WorldWideScience

Sample records for dimensional photonic crystals

  1. One-dimensional photonic crystals

    NARCIS (Netherlands)

    Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai

    2016-01-01

    A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis

  2. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  3. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  4. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  5. One-dimensional photonic crystals bound by light

    Science.gov (United States)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  6. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  7. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  8. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Jesus Eduardo Lugo; Rafael Doti; Jocelyn Faubert

    2011-01-01

    BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity d...

  9. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  10. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  11. Topological modes in one-dimensional solids and photonic crystals

    Science.gov (United States)

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  12. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  13. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  14. Microassembly of semiconductor three-dimensional photonic crystals.

    Science.gov (United States)

    Aoki, Kanna; Miyazaki, Hideki T; Hirayama, Hideki; Inoshita, Kyoji; Baba, Toshihiko; Sakoda, Kazuaki; Shinya, Norio; Aoyagi, Yoshinobu

    2003-02-01

    Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.

  15. Properties of photonic bandgap in one-dimensional multicomponent photonic crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; WANG Qi

    2006-01-01

    Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.

  16. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella

    2008-01-01

    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  17. Optical limiter based on two-dimensional nonlinear photonic crystals

    Science.gov (United States)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  18. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  19. Solitons in one-dimensional photonic crystals

    CERN Document Server

    Mayteevarunyoo, Thawatchai

    2008-01-01

    We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural "duty cycle", DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with loc...

  20. The Quantum Well of One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Liu

    2015-01-01

    Full Text Available We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW with quantum theory approach. By calculation, we find that there are photon bound states in the QW structure (BA6(BBABBn(AB6, and the numbers of the bound states are equal to n+1. We have found that there are some new features in the QW, which can be used to design optic amplifier, attenuator, and optic filter of multiple channel.

  1. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  2. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson

  3. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  4. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  5. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  6. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  7. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  8. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  9. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  10. A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Huan; YAO Jian-Quan; ZHENG Fang-Hua; XU De-Gang; WANG Peng

    2007-01-01

    A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three-dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the Riling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz functional components.

  11. The research and progress of micro-fabrication technologies of two-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XU XingSheng; ZHANG DaoZhong

    2007-01-01

    The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials,which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper,we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.

  12. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stavroula Foteinopoulou

    2003-12-12

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  13. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    Full Text Available BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. METHODOLOGY/PRINCIPAL FINDINGS: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. CONCLUSIONS/SIGNIFICANCE: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  14. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  15. Photonic Band Modulation in a Two-Dimensional Photonic Crystal with a ne-Dimensional Periodic Dielectric Background

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-Xing; ZHANG Yan; SHI Jun-Jie

    2008-01-01

    A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background.

  16. Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2008-01-01

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.

  17. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals

    CERN Document Server

    Huisman, Simon R; Woldering, Léon A; Leistikow, Merel D; Mosk, Allard P; Vos, Willem L

    2010-01-01

    We have studied the reflectivity of CMOS-compatible three-dimensional silicon inverse woodpile photonic crystals at near-infrared frequencies. Polarization-resolved reflectivity spectra were obtained from two orthogonal crystal surfaces corresponding to 1.88 pi sr solid angle. The spectra reveal broad peaks with high reflectivity up to 67 % that are independent of the spatial position on the crystals. The spectrally overlapping reflectivity peaks for all directions and polarizations form the signature of a broad photonic band gap with a relative bandwidth up to 16 %. This signature is supported with stopgaps in plane wave bandstructure calculations and with the frequency region of the expected band gap.

  18. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  19. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  20. Fabrication of High Quality Three-Dimensional Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Yong; LIU Yuan-Hao; CHENG Bing-Ying; ZHANG Dao-Zhong; MENG Qing-Bo

    2004-01-01

    High quality colloidal photonic crystals made from polystyrene spheres with diameter 240nm are fabricated by the vertical deposition method. The scanning electron microscopy (SEM) and the transmittance spectrum are used to characterize the properties of the photonic crystal. The SEM images show that there are few lattice defects. The transmittance of the photonic crystal is above 75% in the pass band at 700nm and is lower than 5% at the centre of the band gap, respectively. It is found that proper concentration is a very important factor to fabricate the photonic crystal when the diameter of the spheres is lower than 300nm.

  1. Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.com [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Yu; Leung, C.W.; Hu, Mingzhe; Chan, H.L.W. [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2011-06-13

    The properties of photonic band gap in one-dimensional photonic crystals composed of single-negative metamaterials are studied theoretically. Our study shows that the photonic gap will vanish at a certain incident angle when both the phase-match and impedance-match conditions are satisfied simultaneously, suggesting that the bandwidth and location of the photonic gap are strongly dependent on the incident angle and polarization. However, the photonic gap will not vanish and may become insensitive to the incident angle when the two match conditions cannot be met. Our study also shows that losses in metamaterials have little effect on the properties of the photonic gap. -- Highlights: → Photonic gap of 1D photonic crystal containing metamaterials was investigated. → The gap can be designed to be sensitive or insensitive to the incident angle. → The gap can be designed to be close at a specific incident angle. → Conditions for photonic gap vanishing were proposed. → Losses of metamaterials have little effect on the properties of the photonic gap.

  2. Photonic Band Gap Structures with Periodically Arranged Atoms in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Yu; CHEN Fang; ZHOU Jian-Ying

    2005-01-01

    @@ Linear transmission, reflection and absorption spectra for a new two-dimensional photonic crystal with periodically arranged resonant atoms are examined. Numerical results show that a twin-gap structure with forbidden bands displaced from a non-doped bandgap structure can be produced as a result of atomic polarization. The absorption spectrum is also significantly altered compared to the single atom entity.

  3. Design of Two-Dimensional Photonic Crystal Edge Emitting Laser for Photonic Integrated Circuits

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-Tao; ZHENG Wan-Hua; REN Gang; CHEN Liang-Hui

    2006-01-01

    @@ An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide.

  4. Rapid Fabrication of Three-Dimensional Woodpile Photonic Crystals by Means of Two-Photon Photopolymerization

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming; KONG Jun-Jie; YANG Hai-Feng; YAN Feng; CAI Lan

    2007-01-01

    Two-photon photopolymerization (TPP) of femtosecond laser is a promising method to fabricate three-dimensional woodpile photonic crystals (PCs). We build micro-fabrication system based on the principle of TPP. Three-dimensional woodpile PCs consisting of in-plane rod distances ranging from 1000 nm to 2000 nm are fabricated by focusing femtosecond laser in photosensitive liquid resin ORMOCER. The properties of the PCs are also discussed, and fundamental photonic band gaps in middle-infrared range are measured, whose in-plane rod distances are 1500 nm and 2000 nm. Three-dimensional woodpile PC devices with desired defects, such as cross-waveguide and micro-laser structures, are introduced easily by TPP. We fabricate the three-dimensional woodpile PCs in the liquid resin at the fast scanning speed of 120 fxm/s.

  5. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  6. Trapped Atoms in One-Dimensional Photonic Crystals

    Science.gov (United States)

    Kimble, H.

    2013-05-01

    I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.

  7. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  8. Band structure of absorptive two-dimensional photonic crystals

    Science.gov (United States)

    van der Lem, Han; Tip, Adriaan; Moroz, Alexander

    2003-06-01

    The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa-Kohn-Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.

  9. Properties of surface modes in one dimensional plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, S.; Prasad, S., E-mail: prasad.surendra@gmail.com; Singh, V. [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2015-02-15

    Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.

  10. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung, E-mail: potsung@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Rm. 413 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)

    2014-05-12

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  11. Compact triplexer in two-dimensional hexagonal lattice photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin

    2011-01-01

    We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.

  12. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    Science.gov (United States)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  13. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.

    Science.gov (United States)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-22

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  14. Three-dimensional photonic crystals containing designed defects achieved with two-photon photopolymerization

    Institute of Scientific and Technical Information of China (English)

    Ming Zhou; Wei Zhang; Junjie Kong; Haifeng Yang; Lan Cai

    2009-01-01

    Two-photon photopolymerization (TPP) with femtosecond laser is a promising method to fabricate three-dimensional (3D) photonic crystals (PCs). Based on the TPP principle, the micro-fabrication system has been built. The 3D woodpile PCs with rod space of 2000 nm are fabricated easily and different defects are introduced in order to form the cross-waveguide and the micro-laser structure PCs. Simulation results of the optical field intensity distributions using finite-difference time domain (FDTD) method are given, which support the designs and implementation of the PC of two types in theory.

  15. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  16. Dynamic photonic crystals dimensionality tuning by laser beams polarization changing

    Science.gov (United States)

    Golinskaya, Anastasia D.; Stebakova, Yulia V.; Valchuk, Yana V.; Smirnov, Aleksandr M.; Mantsevich, Vladimir N.

    2017-05-01

    A simple way to create dynamic photonic crystals with different lattice symmetry by interference of non-coplanar laser beams in colloidal solution of quantum dots was demonstrated. With the proposed technique we have made micro-periodic dynamic semiconductor structure with strong nonlinear changing of refraction and absorption and analyzed the self-diffraction processes of two, three and four non-coplanar laser beams at the dynamic photonic crystal (diffraction grating) with hexagonal lattice structure. To reach the best uniform contrast of the structure and for better understanding of the problems, specially raised by the interference of multiple laser beams theoretical calculation of the periodic intensity field in the QDs solution were performed. It was demonstrated that dynamic photonic crystal structure and even it's dimension can be easily tuned with a high speed by the laser beams polarization variation without changing the experimental setup geometry.

  17. Manipulating full photonic band gaps in two dimensional birefringent photonic crystals.

    Science.gov (United States)

    Proietti Zaccaria, Remo; Verma, Prabhat; Kawaguchi, Satoshi; Shoji, Satoru; Kawata, Satoshi

    2008-09-15

    The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.

  18. Local phase measurements of light in a one-dimensional photonic crystal

    NARCIS (Netherlands)

    Flück, E.; Otter, A.M.; Korterik, J.P.; Balistreri, M.L.M.; Kuipers, L.; Hulst, van N.F.

    2001-01-01

    For the first time the local optical phase evolution in and around a small, o­ne-dimensional photonic crystal has been visualized with a heterodyne interferometric photon scanning tunnelling microscope. The measurements show an exponential decay of the optical intensity inside the crystal, which con

  19. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude an

  20. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude

  1. Slow Light by Two-Dimensional Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; HUANG Yan; MAO Xiao-Yu; CUI Kai-Yu; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2009-01-01

    A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.

  2. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  3. Broadening of Omnidirectional Photonic Band Gap in Graphene Based one Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Neetika Arora

    2015-09-01

    Full Text Available A simple design of one dimensional gradual stacked photonic crystal has been proposed. This structure exhibits a periodic array of alternate layers of Graphene and Silica. These are the materials of low and high refractive indices respectively. Here the structure considered has three stacks .Each stack has five alternate layers of Graphene and silica. The transfer matrix method has been used for numerical computation. In this paper, such a structure has wider reflection bands in comparison to a conventional dielectric PC structure and structure with Sio2 and Si layers for a constant gradual constant ϒ at different incident angle.

  4. Band gap characterization and slow light effects in periodic and quasiperiodic one dimensional photonic crystal

    Science.gov (United States)

    Zaghdoudi, J.; Kuszelewicz, R.; Kanzari, M.; Rezig, B.

    2008-04-01

    Slow light offers many opportunities for photonic devices by increasing the effective interaction length of imposed refractive index changes. The slow wave effect in photonic crystals is based on their unique dispersive properties and thus entirely dielectric in nature. In this work we demonstrate an interesting opportunity to decrease drastically the group velocity of light in one-dimensional photonic crystals constructed form materials with large dielectric constant without dispersion). We use numerical analysis to study the photonic properties of periodic (Bragg mirror) and quasiperiodic one dimensional photonic crystals realized to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. Indeed, one dimensional quasi periodic photonic multilayer structure based on Fibonacci, Thue-Morse, and Cantor sequences were studied. Quasiperiodic structures have a rich and highly fragmented reflectivity spectrum with many sharp resonant peaks that could be exploited in a microcavity system. A comparison of group velocity through periodic and quasiperiodic photonic crystals was discussed in the context of slow light propagation. The velocity control of pulses in materials is one of the promising applications of photonic crystals. The material systems used for the numerical analysis are TiO II/SiO II and Te/SiO II which have a refractive index contrast of approximately 1.59 and 3.17 respectively. The proposed structures were modelled using the Transfer Matrix Method.

