless and invariant numbers (DN & IN to the analysis of the cardiovascular system of mammals, whose functions were measured at standard metabolic conditions. The calculated IN did not change when we compared these figures with those obtained in dogs while they were submitted to graded exercise on a treadmill. In both instances, rest and exercise, the constancy of the IN prevailed, in accordance with Cannon's principle of "homeostasis" (1929. On the contrary, when dogs were examined during a standardized hypovolemic shock, we observed a breakdown of the IN, and the resulting DN evolved as a reliable index of the condition of "heterostasis" as defined by H. Selye. The robustness of the homeostatic regulations is based on high-gain integral feedback mechanisms, while "heterostasis" could be associated with low-gain integral feedback processes, when organisms are submitted to unitary step disturbances or to changes of the set-point at the entrance of the feedback loop.

  11. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    Science.gov (United States)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  12. Dimensionless Analysis for Designing Domestic Rainwater Harvesting Systems at the Regional Level in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chao-Hsien Liaw

    2014-12-01

    Full Text Available A regional-level and dimensionless analysis for designing a domestic rainwater harvesting system (DRWHS was developed. To consider various combinations of water demand, storage capacity, effective roof area, and rainfall in DRWHS design, two dimensionless ratios were used, namely, demand fraction and storage fraction, along with a relationship between the two ratios. Firstly, Northern Taiwan was divided into four sub-regions through cluster analysis based on the average annual 10-day rainfall distribution at rainfall stations and administrative districts. Easy-to-use dimensionless curves between demand fraction and storage fraction were obtained for five rainwater supply reliabilities of the DRWHS for the four sub-regions. Based on the dimensionless curves, a nomogram was constructed for designing DRWHSs at a rainwater supply reliability of 95% in the sub-region I. Storage capacities determined from the dimensionless curves showed a close fit with those determined from simulated values, but were larger than the values estimated from the method presented in the Green Building Evaluation Manual in most situations. The methodology developed herein can be used effectively for the preliminary design of a DRWHS and for overcoming the difficulties faced in designing a DRWHS without rainfall data and with incomplete rainfall data.

  13. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He [Current address: Department of Astronomy and Astrophysics, Department of Physics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.

  14. Theoretical investigation of the upper and lower bounds of a generalized dimensionless bearing health indicator

    Science.gov (United States)

    Wang, Dong; Tsui, Kwok-Leung

    2018-01-01

    Bearing-supported shafts are widely used in various machines. Due to harsh working environments, bearing performance degrades over time. To prevent unexpected bearing failures and accidents, bearing performance degradation assessment becomes an emerging topic in recent years. Bearing performance degradation assessment aims to evaluate the current health condition of a bearing through a bearing health indicator. In the past years, many signal processing and data mining based methods were proposed to construct bearing health indicators. However, the upper and lower bounds of these bearing health indicators were not theoretically calculated and they strongly depended on historical bearing data including normal and failure data. Besides, most health indicators are dimensional, which connotes that these health indicators are prone to be affected by varying operating conditions, such as varying speeds and loads. In this paper, based on the principle of squared envelope analysis, we focus on theoretical investigation of bearing performance degradation assessment in the case of additive Gaussian noises, including distribution establishment of squared envelope, construction of a generalized dimensionless bearing health indicator, and mathematical calculation of the upper and lower bounds of the generalized dimensionless bearing health indicator. Then, analyses of simulated and real bearing run to failure data are used as two case studies to illustrate how the generalized dimensionless health indicator works and demonstrate its effectiveness in bearing performance degradation assessment. Results show that squared envelope follows a noncentral chi-square distribution and the upper and lower bounds of the generalized dimensionless health indicator can be mathematically established. Moreover, the generalized dimensionless health indicator is sensitive to an incipient bearing defect in the process of bearing performance degradation.

  15. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. Given their similar size, dimensionless matched plasmas are also similar in their dimensional parameters (in particular, the plasma minor radius a is the same in JET and JT-60U). Power and density scans were carried out at two values of I p , providing a q scan (q 95 = 3.1 and 5.1) with fixed (and matched) toroidal field. Contrary to initial expectations, a dimensionless match between the two devices was quite difficult to achieve. In general, p ped in JT-60U is lower than in JET and, at low q, the pedestal pressure of JT-60U with a Type I ELMy edge is matched in JET only in the Type III ELM regime. At q 95 = 5.1, a dimensionless match in ρ*, ν* and β p,ped is obtained with Type I ELMs, but only with low power JET H-modes. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible 'hidden' physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at q 95 = 5.1: reducing ripple losses by ∼2 (from 4.3 to 1.9 MW) by replacing positive with negative neutral beam injection at approximately constant P in resulted in an increased p ped in JT-60U, providing a good match to full power JET H-modes. At the same time, the counter-toroidal rotation decreased. Physics mechanisms relating ripple losses to pedestal performance are not yet identified, and the possible role of velocity shear in the pedestal stability, as well as the possible influence of ripple on thermal ion transport are briefly

  16. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    Science.gov (United States)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  17. Useful scaling parameters for the pulse tube

    International Nuclear Information System (INIS)

    Lee, J.M.; Kittel, P.; Timmerhaus, K.D.

    1996-01-01

    A set of dimensionless scaling parameters for use in correlating performance data for Pulse Tube Refrigerators is presented. The dimensionless groups result after scaling the mass and energy conservation equations, and the equation of motion for an axisymmetric, two-dimensional ideal gas system. Allowed are viscous effects and conduction heat transfer between the gas and the tube wall. The scaling procedure results in reducing the original 23 dimensional variables to a set of 11 dimensionless scaling groups. Dimensional analysis is used to verify that the 11 dimensionless groups obtained is the minimum number needed to describe the system. The authors also examine 6 limiting cases which progressively reduce the number of dimensionless groups from 11 to 3. The physical interpretation of the parameters are described, and their usefulness is outlined for understanding how heat transfer and mass streaming affect ideal enthalpy flow

  18. Mass-Inertial Characteristics and Dimensionless Equations of Two-bearing Rotor Motion with Auto-balancer in Terms of Compensating Body Mass

    Directory of Open Access Journals (Sweden)

    A. N. Gorbenko

    2015-01-01

    Full Text Available Modern rotary machines use auto-balancing devices of passive type to provide automatic balancing of rotors and reduce vibration. Most available researches on the rotor auto-balancing dynamics and stability are based on the assumption that the compensating bodies of the autobalancer, as well as the rotor imbalance, are infinitesimal values. The literature review has shown that the problems concerning the automatic balancing of rotor with its three-dimensional motion are solved approximately and require an in-depth analysis taking into consideration the final mass of the compensating bodies.The paper analyses the effect of an auto-balancer mass on the mass-inertial properties of the three-dimensional rotor motion. It gives the autonomous equations of the system motion. The work shows that attaching the point masses of compensating auto-balancer bodies and imbalance to the rotor causes an increase, however non-identical, in all components of the total inertia tensor of the mechanical system. This leads to a qualitative change in mass-inertial characteristics of the system.The composite rotor becomes an inertia anisotropic body in which the inertia moments about the two transverse own axes are not equal to each other. The rotor anisotropy results in complicated dynamic behavior of the gyroscopic rotor. In this case, the additional critical rotor speeds and the zones of instability of motion may occur.It is shown that in the case of using multi-body auto-balancer the inertial parameters of the rotor system grow into the interval values, i.e. their values are not uniquely determined and may be equal to a variety values from a certain range. Thus, the degree of inertial anisotropy and other auto-balancing parameters are the interval values as well in this case.The system of dimensionless equations of rotary machine motion, which contains the minimum required number of dimensionless parameters, has been obtained. The specific ranges of the dimensionless

  19. Simultaneous release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus described by dimensionless equations.

    Science.gov (United States)

    Kasperek, Regina

    2011-01-01

    The release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus was studied. The influence of excipients and of a size of the solid dosage forms on the amount of the released substances at the intervals of time using the different rates of flow of the dissolution medium was investigated. Physical parameters corresponding to the dissolution process as the mass transfer coefficient, the thickness of the boundary diffusion layer and the concentration of the saturated solution at this layer were calculated. The results of release were described by dimensionless equations.

  20. Error analysis of dimensionless scaling experiments with multiple points using linear regression

    International Nuclear Information System (INIS)

    Guercan, Oe.D.; Vermare, L.; Hennequin, P.; Bourdelle, C.

    2010-01-01

    A general method of error estimation in the case of multiple point dimensionless scaling experiments, using linear regression and standard error propagation, is proposed. The method reduces to the previous result of Cordey (2009 Nucl. Fusion 49 052001) in the case of a two-point scan. On the other hand, if the points follow a linear trend, it explains how the estimated error decreases as more points are added to the scan. Based on the analytical expression that is derived, it is argued that for a low number of points, adding points to the ends of the scanned range, rather than the middle, results in a smaller error estimate. (letter)

  1. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  2. Dimensionless Energy Conversion Characteristics of an Air-Powered Hydraulic Vehicle

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2018-02-01

    Full Text Available Due to the advantages of resource conservation and less exhaust emissions, compressed air-powered vehicle has attracted more and more attention. To improve the power and efficiency of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer is used to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy conversion characteristics of air-powered hydraulic vehicle, dimensionless mathematical model of the vehicle’s working process was set up. Through experimental study on the vehicle, the dimensionless model was verified. Through simulation study on the vehicle, the following can be obtained: firstly, the increase of the hydraulic chamber orifice and the area ratio of the pistons can lead to a higher output power, while output pressure is just the opposite. Moreover, the increase of the output pressure and the aperture of the hydraulic chamber can lead to a higher efficiency, while area ratio of the pistons played the opposite role. This research can be referred to in the performance and design optimization of the HP transformers.

  3. Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    Directory of Open Access Journals (Sweden)

    S. P. Seibert

    2017-06-01

    Full Text Available The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12–166 km2 from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of

  4. Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.

    Science.gov (United States)

    Agishev, Ravil; Comerón, Adolfo; Rodriguez, Alejandro; Sicard, Michaël

    2014-05-20

    In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments.

  5. A Diagnosis Method for Rotation Machinery Faults Based on Dimensionless Indexes Combined with K-Nearest Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Jianbin Xiong

    2015-01-01

    Full Text Available It is difficult to well distinguish the dimensionless indexes between normal petrochemical rotating machinery equipment and those with complex faults. When the conflict of evidence is too big, it will result in uncertainty of diagnosis. This paper presents a diagnosis method for rotation machinery fault based on dimensionless indexes combined with K-nearest neighbor (KNN algorithm. This method uses a KNN algorithm and an evidence fusion theoretical formula to process fuzzy data, incomplete data, and accurate data. This method can transfer the signals from the petrochemical rotating machinery sensors to the reliability manners using dimensionless indexes and KNN algorithm. The input information is further integrated by an evidence synthesis formula to get the final data. The type of fault will be decided based on these data. The experimental results show that the proposed method can integrate data to provide a more reliable and reasonable result, thereby reducing the decision risk.

  6. Dimensionless Numerical Approaches for the Performance Prediction of Marine Waterjet Propulsion Units

    Directory of Open Access Journals (Sweden)

    Marco Altosole

    2012-01-01

    Full Text Available One of the key issues at early design stage of a high-speed craft is the selection and the performance prediction of the propulsion system because at this stage only few information about the vessel are available. The objective of this work is precisely to provide the designer, in the case of waterjet propelled craft, with a simple and reliable calculation tool, able to predict the waterjet working points in design and off-design conditions, allowing to investigate several propulsive options during the ship design process. In the paper two original dimensionless numerical procedures, one referred to jet units for naval applications and the other more suitable for planing boats, are presented. The first procedure is based on a generalized performance map for mixed flow pumps, derived from the analysis of several waterjet pumps by applying similitude principles of the hydraulic machines. The second approach, validated by some comparisons with current waterjet installations, is based on a complete physical approach, from which a set of non-dimensional waterjet characteristics has been drawn by the authors. The presented application examples show the validity and the degree of accuracy of the proposed methodologies for the performance evaluation of waterjet propulsion systems.

  7. A new dimensionless number highlighted from mechanical energy exchange during running.

    Science.gov (United States)

    Delattre, Nicolas; Moretto, Pierre

    2008-09-18

    This study aimed to highlight a new dimensionless number from mechanical energy transfer occurring at the centre of gravity (Cg) during running. We built two different-sized spring-mass models (SMM #1 and SMM #2). SMM #1 was built from the previously published data, and SMM #2 was built to be dynamically similar to SMM #1. The potential gravitational energy (E(P)), kinetic energy (E(K)), and potential elastic energy (E(E)) were taken into account to test our hypothesis. For both SMM #1 and SMM #2, N(Mo-Dela)=(E(P)+E(K))/E(E) reached the same mean value and was constant (4.1+/-0.7) between 30% and 70% of contact time. Values of N(Mo-Dela) obtained out of this time interval were due to the absence of E(E) at initial and final times of the simulation. This phenomenon does not occur during in vivo running because a leg muscle's pre-activation enables potential elastic energy storage prior to ground contact. Our findings also revealed that two different-sized spring-mass models bouncing with equal N(Mo-Dela) values moved in a dynamically similar fashion. N(Mo-Dela), which can be expressed by the combination of Strouhal and Froude numbers, could be of great interest in order to study animal and human locomotion under Earth's gravity or to induce dynamic similarity between different-sized individuals during bouncing gaits.

  8. THE DIMENSIONLESS AGE OF THE UNIVERSE: A RIDDLE FOR OUR TIME

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Kirshner, Robert P., E-mail: aavelino@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts, 02138 (United States)

    2016-09-01

    We present the interesting coincidence of cosmology and astrophysics that points toward a dimensionless age of the Universe H {sub 0} t {sub 0} that is close to one. Despite cosmic deceleration for 9 Gyr and acceleration since then, we find H {sub 0} t {sub 0} = 0.96 ± 0.01 for the ΛCDM model that fits SN Ia data from Pan-STARRS, CMB power spectra, and baryon acoustic oscillations. Similarly, astrophysical measures of stellar ages and the Hubble constant derived from redshifts and distances point to H {sub 0} t ∼ 1.0 ± 0.1. The wide range of possible values for H {sub 0} t {sub 0} realized during cosmic evolution means that we live at what appears to be a special time. This “synchronicity problem” is not precisely the same as the usual coincidence problem , because there are combinations of Ω{sub M} and Ω{sub Λ} for which the usual coincidence problem holds but for which H {sub 0} t {sub 0} is not close to 1.

  9. Dimensionless model to determine spontaneous combustion danger zone in the longwall gob

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-hai; DENG Jun; WEN Hu

    2011-01-01

    According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the “Three Zones” in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy' s law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface (FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.

  10. Effects of soil-structure in high-rise buildings by means of dimensionless analysis and a simplified model

    NARCIS (Netherlands)

    Gómez, S.S.; Pruiksma, J.

    2017-01-01

    In this paper simplified expressions for assessing fundamental frequency and modal damping of high-rise buildings taking into account the soil-structure interaction (SSI) are proposed. To this end, several steps have been followed. First, a 3DoF model is formulated making use of dimensionless

  11. Hovering efficiency comparison of rotary and flapping flight for a rigid and rectangular wings via dimensionless multi-objective optimization.

    Science.gov (United States)

    Bayiz, Yagiz Efe; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-03-20

    In this work, a multi-objective optimization framework is developed for optimizing low-Reynolds number (Re) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying Re and Rossby number (Ro, or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing lift coefficient and minimizing power coefficient in dimensionless space, which explicitly reveal the trade off between lift generation and power consumption. The results indicate that revolving wings are more efficient if the required average lift coefficient CL is low (< 1 for Re = 100 and < 1.6 for Re = 8000), while flapping wings are more efficient in achieving higher CL. Using dimensionless power loading as the single objective performance measure to be maximized, rotary flight is more efficient than flapping wings for Re > 100 regardless of the amount of energy storage assumed in the flapping-wing actuation mechanism, while flapping flight becomes more efficient for Re < 100. It is observed that wings with low Ro perform better if higher CL is needed, whereas higher Ro cases are more efficient at CL < 0.9 region. However, for the selected geometry and Re, the efficiency is weakly dependent on Ro if the dimensionless power loading is maximized. © 2018 IOP Publishing Ltd.

  12. A dimensionless ordered pull-through model of the mammalian lens epithelium evidences scaling across species and explains the age-dependent changes in cell density in the human lens

    Science.gov (United States)

    Wu, Jun Jie; Wu, Weiju; Tholozan, Frederique M.; Saunter, Christopher D.; Girkin, John M.; Quinlan, Roy A.

    2015-01-01

    We present a mathematical (ordered pull-through; OPT) model of the cell-density profile for the mammalian lens epithelium together with new experimental data. The model is based upon dimensionless parameters, an important criterion for inter-species comparisons where lens sizes can vary greatly (e.g. bovine (approx. 18 mm); mouse (approx. 2 mm)) and confirms that mammalian lenses scale with size. The validated model includes two parameters: β/α, which is the ratio of the proliferation rate in the peripheral and in the central region of the lens; and γGZ, a dimensionless pull-through parameter that accounts for the cell transition and exit from the epithelium into the lens body. Best-fit values were determined for mouse, rat, rabbit, bovine and human lens epithelia. The OPT model accounts for the peak in cell density at the periphery of the lens epithelium, a region where cell proliferation is concentrated and reaches a maximum coincident with the germinative zone. The β/α ratio correlates with the measured FGF-2 gradient, a morphogen critical to lens cell survival, proliferation and differentiation. As proliferation declines with age, the OPT model predicted age-dependent changes in cell-density profiles, which we observed in mouse and human lenses. PMID:26236824

  13. Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C

    Czech Academy of Sciences Publication Activity Database

    Frassinetti, L.; Saarelma, S.; Lomas, P.; Nunes, I.; Rimini, F.; Beurskens, M.N.A.; Bílková, Petra; Boom, J.E.; De La Luna, E.; Delabie, E.; Drewelow, P.; Flanagan, J.; Garzotti, L.; Giroud, C.; Hawks, N.; Joffrin, E.; Kempenaars, M.; Kim, H.-T.; Kruezi, U.; Loarte, A.; Lomanowski, B.; Lupelli, I.; Meneses, L.; Maggi, C.F.; Menmuir, S.; Peterka, Matěj; Rachlew, E.; Romanelli, M.; Stefanikova, E.

    2017-01-01

    Roč. 59, č. 1 (2017), č. článku 014014. ISSN 0741-3335. [EPS 2016: Conference on Plasma Physics/43./. Leuven, 04.07.2016-08.07.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : JET-ILW * dimensionless scaling * pedestal * confinement * pedestal stability * heat transport Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://dx.doi.org/10.1088/0741-3335/59/1/014014

  14. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    Science.gov (United States)

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  15. Irreversibility analysis of non isothermal flat plate solar collectors for air heating with a dimensionless model; Analisis de las irreversibilidades en colectores solares de placas planas no isotermicos para calentamiento de aire utilizando un modelo adimensional

    Energy Technology Data Exchange (ETDEWEB)

    Bracamonte-Baran, Johane Hans; Baritto-Loreto, Miguel Leonardo [Universidad Central de Venezuela (Venezuela)]. E-mails: johanehb@gmail.com; johane.bracamonte@ucv.ve; miguel.baritto@ucv.ve

    2013-04-15

    The dimensionless model developed and validated by Baritto and Bracamonte (2012) for the thermal behavior of flat plate solar collector without glass cover is improved by adding the entropy balance equation in a dimensionless form. The model is solved for a wide range of aspect ratios and mass flow numbers. A parametric study is developed and the distribution of internal irreversibilities along the collector is analyzed. The influence of the design parameters on the entropy generation by fluid friction and heat transfer is analyzed and it is found that for certain combinations of these parameters optimal thermodynamic operation can be achieved. [Spanish] En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012) para describir el comportamiento termico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuacion adimensional de balance de entropia para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y numero de flujo de masa. A partir de los resultados del modelo se desarrolla un analisis detallado de la influencia de estos parametros sobre la distribucion de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parametros sobre los numeros de generacion de entropia por friccion viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parametros antes mencionados, para los cuales, la operacion del colector es termodinamicamente optima para numeros de flujo de masa elevados.

  16. A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2014-05-01

    Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

  17. Dosage-based parameters for characterization of puff dispersion results.

    Science.gov (United States)

    Berbekar, Eva; Harms, Frank; Leitl, Bernd

    2015-01-01

    A set of parameters is introduced to characterize the dispersion of puff releases based on the measured dosage. These parameters are the dosage, peak concentration, arrival time, peak time, leaving time, ascent time, descent time and duration. Dimensionless numbers for the scaling of the parameters are derived from dimensional analysis. The dimensionless numbers are tested and confirmed based on a statistically representative wind tunnel dataset. The measurements were carried out in a 1:300 scale model of the Central Business District in Oklahoma City. Additionally, the effect of the release duration on the puff parameters is investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Parameter estimation for an expanding universe

    Directory of Open Access Journals (Sweden)

    Jieci Wang

    2015-03-01

    Full Text Available We study the parameter estimation for excitations of Dirac fields in the expanding Robertson–Walker universe. We employ quantum metrology techniques to demonstrate the possibility for high precision estimation for the volume rate of the expanding universe. We show that the optimal precision of the estimation depends sensitively on the dimensionless mass m˜ and dimensionless momentum k˜ of the Dirac particles. The optimal precision for the ratio estimation peaks at some finite dimensionless mass m˜ and momentum k˜. We find that the precision of the estimation can be improved by choosing the probe state as an eigenvector of the hamiltonian. This occurs because the largest quantum Fisher information is obtained by performing projective measurements implemented by the projectors onto the eigenvectors of specific probe states.

  19. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Science.gov (United States)

    Gyenge, E. L.

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.

  20. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC (Canada V6T 1Z4)

    2005-12-01

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (author)

  1. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Science.gov (United States)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  2. Mathematical modelling of nonstationary processes in a regenerator with dissociating coolant at supercritical parameters

    International Nuclear Information System (INIS)

    Tashchilova, Eh.M.; Sharovarov, G.A.

    1985-01-01

    The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger

  3. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  4. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  5. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  6. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    Science.gov (United States)

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  7. Universal dependences between turbulent and mean flow parameters instably and neutrally stratified Planetary Boundary Layers

    Directory of Open Access Journals (Sweden)

    I. N. Esau

    2006-01-01

    Full Text Available We consider the resistance law for the planetary boundary layer (PBL from the point of view of the similarity theory. In other words, we select the set of the PBL governing parameters and search for an optimal way to express through these parameters the geostrophic drag coefficient Cg=u* /Ug and the cross isobaric angle α (where u* is the friction velocity and Ug is the geostrophic wind speed. By this example, we demonstrate how to determine the 'parameter space' in the most convenient way, so that make independent the dimensionless numbers representing co-ordinates in the parameter space, and to avoid (or at least minimise artificial self-correlations caused by the appearance of the same factors (such as u* in the examined dimensionless combinations (e.g. in Cg=u* /Ug and in dimensionless numbers composed of the governing parameters. We also discuss the 'completeness' of the parameter space from the point of view of large-eddy simulation (LES modeller creating a database for a specific physical problem. As recognised recently, very large scatter of data in prior empirical dependencies of Cg and α on the surface Rossby number Ro=Ug| fz0|-1 (where z0 is the roughness length and the stratification characterised by µ was to a large extent caused by incompactness of the set of the governing parameters. The most important parameter overlooked in the traditional approach is the typical value of the Brunt-Väisälä frequency N in the free atmosphere (immediately above the PBL, which involves, besides Ro and µ, one more dimensionless number: µN=N/ | f |. Accordingly, we consider Cg and α as dependent on the three (rather then two basic dimensionless numbers (including µN using LES database DATABASE64. By these means we determine the form of the dependencies under consideration in the part of the parameter space representing typical atmospheric PBLs, and provide analytical expressions for Cg and α.

  8. On the use of the fictitious wave steepness and related surf-similarity parameters in methods that describe the hydraulic and structural response to waves

    NARCIS (Netherlands)

    Heineke, D.; Verhagen, H.J.