  5. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals%Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    Laxmi SHIVESHWARI

    2011-01-01

    Propagation of electromagnetic waves in one-dimensional plasma dielectric photonic crystals, the superlattice structure consisting of alternating plasma and dielectric materials, is studied theoretically for oblique incidence by using the transfer matrix method. Our results show that complete photonic band gaps for all polarizations can be obtained in one-dimensional plasma dielectric photonic crystals. These structures can exhibit a new type of band or gap, for the incidence other than the normal one, near frequencies where the electric permittivity of the plasma layer changes sign. This new band or gap arises, from the dispersive properties of the plasma layer, only for transverse magnetic polarized waves, and its width increases with the increase in incident angle. This differential behavior under polarization can be utilized in the design of an efficient polarization splitter. The existence of both photonic gaps and resonance transmission bands is demonstrated for experimentally realizable structures such as double electromagnetic barriers.

  6. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  7. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  8. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    Science.gov (United States)

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  9. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal

    Science.gov (United States)

    Miloua, R.; Kebbab, Z.; Chiker, F.; Khadraoui, M.; Sahraoui, K.; Bouzidi, A.; Medles, M.; Mathieu, C.; Benramdane, N.

    2014-11-01

    We theoretically investigate the possibility of enhancing light absorption in graphene-based one dimensional photonic crystal. We demonstrate that it is possible to achieve total light absorption at technologically important wavelengths using one-dimensional graphene-based photonic crystals. By means of the transfer matrix method, we investigate the effect of refractive indices and layer numbers on the optical response of the structure. We found that it is possible to achieve one peak, multi-peak or broadband, and complete optical absorption. As a result, the proposed photonic structures enable myriad potential applications such as photodetection, shielding and optical sensing.

  10. The Optical Bloch oscillation in chirped one-dimensional superconducting photonic crystal

    Science.gov (United States)

    Zhang, Zhengren; Long, Yang; Zhang, Liwei; Yin, Pengfei; Xue, Chunhua

    2017-09-01

    We exploit theoretically the propagation properties of electromagnetic waves in nanoscale one-dimensional superconducting photonic crystal. The Wannier Stark ladders can be formed in the photonic crystal by varying the thickness of the dielectric layers linearly across the structure. The dynamics behavior of a Gaussian pulse transmitting through the structure is simulated theoretically. We find that photons undergo Bloch oscillations inside tilted photonic bands and the Bloch oscillations are sensitive to the change of temperature in the range of 3-8 K. It is demonstrated that our structure is possible to realize tunable optical Bloch oscillations by controlling the temperature of superconducting material.

  11. Optical properties of one-dimensional photonic crystals obtained by micromatchining silicon (a review)

    Science.gov (United States)

    Tolmachev, V. A.

    2017-04-01

    The theoretical and experimental investigations of photonic band gaps in one-dimensional photonic crystals created by micromatchining silicon, which have been performed by the author as part of his doctoral dissertation, are presented. The most important result of the work is the development of a method of modeling photonic crystals based on photonic band gap maps plotted in structure-property coordinates, which can be used with any optical materials and in any region of electromagnetic radiation, and also for nonperiodic structures. This method made it possible to realize the targeted control of the optical contrast of photonic crystals and to predict the optical properties of optical heterostructures and three-component and composite photonic crystals. The theoretical findings were experimentally implemented using methods of micromatchining silicon, which can be incorporated into modern technological lines for the production of microchips. In the IR spectra of a designed and a fabricated optical heterostructure (a composite photonic crystal), extended bands with high reflectivities were obtained. In a Si-based three-component photonic crystal, broad transmission bands and photonic band gaps in the middle IR region have been predicted and experimentally demonstrated for the first time. Si-liquid crystal periodic structures with electric-field tunable photonic band-gap edges have been investigated. The one-dimensional photonic crystals developed based on micromatchining silicon can serve as a basis for creating components of optical processors, as well as highly sensitive chemical and biological sensors in a wide region of the IR spectrum (from 1 to 20 μm) for lab-on-a-chip applications.

  12. Characteristics of local photonic state density in an infinite two-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Zhou Yun-Song; Wang Xue-Hua; Gu Ben-Yuan; Wang Fu-He

    2005-01-01

    The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions.The variations of the LDPS as functions of the radial coordinate and frequency exhibit "mountain chain" structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.

  13. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification

    Science.gov (United States)

    Arpin, Kevin A.; Losego, Mark D.; Cloud, Andrew N.; Ning, Hailong; Mallek, Justin; Sergeant, Nicholas P.; Zhu, Linxiao; Yu, Zongfu; Kalanyan, Berç; Parsons, Gregory N.; Girolami, Gregory S.; Abelson, John R.; Fan, Shanhui; Braun, Paul V.

    2013-10-01

    Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. However, retention of the three-dimensional mesostructure at high temperatures remains a significant challenge. Here we utilize self-assembled templates to fabricate high-quality tungsten photonic crystals that demonstrate unprecedented thermal stability up to at least 1,400 °C and modified thermal emission at solar thermophotovoltaic operating temperatures. We also obtain comparable thermal and optical results using a photonic crystal comprising a previously unstudied material, hafnium diboride, suggesting that refractory metallic ceramic materials are viable candidates for photonic crystal-based solar thermophotovoltaic devices and should be more extensively studied.

  14. Bessel-Modal Method for Finite-Height Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    SHI Jun-Feng; HUANG Sheng-Ye; WANG Dong-Sheng

    2005-01-01

    @@ By applying the dyadic Green function, the dispersion relation of two-dimensional photonic crystal can be ex pressed as the cylindrical wave expansions of eigenmodes. With the aid of Green's theorem, the plane-wavecoefficients of eigenmodes are reconstructed and employed to formulate the scattering matrix of finite-height twodimensional photonic crystal. These operations make the convergence rate very rapid, and reduce the dimension of the scattering matrix. As a demonstration, we present the transmission and electromagnetic field distributions for an InGaAsIn photonic crystal, and investigate their convergence.

  15. Quantum electron plasma in one-dimensional metallic-dielectric photonic crystal

    Science.gov (United States)

    Zverev, N. V.; Yushkanov, A. A.

    2017-02-01

    The interaction of the electromagnetic radiation with one-dimensional photonic crystal consisting of metal and transparent dielectric medium is studied numerically. Dielectric permeabilities of the electron plasma in the metal are considered both in the quantum Mermin and in the classical Drude-Lorentz approaches. It is shown that the reflection, transmission and absorption-frequency zones of electromagnetic radiation appear in the photonic crystal. In addition, the reflectance, transmittance and absorptance optical coefficients for such photonic crystal in the quantum approach differ from those coefficients in the Drude-Lorentz approach.

  16. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.

    Science.gov (United States)

    Wen, Feng; David, Sylvain; Checoury, Xavier; El Kurdi, Moustafa; Boucaud, Philippe

    2008-08-04

    Photonic crystals exhibiting a photonic band gap in both TE and TM polarizations are particularly interesting for a better control of light confinement. The simultaneous achievement of large band gaps in both polarizations requires to reduce the symmetry properties of the photonic crystal lattice. In this letter, we propose two different designs of two-dimensional photonic crystals patterned in high refractive index thin silicon slabs. These slabs are known to limit the opening of photonic band gaps for both polarizations. The proposed designs exhibit large complete photonic band gaps: the first photonic crystal structure is based on the honey-comb lattice with two different hole radii and the second structure is based on a "tri-ellipse" pattern in a triangular lattice. Photonic band gap calculations show that these structures offer large complete photonic band gaps deltaomega/omega larger than 10% between first and second photonic bands. This figure of merit is obtained with single-mode slab waveguides and is not restricted to modes below light cone.

  17. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  18. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Science.gov (United States)

    Pandey, G. N.; Kumar, Narendra; Thapa, Khem B.; Ojha, S. P.

    2016-05-01

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  19. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  20. Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

    Science.gov (United States)

    Chen, Ying-Chieh

    2009-01-01

    Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical…

  1. Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

    Science.gov (United States)

    Chen, Ying-Chieh

    2009-01-01

    Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical…

  2. Function Photonic Crystals

    CERN Document Server

    Wu, Xiang-Yao; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai; Li, Jing-Wu

    2010-01-01

    In the paper, we present a new kind of function photonic crystals, which refractive index is a function of space position. Unlike conventional PCs, which structure grow from two materials, A and B, with different dielectric constants $\\epsilon_{A}$ and $\\epsilon_{B}$. By Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we study the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals. By choosing various refractive index distribution function $n(z)$, we can obtain more width or more narrow band gap structure than conventional photonic crystals.

  3. Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap

    CERN Document Server

    Peng, Siying; Chen, Valerian H; Khabiboulline, Emil T; Braun, Paul; Atwater, Harry A

    2016-01-01

    A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a complete bandgap in infrared spectroscopy measurements. Photonic crystals were synthesized by deposition of a-Si/Al2O3 coatings onto a sacrificial polymer scaffold defined by two-photon lithography. We observed a 100% reflectance at 7.5 \\mum for single gyroids with a unit cell size of 4.5 \\mum, in agreement with the photonic bandgap position predicted from full-wave electromagnetic simulations, whereas the observed reflection peak shifted to 8 um for a 5.5 \\mum unit cell size. This approach represents a simulation-fabrication-characterization platform to realize three-dimensional gyroid photonic crystals with well-defined dimensions in real space and tailored properties in momentum space.

  4. Fabrication of novel three-dimensional photonic crystals using multi-beam interference lithography

    Science.gov (United States)

    Ramanan, Vinayak

    Optical Communications has seen an explosion in recent times with new types of devices and materials. In the last decade, considerable study has been devoted to the control of the optical properties of materials and guiding the propagation of light through the use of photonic crystals. Photonic crystals are materials with a periodic arrangement of dielectric medium in one, two or three dimensions, with periodicities on the order of the wavelength of the electromagnetic radiation in use. Photonic crystals exhibit photonic band gaps depending on their geometry and refractive index. Holographic lithography has been proven to be an attractive technique for the creation of large area, defect-free, three-dimensional photonic crystals. Structures with potential in photonic applications are fabricated in the photoresist SU-8, through concurrent exposure with four non-coplanar coherent beams of laser radiation. Polymer-air structures with face centered cubic symmetry are used as a template to create higher refractive index contrast photonic crystals by infilling using Atomic Layer Deposition and Chemical Vapor Deposition. These photonic crystals exhibit excellent optical properties with strong reflectance peaks at the calculated band gap frequencies. Two-photon polymerization is used to demonstrate the ability to create designed defect structures such as waveguides in silicon-air photonic crystals. Genetic algorithms are demonstrated as a technique to design an interference lithography experiment. A four-beam setup with beams originating in opposite hemispheres and linear polarizations is found to generate a structure with diamond symmetry and a large complete photonic band gap. Band gap studies on structures that possess both high band gap and high contrast are performed. The optical setup for a diamond structure utilizing two right-angled prisms is discussed and promising experimental results are presented.

  5. Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing

    Science.gov (United States)

    McPhail, Dennis; Straub, Martin; Gu, Min

    2005-08-01

    In this letter, we report on an optically tunable three-dimensional photonic crystal that exhibits main gaps in the 3-4μm range. The photonic crystal is manufactured via a femtosecond direct writing technique. Optical tuning is achieved by a luminary polling technique with a low-power polarized laser beam. The refractive index variation resulting from liquid-crystal rotation causes a shift in the photonic band gap of up to 65 nm with an extinction of transmission of up to 70% in the stacking direction. Unlike other liquid-crystal tuning techniques where a pregenerated structure is infiltrated, this optical tuning method is a one-step process that allows arbitrary structures to be written into a solid liquid-crystal-polymer composite and leads to a high dielectric contrast.

  6. Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals.

    Science.gov (United States)

    Choi, Ka Hei; Ling, C W; Lee, K F; Tsang, Y H; Fung, Kin Hung

    2016-04-01

    We show theoretically that, in the limit of weak dispersion, one-dimensional binary centrosymmetric photonic crystals can support topological edge modes in all photonic bandgaps. By analyzing their bulk band topology, these "harmonic" topological edge modes can be designed in a way that they exist at all photonic bandgaps opened at the center of the Brillouin zone, at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-frequency coupled modes for applications in nonlinear photonics, such as frequency upconversion.