    2007-01-01

    To assess the hydraulic performance of coastal structures - viz. wave run-up, overtopping and reflection - and to evaluate the stability of the armour layers, use is made of the dimensionless surf similarity parameter, as introduced by Battjes (1974). The front side slope of the structure and the

  9. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  10. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  11. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  12. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  13. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  14. Estimation of gloss from rough surface parameters

    Science.gov (United States)

    Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin

    2005-12-01

    Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.

  15. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    Science.gov (United States)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  16. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  17. Study on TVD parameters sensitivity of a crankshaft using multiple scale and state space method considering quadratic and cubic non-linearities

    Directory of Open Access Journals (Sweden)

    R. Talebitooti

    Full Text Available In this paper the effect of quadratic and cubic non-linearities of the system consisting of the crankshaft and torsional vibration damper (TVD is taken into account. TVD consists of non-linear elastomer material used for controlling the torsional vibration of crankshaft. The method of multiple scales is used to solve the governing equations of the system. Meanwhile, the frequency response of the system for both harmonic and sub-harmonic resonances is extracted. In addition, the effects of detuning parameters and other dimensionless parameters for a case of harmonic resonance are investigated. Moreover, the external forces including both inertia and gas forces are simultaneously applied into the model. Finally, in order to study the effectiveness of the parameters, the dimensionless governing equations of the system are solved, considering the state space method. Then, the effects of the torsional damper as well as all corresponding parameters of the system are discussed.

  18. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.

    2005-01-01

    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  19. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  20. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  1. Determination of kinetic parameters of heterogeneous isotopic exchange reaction

    International Nuclear Information System (INIS)

    Huang, Ting-Chia; Tsai, Fuan-Nan

    1977-01-01

    A mathematical model has been proposed for a heterogeneous isotopic exchange reaction which involves film diffusion, surface chemical reaction and intraparticle diffusion. The exchange equation to predict the exchange fraction as a function of time for the spherical particles immersed in a solution of finite volume has been derived. The relations between the exchange fraction and dimensionless time are plotted with xi(=ak sub(f)/KD sub(e)), xi 1 (=K 1 a 2 /D sub(e)) and final fractional uptake as parameters. From the values of the kinetic parameters xi and xi 1 , the relative importance of each limiting step is discussed. Experimental results of the isotopic exchange reaction of calcium ion in both system CaCO 3 (s)/Ca 2+ (aq) and system calcium type resin Dowex 50W-X8/Ca 2+ (aq) are coincident with the theoretical equation proposed in this study. (auth.)

  2. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  3. Effect of Surface Texturing Parameters on the Lubrication Characteristics of an Axial Piston Pump Valve Plate

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Wang

    2018-05-01

    Full Text Available In this article, a geometrical model of different microtextures is established for an axial piston pump valve plate. A finite differential method was used to solve the Reynolds equation for the oil film thickness and pressure, which were simulated under different microtextures. The influence of microtexture shape and structure on performance was studied and optimal parameters sought. Different convergence gaps are formed by different microtexture radii, and they produce different hydrodynamic effects. The lubrication characteristics of the valve plate are better when a microtexture is used and are influenced by the type of microtexture. We reached the following conclusions: (1 The lubrication characteristics of the valve plate are influenced by different microtexture parameters and can be improved by optimizing the microtexture parameters; (2 There is an optimal parameter combination when adding microtexture with three shapes (spherical, cylindrical and square and the optimal dimensionless oil film pressure lubrication characteristics can be obtained; (3 The degree of improvement in the dimensionless oil film pressure lubrication characteristics was (listed from highest to lowest: micro-hemispherical texture > micro-cylindrical texture > micro-square texture.

  4. Defining New Parameters for Green Engineering Design of Treatment Reactors

    Directory of Open Access Journals (Sweden)

    Susana Boeykens

    2016-06-01

    Full Text Available This study proposes a green way to design Plug Flow Reactors (PFR that use biodegradable polymer solutions, capable of contaminant retaining, for industrial wastewater treatment. Usually, to the design of a PFR, the reaction rate is determined by tests on a Continuous Stirred-Tank Reactor (CSTR, these generate toxic effluents and also increase the cost of the design. In this work, empirical expressions (called “slip functions”, in terms of the average concentration of the contaminant, were developed through the study of the transport behaviour of CrVI into solutions of xanthan gum. “In situ” XRµF was selected as a no-invasive micro-technique to determine local concentrations. Slip functions were used with laboratory PFR experiments planned in similar conditions, to obtain useful dimensionless parameters for the industrial design. 

  5. Interacting Effects Induced by Two Neighboring Pits Considering Relative Position Parameters and Pit Depth

    Directory of Open Access Journals (Sweden)

    Yongfang Huang

    2017-04-01

    Full Text Available For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ and pit depth (d with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively.

  6. Parameter-Independent Dynamical Behaviors in Memristor-Based Wien-Bridge Oscillator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2017-01-01

    Full Text Available This paper presents a novel memristor-based Wien-bridge oscillator and investigates its parameter-independent dynamical behaviors. The newly proposed memristive chaotic oscillator is constructed by linearly coupling a nonlinear active filter composed of memristor and capacitor to a Wien-bridge oscillator. For a set of circuit parameters, phase portraits of a double-scroll chaotic attractor are obtained by numerical simulations and then validated by hardware experiments. With a dimensionless system model and the determined system parameters, the initial condition-dependent dynamical behaviors are explored through bifurcation diagrams, Lyapunov exponents, and phase portraits, upon which the coexisting infinitely many attractors and transient chaos related to initial conditions are perfectly offered. These results are well verified by PSIM circuit simulations.

  7. Quantifying the effects of ecological constraints on trait expression using novel trait-gradient analysis parameters.

    Science.gov (United States)

    Ottaviani, Gianluigi; Tsakalos, James L; Keppel, Gunnar; Mucina, Ladislav

    2018-01-01

    Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint ( C i ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of C i allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same

  8. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  9. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  10. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

    Science.gov (United States)

    Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.

    2017-10-01

    In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

  11. Disorder parameter of confinement

    International Nuclear Information System (INIS)

    Nakamura, N.; Ejiri, S.; Matsubara, Y.; Suzuki, T.

    1996-01-01

    The disorder parameter of confinement-deconfinement phase transition based on the monopole action determined previously in SU(2) QCD are investigated. We construct an operator which corresponds to the order parameter defined in the abelian Higgs model. The operator shows proper behaviors as the disorder parameter in the numerical simulations of finite temperature QCD. (orig.)

  12. Waveform inversion in acoustic orthorhombic media with a practical set of parameters

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2017-01-01

    Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.

  13. Waveform inversion in acoustic orthorhombic media with a practical set of parameters

    KAUST Repository

    Masmoudi, Nabil

    2017-08-17

    Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.

  14. Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius da COSTA

    2018-04-01

    Full Text Available Abstract By the analytical model proposed by Dincer and Dost, the mass transfer parameters (moisture transfer coefficient and moisture diffusivity of shrimp samples were determined. Three sets of drying experiments were performed with three samples of shrimp: without boiling (WB, boiled in salt solution (SB and boiled in salt solution and subjected to liquid smoking process (SBS. The experiments were performed under controlled conditions of drying air at temperature of 60°C and velocity of 1.5 m/s. Experimental dimensionless moisture content data were used to calculate the drying coefficients and lag factors, which were then incorporated into the analytical model for slab and cylinder shapes. The results showed an adequate fit between the experimental data and the values predicted from the correlation. The boiling is the most recommended pretreatment, because provided a shorter drying time, with high values of moisture transfer coefficient and moisture diffusivity.

  15. Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2010-04-01

    Full Text Available It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are analysed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter that is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit. On this basis, the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation.

  16. Universality in quantum chaos and the one-parameter scaling theory.

    Science.gov (United States)

    García-García, Antonio M; Wang, Jiao

    2008-02-22

    The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.

  17. Enamel surface topography analysis for diet discrimination. A methodology to enhance and select discriminative parameters

    Science.gov (United States)

    Francisco, Arthur; Blondel, Cécile; Brunetière, Noël; Ramdarshan, Anusha; Merceron, Gildas

    2018-03-01

    Tooth wear and, more specifically, dental microwear texture is a dietary proxy that has been used for years in vertebrate paleoecology and ecology. DMTA, dental microwear texture analysis, relies on a few parameters related to the surface complexity, anisotropy and heterogeneity of the enamel facets at the micrometric scale. Working with few but physically meaningful parameters helps in comparing published results and in defining levels for classification purposes. Other dental microwear approaches are based on ISO parameters and coupled with statistical tests to find the more relevant ones. The present study roughly utilizes most of the aforementioned parameters in their more or less modified form. But more than parameters, we here propose a new approach: instead of a single parameter characterizing the whole surface, we sample the surface and thus generate 9 derived parameters in order to broaden the parameter set. The identification of the most discriminative parameters is performed with an automated procedure which is an extended and refined version of the workflows encountered in some studies. The procedure in its initial form includes the most common tools, like the ANOVA and the correlation analysis, along with the required mathematical tests. The discrimination results show that a simplified form of the procedure is able to more efficiently identify the desired number of discriminative parameters. Also highlighted are some trends like the relevance of working with both height and spatial parameters, as well as the potential benefits of dimensionless surfaces. On a set of 45 surfaces issued from 45 specimens of three modern ruminants with differences in feeding preferences (grazing, leaf-browsing and fruit-eating), it is clearly shown that the level of wear discrimination is improved with the new methodology compared to the other ones.

  18. Cosmological Parameters 2000

    OpenAIRE

    Primack, Joel R.

    2000-01-01

    The cosmological parameters that I emphasize are the age of the universe $t_0$, the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\

  19. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  20. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  1. Reassessment of safeguards parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Richter, J.L.; Mullen, M.F.

    1994-07-01

    The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.

  2. Safeguards systems parameters

    International Nuclear Information System (INIS)

    Avenhaus, R.; Heil, J.

    1979-01-01

    In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection

  3. Electroweak interaction parameters

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-01-01

    After a presentation of the experimentally determined parameters of the standard SU(3) x SU(2) x U(1) model the author discusses the definition of the Weinberg angle. Then masses and widths of the intermediate vector bosons are considered in the framework of the Weinberg-Salam theory with radiative corrections. Furthermore the radiative decays of these bosons are discussed. Then the relations between the masses of the Higgs boson and the top quark are considered. Thereafter grand unification is briefly discussed with special regards to the SU(5) prediction of some observable parameters. Finally some speculations are made concerning the observation of radiative decays in the UA1 experiments. (HSI)

  4. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  5. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  6. Application of decomposition method and inverse prediction of parameters in a moving fin

    International Nuclear Information System (INIS)

    Singla, Rohit K.; Das, Ranjan

    2014-01-01

    Highlights: • Adomian decomposition is used to study a moving fin. • Effects of different parameters on the temperature and efficiency are studied. • Binary-coded GA is used to solve an inverse problem. • Sensitivity analyses of important parameters are carried out. • Measurement error up to 8% is found to be tolerable. - Abstract: The application of the Adomian decomposition method (ADM) is extended to study a conductive–convective and radiating moving fin having variable thermal conductivity. Next, through an inverse approach, ADM in conjunction with a binary-coded genetic algorithm (GA) is also applied for estimation of unknown properties in order to satisfy a given temperature distribution. ADM being one of the widely-used numerical methods for solving non-linear equations, the required temperature field has been obtained using a forward method involving ADM. In the forward problem, the temperature field and efficiency are investigated for various parameters such as convection–conduction parameter, radiation–conduction parameter, Peclet number, convection sink temperature, radiation sink temperature, and dimensionless thermal conductivity. Additionally, in the inverse problem, the effect of random measurement errors, iterative variation of parameters, sensitivity coefficients of unknown parameters are investigated. The performance of GA is compared with few other optimization methods as well as with different temperature measurement points. It is found from the present study that the results obtained from ADM are in good agreement with the results of the differential transformation method available in the literature. It is also observed that for satisfactory reconstruction of the temperature field, the measurement error should be within 8% and the temperature field is strongly dependent on the speed than thermal parameters of the moving fin

  7. Sea surface stability parameters

    International Nuclear Information System (INIS)

    Weber, A.H.; Suich, J.E.

    1978-01-01

    A number of studies dealing with climatology of the Northwest Atlantic Ocean have been published in the last ten years. These published studies have dealt with directly measured meteorological parameters, e.g., wind speed, temperature, etc. This information has been useful because of the increased focus on the near coastal zone where man's activities are increasing in magnitude and scope, e.g., offshore power plants, petroleum production, and the subsequent environmental impacts of these activities. Atmospheric transport of passive or nonpassive material is significantly influenced by the turbulence structure of the atmosphere in the region of the atmosphere-ocean interface. This research entails identification of the suitability of standard atmospheric stability parameters which can be used to determine turbulence structure; the calculation of these parameters for the near-shore and continental shelf regions of the U.S. east coast from Cape Hatteras to Miami, Florida; and the preparation of a climatology of these parameters. In addition, a climatology for average surface stress for the same geographical region is being prepared

  8. Measuring the chargino parameters

    Indian Academy of Sciences (India)

    by measuring the cross-sections with polarized beams at e+e- collider ... is given by the fundamental SUSY parameters: the SU(2) gaugino mass Е¾, the higgsino .... two points in the plane which are symmetric under the interchange ¾Д ° ¾К.

  9. General image acquisition parameters

    International Nuclear Information System (INIS)

    Teissier, J.M.; Lopez, F.M.; Langevin, J.F.

    1993-01-01

    The general parameters are of primordial importance to achieve image quality in terms of spatial resolution and contrast. They also play a role in the acquisition time for each sequence. We describe them separately, before associating them in a decision tree gathering the various options that are possible for diagnosis

  10. Quantization of physical parameters

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)

  11. Similarity Theory and Dimensionless Numbers in Heat Transfer

    Science.gov (United States)

    Marin, E.; Calderon, A.; Delgado-Vasallo, O.

    2009-01-01

    We present basic concepts underlying the so-called similarity theory that in our opinion should be explained in basic undergraduate general physics courses when dealing with heat transport problems, in particular with those involving natural or free convection. A simple example is described that can be useful in showing a criterion for neglecting…

  12. Dictionary of scientific units including dimensionless numbers and scales

    National Research Council Canada - National Science Library

    Jerrard, H.G; McNeill, D.B

    1992-01-01

    .... The text includes the most recently accepted values of all units. Several disciplines, which have in the past employed few scientific principles and the dictionary has been extended to include examples of these.

  13. On the Role of Dimensionless Elastic Fracture Mechanics.

    Science.gov (United States)

    1985-07-03

    34.’ . . . .- . . - . . . - ... - . .. . . . . . -8-.V 6. B.M. Wundt , "A Unified Interpretation of Room Temperature Strength of Notched...207s (1948). D.H. Winne and B.M. Wundt , Application of the Griffith-Irwin theory of crack propagation to the bursting behavior of disks, including... Wundt , A unified interpretation of room-temperature strength of notched specimens as influenced by their size. Metals Engng. Conf., ASME Paper No

  14. Dimensionless energy confinement scaling in W7-AS

    International Nuclear Information System (INIS)

    Preuss, R.; Dose, V.

    2001-01-01

    Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free functions employing Bayesian probability theory. The confinement function was set up as a linear combination of dimensionally exact power law terms as already proposed very early by Connor and Taylor. Generation of this expansion basis is dictated by the basic plasma model which one assumes. Based upon data accumulated in W7-AS, which contains the energy content for a wide variety of variable settings, predictions for single variable scans are made. The scaling functions for density and power scans, respectively, are in quantitative agreement with data collected in W7-AS. The result of a single variable scan is therefore already hidden in the data obtained for arbitrary variable choices and can be extracted from the latter by a proper data analysis. Furthermore, the optimal model for the description of the global transport in W7-AS is identified as the collisional low beta kinetic model. (author)

  15. Dimensionless energy confinement scaling in W7-AS

    International Nuclear Information System (INIS)

    Preuss, R.; Dose, V.; Linden, W. von der

    1999-01-01

    Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free functions employing Bayesian probability theory. The confinement function was set up as a linear combination of dimensionally exact power law terms as already proposed very early by Connor and Taylor. Generation of this expansion basis is dictated by the basic plasma model which one assumes. Based upon data accumulated in W7-AS, which contains the energy content for a wide variety of variable settings, predictions for single variable scans are made. The scaling functions for density and power scans, respectively, are in quantitative agreement with data collected in W7-AS. The result of a single variable scan is therefore already hidden in the data obtained for arbitrary variable choices and can be extracted from the latter by a proper data analysis. Furthermore, the optimal model for the description of the global transport in W7-AS is identified as the collisional low beta kinetic model. (author)

  16. Optomechanical parameter estimation

    International Nuclear Information System (INIS)

    Ang, Shan Zheng; Tsang, Mankei; Harris, Glen I; Bowen, Warwick P

    2013-01-01

    We propose a statistical framework for the problem of parameter estimation from a noisy optomechanical system. The Cramér–Rao lower bound on the estimation errors in the long-time limit is derived and compared with the errors of radiometer and expectation–maximization (EM) algorithms in the estimation of the force noise power. When applied to experimental data, the EM estimator is found to have the lowest error and follow the Cramér–Rao bound most closely. Our analytic results are envisioned to be valuable to optomechanical experiment design, while the EM algorithm, with its ability to estimate most of the system parameters, is envisioned to be useful for optomechanical sensing, atomic magnetometry and fundamental tests of quantum mechanics. (paper)

  17. Critical parameters for ammonia

    International Nuclear Information System (INIS)

    Sato, M.; Masui, G.; Uematsu, M.

    2005-01-01

    (p, ρ, T) measurements and visual observations of the meniscus for ammonia were carried out carefully in the critical region over the range of temperatures: -1 K (T - T c ) 0.04 K, and of densities: -19 kg . m -3 (ρ - ρ c ) 19 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 350, and 400) K. The critical parameters of T c and ρ c were determined based on the results of observation of the critical opalescence. The critical pressure p c was determined from the present measurements at T c on the vapor pressure curve. Comparisons of the critical parameters with values given in the literature are presented

  18. Critical parameters for ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Masui, G. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Mechanical Engineering and Applied Mechanics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)]. E-mail: uematsu@mech.keio.ac.jp

    2005-09-15

    (p, {rho}, T) measurements and visual observations of the meniscus for ammonia were carried out carefully in the critical region over the range of temperatures: -1 K (T - T {sub c}) 0.04 K, and of densities: -19 kg . m{sup -3} ({rho} - {rho} {sub c}) 19 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 350, and 400) K. The critical parameters of T {sub c} and {rho} {sub c} were determined based on the results of observation of the critical opalescence. The critical pressure p {sub c} was determined from the present measurements at T {sub c} on the vapor pressure curve. Comparisons of the critical parameters with values given in the literature are presented.

  19. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1979-03-01

    This document contains up-to-date data on existing or firmly decided prototype or demonstration LMFBR reactors (Table I), on planned commercial size LMFBR according to the present status of design (Table II) and on experimental fast reactors such as BOR-60, DFR, EBR-II, FERMI, FFTF, JOYO, KNK-II, PEC, RAPSODIE-FORTISSIMO (Table III). Only corrected and revised parameters submitted by the countries participating in the IWGFR are included in this document

  20. Ranking as parameter estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Guy, Tatiana Valentine

    2009-01-01

    Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf

  1. Calculation of shielding parameters

    International Nuclear Information System (INIS)

    Montoya Z, J.

    1994-01-01

    With the propose of reduce the hazard to radiation, exist three basic factors: a) time, the time to exposition to working person inside to area, from exist determined speed the doses, is proportional of the time permanence; b) distance, the reduce to doses is inverse square of the distance to exposition point; c) building, consist to interpose between source and exposition point to material. The main aspect development to the analysis of parameters distance and building. The analysis consist to development of the mathematical implicit, in the model of source radioactive, beginning with the geometry to source, distance to exposition source, and configuration building. In the final part was realize one comparative studied to calculus of parameters to blinding, employs two codes CPBGAM and MICROSHIELD, the first made as part to work thesis. The point source its a good approximation to any one real source, but in the majority of the time to propose analysis the spatial distribution of the source must realized in explicit way. The buildings calculus in volumetry's source can be approximate begin's of plan as source adaptations. It's important to have present that not only the building exist the exposition to the radiation, and the parameters time and distance plays an important paper too. (Author)

  2. LMFBR plant parameters 1991

    International Nuclear Information System (INIS)

    1991-03-01

    The document has been prepared on the basis of information provided by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains updated parameters of 27 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBRs). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA), PEC (Italy), RAPSODIE (France), DFR (UK) and EFFBR (USA) are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. Two more reactors appeared in the list: European Fast Reactor (EFR) and PRISM (USA). Parameters of these reactors included in this publication are based on the data from the papers presented at the 23rd Annual Meeting of the IWGFR. All in all more than four hundred corrections and additions have been made to update the document. The report is intended for specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors

  3. ATLAS parameter study

    International Nuclear Information System (INIS)

    Adler, R.J.

    1994-01-01

    The purpose of this study is to make an independent assessment on the parameters chosen for the ATLAS capacitor bank at LANL. The contractor will perform a study of the basic pulsed power parameters of the ATLAS device with baseline functional parameters of >25 MA implosion current and <2.5 microsecond current risetime. Nominal circuit parameters held fixed will be the 14 nH from the vacuum interface to the load, and the nominal load impedances of 1 milliohm for slow loads and 10 milliohms for fast loads. Single Ended designs, as opposed to bipolar designs, will be studied in detail. The ATLAS pulsed power design problem is about inductance. The reason that a 36 MJ bank is required is that such a bank has enough individual capacitors so that the parallel inductance is acceptably low. Since about half the inductance is in the bank, and the inductance and time constant of the submodules is fixed, the variation of output with a given parameter will generally be a weak one. In general, the dl/dt calculation demonstrates that for the real system inductances, 700 kV is the optimum voltage for the bank to drive X-ray loads. The optimum is broad, and there is little reduction in performance at voltages as low as 450 kV. The direct drive velocity analysis also shows that the optimum velocity is between 480 and 800 kV for a variety of assumptions, and that there is less than a 10% variation in velocity over this range. Voltages in the 120 kV--600 kV range are desirable for driving heavy liners. A compromise optimum operating point might be 480 kV, at which all X-ray operation scenarios are within 10% of their velocity optimum, and heavy liners can be configured to be near optimum if small enough. Based on very preliminary studies the author believes that the choice of a single operating voltage point (say, 480 kV) is unnecessary, and that a bank engineered for dual operation at 480 and 240 kV will be the best solution to the ATLAS problem

  4. Radiation portal evaluation parameters

    International Nuclear Information System (INIS)

    York, R.L.

    1998-01-01

    The detection of the unauthorized movement of radioactive materials is one of the most effective nonproliferation measures. Automatic special nuclear material (SNM) portal monitors are designed to detect this unauthorized movement and are an important part of the safeguard systems at US nuclear facilities. SNM portals differ from contamination monitors because they are designed to have high sensitivity for the low energy gamma-rays associated with highly enriched uranium (HEU) and plutonium. These instruments are now being installed at international borders to prevent the spread of radioactive contamination an SNM. In this paper the parameters important to evaluating radiation portal monitors are discussed. (author)

  5. Buncher system parameter optimization

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1981-01-01

    A least-squares algorithm is presented to calculate the RF amplitudes and cavity spacings for a series of buncher cavities each resonating at a frequency that is a multiple of a fundamental frequency of interest. The longitudinal phase-space distribution, obtained by particle tracing through the bunching system, is compared to a desired distribution function of energy and phase. The buncher cavity parameters are adjusted to minimize the difference between these two distributions. Examples are given for zero space charge. The manner in which the method can be extended to include space charge using the 3-D space-charge calculation procedure is indicated

  6. Infrared Drying Parameter Optimization

    Science.gov (United States)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  7. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1985-07-01

    This document has been prepared on the basis of information compiled by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains parameters of 25 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBR). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA) are presented because its design was nearly finished and most of the components were fabricated at the time when the project was terminated. Three reactors (RAPSODIE (France), DFR (UK) and EFFBR (USA)) have been shut down. However, they are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. The first LMFBRs (CLEMENTINE (USA), EBR-1 (USA), BR-2 (USSR), BR-5 (USSR)) and very special reactors (LAMPRE (USA), SEFOR (USA)) were not recommended by the members of the IWGFR to be included in the report

  8. Display Parameters and Requirements

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC

  9. Timetable Attractiveness Parameters

    DEFF Research Database (Denmark)

    Schittenhelm, Bernd

    2008-01-01

    Timetable attractiveness is influenced by a set of key parameters that are described in this article. Regarding the superior structure of the timetable, the trend in Europe goes towards periodic regular interval timetables. Regular departures and focus on optimal transfer possibilities make...... these timetables attractive. The travel time in the timetable depends on the characteristics of the infrastructure and rolling stock, the heterogeneity of the planned train traffic and the necessary number of transfers on the passenger’s journey. Planned interdependencies between trains, such as transfers...... and heterogeneous traffic, add complexity to the timetable. The risk of spreading initial delays to other trains and parts of the network increases with the level of timetable complexity....

  10. Parameter measurement of target

    International Nuclear Information System (INIS)

    Gao Dangzhong

    2001-01-01

    The progress of parameter measurement of target (ICF-15) in 1999 are presented, including the design and contract of the microsphere equator profiler, the precise air bearing manufacturing, high-resolution X-ray image of multi-layer shells and the X-ray photos processed with special image and data software, some plastic shells measured in precision of 0.3 μm, the high-resolution observation and photograph system of 'dew-point method', special fixture of target and its temperature distribution measuring, the dew-point temperature and fuel gas pressure of shells measuring with internal pressure of 5 - 15 (x10 5 ) Pa D 2 and wall thickness of 1.5∼3 μm

  11. Safety Parameters Graphical Interface

    International Nuclear Information System (INIS)

    Canamero, B.

    1998-01-01

    Nuclear power plant data are received at the Operations Center of the Consejo de Seguridad Nuclear in emergency situations. In order to achieve the required interface and to prepare those data to perform simulation and forecasting with already existing computer codes a Safety Parameters Graphical Interface (IGPS) has been developed. The system runs in a UNIX environment and use the Xwindows capabilities. The received data are stored in such a way that it can be easily used for further analysis and training activities. The system consists of task-oriented modules (processes) which communicate each other using well known UNIX mechanisms (signals, sockets and shared memory segments). IGPS conceptually have two different parts: Data collection and preparation, and Data monitorization. (Author)

  12. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  13. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  14. Parameter values for the estimation of radionuclide transfer to major food crops in Korea

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Lee, Chang-Woo

    2008-01-01

    This paper summarizes the results of the radiotracer experiments and field studies performed in Korea for the past 20 years to obtain parameter values for estimating the environmental transfer of radionuclides to food crops. With regards to direct plant contamination, the interception fractions, weathering half-lives and translocation factors of Cs, Sr, Mn, Co and Ru were measured for depositions at different growth stages of selected food crops. In order to investigate an indirect contamination pathway, the soil-to-plant transfer factors (TF m , dimensionless) of Cs, Sr, Mn, Co and/or Zn were measured for rice, Chinese cabbage, radish, soybean, barley, lettuce and so on in one or more soils. In addition, the transfer factors (TF a , m 2 kg -1 ) based on a deposition density were also measured following depositions at different times during the growth periods of several food crops. Particularly for rice and Chinese cabbage, tritium experiments were also carried out for the TF a . The obtained parameter values varied considerably with the soils, crops, radionuclides and deposition times. These data would be applicable to both normal and acute releases not only in Korea but also in many other countries. (author)

  15. [Acoustical parameters of toys].

    Science.gov (United States)

    Harazin, Barbara

    2010-01-01

    Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.

  16. Parameters of care for craniosynostosis

    DEFF Research Database (Denmark)

    McCarthy, Joseph G; Warren, Stephen M; Bernstein, Joseph

    2012-01-01

    A multidisciplinary meeting was held from March 4 to 6, 2010, in Atlanta, Georgia, entitled "Craniosynostosis: Developing Parameters for Diagnosis, Treatment, and Management." The goal of this meeting was to create parameters of care for individuals with craniosynostosis.......A multidisciplinary meeting was held from March 4 to 6, 2010, in Atlanta, Georgia, entitled "Craniosynostosis: Developing Parameters for Diagnosis, Treatment, and Management." The goal of this meeting was to create parameters of care for individuals with craniosynostosis....

  17. Subsurface Geotechnical Parameters Report

    International Nuclear Information System (INIS)

    Rigby, D.; Mrugala, M.; Shideler, G.; Davidsavor, T.; Leem, J.; Buesch, D.; Sun, Y.; Potyondy, D.; Christianson, M.

    2003-01-01

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  18. Subsurface Geotechnical Parameters Report

    Energy Technology Data Exchange (ETDEWEB)

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  19. WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews

  20. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    Science.gov (United States)

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  1. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  2. Improved Estimates of Thermodynamic Parameters

    Science.gov (United States)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  3. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Systematic of delayed neutron parameters

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.

    2000-01-01

    The experimental studies of the energy dependence of the delayed neutron (DN) parameters for various fission systems has shown that the behaviour of a some combination of delayed neutron parameters has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. It was presented the preliminary results which were obtained during study the physics interpretation of the results [ru

  5. Parameters in pure type systems

    NARCIS (Netherlands)

    Bloo, C.J.; Kamareddine, F.; Laan, T.D.L.; Nederpelt, R.P.; Rajsbaum, S.

    2002-01-01

    In this paper we study the addition of parameters to typed ¿-calculus with definitions. We show that the resulting systems have nice properties and illustrate that parameters allow for a better fine-tuning of the strength of type systems as well as staying closer to type systems used in practice in

  6. ACTIVATION PARAMETERS AND EXCESS THERMODYANAMIC ...

    African Journals Online (AJOL)

    Applying these data, viscosity-B-coefficients, activation parameters (Δμ10≠) and (Δμ20≠) and excess thermodynamic functions, viz., excess molar volume (VE), excess viscosity, ηE and excess molar free energy of activation of flow, (GE) were calculated. The value of interaction parameter, d, of Grunberg and Nissan ...

  7. HF Parameters of Induction Motor

    Directory of Open Access Journals (Sweden)

    M. N. Benallal

    2017-09-01

    Full Text Available This article describes the results of experimental studies of HF input and primary parameters. A simulation model in Matlab SimulinkTM of multiphase windings as ladder circuit of coils is developed. A method for determining the primary parameters of ladder equivalent circuits is presented.

  8. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  9. Comparison of Parameter Identification Techniques

    Directory of Open Access Journals (Sweden)

    Eder Rafael

    2016-01-01

    Full Text Available Model-based control of mechatronic systems requires excellent knowledge about the physical behavior of each component. For several types of components of a system, e.g. mechanical or electrical ones, the dynamic behavior can be described by means of a mathematic model consisting of a set of differential equations, difference equations and/or algebraic constraint equations. The knowledge of a realistic mathematic model and its parameter values is essential to represent the behaviour of a mechatronic system. Frequently it is hard or impossible to obtain all required values of the model parameters from the producer, so an appropriate parameter estimation technique is required to compute missing parameters. A manifold of parameter identification techniques can be found in the literature, but their suitability depends on the mathematic model. Previous work dealt with the automatic assembly of mathematical models of serial and parallel robots with drives and controllers within the dynamic multibody simulation code HOTINT as fully-fledged mechatronic simulation. Several parameters of such robot models were identified successfully by our embedded algorithm. The present work proposes an improved version of the identification algorithm with higher performance. The quality of the identified parameter values and the computation effort are compared with another standard technique.

  10. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  11. Two parameters Lie group analysis and numerical solution of unsteady free convective flow of non-Newtonian fluid

    Directory of Open Access Journals (Sweden)

    M.J. Uddin

    2016-09-01

    Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.

  12. Biotropic parameters of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Shishlo, M.A.

    The use of magnetic fields (MF) in biology and medicine to control biological systems has led to appearance of the term, biotropic parameters of MF. They include the physical characteristics of MF, which determine the primary biologically significant physicochemical mechanisms of field action causing formation of corresponding reactions on the level of the integral organism. These parameters include MF intensity, gradient, vector, pulse frequency and shape, and duration of exposure. Factors that elicit responses by the biological system include such parameter of MF interaction with the integral organism as localization of exposure and volume of tissues interacting with the field, as well as the initial state of the organism. In essence, the findings of experimental studies of biotropic parameters of MF make it possible to control physiological processes and will aid in optimizing methods of MF therapy.

  13. Parameters of care for craniosynostosis

    DEFF Research Database (Denmark)

    Vargervik, Karin; Rubin, Marcie S; Grayson, Barry H

    2012-01-01

    A multidisciplinary conference was convened in March 2010 with the charge to develop parameters of care for patients with craniosynostosis. The 52 participants represented 16 medical specialties and 16 professional societies. Herein, we present the dental, orthodontic, and surgical care...

  14. Real-Time Parameter Identification

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have implemented in the control room a technique for estimating in real time the aerodynamic parameters that describe the stability and control...

  15. THE HAEMORHEOLOGICAL PARAMETERS OF HYPERTENSIVE ...

    African Journals Online (AJOL)

    admin

    ) and. Whole Blood Relative Viscosity (WBRV) were determined by capillary viscometry as described by Reid and Ugwu (1987) and recently modified by Korubo-Owiye et al. (1997). All haemorheological parameters were analyzed within 2 ...

  16. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called ... However, there are other parameters which are fairly good indicators ... Whereas a final deciding factor reflecting on .... matter of a future work.

  17. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  18. Reduction of robot base parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vandanjon, P O [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes et Systemes Avances; Gautier, M [Nantes Univ., 44 (France)

    1996-12-31

    This paper is a new step in the search of minimum dynamic parameters of robots. In spite of planing exciting trajectories and using base parameters, some parameters remain not identifiable due to the perturbation effects. In this paper, we propose methods to reduce the set of base parameters in order to get an essential set of parameters. This new set defines a simplified identification model witch improves the noise immunity of the estimation process. It contributes also in reducing the computation burden of a simplified dynamic model. Different methods are proposed and are classified in two parts: methods, witch perform reduction and identification together, come from statistical field and methods, witch reduces the model before the identification thanks to a priori information, come from numerical field like the QR factorization. Statistical tools and QR reduction are shown to be efficient and adapted to determine the essential parameters. They can be applied to open-loop, or graph structured rigid robot, as well as flexible-link robot. Application for the PUMA 560 robot is given. (authors). 9 refs., 4 tabs.

  19. Reduction of robot base parameters

    International Nuclear Information System (INIS)

    Vandanjon, P.O.

    1995-01-01

    This paper is a new step in the search of minimum dynamic parameters of robots. In spite of planing exciting trajectories and using base parameters, some parameters remain not identifiable due to the perturbation effects. In this paper, we propose methods to reduce the set of base parameters in order to get an essential set of parameters. This new set defines a simplified identification model witch improves the noise immunity of the estimation process. It contributes also in reducing the computation burden of a simplified dynamic model. Different methods are proposed and are classified in two parts: methods, witch perform reduction and identification together, come from statistical field and methods, witch reduces the model before the identification thanks to a priori information, come from numerical field like the QR factorization. Statistical tools and QR reduction are shown to be efficient and adapted to determine the essential parameters. They can be applied to open-loop, or graph structured rigid robot, as well as flexible-link robot. Application for the PUMA 560 robot is given. (authors). 9 refs., 4 tabs

  20. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    Science.gov (United States)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  1. Free flight in parameter space

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nilsson, Per Anders

    2008-01-01

    with continuous interpolation between population members. With a suitable sound engine, the system forms a surprisingly expressive performance instrument, used by the electronic free impro duo pantoMorf in concerts and recording sessions over the last year.......The well-known difficulty of controlling many synthesis parameters in performance, for exploration and expression, is addressed. Inspired by interactive evolution, random vectors in parameter space are assigned to an array of pressure sensitive pads. Vectors are scaled with pressure and added...... to define the current point in parameter space. Vectors can be scaled globally, allowing exploration of the whole space or minute timberal expression. The vector origin can be shifted at any time, allowing exploration of subspaces. In essence, this amounts to mutation-based interactive evolution...

  2. Hecke algebras with unequal parameters

    CERN Document Server

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  3. Catalogue of HI PArameters (CHIPA)

    Science.gov (United States)

    Saponara, J.; Benaglia, P.; Koribalski, B.; Andruchow, I.

    2015-08-01

    The catalogue of HI parameters of galaxies HI (CHIPA) is the natural continuation of the compilation by M.C. Martin in 1998. CHIPA provides the most important parameters of nearby galaxies derived from observations of the neutral Hydrogen line. The catalogue contains information of 1400 galaxies across the sky and different morphological types. Parameters like the optical diameter of the galaxy, the blue magnitude, the distance, morphological type, HI extension are listed among others. Maps of the HI distribution, velocity and velocity dispersion can also be display for some cases. The main objective of this catalogue is to facilitate the bibliographic queries, through searching in a database accessible from the internet that will be available in 2015 (the website is under construction). The database was built using the open source `` mysql (SQL, Structured Query Language, management system relational database) '', while the website was built with ''HTML (Hypertext Markup Language)'' and ''PHP (Hypertext Preprocessor)''.

  4. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  5. The ASDEX Upgrade Parameter Server

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Gregor, E-mail: gregor.neu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf (Germany); Gräter, Alex [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf (Germany); Rapson, Christopher J.; Raupp, Gerhard; Treutterer, Wolfgang; Zasche, Dietrich; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • We describe our main tool in the plasma control configuration process. • Parameter access and computation are configurable with XML files. • Simple implementation of in situ tests by rerouting requests to test data. • Pulse specific overriding of parameters. - Abstract: Concepts for the configuration of plant systems and plasma control of modern devices such as ITER and W7-X are based on global data structures, or “pulse schedules” or “experiment programs”, which specify all physics characteristics (waveforms for controlled actuators and plasma quantities) and all technical characteristics of the plant systems (diagnostics and actuators operation settings) for a planned pulse. At ASDEX Upgrade we use different approach. We observed that the physics characteristics driving the discharge control system (DCS) are frequently modified on a pulse-to-pulse basis. Plant system operation, however, relies on technical standard settings, or “basic configurations” to provide guaranteed resources or services, which evolve according to longer term session or campaign operation schedules. This is why AUG manages technical configuration items separately from physics items. Consistent computation of the DCS configuration requires access to all this physics and technical data, which include the discharge programme (DP), settings of actuator systems and real-time diagnostics, the current system state and a database of static parameters. A Parameter Server provides a unified view on all these parameter sets and acts as the central point of access. We describe the functionality and architecture of the Parameter Server and its embedding into the control environment.

  6. Measuring the Michel parameter ξ''

    International Nuclear Information System (INIS)

    Knowles, P.; Deutsch, J.; Egger, J.; Fetscher, W.; Foroughi, F.; Govaerts, J.; Hadri, M.; Kirch, K.; Kistryn, S.; Lang, J.; Morelle, X.; Naviliat, O.; Ninane, A.; Prieels, R.; Severijns, N.; Simons, L.; Sromicki, J.; Vandormael, S.; Hove, P. van

    1999-01-01

    Unlike the majority of Michel parameters which are consistent with the Standard Model V-A interaction, the experimental value of ξ''(=0.65±0.36) [1] is poorly known. Our experiment will measure the longitudinal polarization, P L , of positrons emitted from the decay of polarized muons. The value of P L , equal to unity in the Standard Model, will decrease for high energy positrons emitted antiparallel to the muon spin if the combination of Michel parameters ξ''/ξξ' - 1 deviates from the Standard Model value of zero

  7. Analysis Method of Combine Harvesters Technical Level by Functional and Structural Parameters

    Directory of Open Access Journals (Sweden)

    E. V. Zhalnin

    2018-01-01

    Full Text Available The analysis of modern methods of evaluation of the grain harvesters technical level revealed a discrepancy in various criteria: comparative parameters, dimensionless series, the names of firms, the power of the motor, the width of the capture of the harvester, the capacity at the location of the manufacturer plant, advertising brands. (Purpose of research This led to a variety in the name of harvester models, which significantly complicates the assessment of their technical level, complicates the choice of agricultural necessary to him fashion, does not give the perception of the continuity of the change of generations of combines, makes it impossible to analyze trends in their development, does not disclose the technological essence of a model, but - most importantly - combines can not be compared with each other. The figures in the name of the harvester model are not related functionally to the main parameters and performance capabilities. (Materials and methods The close correlation in the form of a linear equation between their design parameters and the capacity of combines was revealed. Verification of this equation in the process of operation of the combine showed that it statistically stable and the estimates are always within the confidence interval with an error of 5-8 percent. It was found that four parameters of the variety of factors, that affect the performance of the harvester per hour net time, having most close correlation with it are: the motor power and the square of the separation concave, straw walkers and sieves for cleaning. (Results and discussion On the basis of the revealed correlation dependence we proposed a new method of assessment of the technical level of combines, which is based on the throughput (kg/s of the wetted material and the size series, indicating the nominal productivity of the combine in centners of grain harvested in 1 hour of basic time. The methodological background and mathematical apparatus

  8. PUSPATI Triga Reactor pulsing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Auu, Gui Ah; Abu, Puad Haji; Yunus, Yaziz [PUSPATI, Selangor (Malaysia)

    1984-06-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw.

  9. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  10. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  11. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  12. IAHR List of Sea Parameters

    DEFF Research Database (Denmark)

    Frigaard, Peter; Helm-Petersen, J; Klopman, G.

    1997-01-01

    A Working Group on multidirectional waves formed by the International Association for Hydraulic Research has proposed an update of the IAHR List of Sea State Parameters from 1986 in the part concerning directional. Especially wave structure interaction with reflection of the waves have been treated....

  13. SYVAC3 parameter distribution package

    Energy Technology Data Exchange (ETDEWEB)

    Andres, T; Skeet, A

    1995-01-01

    SYVAC3 (Systems Variability Analysis Code, generation 3) is a computer program that implements a method called systems variability analysis to analyze the behaviour of a system in the presence of uncertainty. This method is based on simulating the system many times to determine the variation in behaviour it can exhibit. SYVAC3 specializes in systems representing the transport of contaminants, and has several features to simplify the modelling of such systems. It provides a general tool for estimating environmental impacts from the dispersal of contaminants. This report describes a software object type (a generalization of a data type) called Parameter Distribution. This object type is used in SYVAC3, and can also be used independently. Parameter Distribution has the following subtypes: beta distribution; binomial distribution; constant distribution; lognormal distribution; loguniform distribution; normal distribution; piecewise uniform distribution; Triangular distribution; and uniform distribution. Some of these distributions can be altered by correlating two parameter distribution objects. This report provides complete specifications for parameter distributions, and also explains how to use them. It should meet the needs of casual users, reviewers, and programmers who wish to add their own subtypes. (author). 30 refs., 75 tabs., 56 figs.

  14. Identifying parameter regions for multistationarity

    DEFF Research Database (Denmark)

    Conradi, Carsten; Feliu, Elisenda; Mincheva, Maya

    2017-01-01

    is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell...

  15. Load Estimation from Modal Parameters

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández

    2007-01-01

    In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF m...

  16. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  17. QUALITY PARAMETERS IN NANOTECHNOLOGIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdoğan Eker

    2013-06-01

    Full Text Available Nanotechnology concept which has added a new dimension to our lives in recent years, is finding a place in every sector day by day. The combined effect of nanotechnology is almost equal to the industrial revolution of last 200 years and have is able to fill all developments in a few years. However this development should be taken under control. Otherwise unstoppable new structures will not ease life but will be a problem for humanity. For this purpose, the main parameters (from the start up stage of nano-technologic applications to the obtained product should be checked. These parameters are actually not different than the adaptation of the classical quality indicators for nanotechnology applications. Especially it plays an important role in obtaining a uniform distribution and regarding the features of the end product in nano-technological ceramic and etc. applications. The most important problem faced in particles of that size is the accumulation they create. Another problem is the increasing friction force as size gets smaller. The friction force of asubstance increases proportionally with the cube of its surface area. Another problem is surface tension. The increasing surface tension due to increasing surface area will cause the particles to attract and stick to each other. The structures aimed to be obtained are mostly complex and especially in upwards approach, it is thermodynamically very hard for the atoms to get into that order. Therefore in this announcement, we stated the quality parameters that will be taken into consideration in nano-technological applications and the methods for obtaining those parameters. The aim is to explain these parameters with all dimensions so that they will lead the way to the future nano-technological applications.

  18. Parameter identification of chaos system based on unknown parameter observer

    International Nuclear Information System (INIS)

    Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin

    2008-01-01

    Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach

  19. Design of a Data Catalogue for Perdigão-2017 Field Experiment: Establishing the Relevant Parameters, Post-Processing Techniques and Users Access

    Science.gov (United States)

    Palma, J. L.; Belo-Pereira, M.; Leo, L. S.; Fernando, J.; Wildmann, N.; Gerz, T.; Rodrigues, C. V.; Lopes, A. S.; Lopes, J. C.

    2017-12-01

    Perdigão is the largest of a series of wind-mapping studies embedded in the on-going NEWA (New European Wind Atlas) Project. The intensive observational period of the Perdigão field experiment resulted in an unprecedented volume of data, covering several wind conditions through 46 consecutive days between May and June 2017. For researchers looking into specific events, it is time consuming to scrutinise the datasets looking for appropriate conditions. Such task becomes harder if the parameters of interest were not measured directly, instead requiring their computation from the raw datasets. This work will present the e-Science platform developed by University of Porto for the Perdigao dataset. The platform will assist scientists of Perdigao and the larger scientific community in extrapolating the datasets associated to specific flow regimes of interest as well as automatically performing post-processing/filtering operations internally in the platform. We will illustrate the flow regime categories identified in Perdigao based on several parameters such as weather type classification, cloud characteristics, as well as stability regime indicators (Brunt-Väisälä frequency, Scorer parameter, potential temperature inversion heights, dimensionless Richardson and Froude numbers) and wind regime indicators. Examples of some of the post-processing techniques available in the e-Science platform, such as the Savitzky-Golay low-pass filtering technique, will be also presented.

  20. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    Science.gov (United States)

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  1. Fast determination of plasma parameters

    International Nuclear Information System (INIS)

    Wijnands, T.J.; Parlange, F.; Joffrin, E.

    1995-01-01

    Fast analysis of diagnostic signals of a tokamak discharge is demonstrated by using 4 fundamentally different techniques. A comparison between Function Parametrization (FP), Canonical Correlation Analysis (CCA) and a particular Neural Network (NN) configuration known as the Multi Layer Perceptron (MLP) is carried out, thereby taking a unique linear model based on a Singular Value Decomposition (SVD) as a reference. The various techniques provide all functional representations of characteristic plasma parameters in terms of the values of the measurements and are based on an analysis of a large, experimentally achieved database. A brief mathematical description of the various techniques is given, followed by two particular applications to Tore Supra diagnostic data. The first problem is concerned with the identification of the plasma boundary parameters using the poloidal field and differential poloidal flux measurements. A second application involves the interpretation of line integrated data from the multichannel interfero-polarimeter to obtain the central value of the safety factor. (author) 4 refs.; 3 figs

  2. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  3. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  4. Inelastic scattering and deformation parameters

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1978-01-01

    In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory

  5. Precision measurements of electroweak parameters

    CERN Document Server

    Savin, Alexander

    2017-01-01

    A set of selected precise measurements of the SM parameters from the LHC experiments is discussed. Results on W-mass measurement and forward-backward asymmetry in production of the Drell--Yan events in both dielectron and dimuon decay channels are presented together with results on the effective mixing angle measurements. Electroweak production of the vector bosons in association with two jets is discussed.

  6. Failure probability under parameter uncertainty.

    Science.gov (United States)

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  7. PUSPATI Triga Reactor pulsing parameters

    International Nuclear Information System (INIS)

    Gui Ah Auu; Puad Haji Abu; Yaziz Yunus

    1984-01-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw. (author)

  8. Parameter estimation in plasmonic QED

    Science.gov (United States)

    Jahromi, H. Rangani

    2018-03-01

    We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to πrad, the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation.