  7. Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-dong

    2006-01-01

    The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally,and the physical properties were analyzed.Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed.In this review,after providing a brief history of the research related to the above phenomena,we will summarize our research works in this field including the method of creating a negative refraction region,generating an absolute negative refraction,the focusing of unpolarized electromagnetic waves,and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens.The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.

  8. Frequency bands of negative refraction in finite one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan-Yuan; Huang Zhao-Ming; Shi Jie-Long; Li Chun-Fang; Wang Qi

    2007-01-01

    We have discussed theoretically the negative refraction in finite one-dimensional (1D) photonic crystals (PCs)composed of alternative layers with high index contrast. The frequency bands of negative refraction are obtained with the help of the photonic band structure, the group velocity and the power transmittance, which are all obtained in analytical expression. There shows negative transverse position shift at the endface when negative refraction occurs,which is analysed in detail.

  9. Magneto-tunable one-dimensional graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jahani, D., E-mail: dariush110@gmail.com; Soltani-Vala, A., E-mail: asoltani@tabrizu.ac.ir; Barvestani, J.; Hajian, H. [Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-04-21

    We investigate the effect of a perpendicular static magnetic field on the optical bandgap of a one-dimensional (1D) graphene-dielectric photonic crystal in order to examine the possibility of reaching a rich tunable photonic bandgap. The solution of the wave equation in the presence of the anisotropic Hall situation suggests two decoupled circularly polarized wave each exhibiting different degrees of bandgap tunability. It is also numerically demonstrated that applying different values of field intensity lead to perceptible changes in photonic bandgap of such a structure. Finally, the effect of opening a finite electronic gap in the spectrum of graphene on the optical dispersion solution of such a 1D photonic crystal is reported. It is shown that increasing the value of the electronic gap results in the shrinkage of the associated photonic bandgaps.

  10. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin; Li, Bing-Xiang [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-15

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.

  11. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    Energy Technology Data Exchange (ETDEWEB)

    Chernow, V. F., E-mail: vchernow@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Alaeian, H. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Dionne, J. A. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-09-07

    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.

  12. Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials

    Science.gov (United States)

    El-Naggar, Sahar A.

    2017-01-01

    In this article, we theoretically study electromagnetic waves that propagate in one-dimensional cylindrical photonic crystals (1DCPC) containing single negative materials. We examine the optical properties of three gaps namely; the zero-effective phase (zero- ϕ), the zero-permittivity (zero- ɛ) and the zero-permeability (zero- μ). We calculate the optical reflectance for transverse electric(magnetic) TE(TM) polarizations using the transfer matrix method in the cylindrical coordinates. We study the effect of azimuthal mode number ( m) and the starting radius on these gaps. The results show that the zero- μ (zero- ɛ) gap is found for TE(TM) polarization at frequency where μ( ɛ) changes its sign for m ≥ 1. The width of the gap increases by decreasing the starting radius or by increasing m, whereas the zero- ϕ gap remains invariant. In addition, we present a brief design of 1D-CPC that has a polarization-independent wide gap especially for high azimuthal mode number ( m > 2). Our results can help improve the performance of microwave devices independent of the source wave polarization.

  13. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uepping, Johannes; Bielawny, Andreas; Wehrspohn, Ralf B. [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Fraunhofer-Institute for Mechanics of Materials, Halle (Germany); Beckers, Thomas; Carius, Reinhard; Rau, Uwe [Institute of Energy and Climate Research 5 - Photovoltaics, Forschungszentrum Juelich GmbH, Juelich (Germany); Fahr, Stefan; Rockstuhl, Carsten; Lederer, Falk [Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Friedrich-Schiller-Universitaet Jena (Germany); Kroll, Matthias; Pertsch, Thomas [Institute of Applied Physics, Friedrich-Schiller-Universitaet Jena (Germany); Steidl, Lorenz; Zentel, Rudolf [Institute of Organic Chemistry, Johannes Gutenberg-Universitaet Mainz (Germany)

    2011-09-08

    A three-dimensional photonic crystal intermediate reflector for enhanced light trapping in tandem solar cells is presented. The intermediate reflector consists of a transparent and conductive ZnO:Al inverted opal sandwiched in between the top amorphous silicon and bottom microcrystalline silicon cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Two-dimensional photonic crystals from semiconductor material with polymer filled holes

    NARCIS (Netherlands)

    Van der Heijden, R.; Kjellander, C.; Carlström, C.-F.; Snijders, J.; Van der Heijden, R.W.; Bastiaansen, K.; Broer, D.; Karouta, F.; Nötzel, R.; Van der Drift, E.

    2006-01-01

    Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambien

  15. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper;

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q...

  16. Characterization for defect modes of one-dimensional photonic crystals containing metamaterials

    Institute of Scientific and Technical Information of China (English)

    Ling Tang; Lei Gao; Jianxing Fang

    2008-01-01

    Transmission studies for one-dimensional photonic crystals(1DPCs)containing single-negative(SNG)materials inserted with multiple defects are presented.The numbers and positions of the defect modes inside zero-phase(zero-φeff)gap are found to be well characterized by effective medium theory.

  17. Quasi 1-dimensional photonic crystals as building block for compact integrated optical sensors

    NARCIS (Netherlands)

    Hopman, Wico C.L.; Pottier, Pierre; Yudistira, Didit; Lith, van Joris; Lambeck, Paul; De La Rue, Richard; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Ridder, de René M.

    2004-01-01

    A quasi one-dimensional photonic crystal has been fabricated and the applicability of this kind of structure for optical sensing has been investigated by measuring the transmission spectra as a function of the cladding refractive index. The cladding index was varied using a liquid flow, of which the

  18. Quasi-one-dimensional photonic crystal as a compact building block for refractometric optical sensors

    NARCIS (Netherlands)

    Hopman, Wico C.L.; Pottier, Pierre; Yudistira, Didit; Lith, van Joris; Lambeck, Paul V.; De La Rue, Richard M.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Ridder, de René M.

    2005-01-01

    We report the fabrication and the characterization of the refractometric and thermo-optical properties of a quasi-one-dimensional waveguide photonic crystal-a strong, 76-micron-long Bragg grating. The transmission spectra (around 660 nm) of the structure have been measured as a function of both the

  19. InP-based two-dimensional photonic crystals filled with polymers

    NARCIS (Netherlands)

    Van der Heijden, R.; Carlström, C.F.; Snijders, J.A.P.; Van der Heijden, R.W.; Karouta, F.; Nötzel, R.; Salemink, H.W.M.; Kjellander, B.K.C.; Bastiaansen, C.W.M.; Broer, D.J.; Van der Drift, E.

    2006-01-01

    Polymer filling of the air holes of indium-phosphide-based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical t

  20. Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.

    2008-01-01

    We analyze coupled optical defect cavities realized in finite one-dimensional photonic crystals (PC). Viewing these as open systems, where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and quasi-normal modes (QNM) (eigenfunctions).

  1. Quasi One-Dimensional Photonic Crystals as Building Block for Compact Integrated Optical Refractometric Sensors

    NARCIS (Netherlands)

    Hopman, Wico; Pottier, Pierre; Yudistira, Didit; Lith, van Joris; Lambeck, Paul; De La Rue, Richard; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Ridder, de René M.

    2004-01-01

    A quasi one-dimensional photonic crystal has been fabricated and the applicability of this strong grating for optical sensing has been investigated by measuring the transmission spectra as a function of the cladding refractive index. The cladding index was varied a small range. By monitoring the tra

  2. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  3. Fabrication of Two-Dimensional Photonic Crystals with Triangular Rods by Single-Exposure Holographic Lithography

    Institute of Scientific and Technical Information of China (English)

    PU Yi-Ying; LIANG Guan-Quan; MAO Wei-Dong; DONG Jian-Wen; WANG He-Zhou

    2007-01-01

    We demonstrate a single-exposure holographic fabrication of two-dimensional photonic crystal witn roundband gaps exist in this structure.Our experimental results show that holographic lithography can be used to fabricate photonic crystals not only with various lattice structures but also with various kinds of structures of the atoms,to obtain absolute band gaps or a particular band gap structure.Furthermore,the single-exposure holographic method not only makes the fabrication process simple and convenient but also makes the structures of the atoms more perfect.

  4. Broadband wave plates: Approach from one-dimensional photonic crystals containing metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yihang, E-mail: kallenmail@sina.co [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2011-02-14

    Broadband wave plates working in subwavelength scale are realized by one-dimensional photonic crystals containing negative-index materials. It is demonstrated that the phase shift of reflected wave as a function of frequency changes smoothly within the stop band of the photonic crystal, while it changes sharply within the pass band. In the stop band, the difference between the phase of TE and that of TM reflected wave could remain constant in a rather wide frequency range. These properties are useful for designing compact wave plates or phase retarders which can be used in broad spectral bandwidth.

  5. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    CERN Document Server

    André, Jean-michel

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled- wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized.

  6. Tunable Goos-Haenchen shift for self-collimated beams in two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Aaron [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)], E-mail: afm124@rsphysse.anu.edu.au; Kivshar, Yuri [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2008-04-21

    We present finite-difference time-domain studies of the Goos-Haenchen effect observed at the reflection of a self-collimated beam from the surface of a two-dimensional photonic crystal. We describe a method of tuning the shift of the reflected beam in photonic crystals through the modification of the surface, first structurally, as a change in the radius of the surface rods, and then all-optically, with the addition of nonlinear material to the surface layer. We demonstrate all-optical tunability and intensity-dependent control of the beam shift.

  7. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  8. Simultaneous Multi-frequency Topological Edge Modes between One-dimensional Photonic Crystals

    OpenAIRE

    Choi, Ka Hei; Ling, C. W.; Lee, K. F.; Tsang, Y. H.; Fung, Kin Hung

    2016-01-01

    We show theoretically that, in the limit of weak dispersion, one-dimensional (1D) binary centrosymmetric photonic crystals can support topological edge modes in all photonic band gaps. By analyzing their bulk band topology, these "harmonic" topological edge modes can be designed in a way that they exist at all photonic band gaps opened at the center of the Brillouin Zone, or at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-freq...

  9. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.

    Science.gov (United States)

    Mohammadi, Saeed; Eftekhar, Ali A; Khelif, Abdelkrim; Adibi, Ali

    2010-04-26

    We demonstrate planar structures that can provide simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical (or phoxonic) crystal slabs. Different phoxonic crystal (PxC) structures, composed of square, hexagonal (honeycomb), or triangular arrays of void cylindrical holes embedded in silicon (Si) slabs with a finite thickness, are investigated. Photonic band gap (PtBG) maps and the complete phononic band gap (PnBG) maps of PxC slabs with different radii of the holes and thicknesses of the slabs are calculated using a three-dimensional plane wave expansion code. Simultaneous phononic and photonic band gaps with band gap to midgap ratios of more than 10% are shown to be readily obtainable with practical geometries in both square and hexagonal lattices, but not for the triangular lattice.

  10. Calculation and analysis of complex band structure in dispersive and dissipative two-dimensional photonic crystals

    CERN Document Server

    Brûlé, Yoann; Gralak, Boris

    2015-01-01

    Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.

  11. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.

    Science.gov (United States)

    Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A

    2014-09-16

    We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.

  12. Photonic band structures of two-dimensional photonic crystals with deformed lattices

    Institute of Scientific and Technical Information of China (English)

    Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai

    2005-01-01

    Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

  13. Three-dimensional dynamic photonic crystal creation by four laser beams interference in colloidal quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.

    2016-04-01

    We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.

  14. Guided Modes in a Two-Dimensional Photonic Crystal Waveguide Consisting of Nearly-Free-Electron Metals

    Institute of Scientific and Technical Information of China (English)

    XIAO San-Shui; HE Sai-Ling; ZHUANG Fei

    2001-01-01

    Guided modes in a two-dimensional photonic crystal consisting of nearly-free-electron metals are considered. To avoid time-consuming convolution, modified time-stepping formulae are used in a finite-difference time-domain approach. The guided modes in the metallic photonic crystal waveguide are related to those in a conventional metallic waveguide. A cut-off frequency exists, and consequently a mode gap at low frequencies exists in the photonic crystal metallic waveguide.

  15. Zero- n bar band gap in two-dimensional metamaterial photonic crystals

    Science.gov (United States)

    Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2015-04-01

    We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.