  9. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  10. Key parameters controlling radiology departments

    International Nuclear Information System (INIS)

    Busch, Hans-Peter

    2011-01-01

    For radiology departments and outstanding practises control and optimization of processes demand an efficient management based on key data. Systems of key data deliver indicators for control of medical quality, service quality and economics. For practices effectiveness (productivity), for hospitals effectiveness and efficiency are in the focus of economical optimization strategies. Task of daily key data is continuous monitoring of activities and workflow, task of weekly/monthly key data is control of data quality, process quality and achievement of objectives, task of yearly key data is determination of long term strategies (marketing) and comparison with competitors (benchmarking). Key parameters have to be defined clearly and have to be available directly. For generation, evaluation and control of key parameters suitable forms of organization and processes are necessary. Strategies for the future will be directed more to the total processes of treatment. To think in total processes and to steer and optimize with suitable parameters is the challenge for participants in the healthcare market of the future. (orig.)

  11. Modifying factors for metabolic parameters

    International Nuclear Information System (INIS)

    Inaba, Jiro

    1990-01-01

    Studies on factors which influence the metabolic parameter for calculation of radiation doses from intakes of radionuclides are very important for estimation of the doses for the general public, because the present procedures recommended by the International Commission on Radiological Protection is for occupationally exposed workers and the underlying metabolic and dosimetric models have been developed from studies on adult man and experiments on adult animals and from observations on radionuclides in physico-chemically simple form. Many factors have been reported to influence the metabolic parameters. Among them, the food-chain involvement of radionuclides and the age-dependence in humans and animals are most significant as environmental and physiological factor, respectively. In connection with the age-dependence of dose calculation, the ICRP started a new programme. They organized a Task Group on Age-Dependent Dose-Factors where relevant information on metabolic and biokinetic parameters are presently being reviewed for development of a set of dose factors for the following age-groups: infant, 1-year-old, 5-year-old, 10-year-old, 15-year-old, and ICRP Reference Man. The first stage of the work is for age-dependent integrated organ and effective dose factors for radioisotopes of the following elements: hydrogen, carbon, iodine, cesium, strontium, plutonium and americium. (author)

  12. CFD Modelling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc

    Directory of Open Access Journals (Sweden)

    Y. Pan

    2014-03-01

    Full Text Available A novel dry slag granulation process based on a spinning disc is being developed by CSIRO. This process utilises centrifugal force to break up molten slag into droplets, which are then quenched into solidified granules by a flow of cold air. In this process the sensible heat of slag is recovered as hot air. In the present work, a previously developed steady-state, two-dimensional and multiphase CFD model was applied to perform parametric numerical experiments to investigate the effects of a number of parameters on the liquid film thickness at the disc edge, which included liquid mass feeding (pouring rate, disc spinning speed, disc radius, liquid viscosity, density and surface tension. The modelling results were compared with experimental data and were found to be in good agreement. To reduce the number of simulations needed, Box and Behnken's fractional factorial design of numerical experiment was adopted. Furthermore, in order for the modelling results to be applicable to atomisation of different liquids using spinning discs of different sizes, a dimensionless correlation was developed based on dimensional analysis of the numerical simulation data. The modelling results indicate that the liquid film thickness can be significantly influenced by the disc radius and spinning speed, the liquid mass feeding rate, viscosity and density, whereas the liquid surface tension has a negligible effect.

  13. Parameter extraction with neural networks

    Science.gov (United States)

    Cazzanti, Luca; Khan, Mumit; Cerrina, Franco

    1998-06-01

    In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs

  14. Normalisation of body composition parameters for nutritional assessment

    International Nuclear Information System (INIS)

    Preston, Thomas

    2014-01-01

    Full text: Normalisation of body composition parameters to an index of body size facilitates comparison of a subject’s measurements with those of a population. There is an obvious focus on indexes of obesity, but first it is informative to consider Fat Free Mass (FFM) in the context of common anthropometric measures of body size namely, height and weight. The contention is that FFM is a more physiological measure of body size than body mass. Many studies have shown that FFM relates to height ^p. Although there is debate over the appropriate exponent especially in early life, it appears to lie between 2 and 3. If 2, then FFM Index (FFMI; kg/m2) and Fat Mass Index (FMI; kg/m2) can be summed to give BMI. If 3 were used as exponent, then FFMI (kg/m3) plus FMI (kg/m3) gives the Ponderal Index (PI; weight/height3). In 2013, Burton argued that that a cubic exponent is appropriate for normalisation as it is a dimensionless quotient. In 2012, Wang and co-workers repeated earlier observations showing a strong linear relationship between FFM and height3. The importance of the latter study comes from the fact that a 4 compartment body composition model was used, which is recognised as the most accurate means of describing FFM. Once the basis of a FFMI has been defined it can be used to compare measurements with those of a population, either directly, as a ratio to a norm or as a Z-score. FFMI charts could be developed for use in child growth. Other related indexes can be determined for use in specific circumstances such as: body cell mass index (growth and wasting); skeletal muscle mass index (SMMI) or appendicular SMMI (growth and sarcopenia); bone mineral mass index (osteoporosis); extracellular fluid index (hydration). Finally, it is logical that the same system is used to define an adiposity index, so Fat Mass Index (FMI; kg/height3) can be used as it is consistent with FFMI (kg/height3) and PI. It should also be noted that the index FM/FFM, describes an individual

  15. On noncommutativity with bifermionic parameter

    International Nuclear Information System (INIS)

    Acatrinei, Ciprian Sorin

    2008-01-01

    Recently Gitman and Vassilevich proposed an interesting model of noncommutative (NC) scalar field theory, with a noncommutativity parameter assumed to be the product of two Grassmann variables. They showed in particular that the model possesses a local energy-momentum tensor. Since such a property is quite unusual for a NC model, we provide here an alternative picture, based on an operatorial formulation of NC field theory. It leads to complete locality of the degrees of freedom of the theory, a property in agreement with the termination of the star-product at the second term in its series. (author)

  16. Investigation on Ion Source Parameters

    CERN Document Server

    M. Cheikh Mhamed, S. Essabaa, C. Lau

    The EURISOL multi-mega-watt target station requires dedicated radioactive ion sources. Notably, they must be capable of operating under extremely hard radiations and with a larger fission target producing over 1014 fissions/s. The realisation of next-generation ion sources suitable for such operating conditions needs exhaustive studies and developments. In order to take up such a challenge, a review on radioactive ion sources was achieved and the investigation on ion source parameters was in particular focused on a plasma ion source through a R&D program.

  17. DP: Parameter Display Page Program

    International Nuclear Information System (INIS)

    Anderson, M.

    1994-01-01

    The Parameter Display Page program (DP) is a Motif/X11-based program to allow easily configured, dynamic device and process variable monitoring and manipulation in the EPICS environment. DP provides a tabular data format for interactive viewing and manipulation of device and process variable statistics, as well as formatted PostScript output to files and printers. DP understands and operates in two (unfortunately disjoint at this time) namespaces in the EPICS environment ''devices'' and ''process variables''. The higher level namespace of devices includes Composite and Atomic Devices registered via the Device Access server; the lower level (flat) namespace is that of normal Process Variables accessible via Channel Access

  18. Uncertainties of Molecular Structural Parameters

    International Nuclear Information System (INIS)

    Császár, Attila G.

    2014-01-01

    Full text: The most fundamental property of a molecule is its three-dimensional (3D) structure formed by its constituent atoms (see, e.g., the perfectly regular hexagon associated with benzene). It is generally accepted that knowledge of the detailed structure of a molecule is a prerequisite to determine most of its other properties. What nowadays is a seemingly simple concept, namely that molecules have a structure, was introduced into chemistry in the 19th century. Naturally, the word changed its meaning over the years. Elemental analysis, simple structural formulae, two-dimensional and then 3D structures mark the development of the concept to its modern meaning. When quantum physics and quantum chemistry emerged in the 1920s, the simple concept associating structure with a three-dimensional object seemingly gained a firm support. Nevertheless, what seems self-explanatory today is in fact not so straightforward to justify within quantum mechanics. In quantum chemistry the concept of an equilibrium structure of a molecule is tied to the Born-Oppenheimer approximation but beyond the adiabatic separation of the motions of the nuclei and the electrons the meaning of a structure is still slightly obscured. Putting the conceptual difficulties aside, there are several experimental, empirical, and theoretical techniques to determine structures of molecules. One particular problem, strongly related to the question of uncertainties of “measured” or “computed” structural parameters, is that all the different techniques correspond to different structure definitions and thus yield different structural parameters. Experiments probing the structure of molecules rely on a number of structure definitions, to name just a few: r_0, r_g, r_a, r_s, r_m, etc., and one should also consider the temperature dependence of most of these structural parameters which differ from each other in the way the rovibrational motions of the molecules are treated and how the averaging is

  19. Resonance parameter analysis with SAMMY

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1988-01-01

    The multilevel R-matrix computer code SAMMY has evolved over the past decade to become an important analysis tool for neutron data. SAMMY uses the Reich-Moore approximation to the multilevel R-matrix and includes an optional logarithmic parameterization of the external R-function. Doppler broadening is simulated either by numerical integration using the Gaussian approximation to the free gas model or by a more rigorous solution of the partial differential equation equivalent to the exact free gas model. Resolution broadening of cross sections and derivatives also has new options that more accurately represent the experimental situation. SAMMY treats constant normalization and some types of backgrounds directly and treats other normalizations and/or backgrounds with the introduction of user-generated partial derivatives. The code uses Bayes' method as an efficient alternative to least squares for fitting experimental data. SAMMY allows virtually any parameter to be varied and outputs values, uncertainties, and covariance matrix for all varied parameters. Versions of SAMMY exist for VAX, FPS, and IBM computers

  20. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  1. Multivariate optimization of ILC parameters

    International Nuclear Information System (INIS)

    Bazarov, I.V.; Padamsee, H.S.

    2005-01-01

    We present results of multiobjective optimization of the International Linear Collider (ILC) which seeks to maximize luminosity at each given total cost of the linac (capital and operating costs of cryomodules, refrigeration and RF). Evolutionary algorithms allow quick exploration of optimal sets of parameters in a complicated system such as ILC in the presence of realistic constraints as well as investigation of various what-if scenarios in potential performance. Among the parameters we varied there were accelerating gradient and Q of the cavities (in a coupled manner following a realistic Q vs. E curve), the number of particles per bunch, the bunch length, number of bunches in the train, etc. We find an optimum which decreases (relative to TESLA TDR baseline) the total linac cost by 22%, capital cost by 25% at the same luminosity of 3 x 10 38 m -2 s -1 . For this optimum the gradient is 35 MV/m, the final spot size is 3.6 nm, and the beam power is 15.9 MV/m. Changing the luminosity by 10 38 m -2 s -1 results in 10% change in the total linac cost and 4% in the capital cost. We have also explored the optimal fronts of luminosity vs. cost for several other scenarios using the same approach. (orig.)

  2. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  3. A Generic Approach to Parameter Control

    NARCIS (Netherlands)

    Karafotias, G.; Smit, S.K.; Eiben, A.E.

    2012-01-01

    On-line control of EA parameters is an approach to parameter setting that offers the advantage of values changing during the run. In this paper, we investigate parameter control from a generic and parameter-independent perspective. We propose a generic control mechanism that is targeted to

  4. Comet Halley, parameter study I

    International Nuclear Information System (INIS)

    Huebner, W.F.; Fikani, M.M.

    1982-06-01

    To aid in defining a mission to comet P/Halley, its inner coma is simulated by a computer program that models time-dependent chemical reactions in a radially and isentropically expanding gas, taking into account attenuation of solar ultraviolet radiation in the subsolar direction. Column density predictions are based on intelligently selected combinations of poorly known values for nucleus parameters that include size, visual albedo, and infrared emissivity. Only one chemical composition and a minor modification of it are considered here; the dust-to-gas ratio in this model is zero. Although the somewhat optimistically volatile composition chosen here favors a smaller nucleus, a mean nuclear radius of only 0.5 km is unlikely. No significant increase of molecular column density is predicted by this model as a spacecraft approaches, once it is less than a few 10 4 km from the nucleus. Predictions are made for various heliocentric distances of interest for comet missions and for ground observations

  5. Image-based petrophysical parameters

    DEFF Research Database (Denmark)

    Noe-Nygaard, Jakob; Engstrøm, Finn; Sølling, Theis Ivan

    2017-01-01

    run directly from the micro-CT results on a cutting measured on an in-house instrument; the results clearly show that micro-CT measurements on chalk do not capture the pore space with sufficient detail to be predictive. Overall, with the appropriate resolution, the present study shows......-computed-tomography (nano-CT) images of trim sections and cuttings. Moreover, the trim-section results are upscaled to trim size to form the basis of an additional comparison. The results are also benchmarked against conventional core analysis (CCAL) results on trim-size samples. The comparison shows that petrophysical...... parameters from CT imaging agree reasonably well with those determined experimentally. The upscaled results show some discrepancy with the nano-CT results, particularly in the case of the low-permeability plug. This is probably because of the challenge in finding a representative subvolume. For the cuttings...

  6. Data Handling and Parameter Estimation

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist

    2016-01-01

    ,engineers, and professionals. However, it is also expected that they will be useful both for graduate teaching as well as a stepping stone for academic researchers who wish to expand their theoretical interest in the subject. For the models selected to interpret the experimental data, this chapter uses available models from...... literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii......Modelling is one of the key tools at the disposal of modern wastewater treatment professionals, researchers and engineers. It enables them to study and understand complex phenomena underlying the physical, chemical and biological performance of wastewater treatment plants at different temporal...

  7. Practice parameter on disaster preparedness.

    Science.gov (United States)

    Pfefferbaum, Betty; Shaw, Jon A

    2013-11-01

    This Practice Parameter identifies best approaches to the assessment and management of children and adolescents across all phases of a disaster. Delivered within a disaster system of care, many interventions are appropriate for implementation in the weeks and months after a disaster. These include psychological first aid, family outreach, psychoeducation, social support, screening, and anxiety reduction techniques. The clinician should assess and monitor risk and protective factors across all phases of a disaster. Schools are a natural site for conducting assessments and delivering services to children. Multimodal approaches using social support, psychoeducation, and cognitive behavioral techniques have the strongest evidence base. Psychopharmacologic interventions are not generally used but may be necessary as an adjunct to other interventions for children with severe reactions or coexisting psychiatric conditions. Copyright © 2013. Published by Elsevier Inc.

  8. Stellar Parameters for Trappist-1

    Science.gov (United States)

    Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.

    2018-01-01

    TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.

  9. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  10. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  11. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    Science.gov (United States)

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area

  12. Radon parameters in outdoor air

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Zock, Ch.; Wendt, J.; Reineking, A.

    2002-01-01

    For dose estimation by inhalation of the short lived radon progeny in outdoor air, the equilibrium factor (F), the unattached fraction (f p ), and the activity size distribution of the radon progeny were measured. Besides the radon parameter the meteorological parameter like temperature, wind speed, and rainfall intensity were registered. The measurements were carried out continuously for several weeks to find out the variation with time (day/night) and for different weather conditions. The radon gas, the unattached and aerosol-attached radon progenies were measured with an monitor developed for continuous measurements in outdoor air with low activity concentrations. For the determination of the activity size distribution a low pressure online alpha cascade impactor was used. The measured values of the equilibrium factor varied between 0.5-0.8 depending on weather conditions and time of the day. For high pressure weather conditions a diurnal variation of the F-factor was obtained. A lower average value (F=0.25) was registered during rainy days. The obtained f p -values varied between 0.04 and 0.12. They were higher than expected. The measured activity size distribution of the radon progeny averaged over a measurement period of three weeks can be approximated by a sum of three log-normal distributions. The greatest activity fraction is adsorbed on aerosol particles in the accumulation size range (100-1000 nm) with activity median diameters and geometric standard deviation values between 250-450 nm and 1.5-3.0, respectively. The activity median diameter of this accumulation mode in outdoor air was significantly greater than in indoor air (150-250 nm). An influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements in houses a small but significant fraction of the radon progeny (average value: 2%) is attached on coarse particles (>1000 nm). This fraction varied between 0-10%. 20

  13. Voltage stability, bifurcation parameters and continuation methods

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, F L [Wisconsin Univ., Madison, WI (United States)

    1994-12-31

    This paper considers the importance of the choice of bifurcation parameter in the determination of the voltage stability limit and the maximum power load ability of a system. When the bifurcation parameter is power demand, the two limits are equivalent. However, when other types of load models and bifurcation parameters are considered, the two concepts differ. The continuation method is considered as a method for determination of voltage stability margins. Three variants of the continuation method are described: the continuation parameter is the bifurcation parameter the continuation parameter is initially the bifurcation parameter, but is free to change, and the continuation parameter is a new `arc length` parameter. Implementations of voltage stability software using continuation methods are described. (author) 23 refs., 9 figs.

  14. Kinematic parameters of signed verbs.

    Science.gov (United States)

    Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina

    2013-10-01

    Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.

  15. Morfofunctional parameters in judo's fight

    Directory of Open Access Journals (Sweden)

    Ítalo Sérgio Lopes Campos

    2017-12-01

    Full Text Available Considering the complexity of judo and the ample energy and neuromuscular demands, a whole process of competitive preparation must be directed to different physical capacities allowing the athlete to perform his combat actions with the best suitability possible. Mapping the  behaviour of a judo athlete from observations of behaviour units  in a real fighting situation would be a way of trying to identify the best topography or the best "aptitude" to achieve victory. The present investigation analysed the judo from the interactions of a real competition situation, aiming to verify, between winners and losers, possible differences or correlations between anthropometric parameters, motor performance and functional behaviours in a competitive situation. The results showed that: a the experience is decisive between winning or losing; b leg techniques are the most used between winners and losers, and losers use them more frequently; c there are different strategies between fights; d The energy cost in judo depends on the configuration of the fights. It is believed that such results can help coaches and athletes in guiding and rationalizing the training process in relation to performance determinants in judo.

  16. Statistics of Parameter Estimates: A Concrete Example

    KAUST Repository

    Aguilar, Oscar; Allmaras, Moritz; Bangerth, Wolfgang; Tenorio, Luis

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise

  17. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.

    2013-01-01

    PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus

  18. The parameter spreadsheets and their applications

    International Nuclear Information System (INIS)

    Schwitters, R.; Chao, A.; Chou, W.; Peterson, J.

    1993-01-01

    This paper is to announce that a set of parameter spreadsheets, using the Microsoft EXCEL software, has been developed for the SSC (and also for the LHC). In this program, the input (or control) parameters and the derived parameters are linked by equations that express the accelerator physics involved. A subgroup of parameters that are considered critical, or possible bottlenecks, has been highlighted under the category of open-quotes Flagsclose quotes. Given certain performance goals, one can use this program to open-quotes tuneclose quotes the input parameters in such a way that the flagged parameters do not exceed their acceptable range. During the past years, this program has been employed for the following purposes: (a) To guide the machine designs for various operation scenarios, (b) To generate a parameter list that is self-consistent and, (c) To study the impact of some proposed parameter changes (e.g., different choices of the rf frequency and bunch spacing)

  19. Physiological Parameters Database for Older Adults

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...

  20. Behavioural Pattern of Causality Parameter of Autoregressive ...

    African Journals Online (AJOL)

    In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...

  1. Recovering Parameters of Johnson's SB Distribution

    Science.gov (United States)

    Bernard R. Parresol

    2003-01-01

    A new parameter recovery model for Johnson's SB distribution is developed. This latest alternative approach permits recovery of the range and both shape parameters. Previous models recovered only the two shape parameters. Also, a simple procedure for estimating the distribution minimum from sample values is presented. The new methodology...

  2. Parameters Evaluation of PLC Dependability and Safety

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2006-01-01

    Full Text Available This paper is focused on evaluation of dependability and safety parameters of PLC (Programmable Logic Controller. Achievement of requested level of these parameters is an application assumption for using PLC in control of safety critical processes. Evaluation of these parameters can be made on the base of suitable model and it can be influenced by system architecture when necessary.

  3. Establishing statistical models of manufacturing parameters

    International Nuclear Information System (INIS)

    Senevat, J.; Pape, J.L.; Deshayes, J.F.

    1991-01-01

    This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature

  4. A comparison between two powder compaction parameters of plasticity: the effective medium A parameter and the Heckel 1/K parameter.

    Science.gov (United States)

    Mahmoodi, Foad; Klevan, Ingvild; Nordström, Josefina; Alderborn, Göran; Frenning, Göran

    2013-09-10

    The purpose of the research was to introduce a procedure to derive a powder compression parameter (EM A) representing particle yield stress using an effective medium equation and to compare the EM A parameter with the Heckel compression parameter (1/K). 16 pharmaceutical powders, including drugs and excipients, were compressed in a materials testing instrument and powder compression profiles were derived using the EM and Heckel equations. The compression profiles thus obtained could be sub-divided into regions among which one region was approximately linear and from this region, the compression parameters EM A and 1/K were calculated. A linear relationship between the EM A parameter and the 1/K parameter was obtained with a strong correlation. The slope of the plot was close to 1 (0.84) and the intercept of the plot was small in comparison to the range of parameter values obtained. The relationship between the theoretical EM A parameter and the 1/K parameter supports the interpretation of the empirical Heckel parameter as being a measure of yield stress. It is concluded that the combination of Heckel and EM equations represents a suitable procedure to derive a value of particle plasticity from powder compression data. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  6. Cosmological parameter estimation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Prasad, J; Souradeep, T

    2014-01-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite

  7. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  8. Multi-Objective Parameter Selection for Classifers

    Directory of Open Access Journals (Sweden)

    Christoph Mussel

    2012-01-01

    Full Text Available Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling andoptimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configuration and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.

  9. Optimization of Parameters of Asymptotically Stable Systems

    Directory of Open Access Journals (Sweden)

    Anna Guerman

    2011-01-01

    Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.

  10. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  11. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  12. Quality assessment for radiological model parameters

    International Nuclear Information System (INIS)

    Funtowicz, S.O.

    1989-01-01

    A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)

  13. Study of electroweak parameters at LEP

    International Nuclear Information System (INIS)

    Blum, W.

    1991-10-01

    The measurement of the line shape and asymmetry parameters of the Z 0 in its leptonic and hadronic decays are reviewed. Progress is reported about a considerable increase in measurement accuracy. Several tests of the Standard Model confirm it to better than one per cent. New values for the effective mixing parameter are derived from the line shape parameters averaged over the four LEP experiments. The corresponding limits on the top mass are presented. (orig.)

  14. Interrelations between EOS parameters and cohesive energy of transition metals: Thermostatistical approach, ab initio calculations and analysis of ;universality; features

    Science.gov (United States)

    Bertoldi, Dalía S.; Ramos, Susana B.; Guillermet, Armando Fernández

    2017-08-01

    We present a theoretical analysis of the equation of state (EOS) of metals using a quasi-harmonic Einstein model with a dimensionless cohesive energy versus distance function (F(z)) involving the Wigner-Seitz radius and a material-dependent scaling length, as suggested in classical works by Rose, Ferrante, Smith and collaborators. Using this model, and "universal" values for the function and its first and second derivatives at the equilibrium distance (z=0), three general interrelations between EOS parameters and the cohesive energy are obtained. The first correlation involves the bulk modulus, and the second, the thermal expansion coefficient. In order to test these results an extensive database is developed, which involves available experimental data, and results of current ab initio density-functional-theory calculations using the VASP code. In particular, the 0 K values for volume, bulk modulus, its pressure derivative, and the cohesive energy of 27 elements belonging to the first (Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn), second (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) and third (Hf, Ta, W, Re, Os, Ir, Pt, Au) transition row of the Periodic Table are calculated ab initio and used to test the present results. The third correlation obtained, allows an evaluation of the third derivative of F(z) at z=0 for the current elements. With this new information, a discussion is presented of the possibility of finding a "universal" F(z) versus z function able to account accurately for the pressure derivative of the bulk modulus of the transition elements.

  15. New fundamental parameters for attitude representation

    Science.gov (United States)

    Patera, Russell P.

    2017-08-01

    A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.

  16. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  17. Parameter Estimation in Continuous Time Domain

    Directory of Open Access Journals (Sweden)

    Gabriela M. ATANASIU

    2016-12-01

    Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.

  18. Nutritional status and laboratory parameters among internal ...

    African Journals Online (AJOL)

    2015-03-19

    Mar 19, 2015 ... Relation of demographic characteristics, laboratory parameters, ... high density lipoprotein, cholesterol, triglyceride, albumin and protein, weight and BMI. Among 130 ... density lipoprotein (HDL), cholesterol, triglyceride,.

  19. GA BASED GLOBAL OPTIMAL DESIGN PARAMETERS FOR ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems ... DESIGN PARAMETERS FOR CONSECUTIVE REACTIONS IN SERIALLY CONNECTED ... for the process equipments such as chemical reactors used in industries.

  20. Optimisation of milling parameters using neural network

    Directory of Open Access Journals (Sweden)

    Lipski Jerzy

    2017-01-01

    Full Text Available The purpose of this study was to design and test an intelligent computer software developed with the purpose of increasing average productivity of milling not compromising the design features of the final product. The developed system generates optimal milling parameters based on the extent of tool wear. The introduced optimisation algorithm employs a multilayer model of a milling process developed in the artificial neural network. The input parameters for model training are the following: cutting speed vc, feed per tooth fz and the degree of tool wear measured by means of localised flank wear (VB3. The output parameter is the surface roughness of a machined surface Ra. Since the model in the neural network exhibits good approximation of functional relationships, it was applied to determine optimal milling parameters in changeable tool wear conditions (VB3 and stabilisation of surface roughness parameter Ra. Our solution enables constant control over surface roughness parameters and productivity of milling process after each assessment of tool condition. The recommended parameters, i.e. those which applied in milling ensure desired surface roughness and maximal productivity, are selected from all the parameters generated by the model. The developed software may constitute an expert system supporting a milling machine operator. In addition, the application may be installed on a mobile device (smartphone, connected to a tool wear diagnostics instrument and the machine tool controller in order to supply updated optimal parameters of milling. The presented solution facilitates tool life optimisation and decreasing tool change costs, particularly during prolonged operation.

  1. Importance theory for lumped-parameter systems

    International Nuclear Information System (INIS)

    Cady, K.B.; Kenton, M.A.; Ward, J.C.; Piepho, M.G.

    1981-01-01

    A general sensitivity theory has been developed for nonlinear lumped parameter system simulations. The point of departure is general perturbation theory for nonlinear systems. Importance theory as developed here allows the calculation of the sensitivity of a response function to any physical or design parameter; importance of any equation or term or physical effect in the system model on the response function; variance of the response function caused by the variances and covariances of all physical parameters; and approximate effect on the response function of missing physical phenomena or incorrect parameters

  2. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  3. Parameters control in GAs for dynamic optimization

    Directory of Open Access Journals (Sweden)

    Khalid Jebari

    2013-02-01

    Full Text Available The Control of Genetic Algorithms parameters allows to optimize the search process and improves the performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure to find the optimal parameters.

  4. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and.

  5. Multi-Parameter Estimation for Orthorhombic Media

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2015-01-01

    Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.

  6. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and basophiles counts were ...

  7. Multi-Parameter Estimation for Orthorhombic Media

    KAUST Repository

    Masmoudi, Nabil

    2015-08-19

    Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.

  8. Liquid metals. Coexistence line, critical parameters, compressibility

    International Nuclear Information System (INIS)

    Filippov, L.P.

    1986-01-01

    Formulae to calculate four characteristic parameters of liquid metals (density, compressibility, critical temperature and individual parameter) according to four initial data are obtained: two values of vapor density and two values of vapor pressure. Comparison between experimental and calculation results are presented for liquid Cs, Na, Li, K, Rb

  9. Changes in haematological parameters of Tilapia guineensis ...

    African Journals Online (AJOL)

    Changes in haematological parameters of Tilapia guineensis exposed to different concentrations of detergent under laboratory conditions. ... The experiment evaluated sub-lethal effect of the exposure on some haematological parameters including haemoglobin (Hb), red blood cell (RBC), packed cell volume (PCV), white ...

  10. Updated Abraham solvation parameters for polychlorinated biphenyls

    NARCIS (Netherlands)

    van Noort, P.C.M.; Haftka, J.J.H.; Parsons, J.R.

    2010-01-01

    This study shows that the recently published polychlorinated biphenyl (PCB) Abraham solvation parameters predict PCB air−n-hexadecane and n-octanol−water partition coefficients very poorly, especially for highly ortho-chlorinated congeners. Therefore, an updated set of PCB solvation parameters was

  11. Updated Abraham solvation parameters for polychlorinated biphenyls

    NARCIS (Netherlands)

    Noort, van P.C.M.; Haftka, J.J.H.; Parsons, J.R.

    2010-01-01

    This study shows that the recently published polychlorinated biphenyl (PCB) Abraham solvation parameters predict PCB air-n-hexadecane and n-octanol-water partition coefficients very poorly, especially for highly ortho-chlorinated congeners. Therefore, an updated set of PCB solvation parameters was

  12. New universality class for superconducting order parameter

    International Nuclear Information System (INIS)

    Dobroliubov, M.I.; Khlebnikov, S.Yu.

    1991-04-01

    We present a model of superconductivity with pairing due to Aharonov-Bohm forces. The gap is proportional to the first power of the small parameter (in which the self-consistent perturbation scheme is developed), as opposed to the BCS class of models where the gap is exponentially suppressed with the small parameter. (orig.)

  13. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    Decourt, M.

    1986-01-01

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope [fr

  14. Qualitative Parameters of Practice during University Studies

    Science.gov (United States)

    Stasiunaitiene, Egle; Norkute, Odeta

    2011-01-01

    In this article, relevance of practice during university studies is highlighted, as well as the main stages of its organisation, qualitative parameters, as well as criteria and indicators that validate them are defined. Discussion on the idea that taking into consideration qualitative parameters of organising practice as a component of studies…

  15. Nanohydroxyapatite synthesis using optimized process parameters ...

    Indian Academy of Sciences (India)

    3Energy Research Group, School of Engineering, Taylor's University, 47500 ... influence of different ultrasonication parameters on the prop- ... to evaluate multiple process parameters and their interaction. ..... dent and dependent variables by a 3-D representation of .... The intensities of O–H functional groups are seen to.

  16. Methods for measurement of durability parameters

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....

  17. Review of 241 Pu resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.

    1981-10-01

    The status of 241 Pu resonance parameters is reviewed. The most important recent results are compared in some energy ranges, both from single level and multilevel point of view. It appears that an accurate set of resonance parameters is not still obtained for a general description of the cross-sections in the resonance region. Some recommendations are given for further experiments or evaluations

  18. Design parameters of Tokamak-7 system

    International Nuclear Information System (INIS)

    Ivanov, D.P.; Keilin, V.E.; Klimenko, E.Yu.; Strelkov, V.S.

    Superconducting windings for the main magnetic field of Tokamak-7 are discussed. The parameters of this facility are based on the use of commercially available superconducting materials for fields up to 80 kOe. Experimental parameters are described. (U.S.)

  19. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...

  20. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  1. Supersymmetry Parameter Analysis : SPA Convention and Project

    CERN Document Server

    Aguilar-Saavedra, J A; Allanach, Benjamin C; Arnowitt, R; Baer, H A; Bagger, J A; Balázs, C; Barger, V; Barnett, M; Bartl, Alfred; Battaglia, M; Bechtle, P; Belyaev, A; Berger, E L; Blair, G; Boos, E; Bélanger, G; Carena, M S; Choi, S Y; Deppisch, F; Desch, Klaus; Djouadi, A; Dutta, B; Dutta, S; Díaz, M A; Eberl, H; Ellis, Jonathan Richard; Erler, Jens; Fraas, H; Freitas, A; Fritzsche, T; Godbole, Rohini M; Gounaris, George J; Guasch, J; Gunion, J F; Haba, N; Haber, Howard E; Hagiwara, K; Han, L; Han, T; He, H J; Heinemeyer, S; Hesselbach, S; Hidaka, K; Hinchliffe, Ian; Hirsch, M; Hohenwarter-Sodek, K; Hollik, W; Hou, W S; Hurth, Tobias; Jack, I; Jiang, Y; Jones, D R T; Kalinowski, Jan; Kamon, T; Kane, G; Kang, S K; Kernreiter, T; Kilian, W; Kim, C S; King, S F; Kittel, O; Klasen, M; Kneur, J L; Kovarik, K; Kraml, Sabine; Krämer, M; Lafaye, R; Langacker, P; Logan, H E; Ma, W G; Majerotto, Walter; Martyn, H U; Matchev, K; Miller, D J; Mondragon, M; Moortgat-Pick, G; Moretti, S; Mori, T; Moultaka, G; Muanza, S; Mukhopadhyaya, B; Mühlleitner, M M; Nauenberg, U; Nojiri, M M; Nomura, D; Nowak, H; Okada, N; Olive, Keith A; Oller, W; Peskin, M; Plehn, T; Polesello, G; Porod, Werner; Quevedo, Fernando; Rainwater, D L; Reuter, J; Richardson, P; Rolbiecki, K; de Roeck, A; Weber, Ch.

    2006-01-01

    High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the d...

  2. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  3. Calculation of Optical Parameters of Liquid Crystals

    Science.gov (United States)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  4. Parameter identifiability and redundancy: theoretical considerations.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    Full Text Available BACKGROUND: Models for complex biological systems may involve a large number of parameters. It may well be that some of these parameters cannot be derived from observed data via regression techniques. Such parameters are said to be unidentifiable, the remaining parameters being identifiable. Closely related to this idea is that of redundancy, that a set of parameters can be expressed in terms of some smaller set. Before data is analysed it is critical to determine which model parameters are identifiable or redundant to avoid ill-defined and poorly convergent regression. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we outline general considerations on parameter identifiability, and introduce the notion of weak local identifiability and gradient weak local identifiability. These are based on local properties of the likelihood, in particular the rank of the Hessian matrix. We relate these to the notions of parameter identifiability and redundancy previously introduced by Rothenberg (Econometrica 39 (1971 577-591 and Catchpole and Morgan (Biometrika 84 (1997 187-196. Within the widely used exponential family, parameter irredundancy, local identifiability, gradient weak local identifiability and weak local identifiability are shown to be largely equivalent. We consider applications to a recently developed class of cancer models of Little and Wright (Math Biosciences 183 (2003 111-134 and Little et al. (J Theoret Biol 254 (2008 229-238 that generalize a large number of other recently used quasi-biological cancer models. CONCLUSIONS/SIGNIFICANCE: We have shown that the previously developed concepts of parameter local identifiability and redundancy are closely related to the apparently weaker properties of weak local identifiability and gradient weak local identifiability--within the widely used exponential family these concepts largely coincide.

  5. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  6. Selection of noise parameters for Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok

    2007-01-01

    The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.

  7. Hyperspectral signature analysis of skin parameters

    Science.gov (United States)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  8. A parametric reconstruction of the deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamon, Abdulla [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-07-15

    The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q{sub 0} and q{sub 1} are obtained (within 1σ and 2σ confidence limits) by χ{sup 2}-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω{sub tot}, the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models. (orig.)

  9. MFV Reductions of MSSM Parameter Space

    CERN Document Server

    AbdusSalam, S.S.; Quevedo, F.

    2015-01-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours...

  10. Modelling and parameter estimation in reactive continuous mixtures: the catalytic cracking of alkanes - part II

    Directory of Open Access Journals (Sweden)

    F. C. PEIXOTO

    1999-09-01

    Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.

  11. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  12. Deductive multiscale simulation using order parameters

    Science.gov (United States)

    Ortoleva, Peter J.

    2017-05-16

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  13. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  14. Parameter identification of civil engineering structures

    Science.gov (United States)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  15. Multilevel resonance parameters of 241Pu

    International Nuclear Information System (INIS)

    Weston, L.W.; Todd, J.H.

    1978-01-01

    The data previously reported by the authors on the neutron fission and capture cross sections of 241 Pu were simultaneously fit with the Adler formalism to obtain multilevel resonance parameters. The neutron energy range of the fit was 0.01 to 100 eV. The 241 Pu cross sections in the resonance region of neutron energies are complex, and the Adler parameters present an efficient method of representing these cross sections, which are important for plutonium-fueled reactors. The parameters represent the data to an accuracy within the quoted experimental errors. 5 figures, 2 tables

  16. Systematics of nuclear level density parameters

    International Nuclear Information System (INIS)

    Bucurescu, Dorel; Egidy, Till von

    2005-01-01

    The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured

  17. The Importance of Vocal Parameters Correlation

    Directory of Open Access Journals (Sweden)

    Valentin Ghisa

    2016-06-01

    Full Text Available To analyze communication we need to study the main parameters that describe the vocal sounds from the point of view of information content transfer efficiency. In this paper we analyze the physical quality of the “on air" information transfer, according to the audio streaming parameters and from the particular phonetic nature of the human factor. Applying this statistical analysis we aim to identify and record the correlation level of the acoustical parameters with the vocal ones and the impact which the presence of this cross-correlation can have on communication structures’ improvement.

  18. Impact parameter analysis and soft QCD dynamics

    International Nuclear Information System (INIS)

    Carvalho, P.A.S.; Martini, A.F.; Menon, M.J.

    2002-01-01

    In a recent paper, based on the hypothesis of light-cone dipole representation for gluon Bremsstrahlung, Kopeliovich et al. developed a dynamical model for the elastic hadronic amplitude. The model has been applied to pp and p (bar) p scattering and the effects of unitarity and peripheral interactions have been investigated in the impact parameter representation. In this communication, making use of a model independent extraction of the scattering amplitude in the impact parameter space (early developed), we represent a comparative study between the predictions from the dynamical model and the impact parameter analysis. (author)

  19. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  20. Irreversibility Analysis of Non Isothermal Flat Plate Solar Collectors for Air Heating with a Dimensionless Model

    Directory of Open Access Journals (Sweden)

    Acosta-Flores José Jesús

    2013-04-01

    Full Text Available En ingeniería nos enfrentamos con problemas tan diversos como la elección del sitio donde debe construirse una carretera, una presa, un puente o un aeropuerto. Las consecuencias de tomar decisiones equivocadas son tan grandes que es conveniente contar con un método eficiente para enfrentar dichas situaciones, ya que siempre existe incertidumbre sobre lo que puede acontecer. En este artículo se presenta dicho método a través de un ejemplo sobre un sistema de protección de huracanes en el que dos actores serán fundamentales: el decisor y el analista. Se ha elegido este ejemplo porque permitiría tomar decisiones que disminuyan los daños que ocasionan los huracanes en nuestro país.

  1. On the accuracy, uniqueness and implication of dimensionless accidental relations between fundamental constants

    International Nuclear Information System (INIS)

    Bahran, M.; Univ. of Oklahoma, Norman-OK,

    2002-01-01

    Ibrahim et al(1) found an accidental formula relating the gravitational coupling constant, the electromagnetic fine structure constant and the proton to electron mass ratio. This work comments on such relation, in particular it studies the accuracy, uniqueness and unification implication of such accidental relation.(author)

  2. Dimensionless Energy Conversion Characteristics of an Air-Powered Hydraulic Vehicle

    OpenAIRE

    Dongkai Shen; Qilong Chen; Yixuan Wang

    2018-01-01

    Due to the advantages of resource conservation and less exhaust emissions, compressed air-powered vehicle has attracted more and more attention. To improve the power and efficiency of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer) is used to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy conversion characteristics of...

  3. Study of dimensionless quantities to analyse front and rear wall of ...

    Indian Academy of Sciences (India)

    hydrodynamic quantities describe the mechanism behind flow pattern present in .... beam is focused into a small spot adjustable approximately 0.1 to 0.8 mm in ... moves, the liquefied metal around the 'keyhole' flows back in, solidifying and.

  4. Choose Wisely: Static or Kinetic Friction--The Power of Dimensionless Plots

    Science.gov (United States)

    Ludwigsen, Daniel; Svinarich, Kathryn

    2009-01-01

    Consider a problem of sliding blocks, one stacked atop the other, resting on a frictionless table. If the bottom block is pulled horizontally, nature makes a choice: if the applied force is small, static friction between the blocks accelerates the blocks together, but with a large force the blocks slide apart. In that case, kinetic friction still…

  5. Scaling up adsorption media reactors for copper removal with the aid of dimensionless numbers.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Wanielista, Martin

    2016-02-01

    Adsorption media may be used to sorb copper in an aquatic environment for pollution control. Effective design of adsorption media reactors is highly dependent on selection of the hydraulic residence time when scaling up a pilot-scale reactor to a field-scale reactor. This paper seeks to improve scaling-up technique of the reactor design process through the use of the Damköhler and Péclet numbers via a dimensional analysis. A new scaling-up theory is developed in this study through a joint consideration of the Damköhler and Péclet numbers for a constant media particle size such that a balance between transport control and reaction control can be harmonized. A series of column breakthrough tests at varying hydraulic residence times revealed a clear peak adsorption capacity at a Damköhler number of 2.74. The Péclet numbers for the column breakthrough tests indicated that mechanical dispersion is an important effect that requires further consideration in the scaling-up process. However, perfect similitude of the Damköhler number cannot be maintained for a constant media particle size, and relaxation of hydrodynamic similitude through variation of the Péclet number must occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Irreversibility Analysis of Non Isothermal Flat Plate Solar Collectors for Air Heating with a Dimensionless Model

    Directory of Open Access Journals (Sweden)

    Baritto-Loreto Miguel Leonardo

    2013-04-01

    Full Text Available En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012 para describir el comportamiento térmico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuación adimensional de balance de entropía para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y número de flujo de masa. A partir de los resultados del modelo se desarrolla un análisis detallado de la influencia de estos parámetros sobre la distribución de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parámetros sobre los números de generación de entropía por fricción viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parámetros antes mencionados, para los cuales, la operación del colector es termodinámicamente óptima para números de flujo de masa elevados.

  7. Robust Parameter Coordination for Multidisciplinary Design

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.

  8. Multiplicity distributions in impact parameter space

    International Nuclear Information System (INIS)

    Wakano, Masami

    1976-01-01

    A definition for the average multiplicity of pions as a function of momentum transfer and total energy in the high energy proton-proton collisions is proposed by using the n-pion production differential cross section with the given momentum transfer from a proton to other final products and the given energy of the latter. Contributions from nondiffractive and diffractive processes are formulated in a multi-Regge model. We define a relationship between impact parameter and momentum transfer in the sense of classical theory for inelastic processes and we obtain the average multiplicity of pions as a function of impact parameter and total energy from the corresponding quantity afore-mentioned. By comparing this quantity with the square root of the opaqueness at given impact parameter, we conclude that the overlap of localized constituents is important in determining the opaqueness at given impact parameter in a collision of two hadrons. (auth.)

  9. Key parameters analysis of hybrid HEMP simulator

    International Nuclear Information System (INIS)

    Mao Congguang; Zhou Hui

    2009-01-01

    According to the new standards on the high-altitude electromagnetic pulse (HEMP) developed by International Electrotechnical Commission (IEC), the target parameter requirements of the key structure of the hybrid HEMP simulator are decomposed. Firstly, the influences of the different excitation sources and biconical structures to the key parameters of the radiated electric field wave shape are investigated and analyzed. Then based on the influence curves the target parameter requirements of the pulse generator are proposed. Finally the appropriate parameters of the biconical structure and the excitation sources are chosen, and the computational result of the electric field in free space is presented. The results are of great value for the design of the hybrid HEMP simulator. (authors)

  10. Parameter estimation in X-ray astronomy

    International Nuclear Information System (INIS)

    Lampton, M.; Margon, B.; Bowyer, S.

    1976-01-01

    The problems of model classification and parameter estimation are examined, with the objective of establishing the statistical reliability of inferences drawn from X-ray observations. For testing the validities of classes of models, the procedure based on minimizing the chi 2 statistic is recommended; it provides a rejection criterion at any desired significance level. Once a class of models has been accepted, a related procedure based on the increase of chi 2 gives a confidence region for the values of the model's adjustable parameters. The procedure allows the confidence level to be chosen exactly, even for highly nonlinear models. Numerical experiments confirm the validity of the prescribed technique.The chi 2 /sub min/+1 error estimation method is evaluated and found unsuitable when several parameter ranges are to be derived, because it substantially underestimates their joint errors. The ratio of variances method, while formally correct, gives parameter confidence regions which are more variable than necessary

  11. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  12. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  13. Optimization of electrospinning parameters for chitosan nanofibres

    CSIR Research Space (South Africa)

    Jacobs, V

    2011-06-01

    Full Text Available Electrospinning of chitosan, a naturally occurring polysaccharide biopolymer, has been investigated. In this paper, the authors report the optimization of electrospinning process and solution parameters using factorial design approach to obtain...

  14. Nanohydroxyapatite synthesis using optimized process parameters

    Indian Academy of Sciences (India)

    Nanohydroxyapatite; ultrasonication; response surface methodology; calcination; ... Three independent process parameters: temperature () (70, 80 and 90°C), ... Bangi, Selangor, Malaysia; Energy Research Group, School of Engineering, ...

  15. Experimental determination of mechanical parameters in sensorless ...

    Indian Academy of Sciences (India)

    V S S PAVAN KUMAR HARI

    pulse width modulation (PWM) selected. The three-phase .... and the simulation and experimental results are presented. ... between 0 and Ts due to the process of PWM. Hence, the .... MATLAB SIMULINK with the machine parameters in.

  16. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  17. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  18. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  19. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  20. Parameter space of general gauge mediation

    International Nuclear Information System (INIS)

    Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix

    2009-01-01

    We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.

  1. One-parameter Darboux transformations in thermodynamics

    International Nuclear Information System (INIS)

    Rosu, Haret C.

    2002-01-01

    The quantum oscillator thermodynamic actions are the conjugate intensive parameters for the frequency in any frequency changing process. These oscillator actions fulfill simple Riccati equations. Interesting Darboux transformations of the fundamental Planck and pure vacuum actions are discussed here in some detail. It is shown that the one-parameter 'Darboux-Transformed-Thermodynamics' refers to superpositions of boson and fermion excitations of positive and negative absolute temperature, respectively. A Darboux generalization of the fluctuation-dissipation theorem is also briefly sketched

  2. Parameter tracking with partial forgetting method

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Nagy, Ivan; Kárný, Miroslav

    2012-01-01

    Roč. 26, č. 1 (2012), s. 1-12 ISSN 0890-6327 R&D Projects: GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : regression models * model * parameter estimation * parameter tracking Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.219, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/dedecius-0370448.pdf

  3. Statistical Inference for Data Adaptive Target Parameters.

    Science.gov (United States)

    Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J

    2016-05-01

    Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.

  4. Model parameter updating using Bayesian networks

    International Nuclear Information System (INIS)

    Treml, C.A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  5. Bayesian estimation of Weibull distribution parameters

    International Nuclear Information System (INIS)

    Bacha, M.; Celeux, G.; Idee, E.; Lannoy, A.; Vasseur, D.

    1994-11-01

    In this paper, we expose SEM (Stochastic Expectation Maximization) and WLB-SIR (Weighted Likelihood Bootstrap - Sampling Importance Re-sampling) methods which are used to estimate Weibull distribution parameters when data are very censored. The second method is based on Bayesian inference and allow to take into account available prior informations on parameters. An application of this method, with real data provided by nuclear power plants operation feedback analysis has been realized. (authors). 8 refs., 2 figs., 2 tabs

  6. Graph Treewidth and Geometric Thickness Parameters

    OpenAIRE

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  7. Iterative importance sampling algorithms for parameter estimation

    OpenAIRE

    Morzfeld, Matthias; Day, Marcus S.; Grout, Ray W.; Pau, George Shu Heng; Finsterle, Stefan A.; Bell, John B.

    2016-01-01

    In parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov Chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is ...

  8. Matrix parameters and storage conditions of manure

    Energy Technology Data Exchange (ETDEWEB)

    Weinfurtner, Karlheinz [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2011-01-15

    The literature study presents an overview of storage conditions for manure and information about important matrix parameters of manure such as dry matter content, pH value, total organic carbon, total nitrogen and ammonium nitrogen. The presented results show that for matrix parameters a dissimilarity of cattle and pig manure can be observed but no difference within the species for different production types occurred with exception of calves. A scenario for western and central European countries is derived. (orig.)