  16. Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material

    Science.gov (United States)

    Singh, Bipin K.; Kumar, Pawan; Pandey, Praveen C.

    2014-12-01

    We have demonstrated control of the photonic band gaps (PBGs) in 1-D photonic crystals using linear graded index material. The analysis of PBG has been done in THz region by considering photonic crystals in the form of ten periods of second, third and fourth generation of the Fibonacci sequence as unit cell. The unit cells are constituted of two kinds of layers; one is taken of linear graded index material and other of normal dielectric material. For this investigation, we used a theoretical model based on transfer matrix method. We have obtained a large number of PBGs and their bandwidths can be tuned by changing the grading profile and thicknesses of linear graded index layers. The number of PBGs increases with increase in the thicknesses of layers and their bandwidths can be controlled by the contrast of initial and final refractive index of the graded layers. In this way, we provide more design freedom for photonic devices such as reflectors, filters, optical sensors, couplers, etc.

  17. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    Science.gov (United States)

    Meng, Zi-Ming; Hu, Yi-Hua; Ju, Gui-Fang; Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan

    2014-07-01

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  18. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zi-Ming, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn; Hu, Yi-Hua; Ju, Gui-Fang [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)

    2014-07-28

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  19. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities

    Institute of Scientific and Technical Information of China (English)

    CHEN San; QIAN Bo; WEI Jun-Wei; CHEN Kun-Ji; XU Jun; LI Wei; HUANG Xin-Fan

    2005-01-01

    @@ Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx :H/aSiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz :H) thin film.By comparison, the wide emission band width 208nm is strongly narrowed to 11 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of △λ = 11 nm and a quality factor of Q = 69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.

  20. High-Dimensional Nonlinear Envelope Equations and Nonlinear Localized Excitations in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HANG Chao; HUANG Guo-Xiang

    2006-01-01

    We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.

  1. Trapped Atoms in One-Dimensional Photonic Crystals

    Science.gov (United States)

    2013-08-09

    2002 J. Opt. Soc. Am. B 19 2052 [39] Koenderink A F, Kafesaki M, Soukoulis C M and Sandoghdar V 2006 J. Opt. Soc. Am. B 23 1196 [40] Manga Rao V S C...032509 [55] Hwang J K, Ryu H Y and Lee Y H 1999 Phys. Rev. B 60 4688–95 [56] Yao P, Manga Rao V S C and Hughes S 2010 Laser Photon. Rev. 4 499–516 New Journal of Physics 15 (2013) 083026 (http://www.njp.org/)

  2. Study on electro-optic properties of two-dimensional PLZT photonic crystal band structure

    Institute of Scientific and Technical Information of China (English)

    TONG Kai; WU Xiao-gang; WANG Mei-ting

    2011-01-01

    The band characteristics of two-dimensional (2D) lead lanthanum zirconate titanate (PLZT) photonic cystals are analyzed by finite element method. The electro-optic effect of PLZT can cause the refractive index change when it is imposed by the applied electric field, and the band structure of 2D photonic crystals based on PLZT varies accordingly. The effect of the applied electric field on the structural characteristics of the first and second band gaps in 2D PLZT photonic crystals is analyzed in detail. And the results show that for each band gap, the variations of start wavelength, cut-off wavelength and bandwidth are proportional to quadratic of the electric field.

  3. Multi-channel and sharp angular spatial filters based on one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Shaoji Jiang; Jianrong Li; Jijia Tang; Hezhou Wang

    2006-01-01

    A photonic heterostructure with multi-channel and sharp angular defect modes by combining two different one-dimensional defective photonic crystals is proposed. The filters designed on the basis of this heterostructure possess both functions of multi-channel narrow band filtering and sharp angular filtering.The channels, channel interval, and number of channels can be tuned by adjusting the geometric and physical parameters of the heterostuctures. This kind of filters will benefit the development of multi-channel interstellar or atmosphere optical communication.

  4. Mechanical properties and tuning of three-dimensional polymeric photonic crystals

    Science.gov (United States)

    Juodkazis, Saulius; Mizeikis, Vygantas; Seet, Kock Khuen; Misawa, Hiroaki; Wegst, Ulrike G. K.

    2007-12-01

    Mechanical properties of photopolymerized photonic crystal (PhC) structures having woodpile and spiral three-dimensional architectures were examined using flat-punch indentation. The structures were found to exhibit a foamlike response with a bend-dominated elastic deformation regime observed at strain levels up to 10%. Numerical simulations of optical properties of these PhC structures demonstrate the possibility of achieving a substantial and reversible spectral tuning of the photonic stop gap wavelength by applying a mechanical load to the PhC.

  5. Modeling of pressure sensors based on two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Xuehui XIONG; Ping LU; Deming LIU

    2009-01-01

    A pressure sensor based on the two-dimensional photonic crystal (2D PC) has been proposed. Under the condition of different pressure, the photonic band gap of the sensor has been studied by means of the plane wave expansion method (PWM). The results show that there is a good linear relation between the cutoff wavelength and the pressure. Apart from being easily implemented, the presented 2D PC pressure sensor holds many characteristics such as high-pressure sensitivity and convenience in achieving demanded pressure range.

  6. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, K. A., E-mail: k.a.gonchar@gmail.com [Moscow State University, Physics Faculty (Russian Federation); Musabek, G. K.; Taurbayev, T. I. [Al Farabi Kazakh National University, Physics Department (Kazakhstan); Timoshenko, V. Yu. [Moscow State University, Physics Faculty (Russian Federation)

    2011-05-15

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  7. Two-dimensional photonic crystals from semiconductor material with polymer filled holes

    Science.gov (United States)

    van der Heijden, Rob; Kjellander, Charlotte; Carlström, Carl-Fredrik; Snijders, Juri; van der Heijden, Rob W.; Bastiaansen, Kees; Broer, Dick; Karouta, Fouad; Nötzel, Richard; van der Drift, Emile; Salemink, Huub W. M.

    2006-04-01

    Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambient pressure. This conclusion is based both on cross-sectional scanning electron microscope inspection of the filled samples as well as on optical transmission measurements.

  8. Light propagation in tunable exciton-polariton one-dimensional photonic crystals

    CERN Document Server

    Sedov, E S; Arakelian, S M; Kavokin, A V

    2016-01-01

    Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group velocity of light by an external bias through its effect upon the exciton radiative properties.

  9. Maximizing bandgaps in two-dimensional photonic crystals a variational algorithm

    CERN Document Server

    Paul, P; Paul, Prabasaj; Ndi, Francis C.

    2002-01-01

    We present an algorithm for the maximization of photonic bandgaps in two-dimensional crystals. Once the translational symmetries of the underlying structure have been imposed, our algorithm finds a global maximal (and complete, if one exists) bandgap. Additionally, we prove two remarkable results related to maximal bandgaps: the so-called `maximum contrast' rule, and about the location in the Brillouin zone of band edges.

  10. Four-Dimensional Screening Anti-Counterfeiting Pattern by Inkjet Printed Photonic Crystals.

    Science.gov (United States)

    Hou, Jue; Zhang, Huacheng; Su, Bin; Li, Mingzhu; Yang, Qiang; Jiang, Lei; Song, Yanlin

    2016-10-06

    A four-dimensional screening anti-counterfeiting QR code composed of differently shaped photonic crystal (PC) dots has been fabricated that could display four images depending on different lighting conditions. By controlling the rheology of poly(dimethylsiloxane) (PDMS), three kinds of PC dots could be sequentially integrated into one pattern using the layer-by-layer printing strategy. The information can be encoded and stored in shapes and read out by the difference in optical properties.

  11. Light propagation in tunable exciton-polariton one-dimensional photonic crystals

    OpenAIRE

    Sedov, E. S.; Cherotchenko, E. D.; Arakelian, S.M.; Kavokin, A. V.

    2016-01-01

    Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group velocity of light by an external bias through its e...

  12. Localized Mode Enhanced Coupler Based on Quasi-One-Dimensional Photonic Crystal Microstrip

    Institute of Scientific and Technical Information of China (English)

    LI Yun-Hui; JIANG Hai-Tao; HE Li; LI Hong-Qiang; ZHANG Ye-Wen; CHEN Hong

    2004-01-01

    We propose a novel localized mode enhanced (LME) coupler based on quasi-one-dimensional photonic crystal microstrips, which is promising to be applied in wavelength division multiplexed microwave communication systems. Compared to the traditional microstrip coupler, the LME structure has two advantages: high efficiency and frequency selectivity. Even in a relatively far coupling distance, this structure can still achieve a high efficiency about 50%. The frequency selectivity can be realized by simply tuning the distance between two transmission lines.

  13. Symmetric two dimensional photonic crystal coupled waveguide with point defect for optical switch application

    CERN Document Server

    Hardhienata, Hendradi

    2012-01-01

    Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.

  14. The micro-cavity of the two dimensional plasmonic photonic crystal

    Science.gov (United States)

    Tong, Kai; Zhang, Zhenguo; Yang, Qing

    2015-02-01

    In this manuscript, we proposed a novel and effective two dimensional hybrid plasmonic photonic crystal micro-cavity structure to confine the surface plasmon to a sub-wavelength scale mode volume and obtain a relatively high quality factor. By introducing a single-cell defect at the two dimensional triangular lattice photonic crystal layer, the defect cavity has been established to provide sub-wavelength scale plasmonic mode localization within the hybrid plasmonic photonic crystal structure TM band gap. Comprehensive analysis methods of three-dimensional finite difference time domain method (3D-FDTD) have been used to analyze the characteristics of the micro-cavity of this hybrid structure, including the effects of the radius of the nearest neighbor air holes around the defect, the cavity length of the defect and the thickness of the gain medium on the features of the micro-cavity. By using a quantum dots (QDs)-polymer as a gain medium for the low index thin layer, a gain threshold as low as gth = 534 cm-1 can be achieved with such structures, and deep sub-wavelength mode volume of 0.00201 (λ/n)3 is also obtained.

  15. Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.

    Science.gov (United States)

    Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W

    2004-09-17

    We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.

  16. Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-05-01

    Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.

  17. Band structure of one-dimensional plasma photonic crystals using the Fresnel coefficients method

    Science.gov (United States)

    Jafari, A.; Rahmat, A.

    2016-11-01

    The current study has examined the band structures of two types of photonic crystals (PCs). The first is a one-dimensional metamaterial photonic crystal (1DMMPC) composed of double-layered units for which both layers of each unit are dielectric. The second type is a very similar one-dimensional plasma photonic crystal (1DPPC) also composed of double-layered units in which the first layer is a dielectric material but the second is a plasma layer. This study compares the band structures of the 1DMMPC with specific optical characteristics of the 1DPPC using the Fresnel coefficients method and also compares the results of this method with the results of the transfer matrix method. It is concluded that the dependency of the electric permittivity of the plasma layer on the incident field frequency causes differences in the band structures in 1DMMPC and 1DPPC for both TE and TM polarizations and their gaps reside in different frequencies. The band structures of the 1DMMPC and 1DPPC are confirmed by the results of the transfer matrix method.

  18. Study on optical gain of one-dimensional photonic crystals with active impurity

    Institute of Scientific and Technical Information of China (English)

    Zhenghua Li; Tinggen Shen; Xuehua Song; Junfeng Ma; Yong Sheng; Gang Wang

    2007-01-01

    Localized fields in the defect mode of one-dimensional photonic crystals with active impurity are studied with the help of the theory of spontaneous emission from two-level atoms embedded in photonic crystals.Numerical simulations demonstrate that the enhancement of stimulated radiation, as well as the phenomena of transmissivity larger than unity and the abnormality of group velocity close to the edges of photonic band gap, are related to the negative imaginary part of the complex effective refractive index of doped layers. This means that the complex effective refractive index has a negative imaginary part, and that the impurity state with very high quality factor and great state density will occur in the photonic forbidden band if active impurity is introduced into the defect layer properly. Therefore, the spontaneous emission can be enhanced, the amplitude of stimulated emission will be very large and it occurs most probably close to the edges of photonic band gap with the fundamental reason, the group velocity close to the edges of band gap is very small or abnormal.

  19. Surface polaritons in two-dimensional left-handed photonic crystals

    CERN Document Server

    Zeng Yong; Fu Ying; Chen Xiao Shuang; Lu Wei; Agren, Hans

    2006-01-01

    Using an extended plane-wave-based transfer-matrix method, the photonic band structures and the corresponding transmission spectrum of a two-dimensional left-handed photonic crystal are calculated. Comparisons between the periodic structure with a single left-handed cylindric rod are made, and many interesting similarities are found. It is shown that, due to the localized surface polaritons presented by an isolated left-handed rod, there exist many exciting physical phenomena in high-dimensional left-handed photonic crystals. As direct results of coupling of the localized surface polaritons of neighboring left-handed rod, a lot of almost dispersionless bands, anti-crossing behavior, and a zero $\\bar{n}$ gap are exhibited in the left-handed periodic structure. Moreover, in a certain frequency region, except distorted by a lot of anti-crossing behavior, there exists a continual dispersion relation, which can be explained by the long-wavelength approximation. It is also pointed out that high-dimensional left-han...

  20. Synthesis and Band Gap Control in Three-Dimensional Polystyrene Opal Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; ZHENG Zhong-Yu; QIN Fei; ZHOU Fei; ZHOU Chang-Zhu; ZHANG Dao-Zhong; MENG Qing-Bo; LI Zhi-Yuan

    2008-01-01

    High-quality three-dimensional polystyrene opal photonic crystals are fabricated by vertical deposition method.The transmission properties with different incident angles and different composite refractive index contrasts are experimentally and theoretically studied. Good agreement between the experiment and theory is achieved. We find that with the increasing incident angle, the gap position shifts to the short wavelength (blue shift) and the gap becomes shallower; and with the increase of refractive index of the opal void materials and decrease the contrast of refractive index, the gap position shifts to the long wavelength (red shift). At the same time, we observe the swelling effects when the sample is immerged in the solutions with different refractive indices, which make the microsphere diameter in solution become larger than that in air. The understanding of band gap shift behaviour may be helpful in designing optical sensors and tunable photonic crystal ultrafast optical switches.

  1. Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs.

    Science.gov (United States)

    Lee, Jeongwon; Zhen, Bo; Chua, Song-Liang; Shapira, Ofer; Soljačić, Marin

    2014-02-10

    We present a fabrication route for centimeter-scale two-dimensional defect-free photonic crystal slabs with quality factors bigger than 10,000 in the visible, together with a unique way to quantify their quality factors. We fabricate Si(3)N(4) photonic crystal slabs, and perform an angle-resolved reflection measurement. This measurement data is used to retrieve the quality factors of the slabs by fitting it to a model based on temporal coupled-mode theory. The macroscopic nature of the structure and the high quality factors of their resonances could open up new opportunities for realizing efficient macroscale optoelectronic devices such as sensors, lasers, and energy harvesting systems.

  2. Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides

    CERN Document Server

    Dulkeith, E; Vlasov, Y A; Dulkeith, Eric; Nab, Sharee J. Mc; Vlasov, Yurii A.

    2005-01-01

    We report on systematic experimental mapping of the transmission properties of two-dimensional silicon-on-insulator photonic crystal waveguides for a broad range of hole radii, slab thicknesses and waveguide lengths for both TE and TM polarizations. Detailed analysis of numerous spectral features allows a direct comparison of experimental data with 3D plane wave and finite-difference time-domain calculations. We find, counter-intuitively, that the bandwidth for low-loss propagation completely vanishes for structural parameters where the photonic band gap is maximized. Our results demonstrate that, in order to maximize the bandwidth of low-loss waveguiding, the hole radius must be significantly reduced. While the photonic band gap considerably narrows, the bandwidth of low-loss propagation in PhC waveguides is increased up to 125nm with losses as low as 8$\\pm$2dB/cm.

  3. Polarization-selective branching of stop gaps in three-dimensional photonic crystals

    Science.gov (United States)

    Priya, Nair, Rajesh V.

    2016-06-01

    We study the direction- and wavelength-dependent polarization anisotropy in light scattering at the air-photonic crystal interface as a function of angle of incidence for TE and TM polarized light. This is done using optical reflectivity measurements at high-symmetry points in the Brillouin zone of a three-dimensional photonic crystal with fcc symmetry. Polarized reflectivity measurements indicate the presence of stop gap branching for TE polarization, which is absent for TM polarization until the Brewster angle at the K point. In contrast, stop gap branching is present for both TE and TM polarizations at the W point due to the intricate mixing of crystal planes. This characteristic behavior signifies the inevitable role of energy exchange in the stop gap branching. The measured polarization anisotropy shows a prominent shift in the Brewster angle for the on-resonance wavelength as compared to the off-resonance along both K and W points, and that is in accordance with theory. Our results have implications in polarization-induced light scattering in subwavelength photonic structures such as plasmonic crystals, and metamaterials.

  4. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V., E-mail: pbraun@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Sardela, Mauro [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista (Sweden)

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  5. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Science.gov (United States)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-12-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.

  6. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-Bo; YAO Jian-Quan; ZHANG Lei; WANG Yuan; WEN Wu-Qi; JING Lei; DI Zhi-Gang

    2012-01-01

    The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated. The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber. The results show that the temperature decreases from the pump end to the launch end exponentially. Moreover, the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method. The numerical results match well with the experimental data and the coating temperature reaches 422.7K, approaching the critical value of polymer cladding, when the pumping power is 40 W. Therefore the fiber end cooling is necessary to achieve power scaling. Compared with natural convection methods, the copper cooling scheme is found to be an effective method to reduce the fiber temperature.%The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated.The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber.The results show that the temperature decreases from the pump end to the launch end exponentially.Moreover,the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method.The numerical results match well with the experimental data and the coating temperature reaches 422.7K,approaching the critical value of polymer cladding,when the pumping power is 40 W.Therefore the fiber end cooling is necessary to achieve power scaling.Compared with natural convection methods,the copper cooling scheme is found to be an effective method to reduce the fiber temperature.

  7. Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal

    Science.gov (United States)

    Woldering, Léon A.; Mosk, Allard P.; Vos, Willem L.

    2014-09-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centered on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell band structure calculations with up to 5×5×5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centered on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3 (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donorlike resonances appear for smaller defect radius, whereas no acceptorlike resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy are found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in noninverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.

  8. Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity

    Science.gov (United States)

    Safavi-Naeini, Amir H.; Hill, Jeff T.; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar

    2014-04-01

    We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220 kHz) between the fundamental optical cavity resonance at ωo/2π =195 THz and colocalized mechanical resonances at frequency ωm/2π ≈9.3 GHz.

  9. Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method

    Directory of Open Access Journals (Sweden)

    Hadjira Badaoui

    2011-05-01

    Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.

  10. Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal.

    Science.gov (United States)

    Kuang, Ping; Deinega, Alexei; Hsieh, Mei-Li; John, Sajeev; Lin, Shawn-Yu

    2013-10-15

    We report what is to our knowledge the first observation of the effect of parallel-to-interface-refraction (PIR) in a three-dimensional, simple-cubic photonic-crystal. PIR is an acutely negative refraction of light inside a photonic-crystal, leading to light-bending by nearly 90 deg over broad wavelengths (λ). The consequence is a longer path length of light in the medium and an improved light absorption beyond the Lambertian limit. As an illustration of the effect, we show near-unity total absorption (≥98%) in λ=520-620 nm and an average absorption of ~94% over λ=400-700 nm for our α-Si:H photonic-crystal sample of an equivalent bulk thickness of t˜=450 nm. Furthermore, we have achieved an ultra-wide angular acceptance of light over θ=0°-80°. This demonstration opens up a new door for light trapping and near-unity solar absorption over broad λs and wide angles.

  11. Strong enhancement of Faraday rotation using one-dimensional conjugated photonic crystals containing graphene layers.

    Science.gov (United States)

    Ardakani, Abbas Ghasempour

    2014-12-20

    We propose a one-dimensional conjugated photonic crystal single heterojunction infiltrated with a single graphene layer to achieve large Faraday rotation (FR) angles as well as high transmission simultaneously. The effects of the external magnetic field values, incidence angle, number of unit cells, layer thickness of constituents of the conjugated photonic crystals, chemical potential of graphene, and ambient temperature on the Faraday rotation angle and transmission are investigated. Our results reveal that both the sign reversal and shifting of the FR peak can be obtained by changing the width of layers in the conjugated photonic crystal. In the case of negative FR angle, an increase of magnetic field enhances the FR angle and degrades the transmission. However, in the case of positive FR angle, when the magnetic field increases to a certain value, the FR angle is improved too. Further increase of the magnetic field leads to a decrease of FR angle. With increasing the number of unit cells, the FR angle is enhanced at the cost of decreasing the transmission. It is shown that normal incidence results in higher FR angle and transmission. It is also demonstrated that sign reversal and change of the FR angle is possible by manipulating the chemical potential of graphene and the ambient temperature.

  12. Creation technique and nonlinear optics of dynamic one-dimensional photonic crystals in colloidal solution of quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.

    2017-05-01

    One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.

  13. Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

    CERN Document Server

    Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume

    2009-01-01

    In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...

  14. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications.

    Science.gov (United States)

    Celanovic, Ivan; O'Sullivan, Francis; Ilak, Milos; Kassakian, John; Perreault, David

    2004-04-15

    We explore the optical characteristics and fundamental limitations of one-dimensional (1D) photonic crystal (PhC) structures as means for improving the efficiency and power density of thermophotovoltaic (TPV) and microthermophotovoltaic (MTPV) devices. We analyze the optical performance of 1D PhCs with respect to photovoltaic diode efficiency and power density. Furthermore, we present an optimized dielectric stack design that exhibits a significantly wider stop band and yields better TPV system efficiency than a simple quarter-wave stack. The analysis is done for both TPV and MTPV devices by use of a unified modeling framework.

  15. Unconventional optical Tamm states in metal-terminated three-dimensional photonic crystals

    Science.gov (United States)

    Korovin, Alexander V.; Romanov, Sergei G.

    2016-03-01

    Unconventional optical Tamm surface states have been demonstrated in transmission and reflectance spectra of three-dimensional opal photonic crystals coated by thin metal films. These states appear in registry with diffraction resonances and localize the electromagnetic energy in asymmetric resonators formed by stacks of lattice planes and metal semishells. Tamm defect states provide the bypass for light at the edges of the Bragg diffraction resonances and thus reduce the diffraction efficiency. Despite the hidden nature of this effect, its magnitude is comparable to the extraordinary transmission associated with the surface-plasmon polaritons that are simultaneously excited at the surfaces of the corrugated metal films.

  16. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  17. Transmission Properties of W3 Y-Branch Filters in Two-Dimensional Photonic Crystal Slabs

    Institute of Scientific and Technical Information of China (English)

    REN Cheng; CHENG Bing-Ying; ZHANG Dao-Zhong; REN Kun; LIU Rong-Juan; TAO Hai-Hua; FENG Shuai; XIONG Zhi-Gang; LIU Ya-Zhao; TIAN Jie; LI Zhi-Yuan

    2007-01-01

    A highly efficient W3 Y-branch filter in a two-dimensional photonic crystal slab with triangular lattice of air holes is designed and fabricated, and its transmission properties are measured. By accurately adjusting the size of the resonant cavities, the minimum wavelength spacing of 7nm between two channels is realized. The corresponding resonant wavelengths of the two cavities agree well with the calculated ones. This implies that this kind of filter may be promising in integrated wavelength division multiplexing system.

  18. Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal

    Science.gov (United States)

    Aly, Arafa H.; Aghajamali, Alireza; Elsayed, Hussein A.; Mobarak, Mohamed

    2016-09-01

    In this paper, using the two-fluid model and the characteristic matrix method, we investigate the transmission characteristics of the one-dimensional photonic crystal. Our structure composed of the layers of low-temperature superconductor material (NbN) and double-negative metamaterial. We target studying the effect of many parameters such as the thickness of the superconductor material, the thickness of the metamaterial layer, and the operating temperature. We show that the cut-off frequency can be tuned efficiently by the operating temperature as well as the thicknesses of the constituent materials.

  19. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; LI Qing; GAO DingShan

    2009-01-01

    All-optical switch with the ultrafast optical switching rate is a key device in the next generation optical network. In this article, we propose a polarization switch with ps switching time, which is constructed from one-dimensional resonant photonic crystal (1D RPC). The model of switch operating at 1.5 μm is established based on the optical stark effect (OSE). We calculate the performance indices of the switch and the influences of errors of periods and refractive index on the performance characteristics.