  9. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  10. Selecting Design Parameters for Flying Vehicles

    Science.gov (United States)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  11. Demographic and transportation parameters in RADTRAN

    International Nuclear Information System (INIS)

    Brogan, J.D.; Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    Recent efforts at Sandia National Laboratories have focused not only on modification of the RADTRAN transportation risk analysis code but also on updating the default parameters for population, land use, and roadway characteristics used by the code. Changes to the code have been discussed earlier in this Conference. This paper summarizes the results of a review of transportation and demographic parameters, performed to complement recent model modifications

  12. Measurements of thermal parameters of solar modules

    International Nuclear Information System (INIS)

    Górecki, K; Krac, E

    2016-01-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed. (paper)

  13. Precision Parameter Estimation and Machine Learning

    Science.gov (United States)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  14. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  15. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  16. Statistical MOSFET Parameter Extraction with Parameter Selection for Minimal Point Measurement

    Directory of Open Access Journals (Sweden)

    Marga Alisjahbana

    2013-11-01

    Full Text Available A method to statistically extract MOSFET model parameters from a minimal number of transistor I(V characteristic curve measurements, taken during fabrication process monitoring. It includes a sensitivity analysis of the model, test/measurement point selection, and a parameter extraction experiment on the process data. The actual extraction is based on a linear error model, the sensitivity of the MOSFET model with respect to the parameters, and Newton-Raphson iterations. Simulated results showed good accuracy of parameter extraction and I(V curve fit for parameter deviations of up 20% from nominal values, including for a process shift of 10% from nominal.

  17. Partial solvation parameters and LSER molecular descriptors

    International Nuclear Information System (INIS)

    Panayiotou, Costas

    2012-01-01

    Graphical abstract: The one-to-one correspondence of LSER molecular descriptors and partial solvation parameters (PSPs) for propionic acid. Highlights: ► Quantum-mechanics based development of a new QSPR predictive method. ► One-to-one correspondence of partial solvation parameters and LSER molecular descriptors. ► Development of alternative routes for the determination of partial solvation parameters and solubility parameters. ► Expansion and enhancement of solubility parameter approach. - Abstract: The partial solvation parameters (PSP) have been defined recently, on the basis of the insight derived from modern quantum chemical calculations, in an effort to overcome some of the inherent restrictions of the original definition of solubility parameter and expand its range of applications. The present work continues along these lines and introduces two new solvation parameters, the van der Waals and the polarity/refractivity ones, which may replace both of the former dispersion and polar PSPs. Thus, one may use either the former scheme of PSPs (dispersion, polar, acidic, and basic) or, equivalently, the new scheme (van der Waals, polarity/refractivity, acidic, basic). The new definitions are made in a simple and straightforward manner and, thus, the strength and appeal of the widely accepted concept of solubility parameter is preserved. The inter-relations of the various PSPs are critically discussed and their values are tabulated for a variety of common substances. The advantage of the new scheme of PSPs is the bridge that makes with the corresponding Abraham’s LSER descriptors. With this bridge, one may exchange information between PSPs, LSER experimental scales, and quantum mechanics calculations such as via the COSMO-RS theory. The proposed scheme is a predictive one and it is applicable to, both, homo-solvated and hetero-solvated compounds. The new scheme is tested for the calculation of activity coefficients at infinite dilution, for octanol

  18. Optimal Laser Phototherapy Parameters for Pain Relief.

    Science.gov (United States)

    Kate, Rohit J; Rubatt, Sarah; Enwemeka, Chukuka S; Huddleston, Wendy E

    2018-03-27

    Studies on laser phototherapy for pain relief have used parameters that vary widely and have reported varying outcomes. The purpose of this study was to determine the optimal parameter ranges of laser phototherapy for pain relief by analyzing data aggregated from existing primary literature. Original studies were gathered from available sources and were screened to meet the pre-established inclusion criteria. The included articles were then subjected to meta-analysis using Cohen's d statistic for determining treatment effect size. From these studies, ranges of the reported parameters that always resulted into large effect sizes were determined. These optimal ranges were evaluated for their accuracy using leave-one-article-out cross-validation procedure. A total of 96 articles met the inclusion criteria for meta-analysis and yielded 232 effect sizes. The average effect size was highly significant: d = +1.36 (confidence interval [95% CI] = 1.04-1.68). Among all the parameters, total energy was found to have the greatest effect on pain relief and had the most prominent optimal ranges of 120-162 and 15.36-20.16 J, which always resulted in large effect sizes. The cross-validation accuracy of the optimal ranges for total energy was 68.57% (95% CI = 53.19-83.97). Fewer and less-prominent optimal ranges were obtained for the energy density and duration parameters. None of the remaining parameters was found to be independently related to pain relief outcomes. The findings of meta-analysis indicate that laser phototherapy is highly effective for pain relief. Based on the analysis of parameters, total energy can be optimized to yield the largest effect on pain relief.

  19. Cosmological parameter estimation using particle swarm optimization

    Science.gov (United States)

    Prasad, Jayanti; Souradeep, Tarun

    2012-06-01

    Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.

  20. Systematic parameter inference in stochastic mesoscopic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  1. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  2. Analysis of sagittal spinopelvic parameters in achondroplasia.

    Science.gov (United States)

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  3. Multiwavelength light curve parameters of Cepheid variables

    Directory of Open Access Journals (Sweden)

    Bhardwaj Anupam

    2017-01-01

    Full Text Available We present a comparative analysis of theoretical and observed light curves of Cepheid variables using Fourier decomposition. The theoretical light curves at multiple wavelengths are generated using stellar pulsation models for chemical compositions representative of Cepheids in the Galaxy and Magellanic Clouds. The observed light curves at optical (VI, near-infrared (JHKs and mid-infrared (3.6 & 4.5-μm bands are compiled from the literature. We discuss the variation of light curve parameters as a function of period, wavelength and metallicity. Theoretical and observed Fourier amplitude parameters decrease with increase in wavelength while the phase parameters increase with wavelength. We find that theoretical amplitude parameters obtained using canonical mass-luminosity levels exhibit a greater offset with respect to observations when compared to non-canonical relations. We also discuss the impact of variation in convective efficiency on the light curve structure of Cepheid variables. The increase in mixing length parameter results in a zero-point offset in bolometric mean magnitudes and reduces the systematic large difference in theoretical amplitudes with respect to observations.

  4. Multi-parameters scanning in HTI media

    KAUST Repository

    Masmoudi, Nabil

    2014-08-05

    Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.

  5. Statistics of Parameter Estimates: A Concrete Example

    KAUST Repository

    Aguilar, Oscar

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise levels, models, or prior knowledge. But what can we say about the validity of such estimates, and the influence of these assumptions? This paper is concerned with methods to address these questions, and for didactic purposes it is written in the context of a concrete nonlinear parameter estimation problem. We will use the results of a physical experiment conducted by Allmaras et al. at Texas A&M University [M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149-167] to illustrate the importance of validation procedures for statistical parameter estimation. We describe statistical methods and data analysis tools to check the choices of likelihood and prior distributions, and provide examples of how to compare Bayesian results with those obtained by non-Bayesian methods based on different types of assumptions. We explain how different statistical methods can be used in complementary ways to improve the understanding of parameter estimates and their uncertainties.

  6. Application of spreadsheet to estimate infiltration parameters

    Directory of Open Access Journals (Sweden)

    Mohammad Zakwan

    2016-09-01

    Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.

  7. Calibration of discrete element model parameters: soybeans

    Science.gov (United States)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  8. Reduction of coupling parameters and duality

    International Nuclear Information System (INIS)

    Oehme, R.; Max-Planck-Institut fuer Physik, Muenchen

    2000-01-01

    The general method of the reduction in the number of coupling parameters is discussed. Using renormalization group invariance, theories with several independent couplings are related to a set of theories with a single coupling parameter. The reduced theories may have particular symmetries, or they may not be related to any known symmetry. The method is more general than the imposition of invariance properties. Usually, there are only a few reduced theories with an asymptotic power series expansion corresponding to a renormalizable Lagrangian. There also exist 'general' solutions containing non-integer powers and sometimes logarithmic factors. As an example for the use of the reduction method, the dual magnetic theories associated with certain supersymmetric gauge theories are discussed. They have a superpotential with a Yukawa coupling parameter. This parameter is expressed as a function of the gauge coupling. Given some standard conditions, a unique, isolated power series solution of the reduction equations is obtained. After reparameterization, the Yukawa coupling is proportional to the square of the gauge coupling parameter. The coefficient is given explicitly in terms of the numbers of colors and flavors. 'General' solutions with non-integer powers are also discussed. A brief list is given of other applications of the reduction method. (orig.)

  9. A Tool for Parameter-space Explorations

    Science.gov (United States)

    Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu

    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.

  10. Multi-parameters scanning in HTI media

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2014-01-01

    Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.

  11. Determining Spacecraft Reaction Wheel Friction Parameters

    Science.gov (United States)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  12. Postprocessing MPEG based on estimated quantization parameters

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2009-01-01

    the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used...... in the postprocessing. We focus on deringing and present a scheme which aims at suppressing ringing artifacts, while maintaining the sharpness of the texture. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation. The performance of the new `pure......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....

  13. Dynamic response of structures with uncertain parameters

    International Nuclear Information System (INIS)

    Cai, Z H; Liu, Y; Yang, Y

    2010-01-01

    In this paper, an interval method for the dynamic response of structures with uncertain parameters is presented. In the presented method, the structural physical and geometric parameters and loads can be considered as interval variables. The structural stiffness matrix, mass matrix and loading vectors are described as the sum of two parts corresponding to the deterministic matrix and the uncertainty of the interval parameters. The interval problem is then transformed into approximate deterministic one. The Laplace transform is used to transform the equations of the dynamic system into linear algebra equations. The Maclaurin series expansion is applied on the modified dynamic equation in order to deal with the linear algebra equations. Numerical examples are studied by the presented interval method for the cases with and without damping. The upper bound and lower bound of the dynamic responses of the examples are compared, and it shows that the presented method is effective.

  14. Fault detection using parameter transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Salamun, I; Mavko, B; Stritar, A [University of Ljubljana, Josef Stefan Inst., Ljubljana (Slovenia). Reactor Engineering Div.

    1997-12-31

    To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs.

  15. Fault detection using parameter transfer functions

    International Nuclear Information System (INIS)

    Salamun, I.; Mavko, B.; Stritar, A.

    1996-01-01

    To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs

  16. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-01-01

    This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory

  17. Setting parameters in the cold chain

    Directory of Open Access Journals (Sweden)

    Victoria Rodríguez

    2011-12-01

    Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.

  18. Genetic parameters in a Swine Population

    Directory of Open Access Journals (Sweden)

    Dana Popa

    2010-05-01

    Full Text Available The estimation of the variance-covariance components is a very important step in animal breeding because these components are necessary for: estimation of the genetic parameters, prediction of the breeding value and design of animal breeding programs. The estimation of genetic parameters is the first step in the development of a swine breeding program, using artificial insemination. Various procedures exist for estimation of heritability. There are three major procedures used for estimating heritability: analysis of variance (ANOVA, parents-offspring regression and restricted maximum likelihood (REML. By using ANOVA methodology or regression method it is possible to obtain aberrant values of genetic parameters (negative or over unit value of heritability coefficient, for example which can not be interpreting because is out of biological limits.

  19. Cryptanalysis of SFLASH with Slightly Modified Parameters

    Science.gov (United States)

    Dubois, Vivien; Fouque, Pierre-Alain; Stern, Jacques

    SFLASH is a signature scheme which belongs to a family of multivariate schemes proposed by Patarin et al. in 1998 [9]. The SFLASH scheme itself has been designed in 2001 [8] and has been selected in 2003 by the NESSIE European Consortium [6] as the best known solution for implementation on low cost smart cards. In this paper, we show that slight modifications of the parameters of SFLASH within the general family initially proposed renders the scheme insecure. The attack uses simple linear algebra, and allows to forge a signature for an arbitrary message in a question of minutes for practical parameters, using only the public key. Although SFLASH itself is not amenable to our attack, it is worrying to observe that no rationale was ever offered for this "lucky" choice of parameters.

  20. Estimating physiological skin parameters from hyperspectral signatures

    Science.gov (United States)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  1. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  2. On entanglement of light and Stokes parameters

    International Nuclear Information System (INIS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-01-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements. (paper)

  3. On entanglement of light and Stokes parameters

    Science.gov (United States)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  4. Application of nomograms to calculate radiography parameters

    International Nuclear Information System (INIS)

    Voronin, S.A.; Orlov, K.P.; Petukhov, V.I.; Khomchenkov, Yu.F.; Meshalkin, I.A.; Grachev, A.V.; Akopov, V.'S.; Majorov, A.N.

    1979-01-01

    The method of calculation of radiography parameters with the help of nomograms usable for practical application under laboratory and industrial conditions, is proposed. Nomograms are developed for determining the following parameters: relative sensitivity, general non-definition of image, permissible difference of blackening density between the centre and edge of the picture (ΔD), picture contrast, focus distance, item thickness, radiation-physical parameter, dose build up factor, groove dimension and error. An experimental test has been carried out for evaluating the results, obtained with nomograms. Steel items from 25 to 79 mm thick have been subjected to testing 191 Ir has been used as a source. Comparison of calculation and experimental results has shown the discrepancy in sensitivity values, caused by ΔDsub(min) apriori index and the error, inherent in graphical plotting on a nomogram

  5. Exploring cosmic origins with CORE: Cosmological parameters

    Science.gov (United States)

    Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed

  6. On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders

    2017-01-01

    It is well known that with a parameter on the boundary of the parameter space, such as in the classic cases of testing for a zero location parameter or no autoregressive conditional heteroskedasticity (ARCH) effects, the classic nonparametric bootstrap – based on unrestricted parameter estimates...... – leads to inconsistent testing. In contrast, we show here that for the two aforementioned cases, a nonparametric bootstrap test based on parameter estimates obtained under the null – referred to as ‘restricted bootstrap’ – is indeed consistent. While the restricted bootstrap is simple to implement...... in practice, novel theoretical arguments are required in order to establish consistency. In particular, since the bootstrap is analysed both under the null hypothesis and under the alternative, non-standard asymptotic expansions are required to deal with parameters on the boundary. Detailed proofs...

  7. Measurement of the Stokes parameters of light

    International Nuclear Information System (INIS)

    Berry, H.G.; Gabrielse, G.; Livingston, A.E.

    1977-01-01

    We describe a measuring system for determing the state of polarization of a beam of light in terms of its Stokes parameters. The technique which can be fully automated incorporates a monochromator and single photon counting detection and can thus be applied over a large wavelength range for very weak optical signals. Fourier transformation of the data by an on-line minicomputer allows immediate calculation of the Stokes parameters. We discuss special applications to light emitted from excited atomic systems with and without cylindrical symmetry

  8. Tables of nuclear level density parameters

    International Nuclear Information System (INIS)

    Chatterjee, A.; Ghosh, S.K.; Majumdar, H.

    1976-03-01

    The Renormalized Gas Model (RGM) has been used to calculate single particle level density parameters for more than 2000 nucleides over the range 9<=Z<=126 (15<=A<=338). Three separate tables present the elements on or near the valley of beta stability, neutron-rich fission fragment nucleides, and transitional nuclei, actinides and light-mass super heavy elements. Each table identifies the nucleus in terms of Z and N and presents the RGM deformation energy of binding, the total RGM structural energy correction over the free gas Fermi surface, and the level density parameter

  9. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  10. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  11. Estimating RASATI scores using acoustical parameters

    International Nuclear Information System (INIS)

    Agüero, P D; Tulli, J C; Moscardi, G; Gonzalez, E L; Uriz, A J

    2011-01-01

    Acoustical analysis of speech using computers has reached an important development in the latest years. The subjective evaluation of a clinician is complemented with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech analysis. This paper describes an approach to estimate the subjective characteristics of RASATI scale given objective acoustical parameters. Two approaches were used: linear regression with non-negativity constraints, and neural networks. The experiments show that such approach gives correct evaluations with ±1 error in 80% of the cases.

  12. Planck 2013 results. XVI. Cosmological parameters

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find...... over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r...

  13. Hematological Parameters in the Volatile Substance Sniffers

    OpenAIRE

    Dündaröz, Ruşen; Ceylan, Süleyman; Denli, Metin; Açıkel, Cengizhan; Balım, Elvan; Özışık, Tahir

    2009-01-01

    SüleymanDemirel Üniversitesi TIP FAKÜLTESİ DERGİSİ: 1999 Eylül; 6(3) Hematological Parameters in the Volatile Substance Sniffers Ruşen Dündaröz, Süleyman Ceylan, Metin Denli, Cengiz Han Açıkel, Elvan Balım, Tahir Özışık Abstract Glue sniffing is a frequent problem among teenagers. Various chemical substances, especially toluene and benzene, contained in the glues kave been reported to be hematotoxic. The hematological parameters of 44 healthy teenagers ~...

  14. Selected parameters of maize straw briquettes combustion

    Directory of Open Access Journals (Sweden)

    Kraszkiewicz Artur

    2018-01-01

    Full Text Available An analysis of the process of burning briquettes made of maize straw was performed. A number of traits have been evaluated, including physical characteristics of the fuel through parameters describing combustion kinetics as well as products and combustion efficiency. The study was conducted in a grate boiler, during which the differentiating factor was the air velocity flowing to the boiler. It was observed that the obtained values of the considered parameters were different, particularly temperature of the flue gas and the amount of CO and SO2 in the flue gas.

  15. Bayesian parameter estimation in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Siu, Nathan O.; Kelly, Dana L.

    1998-01-01

    Bayesian statistical methods are widely used in probabilistic risk assessment (PRA) because of their ability to provide useful estimates of model parameters when data are sparse and because the subjective probability framework, from which these methods are derived, is a natural framework to address the decision problems motivating PRA. This paper presents a tutorial on Bayesian parameter estimation especially relevant to PRA. It summarizes the philosophy behind these methods, approaches for constructing likelihood functions and prior distributions, some simple but realistic examples, and a variety of cautions and lessons regarding practical applications. References are also provided for more in-depth coverage of various topics

  16. Analysis of dynamic parameters of mine fans

    Science.gov (United States)

    Russky, E. Yu

    2018-03-01

    The design of the rotor of an axial fan and its main units, namely double leaf blades impeller and the main shaft are discussed. The parameters of a disturbed mine air flow under sudden outbursts are determined and the influence of disturbances on frequencies of axial fan units is assessed. The scope of the assessment embraces the disturbance effect on the blades and on the torsional vibrations of the main shafts. The dependences of the stresses in the elements of the rotor versus the disturbed air flow parameters are derived.

  17. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  18. Thermodynamic parameters of elasticity and electrical conductivity ...

    African Journals Online (AJOL)

    The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...

  19. Parameter identification in multinomial processing tree models

    NARCIS (Netherlands)

    Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.

    2010-01-01

    Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis

  20. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  1. Penalty parameter of the penalty function method

    DEFF Research Database (Denmark)

    Si, Cheng Yong; Lan, Tian; Hu, Junjie

    2014-01-01

    The penalty parameter of penalty function method is systematically analyzed and discussed. For the problem that Deb's feasibility-based rule doesnot give the detailed instruction as how to rank two solutions when they have the same constraint violation, an improved Deb's feasibility-based rule is...

  2. Evolution of Pedostructure Parameters Under Tillage Practices

    Science.gov (United States)

    The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are 15 unique pedostructure parameters that define the macropore and micropore soil water behavior fo...

  3. Controlled Attenuation Parameter And Alcoholic Hepatic Steatosis

    DEFF Research Database (Denmark)

    Thiele, Maja; Rausch, Vanessa; Fluhr, Gabriele

    2018-01-01

    BACKGROUND AND AIMS: Controlled attenuation parameter (CAP) is a novel non-invasive measure of hepatic steatosis, but has not been evaluated in alcoholic liver disease. We therefore aimed to validate CAP for assessment of biopsy-verified alcoholic steatosis and to study the effect of alcohol deto...

  4. Revisiting Hansen Solubility Parameters by Including Thermodynamics

    NARCIS (Netherlands)

    Louwerse, Manuel J; Fernández-Maldonado, Ana María; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-01-01

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy

  5. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...

  6. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  7. Cardiovascular Parameters of Nigerian Physiotherapy Students Dur ...

    African Journals Online (AJOL)

    Examination and tests are routine academic task during which students engage in mental exercis-es, writing, and/or practical demonstrations under pressure with stress placed on the cardiovascu-lar system. This study was aimed at investigating the cardiovascular parameters of students before, during and after an ...

  8. Reference Physiological Ranges for Serum Biochemical Parameters ...

    African Journals Online (AJOL)

    drugs includes measurement of changes in physiological parameters of subjects from known established baseline ... Methods: After informed consent, blood and urine samples were collected from a total of 576 ... a major public health problem in Cameroon with a .... sample collection, processing, storage and handling.

  9. What Clinical and Laboratory Parameters Distinguish Between ...

    African Journals Online (AJOL)

    Introduction: In developing countries, a large number of patients presenting acutely in renal failure are indeed cases of advanced chronic renal failure. In this study, we compared clinical and laboratory parameters between patients with acute renal failure (ARF) and chronic renal failure (CRF), to identify discriminatory ...

  10. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  11. Optimization of Agrobacterium -mediated transformation parameters ...

    African Journals Online (AJOL)

    Agrobacterium-mediated transformation factors for sweet potato embryogenic calli were optimized using -glucuronidase (GUS) as a reporter. The binary vector pTCK303 harboring the modified GUS gene driven by the CaMV 35S promoter was used. Transformation parameters were optimized including bacterial ...

  12. Calculation of the ceramics Weibull parameters

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Návrat, Tomáš

    2011-01-01

    Roč. 58, - (2011), s. 642-647 ISSN 2010-376X. [International Conference on Bioinformatics and Biomedicine 2011. Bali, 26.10.2011-28.10.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : biomaterial parameters * Weibull statistics * ceramics Subject RIV: BO - Biophysics http://www.waset.org/journals/waset/v58/v58-132.pdf

  13. Cosmological parameters from SDSS and WMAP

    International Nuclear Information System (INIS)

    Tegmark, Max; Strauss, Michael A.; Bahcall, Neta A.; Schlegel, David; Finkbeiner, Douglas; Gunn, James E.; Ostriker, Jeremiah P.; Seljak, Uros; Ivezic, Zeljko; Knapp, Gillian R.; Lupton, Robert H.; Blanton, Michael R.; Scoccimarro, Roman; Hogg, David W.; Abazajian, Kevork; Xu Yongzhong; Dodelson, Scott; Sandvik, Havard; Wang Xiaomin; Jain, Bhuvnesh

    2004-01-01

    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a 'vanilla' flat adiabatic cold dark matter model with a cosmological constant without tilt (n s =1), running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h≅0.74 -0.07 +0.18 to h≅0.70 -0.03 +0.04 , on the matter density from Ω m ≅0.25±0.10 to Ω m ≅0.30±0.04 (1σ) and on neutrino masses from 0 ≅16.3 -1.8 +2.3 Gyr to t 0 ≅14.1 -0.9 +1.0 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened

  14. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  15. Multi-parameter CAMAC compatible ADC scanner

    Energy Technology Data Exchange (ETDEWEB)

    Midttun, G J; Ingebretsen, F [Oslo Univ. (Norway). Fysisk Inst.; Johnsen, P J [Norsk Data A.S., Box 163, Oekern, Oslo 5, Norway

    1979-02-15

    A fast ADC scanner for multi-parameter nuclear physics experiments is described. The scanner is based on a standard CAMAC crate, and data from several different experiments can be handled simultaneously through a direct memory access (DMA) channel. The implementation on a PDP-7 computer is outlined.

  16. Measuruement of transport parameters on multiphase flows

    International Nuclear Information System (INIS)

    Kipphan, H.