  20. Three-dimensional Dielectric Photonic Crystal Structures for Laser-driven Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M.; /Tech-X, Boulder /SLAC

    2007-12-14

    We present the design and simulation of a three-dimensional photonic crystal waveguide for linear laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical fields as focusing elements. This technique, combined with careful structure design, is shown to have a large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.

  1. T-shaped polarization beam splitter based on two-dimensional photonic crystal waveguide structures

    Science.gov (United States)

    Li, Xinlan; Shen, Hongjun; Li, Ting; Liu, Jie; Huang, Xianjian

    2016-12-01

    A T-shaped polarization beam splitter based on two-dimensional photonic crystal is proposed, which is composed of three waveguides: one input and two output. Unpolarized beams incident from the input port will be separated into two different polarization modes and outputted individually by two different coupling structures. Simulation results can be obtained by the finite-difference time-domain (FDTD) method. In the normalized frequency range of 0.3456 extinction ratio is all 30dB for both modes. The polarization beam splitter attains the requirement we expected by analyzing simulation results.

  2. UV-modulated one-dimensional photonic-crystal resonator for visible lights

    Science.gov (United States)

    Yang, S. Y.; Yang, P. H.; Liao, C. D.; Chieh, J. J.; Chen, Y. P.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.

    2006-12-01

    The one-dimensional photonic-crystal (A/SiO2)6/ZnO/(SiO2/A)6 resonators at visible lights are fabricated and characterized, where A may be ZnO or indium tin oxide. Owing to the absorption of ultraviolet (UV) light by the ZnO layers, the refractive index of ZnO layers is changed temporally. This fact led to a temporary shifting of the forbidden band and the resonant mode of the resonator under UV irradiation. Besides, via adjusting the thickness of the ZnO defect layer, the resonant wavelength is manipulated. These experimental data show good consistence with simulated results.

  3. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Science.gov (United States)

    Saghirzadeh Darki, Behnam; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods.

  4. Three-Dimensional Structure and Defects in Colloidal Photonic Crystals Revealed by Tomographic Scanning Transmission X-ray Microscopy

    NARCIS (Netherlands)

    Hilhorst, Jan; van Schooneveld, Matti M.; Wang, Jian; de Smit, Emiel; Tyliszczak, Tolek; Raabe, Joerg; Hitchcock, Adam P.; Obst, Martin; de Groot, Frank M. F.; Petukhov, Andrei V.

    2012-01-01

    Self-assembled colloidal crystals have attracted major attention because of their potential as low-cost three-dimensional (3D) photonic crystals. Although a high degree of perfection is crucial for the properties of these materials, little is known about their exact structure and internal defects. I

  5. Vectorial coupled-mode solitons in one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    朱善华; 黄国翔; 崔维娜

    2002-01-01

    We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadraticand cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopesof two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification arederived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-modeequations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due tothe optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears whenthe frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands.

  6. Compact beam splitters based on self-imaging phenomena in one-dimensional photonic crystal waveguides

    Institute of Scientific and Technical Information of China (English)

    Bing Chen; Lin Huang; Yongdong Li; Chunliang Liu; Guizhong Liu

    2012-01-01

    A fundamental 1 ×2 beam splitter based on the self-imaging phenomena in multi-mode one-dimensional (1D) photonic crystal (PC) waveguides is presented,and its transmission characteristics are investigated using the finite-difference time-domain method.Calculated results indicate that a high transmittance (>95%) can be observed within a wide frequency band for the 1×2 beam splitter without complicated structural optimizations.In this letter,a simple and compact 1 ×4 beam splitter is constructed by combining the fundamental 1 ×2 beam splitter with the flexible bends of 1D PC waveguides.Such beam splitters can be applied to highly dense photonic integrated circuits.

  7. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Roshan Entezar, Samad

    2014-11-01

    We investigated theoretically the existence of surface polaritons (SPs) at the interface of a one-dimensional photonic crystal containing graphene monolayers. It is shown that the structure has a new type of the photonic band gap in the THz region which is strictly omnidirectional for the TM-polarization and can support the SPs for both TM-polarization and TE-polarization. The results show that the characteristics of the SPs depends on the optical properties of the graphene sheets which can be controlled by a gate voltage. We plotted the electromagnetic field profiles of the SPs at the frequency range of the graphene induced band gap and a conventional Bragg gap of the structure. It is found that the SPs at the graphene induced band gap are more localized than the SPs at the Bragg gaps.

  8. Theory of Pulsed Four-Wave-Mixing in One-dimensional Silicon Photonic Crystal Slab Waveguides

    CERN Document Server

    Lavdas, Spyros

    2015-01-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general set-up of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulae for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveg...

  9. Tunable enhanced Goos-Hänchen shift in one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Entezar, Samad Roshan

    2015-10-01

    Theoretically, the Goos-Hänchen effect at the interface of a one-dimensional photonic crystal containing graphene monolayers has been investigated. It was shown that the lateral shift of the reflected beam can be remarkably enhanced when the phase matching conditions are satisfied for the excitation of the surface polaritons at the interface of the structure in the graphene induced photonic band gap. The effect of the optical properties of the graphene sheets on the enhancement of the Goos-Hänchen shift was investigated and it was shown that the beam displacement can be controlled by the tuning of the chemical potential of graphene. This may have potential applications in the optical communication systems.

  10. Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide

    Science.gov (United States)

    Lu, Tsan-Wen; Tsai, Wei-Chi; Wu, Tze-Yao; Lee, Po-Tsung

    2013-02-01

    In this report, we design and utilize one-dimensional photonic crystal ring resonators (1D PhCRRs) to realize InGaAsP/SiO2 hybrid lasers via adhesive bonding technique. Single-mode lasing with low threshold from the dielectric mode is observed. To further design a nanocavity with mode gap effect in 1D PhCRR results in the reduced lasing threshold and increased vertical laser emissions, owing to the reduced dielectric mode volume and the broken rotational symmetry by the nanocavity. Such hybrid lasers based on 1D PhC rings provides good geometric integration ability and new scenario for designing versatile devices in photonic integrated circuits.

  11. Vacancy-induced transmission in three-dimensional photonic crystal slabs.

    Science.gov (United States)

    Keilman, J; Caruso, K; Citrin, D S

    2015-07-01

    The transmission spectra of finite-thickness slabs of three-dimensional (3D) diamond-lattice photonic crystals of air spheres in a dielectric background in which various concentrations of randomly located vacancies are present are studied. We find that resonant modes associated with isolated defects couple to form an extended defect band, leading to a significant increase in transmission for frequencies inside the 3D photonic bandgap. Outside the 3D gap, vacancies induce scattering from evanescent to propagating modes, leading to an increase in transmission near the pseudo-gap edges within the gap. The local defect density of states for several concentrations of vacancies is computed; thus, it is shown that the total number of defect states and the range of supported frequencies increase due to increasing vacancy density.

  12. A Two-Dimensional Photonic Crystal Slab Mirror with Silicon on Insulator for Wavelength 1.3μm

    Institute of Scientific and Technical Information of China (English)

    TANG Hai-Xia; ZUO Yu-Hua; YU Jin-Zhong; WANG Qi-Ming

    2006-01-01

    @@ A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3μm with a silicon-on-insulator (SOI) substrate is designed by the three-dimensional plane wave expansion method.

  13. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal

    Science.gov (United States)

    Zhang, Yuping; Wu, Zhixin; Cao, Yanyan; Zhang, Huiyun

    2015-03-01

    We propose a novel type of one-dimensional photonic crystal called Fibonacci quasi-periodic graphene photonic crystal (FGPC), in which the structure in each dielectric cell follows the Fibonacci sequence and the graphene monolayers are embedded between adjacent dielectric layers. The transmission properties of FGPC are investigated using transfer matrix method in detail. It is shown that both photonic band gap induced by graphene (GIBPG) and the Bragg gap exist in the structure. We study the band gaps of TE and TM waves at different incident angles or chemical potentials. It is found that the band gaps can be tuned via a gate voltage and GIBPG is almost omnidirectional and insensitive to the polarization. In order to investigate difference between the GIPBG and Bragg gap, we plot the electromagnetic field profiles inside FGPC for some critical frequencies. The propagation loss of the structure caused by absorption of graphene is researched in detail. Also, the passing bands of Fibonacci sequences of different orders and their splitting behavior at higher order are investigated.

  14. Surface topography to reflectivity mapping in two-dimensional photonic crystals designed in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)

    2015-11-15

    Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.

  15. Polarization-selective branching of stop gaps in three-dimensional photonic crystals

    CERN Document Server

    Priya,

    2016-01-01

    We study the direction- and wavelength-dependent polarization anisotropy in light scattering at the air-photonic crystal interface as a function of angle of incidence for TE and TM polarized light. This is done using optical reflectivity measurements at high-symmetry points in the Brillouin zone of a three-dimensional photonic crystal with fcc symmetry. Polarized reflectivity measurements indicate the presence of stop gap branching for TE polarization, which is absent for TM polarization till the Brewster angle at K point. In contrast, stop gap branching is present for both TE and TM polarizations at W point due to the intricate mixing of crystal planes. This characteristic behavior signifies the inevitable role of energy exchange in the stop gap branching. The measured polarization anisotropy shows a prominent shift in the Brewster angle for on-resonance wavelength as compared to the off-resonance along both K and W points, and that, in accordance with theory. Our results have implications in polarization-in...

  16. Two dimensional tunable photonic crystal defect based drop filter at communication wavelength

    Science.gov (United States)

    D'souza, Nirmala Maria; Mathew, Vincent

    2017-07-01

    We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.

  17. Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Wei; KAN Qiang; WANG Chun-Xia; HU Hai-Yang; XU Xing-Sheng; CHEN Hong-Da

    2011-01-01

    Light extraction effects of a photonic crystal slab with a micrometer scale lattice constant are studied. A GaN light emitting diode (LED) with a photonic crystal slab is fabricated. The light extraction effects and the enhancement mechanism are investigated. From theoretical analysis, it is found that the characteristics of LED light emission are modulated by the photonic crystal slab. Experimental results show that the LED light emission intensity is enhanced by 38% due to guide mode extracting by the photonic crystal.%@@ Light extraction effects ora photonic crystal slab with a micrometer scale lattice constant are studied.A GaN light emitting diode(LED) with a photonic crystal slab is fabricated.The light extraction effects and the enhancement mechanism are investigated.From theoretical analysis,it is found that the characteristics of LED light emission are modulated by the photonic crystal slab.Experimental results show that the LED light emission intensity is enhanced by 38% due to guide mode extracting by the photonic crystal.

  18. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    Science.gov (United States)

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

  19. Absolute band gaps of a two-dimensional triangular-lattice dielectric photonic crystal with different shapes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Absolute band gaps of a two-dimensional triangular-lattice photonic crystal are calculated with the finite-difference time-domain method in this paper.Through calculating the photonic band structures of the triangular-lattice photonic crystal consisting of Ge rods immersed in air with different shapes,it is found that a large absolute band gap of 0.098 (2c/a) can be obtained for the structures with hollow triangular Ge rods immersed in air,corresponding to 19.8% of the middle frequency.The influence of the different factors on the width of the absolute band gaps is also discussed.

  20. Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement

    Science.gov (United States)

    Kondo, Toshiaki; Hirano, Shota; Yanagishita, Takashi; Truong Nguyen, Nhat; Schmuki, Patrick; Masuda, Hideki

    2016-10-01

    Ideally ordered TiO2 hole arrays with high aspect ratios were prepared by the anodization of pretextured Ti. The obtained TiO2 acted as two-dimensional photonic crystals in which a photonic band gap is formed in all directions of light propagation in the lattice. The process allows the easy and low-cost fabrication of TiO2 photonic crystals and can be used for the preparation of functional optical devices, which require the precise control of light propagation.

  1. The focusing effect of electromagnetic waves in two-dimensional photonic crystals with gradually varying lattice constant

    Directory of Open Access Journals (Sweden)

    F Bakhshi Garmi

    2016-02-01

    Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.