    1976-01-01

    A method working on the basis of the correlation measuring technique is developed and tested on gas-solid flows in pipelines to measure transport parameters of the solid phase. Firstly, flows with stationary and site-independent average values are considered; finally, a few data on the measurement of instationary flows follow. (orig.) [de

  17. Hypergeometric Functions with Integral Parameter Differences

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1971-01-01

    For a generalized hypergeometric function pFq(z) with positive integral differences between certain numerator and denominator parameters, a formula expressing the pFq(z) as a finite sum of lower-order functions is proved. From this formula, Minton's two summation theorems for p = q + 1, z = 1...

  18. The Order Parameter in a Spin Glass

    NARCIS (Netherlands)

    Enter, A.C.D. van; Griffiths, Robert B.

    1983-01-01

    Various possible precise definitions of an Edwards-Anderson type of order parameter for an Ising model spin glass are considered, using boundary conditions for a finite system, states of an infinite system, and a duplicate-system approach. Several of these definitions are shown to yield identical

  19. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  20. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  1. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  2. Planck 2015 results. XIII. Cosmological parameters

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Giusarma, E.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Serra, P.; Shellard, E.P.S.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints fr...

  3. Boundary feedback stabilization of distributed parameter systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1988-01-01

    The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...

  4. Practice Parameter for Psychodynamic Psychotherapy with Children

    Science.gov (United States)

    Medicus, Jennifer

    2012-01-01

    This Practice Parameter describes the principles of psychodynamic psychotherapy with children and is based on clinical consensus and available research evidence. It presents guidelines for the practice of child psychodynamic psychotherapy, including indications and contraindications, the setting, verbal and interactive (play) techniques, work with…

  5. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  6. Changing Throwing Pattern: Instruction and Control Parameter

    Science.gov (United States)

    Southard, Dan

    2006-01-01

    The purpose of this study was to determine the effects of instruction and scaling up a control parameter (velocity of throw) on changes in throwing pattern. Sixty adult female throwers (ages 20-26 years) were randomly placed into one of four practice conditions: (a) scale up on velocity with no instruction, (b) maintain constant velocity with no…

  7. SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-11-10

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  8. Scanning anisotropy parameters in complex media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-03-21

    Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

  9. New evaluation parameter for wearable thermoelectric generators

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Woochul

    2018-04-01

    Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.

  10. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.; Lombard, F.

    2012-01-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal

  11. Scanning anisotropy parameters in complex media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

  12. Program for parameter studies of steam generators

    International Nuclear Information System (INIS)

    Mathisen, R.P.

    1982-11-01

    R2-GEN is a computer code for stationary thermal parameter studies of steam generators. The geometry and data are valid for Ringhals-2 generators. Subroutines and relevant calculations are included. The program is based on a heterogeneous flow model and some applications on tubes with varying contamination are presented. (G.B.)

  13. Sensor Placement for Modal Parameter Subset Estimation

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2016-01-01

    The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...

  14. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  15. Monogenic functions with parameters in Clifford analysis

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-02-01

    In this paper we study some properties of monogenic functions taking values in a Clifford algebra and depending on several parameters. It is proved that the Hartogs extension theorems are valid for these functions and for the multi-monogenic functions, which contain solutions of many important systems of partial differential equations in Theoretical Physics. (author). 4 refs

  16. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  17. Online identification of linear loudspeakers parameters

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Rubak, Per

    2007-01-01

    Feed forward nonlinear error correction of loudspeakers can improve sound quality. For creating a realistic feed forward strategy identification of the loudspeaker parameters is needed. The strategy of the compensator is that the nonlinear behaviour of the loudspeakers has relatively small drift...

  18. Evaluation of Haematological and Biochemical Parameters of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Haematological and Biochemical Parameters of Juvenile Oreochromis niloticus after Exposure to Water Soluble Fractions of ... niloticus were evaluated. After a preliminary determination of the 96 h-LC50 of ... evaporation, dissolution, emulsion, photolysis and biodegradation which generate a water soluble.

  19. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  20. Hansen Solubility Parameters for Octahedral Oligomeric Silsesquioxanes

    Science.gov (United States)

    2012-08-28

    1997, 80, 386-&. 5. Hansen, C. M. The three-dimensional solubility parameter -- key to paint component affinities I. J. Paint Technol. 1967, 39, 104...Chai, J.; Zhang, Q. X.; Han, D. X.; Niu, L. Synthesis and Application of Widely Soluble Graphene Sheets. Langmuir 2010, 26, 12314-12320. 12. Hansen, C

  1. Optimum parameters controlling distortion and noise of ...

    Indian Academy of Sciences (India)

    ALAA MAHMOUD

    2018-04-03

    Apr 3, 2018 ... modulation conditions and design parameters of the .... First the SL is modulated under the simple case of two- channel .... spans (channel 2: 55.25 ∼ channel 80: 559.25 MHz) at ..... bridge University Press, New York, 2004).

  2. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  3. IRI profile parameters at equatorial latitudes

    International Nuclear Information System (INIS)

    Reinisch, B.W.; Huang Xueqin; Conway, J.

    2002-01-01

    The IRI bottom-side electron density profile is specified as a function of three parameters B0, B1, and D1 describing the F2 layer thickness and shape, and the shape of the F1 layer, respectively. Together with the URSI or CCIR coefficients for the F2 layer peak density and height, they completely specify the profiles as function of time, season and solar activity. In support of the international effort of determining the best set of parameters we have analyzed the diurnal variations of B0, B1, and D1 for Jicamarca for high solar activity during 1999 and 2000 for different seasons and magnetic activity. The B0 values vary from a minimum of ∼95 km at 0300 LT to ∼250 km at local noon (1700 UT). The diurnal variation is similar to the IRI2000 prediction. B1 varies from ∼1.9 at daytime to ∼2.2 at night. The value of D1 is ∼0.5. The parameters show little Kp dependence. Standard deviations are shown. We calculated the ionospheric total electron contents for March and April 1998 from the ionogram profiles at Jicamarca and compared them with IRI predictions using the IRI 2000 parameters. While there is fair agreement, a significant time shift of 1 to 2 hours occurs in the transition from night to daytime values. (author)

  4. Neutron resonance parameters of CM isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Poruchikov, V.A.

    1977-01-01

    The total neutron cross sections of isotopes 244, 245, 246, 248 Curium have been measured on reactor CM-2 using the time-of-flight method. Single-level Breit-Wigner resonance parameters: energy E 0 , neutron width 2g GITAn, total width GITA, total neutron cross section in resonance sigma 0 have been obtained by the shape and area methods

  5. Mixed integer evolution strategies for parameter optimization.

    Science.gov (United States)

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.

  6. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    Science.gov (United States)

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  7. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  8. Objective parameters for engine noise quality evaluation; Objektive Parameter zur Bewertung der Motorgeraeuschqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Bernhard; Brandl, Stephan [AVL List GmbH, Graz (Austria); Sontacchi, Alois [Univ. fuer Musik und Darstellende Kunst, Graz (Austria). Inst. fuer Elektronische Musik und Akustik; Girstmair, Josef [Kompetenzzentrum Das Virtuelle Fahrzeug, Graz (Austria). Gruppe Antriebsstrang Dynamik und Akustik

    2013-06-01

    Due to ongoing downsizing efforts and more stringent emission regulations, relevance of sound quality monitoring during engine and vehicle development is strongly increasing. Therefore AVL developed new sound quality parameters like CKI (Combustion Knocking Index) and HI (Harshness Index). Using these parameters sound quality can be objectively monitored, without subjective evaluations, online throughout the complete development process. (orig.)

  9. Method for Determining the Time Parameter

    Directory of Open Access Journals (Sweden)

    K. P. Baslyk

    2014-01-01

    Full Text Available This article proposes a method for calculating one of the characteristics that represents the flight program of the first stage of ballistic rocket i.e. time parameter of the program of attack angle.In simulation of placing the payload for the first stage, a program of flight is used which consists of three segments, namely a vertical climb of the rocket, a segment of programmed reversal by attack angle, and a segment of gravitational reversal with zero angle of attack.The programed reversal by attack angle is simulated as a rapidly decreasing and increasing function. This function depends on the attack angle amplitude, time and time parameter.If the projected and ballistic parameters and the amplitude of attack angle were determined this coefficient is calculated based the constraint that the rocket velocity is equal to 0.8 from the sound velocity (0,264 km/sec when the angle of attack becomes equal to zero. Such constraint is transformed to the nonlinear equation, which can be solved using a Newton method.The attack angle amplitude value is unknown for the design analysis. Exceeding some maximum admissible value for this parameter may lead to excessive trajectory collapsing (foreshortening, which can be identified as an arising negative trajectory angle.Consequently, therefore it is necessary to compute the maximum value of the attack angle amplitude with the following constraints: a trajectory angle is positive during the entire first stage flight and the rocket velocity is equal to 0,264 km/sec by the end of program of angle attack. The problem can be formulated as a task of the nonlinear programming, minimization of the modified Lagrange function, which is solved using the multipliers method.If multipliers and penalty parameter are constant the optimization problem without constraints takes place. Using the determined coordinate descent method allows solving the problem of modified Lagrange function of unconstrained minimization with fixed

  10. A parameter tree approach to estimating system sensitivities to parameter sets

    International Nuclear Information System (INIS)

    Jarzemba, M.S.; Sagar, B.

    2000-01-01

    A post-processing technique for determining relative system sensitivity to groups of parameters and system components is presented. It is assumed that an appropriate parametric model is used to simulate system behavior using Monte Carlo techniques and that a set of realizations of system output(s) is available. The objective of our technique is to analyze the input vectors and the corresponding output vectors (that is, post-process the results) to estimate the relative sensitivity of the output to input parameters (taken singly and as a group) and thereby rank them. This technique is different from the design of experimental techniques in that a partitioning of the parameter space is not required before the simulation. A tree structure (which looks similar to an event tree) is developed to better explain the technique. Each limb of the tree represents a particular combination of parameters or a combination of system components. For convenience and to distinguish it from the event tree, we call it the parameter tree. To construct the parameter tree, the samples of input parameter values are treated as either a '+' or a '-' based on whether or not the sampled parameter value is greater than or less than a specified branching criterion (e.g., mean, median, percentile of the population). The corresponding system outputs are also segregated into similar bins. Partitioning the first parameter into a '+' or a '-' bin creates the first level of the tree containing two branches. At the next level, realizations associated with each first-level branch are further partitioned into two bins using the branching criteria on the second parameter and so on until the tree is fully populated. Relative sensitivities are then inferred from the number of samples associated with each branch of the tree. The parameter tree approach is illustrated by applying it to a number of preliminary simulations of the proposed high-level radioactive waste repository at Yucca Mountain, NV. Using a

  11. Psychoacoustic parameters and its measuring system; Onshitsu hyoka wo hyokasuru tame no parameter to keisoku system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M.; Imaizumi, H.; Ono, T. [Ono Sokki Co. Ltd., Tokyo (Japan)

    1998-05-01

    Human auditory sensation has both extremely excellent performance and general versatility as sound analyzer. At present, it is impossible to make equipment with the same functions as human being, and describe an auditory sensation function as acoustic sensor even by any physical analysis techniques. However, extraction of auditory sensation parameters is becoming possible by using psychoacoustics and binaural signal processing. This paper mainly explains the calculation method of sound quality evaluation parameters derived from psychoacoustic results based on a sound quality evaluation system under development by the authors. This system is based on binaural measurement by dummy head, and calculates psychoacoustic parameters such as loudness, sharpness, roughness, fluctuation strength and tonality through frequency analysis of the measured stereo signals. The system also calculates 2-D parameters such as sensory pleasantness and unbiased annoyance based on the above parameters. 12 refs., 4 figs.

  12. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  13. UPSILON'(10.01) resonance parameters

    International Nuclear Information System (INIS)

    Niczyporuk, B.; Zeludziewicz, T.; Chen, K.W.; Hartung, R.

    1980-09-01

    The resonance parameters of the UPSILON'(10.01) were measured using the LENA detector at the DORIS e + e - storage ring. We obtained a mass of M(UPSILON') = (10 013.6 +- 1.2 +- 10.0) MeV and an electronic width of GAMMAsub(ee)(UPSILON') = (0.53 +- 0.07sup(+0.09)sub(-0.05) keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total UPSILON' widUPSILON parameters we obtain a mass difference M(UPSILON') - M(UPSILON) = (552.0 +- 1.3 +- 10.0) MeV and GAMMAsub(ee)UPSILON')/ = 0.43 +- 0.07sup(+0.05)sub(-0.00). (orig.)

  14. Time dependence of vacuum arc parameters

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.

    1993-01-01

    Time-resolved investigations of the expanded plasma of vacuum arc cathode spots are described, including the study of the ion charge state distribution, the random cathode spot motion, and the crater formation. It was found that the ion charge state distribution changes over a time scale on the order of hundreds of microseconds. For the random spot motion two time scales were observed: a very short spot residence time of tens of nanoseconds which gives, combined with the step width, the diffusion parameter of the random motion, and a longer time scale on the order of 100 μs during which the diffusion parameter changes. Crater formation studies by scanning electron microscopy indicate the occurrence of larger craters at the end of crater chains. The existence of a time scale, much longer than the elementary times for crater formation and spot residence, can be explained by local heat accumulation

  15. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  16. Pinching parameters for open (super) strings

    Science.gov (United States)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  17. HL-LHC parameter space and scenarios

    International Nuclear Information System (INIS)

    Bruning, O.S.

    2012-01-01

    The HL-LHC project aims at a total integrated luminosity of approximately 3000 fb -1 over the lifetime of the HL-LHC. Assuming an exploitation period of ca. 10 years this goal implies an annual integrated luminosity of approximately 200 fb -1 to 300 fb -1 per year. This paper looks at potential beam parameters that are compatible with the HL-LHC performance goals and discusses briefly potential variation in the parameter space. It is shown that the design goal of the HL-LHC project can only be achieved with a full upgrade of the injector complex and the operation with β* values close to 0.15 m. Significant margins for leveling can be achieved for β* values close to 0.15 m. However, these margins can only be harvested during the HL-LHC operation if the required leveling techniques have been demonstrated in operation

  18. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  19. Chickpea seeds germination rational parameters optimization

    Science.gov (United States)

    Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.

    2018-05-01

    The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.

  20. The mobilisation model and parameter sensitivity

    International Nuclear Information System (INIS)

    Blok, B.M.

    1993-12-01

    In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)

  1. The Cultural and Rhetorical Parameters of CSR

    DEFF Research Database (Denmark)

    Kampf, Constance

    and the situated choices of corporate website designers with respect to communicating CSR initiatives in those systems offers a nuanced approach to understanding the cultural and rhetorical parameters of communicating CSR knowledge online.   Brockreide, Wayne. "Dimensions of the Concept of Rhetoric." in Bernard L......How are the parameters of CSR constructed?-corporate communication policy or the interaction between civil society, governments, and corporations? Recognition of the presentation of CSR on the Web as socially constructed argumentation (Coupland 2005) opens the door for a rhetorical approach to both...... the relationship between power and language to demonstrate dialogue through "competing perspectives" in responses to the EU Green paper and anti-corporate campaign groups protesting business by using the Web for "direct action campaigning." They call for an analysis that is reflective of the dynamic co...

  2. Effects of Cutting Tool Parameters on Vibration

    Directory of Open Access Journals (Sweden)

    Ince Mehmet Alper

    2016-01-01

    Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.

  3. Cosmological Constraints on Mirror Matter Parameters

    International Nuclear Information System (INIS)

    Wallemacq, Quentin; Ciarcelluti, Paolo

    2014-01-01

    Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.

  4. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  5. Kazhdan-Lusztig cells with unequal parameters

    CERN Document Server

    Bonnafé, Cédric

    2017-01-01

    This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig’s seminal work on the subject was published in 2002. The focus lies on the combinatorics of the partition into cells for general Coxeter groups, with special attention given to induction methods, cellular maps and the role of Lusztig's conjectures. Using only algebraic and combinatorial methods, the author carefully develops proofs, discusses open conjectures, and presents recent research, including a chapter on the action of the cactus group. Kazhdan-Lusztig Cells with Unequal Parameters will appeal to graduate students and researchers interested in related subject areas, such as Lie theory, representation theory, and combinatorics of Coxeter groups. Useful examples and various exercises make this book suitable for self-study and use alongside lecture c...

  6. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  7. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  8. Habitable zone dependence on stellar parameter uncertainties

    International Nuclear Information System (INIS)

    Kane, Stephen R.

    2014-01-01

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  9. Habitable zone dependence on stellar parameter uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R., E-mail: skane@sfsu.edu [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  10. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  11. The LIPAR-5 resonance parameter library

    International Nuclear Information System (INIS)

    Abagyan, L.P.

    1997-08-01

    The LIPAR-5 neutron resolved resonance parameter library has been elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. Other authors' results are also included after re-evaluation. The codes used for the evaluation are described briefly. Tables of results are included for every isotope: the boundaries of the resolved resonance region, the numbers of s- and p-resonances, the thermal neutron partial cross-sections and the resonance integrals. The parameters are presented in ENDF/B-6 format. LIPAR is part of the nuclear data library of the MCU Monte Carlo code for neutron transport calculations. LIPAR was verified by comparing the benchmark experiment and Monte Carlo calculation results. (author). 44 refs, 6 tabs

  12. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  13. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  14. Support Resources Demand Parameters - Aircraft. Revision A

    Science.gov (United States)

    1980-01-15

    Maintenance Squadron A- ST Advance Medium STOL Transport APU Auxillary Power Unit ASSY Assembly ATC Air Training Command AVG Average BAC Boeing Aerospace...entire study that will result in an organized and prioritized body of decision criteria and parameters that may be used by logistics managers, supervisors...technicians, and other decision makers in the process of predicting resource demand rates for operational and new emerging aircraft weapon systems

  15. System parameter identification information criteria and algorithms

    CERN Document Server

    Chen, Badong; Hu, Jinchun; Principe, Jose C

    2013-01-01

    Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research pr

  16. Measured radioecological parameters after the Chernobyl accident

    International Nuclear Information System (INIS)

    Bonka, H.

    1989-01-01

    After the Chernobyl accident the radioactivity in the environment in Aachen was measured in detail. The change of the different radionuclies in the eco-system made it possible to obtain radioecological parameters especially for iodine and caesium. The most important data obtained like deposition velocity, washout coefficient, retention factor, removal rate constant, and transfer factor food-milk, food-beef, and soil-grass are reported. (orig.)

  17. Extraction of the Susy and Higgs parameters

    International Nuclear Information System (INIS)

    Adam-Bourdarios, Claire

    2010-01-01

    If supersymmetry is discovered by the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters. Three scenarios have been recently investigated by the SFitter collaboration : the case where the LHC 'only' measures a light Higgs like signal, the case where SUSY signal are discovered at the LHC, and the dream scenario, where LHC and ILC measurements can be combined.

  18. Order parameters in smectic liquid crystals

    International Nuclear Information System (INIS)

    Beldon, Stephen M.

    2001-01-01

    This thesis explores some of the important mechanisms for switching in smectic liquid crystals. It is mainly concerned with the interaction of the electric field and various order parameters in smectic phases. Distortion of these order parameters and also the layer structures associated with smectics are discussed in depth. Initial work is concentrated on the electroclinic effect of commercially available FLC mixtures, where experimental results suggest the presence of non-uniformity in the molecular director profile. Two possible models are suggested assuming a variation of the order parameter θ through the cell. The first model assumes that the smectic layers remain bookshelf-like, and the second that the layers tilt in a vertical chevron structure when a cone angle is induced electroclinically or otherwise. The latter model is the first 'order parameter' model of an electric field induced vertical chevron. The presence of non-uniformity in the director profile is sensed by a method similar to wavelength extinction spectroscopy. Investigations are undertaken on racemic smectic materials with high dielectric biaxiality. Modelling of such a material reveals a new electroclinic effect which shows a discrete second order phase transition on application of a field. It is suggested that a bistable electroclinic effect stabilised with a high frequency ac field may be realised if a residual polarisation is present in the high biaxiality material, and that this might be useful in the displays industry. Experimental investigations of such a material confirm the above effects close to the smectic A-C transition. Finally a higher order smectic phase, the smectic I* phase, is considered. The distortion of the hexagonal bond orientational order is investigated experimentally during application of an electric field. The first dynamic model of the switching process is presented, showing good agreement with the experimental results. It is suggested that the bond orientational

  19. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  20. Preliminary Estimation of Kappa Parameter in Croatia

    Science.gov (United States)

    Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep

    2017-12-01

    Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.

  1. APPLICATION OF QUATERNIONS FOR REFLECTOR PARAMETER

    Directory of Open Access Journals (Sweden)

    I. A. Konyakhin

    2016-09-01

    Full Text Available Subject of Research. The paper deals with application of quaternions for optimization of reflector parameters at autocollimation measurements in comparison with a matrix method. Computer-based results on the quaternionic models are presented that have given the possibility to determine conditions of measurement error reduction in view of apriori information on the rotation axis position. The practical synthesis technique for tetrahedron reflector parameters using found ratios is considered. Method. Originally, received conditions for reduction of autocollimation system measurement error are determined with the use of a matrix method for definition of an angular object position as a set of three equivalent consecutive turns about coordinate axes. At realization of these conditions the numerous recalculation of orientation parameters between various systems of coordinates is necessary that increases complexity and reduces resulting accuracy of autocollimation system at practical measurements. The method of quaternions gives the possibility to analyze the change of an absolute angular position in space, thus, there are conditions of accuracy increase regardless of the used systems of coordinates. Main Results. Researches on the mathematical model have shown, that the orthogonal arrangement of two basic constant directions for autocollimator tetrahedron reflector is optimal with respect to criterion of measurement error reduction at bisection arrangement of actual turn axis against them. Practical Relevance. On the basis of the found ratios between tetrahedron reflector angles and angles of its initial orientation parameters we have developed a practical method of reflector synthesis for autocollimation measurements in case of apriori information on an actual turn axis at monitoring measurements of the shaft or pipelines deformations.

  2. Demographic and transportation parameters in RADTRAN

    International Nuclear Information System (INIS)

    Brogan, J.D.; Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    This paper describes the default parameters for each of the three major variable categories -- transportation network, land use, and population -- in the current version of the RADTRAN code. Changes in the variable assumptions associated with the release of RADTRAN 4.0 will then be described as will the options for users to supply locally-available, rather than national-level, default values. Finally, long-term enhancements anticipated for the code will be discussed. 17 refs

  3. Characteristic parameters of drift chambers calculation

    International Nuclear Information System (INIS)

    Duran, I.; Martinez-Laso, L.

    1989-01-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs

  4. Nucleon-deuteron low energy parameters

    International Nuclear Information System (INIS)

    Zankel, H.; Mathelitsch, L.

    1983-01-01

    Momentum space Fadeev equations are solved for nucleon-deuteron scattering and effective range parameters are calculated. A reverse trend is found in the two spin states by 4 asub(nd) 4 asub(pd) and 2 asub(pd) 2 asub(nd) which is in agreement with a configuration space calculation, but in conflict with all existing experiments. The Coulomb contributions to the effective range are small in quartet but sizeable in doublet scattering. (Author)

  5. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  6. Parameter estimation techniques for LTP system identification

    Science.gov (United States)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  7. MCMC for parameters estimation by bayesian approach

    International Nuclear Information System (INIS)

    Ait Saadi, H.; Ykhlef, F.; Guessoum, A.

    2011-01-01

    This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The MetropolisHastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.

  8. Superconducting parameters of polycrystalline niobium films

    International Nuclear Information System (INIS)

    Kandyba, P.E.; Kolesnikov, D.P.; Tkachev, V.A.

    1978-01-01

    The niobium semi-crystalline films, having a thickness of 200-5,050 A have been studied. The films have been produced by the electron-beam evaporation in the oilless vacuum and by the ionic plasma spraying with diode and triode methods. Determined have been the coherence length, the magnetic field penetration depth and the Ginsburg-andau parameter. An attempt is made to determine the electron states density of the Fermi surface

  9. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  10. Slope parameters of ππ-system

    International Nuclear Information System (INIS)

    Isaev, P.S.; Osipov, A.A.

    1984-01-01

    The slope parameters of the ππ-system are calculated in the framework of the superconductor-tupe quark model. The analogous calculations are made for πK-system. The amplitudes are obtained by using the box quark diagrams and tree diagrams with the intermediate scalar epsilon(700), Ssup(x)(975), K tilde (1350) mesons and vector rho(770), K* (892) mesons

  11. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  12. Parameters of DEMO DN and JET DN

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. The appendix presents the parameters of the DEMO and NET under the topic headings: power, geometry, plasma, toroidal and poloidal magnetic field coils, first wall engineering, divertor physics, divertor engineering, and blanket. (U.K.)

  13. Resolved Hapke parameter maps of the Moon

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B.; Denevi, B. W.; Boyd, A. K.

    2014-08-01

    We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel "tile-by-tile method" (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθ¯p) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ˜50 and visible: ˜126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

  14. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  15. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  16. A continuum order parameter for deconfinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1997-01-01

    Dyson-Schwinger equations are presented as a non-perturbative tool for the study and modeling of QCD at finite-T. An order parameter for deconfinement, applicable for both light and heavy quarks, is introduced. In a simple Dyson-Schwinger equation model of two-flavor QCD, coincident, 2nd-order chiral symmetry restoration and deconfinement transitions occur at T ∼ 150 MeV, with the same critical exponent, Β ∼ 0.33

  17. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  18. Parameter prestasi kerja dalam perspektif Islam

    OpenAIRE

    Juliandi, Azuar

    2017-01-01

    Performance appraisal in the view of Islam has not been much studied by Islamic scholars, particularly who focused on the areas of management. During the time, performance parameters of the discourse in the literature of human resource management was the conventional view. The views of conventional, not necessarily in accordance with Islamic values. Most conventional literature suggests about the values of performance only oriented to the life of the world and the material itself, not f...

  19. Parameters of atmospheric radioactivity in Bulgaria

    International Nuclear Information System (INIS)

    Yaneva, B.; Todorov, P.; Georgieva, D.

    2006-01-01

    Bulgaria is a country which is located on the Balkan Peninsula, at the Eastern part of Europe. There are a lot of polluting sources, which can affect the environmental parameters and human health. One of these parameters is a radioactivity. It can be as a result from natural and anthropological sources. One of the most important sources of radiological influence to the environment and its components is from atmosphere. Anthropological sources of atmospheric pollution are Nuclear power plants, different kinds of industrial plants, and so on. The systematic control on these parameters is made by the Ministry of environment and water in Bulgaria. The atmospheric radioactivity research is based on collecting of many samples and its examine. The collecting of these aerosol samples on different kind of filters is automatic and it is put into practice by fixed stations located in some of the main towns in Bulgaria - Sofia, Varna, Burgas, Vratza and Montana. The required amount of air for each sample is 1000m 3 . These samples are analyzed by gamma-spectrometry analysis for determination of specifies activity of natural and anthropological radionuclides in them. Monitoring data for the atmospheric radioactivity can be characterized by concentrations of Cs-137, Be-7. The results show that concentrations of Cs-137 are 3 and the concentrations for Be-7 vary from 0.7 to 15.7 mBq/m 3 . Other important radionuclides are Sr-90, Uranium and Ra-226

  20. Reliability parameters of distribution networks components

    Energy Technology Data Exchange (ETDEWEB)

    Gono, R.; Kratky, M.; Rusek, S.; Kral, V. [Technical Univ. of Ostrava (Czech Republic)

    2009-03-11

    This paper presented a framework for the retrieval of parameters from various heterogenous power system databases. The framework was designed to transform the heterogenous outage data in a common relational scheme. The framework was used to retrieve outage data parameters from the Czech and Slovak republics in order to demonstrate the scalability of the framework. A reliability computation of the system was computed in 2 phases representing the retrieval of component reliability parameters and the reliability computation. Reliability rates were determined using component reliability and global reliability indices. Input data for the reliability was retrieved from data on equipment operating under similar conditions, while the probability of failure-free operations was evaluated by determining component status. Anomalies in distribution outage data were described as scheme, attribute, and term differences. Input types consisted of input relations; transformation programs; codebooks; and translation tables. The system was used to successfully retrieve data from 7 distributors in the Czech Republic and Slovak Republic between 2000-2007. The database included 301,555 records. Data were queried using SQL language. 29 refs., 2 tabs., 2 figs.

  1. Planck 2013 results. XVI. Cosmological parameters

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cappellini, B.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chen, X.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Haissinski, J.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T.J.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-10-29

    We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the additi...

  2. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  3. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  4. Performance parameters of a standalone PV plant

    International Nuclear Information System (INIS)

    El Fathi, Amine; Nkhaili, Lahcen; Bennouna, Amin; Outzourhit, Abdelkader

    2014-01-01

    Highlights: • We described in details a photovoltaic power plant installed in the remote rural village Elkaria (Essaouira Morocco – 7.2 kWp). • We presented the results of monitoring and some performance parameters of the plant such as load curve. • We discussed the energy management of the plant which is based on the droop mode control. • We presented and discussed the yields and the performance ratio of the plant. - Abstract: In this work we present a detailed description of a 7.2 kWp photovoltaic power plant installed in the remote rural village Elkaria (province of Essaouira in Morocco). This plant supplies 16 households with electricity through a local grid that was installed for this purpose. The results of monitoring some performance parameters of the plant such as load curve, the yields and the performance ratio are presented and discussed. The performance ratio of the PV plant varied between 33% and 70.2%. The low values of this parameter are mainly attributed to the way the battery inverter manages the energy flow

  5. Physicochemical parameters of Amazon Melipona honey

    Directory of Open Access Journals (Sweden)

    Ligia Bicudo de Almeida-Muradian

    2007-06-01

    Full Text Available Stingless bees produce a honey that is different from the Apis honey in terms of composition. There aren't enough data to establish quality control parameters for this product, mainly due to lack of research results. The aim of this work is to evaluate some physicochemical parameters that can be used for the characterization and for the quality control of the Meliponinae honey. Four different samples were collected in the Amazon region of Brazil in 2004 (Melipona compressipes manaoense bee and Melipona seminigra merribae bee. Honey analyses were performed as described by the official methods. The mean results were: moisture (30.13%, pH (3.65, acidity (24.57 mEq/kg, water activity (0.75, fructose (31.91%, glucose (29.30% and sucrose (0.19%. These results reinforce the need for a specific regulation for stingless bee honey. This will only be feasible when enough data is available to establish upper and lower limits for the physicochemical parameters used for quality control.

  6. Associations between sleep parameters and food reward.

    Science.gov (United States)

    McNeil, Jessica; Cadieux, Sébastien; Finlayson, Graham; Blundell, John E; Doucet, Éric

    2015-06-01

    This study examined the effects of acute, isocaloric aerobic and resistance exercise on different sleep parameters, and whether changes in these sleep parameters between sessions were related to next morning food reward. Fourteen men and women (age: 21.9 ± 2.7 years; body mass index: 22.7 ± 1.9 kg m(-) ²) participated in three randomized crossover sessions: aerobic exercise; resistance exercise; and sedentary control. Target exercise energy expenditure was matched at 4 kcal kg(-1) of body weight, and performed at 70% of VO2peak or 70% of 1 repetition-maximal. Sleep was measured (accelerometry) for 22 h following each session. The 'wanting' for visual food cues (validated computer task) was assessed the next morning. There were no differences in sleep parameters and food 'wanting' between conditions. Decreases in sleep duration and earlier wake-times were significantly associated with increased food 'wanting' between sessions (P = 0.001). However, these associations were no longer significant after controlling for elapsed time between wake-time and the food reward task. These findings suggest that shorter sleep durations and earlier wake-times are associated with increased food reward, but these associations are driven by elapsed time between awakening and completion of the food reward task. © 2015 European Sleep Research Society.

  7. Reproductive Parameters of the Dogo Argentino Bitch

    Directory of Open Access Journals (Sweden)

    Marina Caffaratti

    2013-01-01

    Full Text Available The Dogo Argentino (DA is the first and only breed from Argentina recognized worldwide. Although its morphologic features have been well established, its normal reproductive parameters are not clearly known. The aim of this study was to determine the main DA bitch reproductive parameters. One hundred and forty-nine surveys were obtained from breeders from Córdoba province, Argentina: one for each intact DA bitch from 1 to 14 years old. The DA bitch reached puberty at an average of 8.93 months. The mean duration of vulval bleeding found in this study was 11.11 days. The clinical signs characteristic for proestrous-estrous were vulval edema (89.93%, bleeding during the time of mating (32.21%, holding the tail to the side (95.30%, and docility during mating (85.91%. DA bitches had a whelping rate of 84%. Out of 299 pregnancies, 89.30% exhibited a normal parturition, 6.69% presented dystocia, 2.68% needed Cesarean section, and 1.34% aborted. In conclusion, the reproductive parameters of the DA bitch are similar to those identified for other large breeds. DA often showed a prolonged vulval bleeding longer than proestrus. Its high whelping rate, its low incidence of dystocia, and its good maternal ability define the DA as a good reproductive breed with normal reproductive functions.

  8. The Advanced Photon Source list of parameters

    International Nuclear Information System (INIS)

    Bizek, H.M.

    1996-07-01

    The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system's parameters include parameters for both an undulator and a wiggler

  9. PC based 8-parameter data acquisition system

    International Nuclear Information System (INIS)

    Gupta, J.D.; Naik, K.V.; Jain, S.K.; Pathak, R.V.; Suman, B.

    1989-01-01

    Multiparameter data acquisition (MPA) systems which analyse nuclear events with respect to more than one property of the event are essential tools for the study of some complex nuclear phenomena requiring analysis of time coincident spectra. For better throughput and accuracy each parameter is digitized by its own ADC. A stand alone low cost IBM PC based 8-parameter data acquisition system developed by the authors makes use of Address Recording technique for acquiring data from eight 12 bit ADC's in the PC Memory. Two memory buffers in the PC memory are used in ping-pong fashion so that data acquisition in one bank and dumping of data onto PC disk from the other bank can proceed simultaneously. Data is acquired in the PC memory through DMA mode for realising high throughput and hardware interrupt is used for switching banks for data acquisition. A comprehensive software package developed in Turbo-Pascal offers a set of menu-driven interactive commands to the user for setting-up system parameters and control of the system. The system is to be used with pelletron accelerator. (author). 5 figs

  10. Phenomenological analysis of the Δ resonance parameters

    International Nuclear Information System (INIS)

    Vasan, S.S.

    1976-01-01

    The positions of the poles in the complex energy plane corresponding to the resonances Δ ++ and Δ 0 , and the associated residues, are determined by fitting the π + p and π - p hadronic phase shift data from the CARTER 73 analysis. As an illustration of the use of the Δ pole parameters, their application to the problem of parametrizing the residue function associated with the Δ Regge trajectory is considered. The input for the parametrization is given partly by the pole position and the residue of the Δ(1950), the first recurrence of the Δ(1236). These pole parameters are deduced from fits to the F 37 partial wave data from the AYED 74 phase shift analysis. Together with the Δ(1236) pole parameters, these provide information on the behavior of the Regge residue in the resonance region u less than 0 (in the context of s-channel backward scattering being dominated by u-channel Regge exchanges). Attempts to incorporate this information in parametrizations of the residue by means of real and complex functions lead to the conclusion that both the residue and the trajectory are better represented in the resonance region by complex parametrizations

  11. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  12. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    Science.gov (United States)

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  13. Sparsity regularization for parameter identification problems

    International Nuclear Information System (INIS)

    Jin, Bangti; Maass, Peter

    2012-01-01

    The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some

  14. Weighting factor for instantaneous source functions of a permeable ...

    African Journals Online (AJOL)

    A multiplicative weighting factor, E, is obtained which shows constant behaviour at late dimensionless flow times for a particular set of well and reservoir dimensionless parameters. Computation of dimensionless pressures using the factor shows conformity with expected behaviour for a layered reservoir with crossflow ...

  15. Download this PDF file

    African Journals Online (AJOL)

    De Don

    where ;_ is the Frank-Kamenetski i parameter. 0 is the dimensionless temperature variable, (5 is the dimensionless combustible variable and r is the dimensionless radial distance variable. For different values of nand m, we have the following cases subject to the boundary conditions. For Slab: Case 1; n = 0, m = -2 ...

  16. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    Science.gov (United States)

    Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan

    2015-01-01

    Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (prigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214

  17. Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters

    Directory of Open Access Journals (Sweden)

    A. Elsonbaty

    2014-10-01

    Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.

  18. Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima

    Science.gov (United States)

    Lahav, Ofer

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)

  19. Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters

    Directory of Open Access Journals (Sweden)

    Fabian Andres Lara-Molina

    Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.

  20. Examining the Functional Specification of Two-Parameter Model under Location and Scale Parameter Condition

    OpenAIRE

    Nakashima, Takahiro

    2006-01-01

    The functional specification of mean-standard deviation approach is examined under location and scale parameter condition. Firstly, the full set of restrictions imposed on the mean-standard deviation function under the location and scale parameter condition are made clear. Secondly, the examination based on the restrictions mentioned in the previous sentence derives the new properties of the mean-standard deviation function on the applicability of additive separability and the curvature of ex...

  1. Composite likelihood estimation of demographic parameters

    Directory of Open Access Journals (Sweden)

    Garrigan Daniel

    2009-11-01

    Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable

  2. GEOMETRICAL PARAMETERS OF EGGS IN BIRD SYSTEMATICS

    Directory of Open Access Journals (Sweden)

    I. S. Mityay

    2014-12-01

    Full Text Available Our ideas are based on the following assumptions. Egg as a standalone system is formed within another system, which is the body of the female. Both systems are implemented on the basis of a common genetic code. In this regard, for example, the dendrogram constructed by morphological criteria eggs should be approximately equal to those constructed by other molecular or morphological criteria adult birds. It should be noted that the dendrogram show only the degree of genetic similarity of taxa, therefore, the identity of materials depends on the number of analyzed criteria and their quality, ie, they should be the backbone. The greater the number of system-features will be included in the analysis and in one other case, the like are dendrogram. In other cases, we will have a fragmentary similarity, which is also very important when dealing with controversial issues. The main message of our research was to figure out the eligibility of usage the morphological characteristics of eggs as additional information in taxonomy and phylogeny of birds. Our studies show that the shape parameters of bird eggs show a stable attachment to certain types of birds and complex traits are species-specific. Dendrogram and diagrams built by the quantitative value of these signs, exhibit significant similarity with the dendrogram constructed by morphological, comparative anatomy, paleontology and molecular criteria for adult birds. This suggests the possibility of using morphological parameters eggs as additional information in dealing with taxonomy and phylogeny of birds. Keywords: oology, geometrical parameters of eggs, bird systematics

  3. Bias-limited extraction of cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, Meir; Itzhaki, Nissan; Rephaeli, Yoel, E-mail: meirs@wise.tau.ac.il, E-mail: nitzhaki@post.tau.ac.il, E-mail: yoelr@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-03-01

    It is known that modeling uncertainties and astrophysical foregrounds can potentially introduce appreciable bias in the deduced values of cosmological parameters. While it is commonly assumed that these uncertainties will be accounted for to a sufficient level of precision, the level of bias has not been properly quantified in most cases of interest. We show that the requirement that the bias in derived values of cosmological parameters does not surpass nominal statistical error, translates into a maximal level of overall error O(N{sup −½}) on |ΔP(k)|/P(k) and |ΔC{sub l}|/C{sub l}, where P(k), C{sub l}, and N are the matter power spectrum, angular power spectrum, and number of (independent Fourier) modes at a given scale l or k probed by the cosmological survey, respectively. This required level has important consequences on the precision with which cosmological parameters are hoped to be determined by future surveys: in virtually all ongoing and near future surveys N typically falls in the range 10{sup 6}−10{sup 9}, implying that the required overall theoretical modeling and numerical precision is already very high. Future redshifted-21-cm observations, projected to sample ∼ 10{sup 14} modes, will require knowledge of the matter power spectrum to a fantastic 10{sup −7} precision level. We conclude that realizing the expected potential of future cosmological surveys, which aim at detecting 10{sup 6}−10{sup 14} modes, sets the formidable challenge of reducing the overall level of uncertainty to 10{sup −3}−10{sup −7}.

  4. PERBEDAAN PARAMETER KARDIOPULMONAL SETELAH TINDAKAN OPEN SUCTION

    Directory of Open Access Journals (Sweden)

    Muhamat Nofiyanto

    2013-12-01

    Full Text Available Background: Endotracheal suctioning is often performed by nurses and beneficial for critically ill patients. Suctioning is essential for removing secretions, maintaining airway patency and prevent unexpected complications. Open suctioning is performed by disconnecting patients with the ventilator. Suctioning not only removed secretions in the airway but also oxygen. Suctioning must be done correctly, safely, effectively and efficiently to prevent unexpected events in critically ill patients. Objective: This study aimed to determine differences on cardiopulmonary parameters after open suction in critically ill patients Methods: The study design was comparatif cross sectional analytic approach, using one group pre test and post test. The sample of the research amounted to 34 people, using purposive sampling technique. Catheter size 14 Fr on ETT number 7 mm used in this research to performed endotracheal suctioning. Cardiopulmonary parameters (Heart rate/ HR, respiratory rate/RR, oxygen saturation/SpO2, systolic blood pressure/ SBP and diastolic blood pressure/DBP measured by pulse oxymeter and bedside monitor before suction and immediately thereafter. Results: The results showed increase average heart rate 6.412 (from 106.62 into 113.03, Respiratory rate has increased 4.971 (from 20.62 into 25.59, SpO2 decreased 1.68 (from 99.09 into 97.41, and systolic blood pressure increased 5.71 (from 118.29 into 124.00 after performed open suction. The results of paired t-test statistical analysis (for RR, HR obtained a < 0.05 (0.000, whereas Wilcoxon statistical analysis (for SpO2, SBP obtained a < 0.05 (0.000 and 0.001. So it can be said that the difference cardiopulmonary parameters was statistically significant after perfomed open suction in critically ill patients.

  5. Parameters of measuring of european political consciousness

    Directory of Open Access Journals (Sweden)

    M. M. Pikula

    2015-09-01

    Full Text Available In the article the author analyzes the parameters of European political consciousness, i.e. European research field of political consciousness in qualitative and quantitative terms, which may be based on different indicators. The issue of emergence and development of European political consciousness becomes topical because firstly, its formation as the subjective dimension of European integration policy is not a spontaneous process and, secondly, European integration is carried out not only from the top but from the bottom, requiring deliberate interference of the public with the process; the public possesses the formed European political consciousness. Since the latter is a specific mental construct, the author offers to apply the triad «criteria ­ parameters – indicators». The characteristic that makes it possible to evaluate certain processes or phenomena in the system of Europeanness / Europeanism and specifies the quality system of views and opinions, which are realized in European behavior, is considered to be the criterion of European political consciousness. The European political consciousness parameters are seen to include the relevant historical memory, trends of public opinion and awareness regarding the European Union and position of its members in the European integration process, including the assessment of the existence and development of the EU; knowledge and views on the main EU institutions, assessing the importance of the main institutions of the EU and trust in them; a positive vision for the future of the European Union etc. The author considers the performance and objective characteristics and dimensions, including positive correlation of national and European levels of identity (European identity and European behavior to be the indicatiors of European political awareness. On the basis of these indicators the control of the condition and trends of European political consciousness development will be carried out.

  6. Hematological parameters in children with Down syndrome

    Directory of Open Access Journals (Sweden)

    Renato Nisihara

    2015-04-01

    Full Text Available Introduction: There are few studies that investigated whether Down syndrome (DS interferes with references values for complete blood counts (CBC test in children with the syndrome. Objective: This study aimed to analyze the results of CBC performed in children with DS. Patients and methods: Data from CBC of DS children were included; at the time of examination they were aged between 2 and 10 years and had no clinical signs and/or symptoms of infectious disease. The hematological parameters analyzed were: total number of erythrocytes (RBC, hemoglobin (Hb concentration, hematological indices, platelet count, and total number of leucocytes. Additionally, we compared the collected parameters according to gender and age of the children studied. Results: A total of 203 CBC (100 girls and 103 boys were evaluated. In general, no significant differences were observed in studied parameters between the values found in samples of DS children and the values described in the literature as a reference for children in this age group. No difference in the prevalence of anemia was observed in relation to gender (p = 0.33, 14/103 (13.6% boys, and 11/100 (11% girls had anemia. However, the Hb and hematological indices values found in boys was significantly lower than in girls (p < 0.001. Conclusion: This investigation is the first one in Brazil to present and analyze the CBC results of DS children, reporting that their hematological indices are within the expected range for children without DS. Additionally, it was found that 12.3% of them had anemia.

  7. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  8. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  9. [Parameters of phoniatric examination of solo vocalists].

    Science.gov (United States)

    Mitrović, Slobodan; Jović, Rajko; Aleksić, Vesna; Cvejić, Biserka

    2002-01-01

    A phoniatrist analyzes the professional's voice at the beginning of his vocal studies or career but also later, in cases of voice disorder. Phoniatric examination of professional singers must be done according to "all inclusive" protocols of examination. Such protocols must establish the status of basic elements of phonatory system: activator, generator and resonator of voice and articulatory space. All patients requiring phoniatric examination no matter if they are candidates for professional singers, need to provide anamnestic data about their previous problems regarding voice or singing. This examination is necessary and it must include: examination of nose, cavum oris, pharynx, ears and larynx. This analysis is based on evaluation of physiological and pathophysiological manifestations of voice. Determination of musical voice range during phoniatric examination does not intend to make any classification of voice, nor to suggest to vocal teacher what he should count upon from future singers. Musical range can be determined only by a phoniatrist skilled in music or with musical training, but first of all vocal teacher. These methods are used for examination of phonatory function, or laryngeal pathology. They are not invasive and give objective and quantitative information. They include: laryngostroboscopy, spectral analysis of voice (sonography) and fundamental parameters of voice signal (computer program). Articulation is very important for solo singers, because good articulation contributes to qualitative emission of sound and expression of emotions. Tonal-threshold audiometry is performed as a hearing test. They include rhinomanometry, vital capacity measurements, maximal phonation time and phonation quotient. Phoniatric examination is a necessary proceeding which must be performed before admission to the academy of solo singing, and then during singers' education and career. The phoniatric protocol must include a minimal number of parameters, which can be

  10. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  11. A Modified Penalty Parameter Approach for Optimal Estimation of UH with Simultaneous Estimation of Infiltration Parameters

    Science.gov (United States)

    Bhattacharjya, Rajib Kumar

    2018-05-01

    The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.

  12. Database of Physiological Parameters for Early Life Rats and Mice

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Database of Physiological Parameters for Early Life Rats and Mice provides information based on scientific literature about physiological parameters. Modelers...

  13. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  14. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    OpenAIRE

    Hasim Rushiti; Florian Miftari; Besim Halilaj

    2015-01-01

    The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21). All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situat...

  15. Structural and electronic parameters of ferroelectric KWOF

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  16. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  17. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  18. Identification of low cycle fatigue parameters

    Directory of Open Access Journals (Sweden)

    Balda M.

    2009-12-01

    Full Text Available The article describes a new approach to the processing of experimental data coming from low-cycle fatigue (LCF tests. The data may be either tables from the standard tests, or a time series of loading processes and corresponding numbers of cycles to damage. A new method and a program for the evaluation of material parameters governing the material behavior under a low cycle loading have been developed. They exploit a minimization procedure for an appropriate criterion function based on differences of measured and evaluated damages.

  19. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  20. Organic molecules with abnormal geometric parameters

    International Nuclear Information System (INIS)

    Komarov, Igor V

    2001-01-01

    Organic molecules, the structural parameters of which (carbon-carbon bond lengths, bond and torsion angles) differ appreciably from the typical most frequently encountered values, are discussed. Using many examples of 'record-breaking' molecules, the limits of structural distortions in carbon compounds and their unusual chemical properties are demonstrated. Particular attention is devoted to strained compounds not yet synthesised whose properties have been predicted using quantum-chemical calculations. Factors that ensure the stability of such compounds are outlined. The bibliography includes 358 references.