  2. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hwang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding (μTM), was developed by the Whitesides group in 1996. Although μTM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional μTM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-μTM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-μTM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed

  3. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  4. Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal

    Science.gov (United States)

    K. P., Sreejith; Maria D'souza, Nirmala; Mathew, Vincent

    2017-09-01

    By means of two fluid model and transfer matrix method, we have theoretically investigated the transmittance property of a one dimensional ternary photonic crystal consist of a pair of superconducting materials and a dielectric in the infrared frequency region. We mainly focus on the analysis of cutoff frequency since the calculations can be useful in the fabrication of optical devices such as reflector, high pass filter etc. The study reveals that the cutoff frequency is sensitive to thickness of superconducting materials, dielectric layer thickness, operating temperature and refractive index of intermediate dielectric. Cutoff frequency shifted to higher frequency region on increasing number of periods and superconductor layer thickness where as it reduces on increasing dielectric thickness, operating temperature and refractive index of intermediate dielectric. Furthermore, we compared the cutoff frequency of three different 1D ternary photonic crystals comprising of a dielectric and a pair of high-high, high-low and low-low temperature superconducting materials. Our comparison results shows that the cutoff frequency can be effectively modified with different combination of superconducting materials.

  5. Line nodes, Dirac points, and Lifshitz transition in two-dimensional nonsymmorphic photonic crystals

    Science.gov (United States)

    Lin, Jun Yu; Hu, Nai Chao; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao

    2017-08-01

    Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we propose very simple two-dimensional photonic crystal lattices with gap closures, i.e., band degeneracies protected by nonsymmorphic symmetry. Our photonic structures are relatively easy to fabricate, consisting of two inequivalent dielectric cylinders per unit cell. Along high-symmetry directions, they exhibit line degeneracies protected by glide-reflection symmetry and time-reversal symmetry, which we explicitly demonstrate for p g ,p m g ,p g g , and p 4 g nonsymmorphic groups. They also exhibit point degeneracies (Dirac points) protected by a Z2 topological number associated only with crystalline symmetry. Strikingly, the robust protection of p g symmetry allows a Lifshitz transition to a type-II Dirac cone across a wide range of experimentally accessible parameters, thus providing a convenient route for realizing anomalous refraction. Further potential applications include a stoplight device based on electrically induced strain that dynamically switches the lattice symmetry from p g g to the higher p 4 g symmetry. This controls the coalescence of Dirac points and hence the group velocity within the crystal.

  6. Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides

    Science.gov (United States)

    Lavdas, Spyros; Panoiu, Nicolae C.

    2016-03-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general setup of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of free-carriers FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulas for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveguide coefficients describing SPM, XPM, TPA, XAM, and FWM. In addition, our theoretical analysis and numerical simulations reveal key differences between the characteristics of FWM in the slow- and fast-light regimes, which could potentially have important implications to the design of ultracompact active photonic devices.

  7. Optical properties of one-dimensional photonic crystals containing graphene-based hyperbolic metamaterials

    Science.gov (United States)

    Madani, Amir; Entezar, Samad Roshan

    2017-07-01

    The transmission properties of a one-dimensional photonic crystal made of alternate layers of an isotropic ordinary dielectric and a graphene-based hyperbolic metamaterial are studied theoretically using the transfer matrix method. The metamaterial layers show hyperbolic dispersion in certain frequency range and are considered as an anisotropic effective medium in which the optical axis is normal to the graphene layers. It is shown that the structure has some photonic band gaps in both the hyperbolic and elliptical frequency regions of the hyperbolic metamaterial layers, which are tunable by changing the chemical potential of the graphene monolayers. Moreover, the characteristics of the transverse-magnetic (TM)-polarized photonic band gaps remarkably depend on the orientation of the optical axis of the hyperbolic metamaterial layers. It is found that the electric field intensity of the propagating modes from the hyperbolic metamaterial frequency region is concentrated in the high-index isotropic layers and the electric field intensity of the propagating modes from the elliptical frequency region is concentrated in the low-index anisotropic layers.

  8. Photonic Crystal Laser Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  9. Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression

    Science.gov (United States)

    Sánchez, A.; Porta, A. V.; Orozco, S.

    2017-05-01

    The rupture of periodicity caused by one defect (defect layer) in a one-dimensional photonic crystal (1DPhC) results in a narrow transmission spectral line in the photonic band-gap, and the field distribution shows a strong confinement in the proximity of the defect layer. In this work, we present a theoretical model to calculate the frequency of defect modes caused by defect layers induced by localized mechanical stress. Two periodical arrangements were studied: one with layers of poly(methyl-methacrylate) (PMMA) and polystyrene (PS), PMMA-PS; the other with layers of PMMA and fused silica (SiO2), PMMA-SiO2. The defect layers were induced by localized compression (tension). The frequencies of the defect modes were calculated using elasto-optical theory and plane wave expansion and perturbation methods. Numerical results show that the frequency of the defect mode increases (decreases) when the compression (tension) increases. Based on the theoretical model developed, we show that compression of n layers of a 1DPhC induces n defect modes whose frequencies depend on the compression magnitude in the case of normal incidence of electromagnetic waves, in accordance with the results reported for other types of defect layers. The methodology shows the feasibility of the plane wave expansion and perturbation methods to study the frequency of the defect modes. Both periodical arrangements are suitable for designing mechanically tunable (1DPhC)-based narrow pass band filters and narrow reflectors in the (60, 65) THz range.

  10. The ballistic dimer resonance in the one-dimensional disordered photonic crystals

    Science.gov (United States)

    Khalfoun, H.; Bentata, S.; Bouamoud, M.; Henrard, L.; Vandenbem, C.

    2009-12-01

    The propagation of electromagnetic waves in one-dimensional disordered dielectric layer stack is studied theoretically using the transfer matrix formalism. The presence of the dimer unit cells inside a host photonic crystal, as the intentionally short range disorder correlation, provides predicted dimer resonances, leading to the break down of the Anderson localization. However while suitably adjusting the intrinsic defect unit cell parameters (i.e. the defect dielectric constants), the light can be transmitted on larger localization length through a ballistic canal, opening up possibilities for performing better tailored ballistic optical filters. Moreover, by increasing the rate of disorder (i.e. the defects concentration and/or the length of the system) the quality of the transmission around the ballistic resonance can be improved with the smoother corresponding allowed mini bands.

  11. Wide Range Temperature Sensors Based on One-Dimensional Photonic Crystal with a Single Defect

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2012-01-01

    Full Text Available Transmission characteristics of one-dimensional photonic crystal structure with a defect have been studied. Transfer matrix method has been employed to find the transmission spectra of the proposed structure. We consider a Si/air multilayer system and refractive index of Si layer has been taken as temperature dependent. As the refractive index of Si layer is a function of temperature of medium, so the central wavelength of the defect mode is a function of temperature. Variation in temperature causes the shifting of defect modes. It is found that the average change or shift in central wavelength of defect modes is 0.064 nm/K. This property can be exploited in the design of a temperature sensor.

  12. Deterministic formation of interface states in some two-dimensional photonic crystals with conical dispersions

    CERN Document Server

    Huang, Xueqin; Zhang, Zhao-Qing; Chan, C T

    2014-01-01

    There is no assurance that interface states can be found at the boundary separating two materials. As a strong perturbation typically favors wave localization, it is natural to expect that an interface state should form more easily in the boundary that represents a strong perturbation. Here, we show on the contrary that in some two dimensional photonic crystals (PCs) with a square lattice possessing Dirac-like cone at k=0, a small perturbation guarantees the existence of interface states. More specifically, we find that single-mode localized states exist in a deterministic manner at an interface formed by two PCs each with system parameters slightly perturbed from the conical dispersion condition. The conical dispersion guarantees the existence of gaps in the projected band structure which allows interface states to form and the assured existence of interface states stems from the geometric phases of the bulk bands.

  13. Sufficient condition for the existence of interface states in some two-dimensional photonic crystals

    Science.gov (United States)

    Huang, Xueqin; Xiao, Meng; Zhang, Zhao-Qing; Chan, C. T.

    2014-08-01

    There is no assurance that interface states can be found at the boundary separating two materials. While a strong perturbation typically favors wave localization, we show on the contrary that in some two-dimensional photonic crystals (PCs) possessing a Dirac-like cone at k = 0 derived from monopole and dipoles excitation, a small perturbation is sufficient to create interface states. The conical dispersion together with the flat band at the zone center generates the existence of gaps in the projected band structure and the existence of single mode interface states inside the projected band gaps stems from the geometric phases of the bulk bands. The underlying physics for the existence of an interface state is related to the sign change of the surface impedance in the gaps above and below the flat band. The established results are applicable for long wavelength regimes where there is only one propagating diffraction order for an interlayer scattering.

  14. Fabrication of high-quality three-dimensional photonic crystal heterostructures

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng-Qi; Feng Tian-Hua; Dai Qiao-Feng; Wu Li-Jun; Lan Sheng

    2009-01-01

    Three-dimensional photonic crystal (PC) heterostructures with high quality are fabricated by using a pressure controlled isothermal heating vertical deposition technique. The formed heterostructures have higher quality, such as deeper band gaps and sharper band edges, than the heterostructures reported so far. Such a significant improvement in quality is due to the introduction of a thin TiO2 buffer layer between the two constitutional PCs. It is revealed that the disorder caused by lattice mismatch is successfully removed if the buffer layer is used once. As a result, the formed heterostructures possess the main features in the band gap of constitutional PCs. The crucial role of the thin buffer layer is also verified by numerical simulations based on the finite-difference time-domain technique.

  15. Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Klimonsky, S. O.; Filatov, V. V.; Napolskii, K. S.

    2016-04-01

    The optical properties of one-dimensional photonic crystals based on porous anodic aluminum oxide films have been studied by measuring transmittance and specular reflectance spectra in the visible and UV spectral regions. Angular dependences of the spectral positions of optical stop bands are obtained. It is shown that the reflectance within the first stop band varies from point to point on the sample surface, reaching a level of 98-99% at some points. The dispersion relation for electromagnetic waves in the model of infinite periodic structure is calculated for the samples under study. The possibility of using models with an infinite or finite number of layers to calculate reflectance spectra near the first optical stop band is discussed.

  16. Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Wang Yi-Quan

    2011-01-01

    Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method.Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters.It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects.The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied.This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.

  17. Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots

    CERN Document Server

    Stumpf, Wolfgang C; Kojima, Takanori; Fujita, Masayuki; Tanaka, Yoshinori; Noda, Susumu

    2010-01-01

    The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1360 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition...

  18. An Optical Power Divider Based on Two-dimensional Photonic Crystal Structure

    Science.gov (United States)

    Mesri, Nazanin; Alipour-Banaei, Hamed

    2017-05-01

    In this paper, an optical power divider with one input and four outputs has been proposed in a two-dimensional photonic crystal with triangular lattice and simulated using dielectric holes in an air substrate. The dividing properties of the power divider have been numerically simulated and analyzed using the plane wave expansion and finite difference time domain methods. The results show that the transmittance of this divider can be as high as 94.22 % for λ=1.55 µm; thus, the proposed structure is suitable for wavelength division multiplexing communication systems. Also, due to the small footprint of the proposed structure, this optical power divider is applicable for optical-integrated circuit design.

  19. The effect of temperature on one-dimensional nanometallic photonic crystals with coupled defects

    Indian Academy of Sciences (India)

    ABDOLRASOUL GHARAATI; ZEINAB ZARE

    2017-05-01

    Using the transfer matrix method, the effect of temperature on one-dimensional (1D) nanostructure photonic crystal with coupled defects has been investigated. One of the layers of this structure is silver. The complex refractive index of silver is dependent on temperature and wavelength. This structure is tunable with temperature and incident angle. It is found that the number of defect modes is equal to the number of coupled defects in all incident angles for both polarizations. Also by increasing the temperature, due to dissipation, the wavelength of the defect modes increases and the height of the defect modes decreases. The wavelengths of defect modes depend linearly on temperature for both polarizations in all incident angles.

  20. Spectral properties of a one-dimensional photonic crystal with a resonant defect nanocomposite layer

    Energy Technology Data Exchange (ETDEWEB)

    Vetrov, S. Ya., E-mail: s.vetrov@inbox.ru; Avdeeva, A. Yu., E-mail: avdeeva-anstasiya@yandex.ru [Siberian Federal University (Russian Federation); Timofeev, I. V. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation)

    2011-11-15

    The spectral properties of a one-dimensional photonic crystal with a defect nanocomposite layer that consists of metallic nanoballs distributed in a transparent matrix and is characterized by an effective resonance permittivity are studied. The problem of calculating the transmission, reflection, and absorption spectra of p-polarized waves in such structures is solved for oblique incidence of light, and the spectral manifestation of defect-mode splitting as a function of the volume fraction of nanoballs and the structural parameters is studied. The splitting is found to depend substantially on the nanoball concentration in the defect, the defect layer thickness, and the angle of incidence. The angle of incidence is found at which the resonance frequency of the nanocomposite is located near the edge of the bandgap or falls in the frequency region of a continuous spectrum. The resonance situation appearing in this case results in an additional transmission band or an additional bandgap in the transmission spectrum.

  1. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    CERN Document Server

    Takahashi, S; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y

    2014-01-01

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally-stacked woodpile PhC structure where neighboring layers are rotated by 60 degrees and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1300 nm. The obtained results show good agreement with numerical simulations.

  2. Transmission spectra of one-dimensional photonic crystals including negative-refractive-index media

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiao-ming; CHEN Xian-feng; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    We introduce a new model of one-dimensional (1D) photonic crystal composed of alternately arranged RHM and LHM layers with positive and negative refractive indices respectively, for which the transmission spectra of the model are calculated numerically with the transfer matrix method, and the band-gap structure and the polarization properties are analyzed. We found that the introduction of negative refractive index layers (i.e.LHM medium layers) gives rise to some peculiar band-gap structure and polarization properties as follows. Firstly, the forbidden bands are extremely wide and the transmission bands are very sharp without oscillation;and secondly, the change of incident angle has different influences on the forbidden bands of TE and TM modes. For the TM mode, the forbidden band width decreases substantially and finally vanishes, and for the TE mode with central wavelength, the total reflection happens at any incident angle.

  3. Analysis and synthesis of one-dimensional magneto-photonic crystals using coupled mode theory

    Science.gov (United States)

    Saghirzadeh Darki, Behnam; Nezhad, Abolghasem Zeidaabadi; Firouzeh, Zaker Hossein

    2017-03-01

    We utilize our previously developed temporal coupled mode approach to investigate the performance of one-dimensional magneto-photonic crystals (MPCs). We analytically demonstrate that a double-defect MPC provides adequate degrees of freedom to design a structure for arbitrary transmittance and Faraday rotation. By using our developed analytic approach along with the numerical transfer matrix method, we present a procedure for the synthesis of an MPC to generate any desired transmittance and Faraday rotation in possible ranges. However it is seen that only discrete values of transmittance and Faraday rotation are practically obtainable. To remedy this problem along with having short structures, we introduce a class of MPC heterostructures which are combinations of stacks with high and low optical contrast ratios.

  4. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  5. Application of the generalized Kirchhoff's law to calculation of photoluminescence spectra of one-dimensional photonic crystals

    CERN Document Server

    Voronov, Mikhail M

    2016-01-01

    The approach based on the generalized Kirchhoff's law for calculating photoluminescence spectra of one-dimensional multi-layered structures, in particular, 1D photonic crystals has been developed. It is valid in the local thermodynamic equilibrium approximation and leads to simple and explicit expressions for the photoluminescence intensity. In the framework of the present theory the Purcell factor has been discussed as well.

  6. Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Nikolaev, I.; Lodahl, P.; van Driel, A. Floris; Koenderink, A.F.; Vos, Willem L.

    2007-01-01

    We observe experimentally that ensembles of quantum dots in three-dimensional (3D) photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays

  7. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window

    Science.gov (United States)

    Miao, Lei; Shi, Jiaming; Wang, Jiachun; Zhao, Dapeng; Chen, Zongsheng; Wang, Qichao

    2016-05-01

    The characteristic matrix method in thin-film optical theory was used to calculate heterogeneous doped one-dimensional photonic crystals (1-D PCs), which were fabricated by alternate deposition of Te, ZnSe, and Si materials on a silicon wafer. The heterogeneous structure was adopted to broaden the photonic band gap, within which the low reflection valley was achieved by doping. Infrared spectrum tests showed that the average emissivities of the 1-D PC were 0.0845 and 0.281, corresponding, respectively, to the bands of 3 to 5 and 8 to 14 μm. Moreover, the emissivity was 0.45 over the 5 to 8 μm nonatmospheric window, and the reflectivity was 0.28 at the wavelength of 10.6 μm. The results indicated that the heterogeneous doped 1-D PC was able to selectively achieve low emissivities over infrared atmospheric windows and a low reflectivity for the CO2 laser, which exhibited remarkable competence in compatible infrared and laser stealth applications.

  8. Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; van Driel, A. Floris

    2007-01-01

    We observe experimentally that ensembles of quantum dots in three-dimensional 3D photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays...... parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals....

  9. A Pseudospectral Time-Domain Algorithm for Calculating the Band Structure of a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    何江平; 沈林放; 张全; 何赛灵

    2002-01-01

    A pseudospectral time-domain (PSTD) method is developed for calculating the band structure of a two-dimensional photonic crystal. Maxwell's equations are rewritten in terms of period fields by using the Bloch theorem. Instead of spatial finite differences, the fast Fourier transform is used to calculate the spatial derivatives. To reach a similar accuracy, fewer sample points are required in the present PSTD method as compared to the conventional finite-difference time-domain methods. Our numerical simulation shows that the present PSTD method is an efficient and accurate method for calculating the band structure of a photonic crystal.

  10. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir [Department of Physics, Iran University of Science & Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Mirzaie, Reza [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  11. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    Directory of Open Access Journals (Sweden)

    Guiqiang Liu, Yan Chen and Zhiqing Ye

    2009-01-01

    Full Text Available Sandwich structures, constructed from a planar defect of rhodamine-B (RhB-doped titania (TiO2 and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.

  12. Reflection mode two-dimensional photonic-crystal-slab-waveguide-based micropressure sensor

    Science.gov (United States)

    Wang, Yi; Bakhtazad, Aref; Sabarinathan, Jayshri

    2011-08-01

    Photonic crystals (PhCs) have recently been the focus for the developing micro- and nano-optical sensors, due to its capability to control and manipulate light on planar devices. This paper presents a novel design of micro-optical pressure sensor based on 2-dimensional PhC slab suspended on Si substrate. A line defect was introduced to the PhC slab to guide and reflect light with frequency in the photonic bandgap in the plane of the slab. The structure, with certain surface treatment, can be used in miro-scale pressure catheters in heart ablation surgeries and other biomedical applications. The working principle of the device is to modify light reflection in the PhC line defect waveguide by moving a substrate vertically in the evanescent field of the PhC waveguide. Evanescent field coupling is the critical step that affects light transmission and reflection. High resolution electron-beam lithography and isotropic wet etching have been used to realize the device on the top layer of a Si-On-Insulator (SOI) wafer. The PhC slab is released by isotropic wet etch of the berried oxide layer. The output reflection spectrum of the device under different pressure conditions is simulated using 3-dimensional finite difference time domain (FDTD) method. The result showed that when the PhC slab is close enough to the substrate (less than 400 nm), the reflected light intensity decreases sharply when the substrate moves towards the PhC slab. Mechanical response of the sensor is also studied.

  13. One-dimensional photonic crystals for eliminating cross-talk in mid-IR photonics-based respiratory gas sensing

    Science.gov (United States)

    Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.

    2017-02-01

    Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.

  14. Manufacturing method of photonic crystal

    Science.gov (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  15. Omnidirectional photonic band gap in magnetron sputtered TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jena, S., E-mail: shuvendujena9@gmail.com [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Tokas, R.B.; Sarkar, P. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Misal, J.S.; Maidul Haque, S.; Rao, K.D. [Photonics & Nanotechnology Section, BARC-Vizag, Autonagar, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam 530 012 (India); Thakur, S.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-01-29

    One dimensional photonic crystal (1DPC) of TiO{sub 2}/SiO{sub 2} multilayer has been fabricated by sequential asymmetric bipolar pulsed dc magnetron sputtering of TiO{sub 2} and radio frequency magnetron sputtering of SiO{sub 2} to achieve wide omnidirectional photonic band in the visible region. The microstructure and optical response of the TiO{sub 2}/SiO{sub 2} photonic crystal have been characterized by atomic force microscopy, scanning electron microscopy and spectrophotometry respectively. The surface of the photonic crystal is very smooth having surface roughness of 2.6 nm. Reflection and transmission spectra have been measured in the wavelength range 300 to 1000 nm for both transverse electric and transverse magnetic waves. Wide high reflection photonic band gap (∆ λ = 245 nm) in the visible and near infrared regions (592–837 nm) at normal incidence has been achieved. The measured photonic band gap (PBG) is found well matching with the calculated photonic band gap of an infinite 1DPC. The experimentally observed omnidirectional photonic band 592–668 nm (∆ λ = 76 nm) in the visible region with band to mid-band ratio ∆ λ/λ = 12% for reflectivity R > 99% over the incident angle range of 0°–70° is found almost matching with the calculated omnidirectional PBG. The omnidirectional reflection band is found much wider as compared to the values reported in literature so far in the visible region for TiO{sub 2}/SiO{sub 2} periodic photonic crystal. - Highlights: • TiO{sub 2}/SiO{sub 2} 1DPC has been fabricated using magnetron sputtering technique. • Experimental optical response is found good agreement with simulation results. • Wide omnidirectional photonic band in the visible spectrum has been achieved.

  16. Multicolor photonic crystal laser array

    Science.gov (United States)

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  17. A new cell-selective three-dimensional microincubator based on silicon photonic crystals.

    Directory of Open Access Journals (Sweden)

    Francesca Carpignano

    Full Text Available In this work, we show that vertical, high aspect-ratio (HAR photonic crystals (PhCs, consisting of periodic arrays of 5 µm wide gaps with depth of 50 µm separated by 3 µm thick silicon walls, fabricated by electrochemical micromachining, can be used as three-dimensional microincubators, allowing cell lines to be selectively grown into the gaps. Silicon micromachined dice incorporating regions with different surface profiles, namely flat silicon and deeply etched PhC, were used as microincubators for culturing adherent cell lines with different morphology and adhesion properties. We extensively investigated and compared the proliferative behavior on HAR PhCs of eight human cell models, with different origins, such as the epithelial (SW613-B3; HeLa; SW480; HCT116; HT29 and the mesenchymal (MRC-5V1; CF; HT1080. We also verified the contribution of cell sedimentation into the silicon gaps. Fluorescence microscopy analysis highlights that only cell lines that exhibit, in the tested culture condition, the behavior typical of the mesenchymal phenotype are able to penetrate into the gaps of the PhC, extending their body deeply in the narrow gaps between adjacent silicon walls, and to grow adherent to the vertical surfaces of silicon. Results reported in this work, confirmed in various experiments, strongly support our statement that such three-dimensional microstructures have selection capabilities with regard to the cell lines that can actively populate the narrow gaps. Cells with a mesenchymal phenotype could be exploited in the next future as bioreceptors, in combination with HAR PhC optical transducers, e.g., for label-free optical detection of cellular activities involving changes in cell adhesion and/or morphology (e.g., apoptosis in a three-dimensional microenvironment.

  18. Two-dimensional photonic-crystal-based Fabry-Perot etalon.

    Science.gov (United States)

    Ho, Chong Pei; Pitchappa, Prakash; Kropelnicki, Piotr; Wang, Jian; Cai, Hong; Gu, Yuandong; Lee, Chengkuo

    2015-06-15

    We demonstrate the design, fabrication, and characterization of a polycrystalline-silicon-based photonic crystal Fabry-Perot etalon, which is aimed to work in the mid-infrared wavelengths. The highly reflective mirrors required in a Fabry-Perot etalon are realized by freestanding polycrystalline-silicon-based photonic crystal membranes with etched circular air holes. A peak reflection of 96.4% is observed at 3.60 μm. We propose a monolithic CMOS-compatible fabrication process to configure two such photonic crystal mirrors to be in parallel to form a Fabry-Perot etalon; a filtered transmission centered at 3.51 μm is observed. The quality factor measured is around 300, which is significantly higher than in existing works. This creates the possibility of using such devices for high-resolution applications such as gas sensing and hyperspectral imaging.

  19. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  20. Fabrication of high fidelity, high index three-dimensional photonic crystals using a templating approach

    Science.gov (United States)

    Xu, Yongan

    In this dissertation, we demonstrate the fabrication of high fidelity 3D photonic crystal through polymer template fabrication, backfilling and template removal to obtain high index inversed inorganic photonic crystals (PCs). Along the line, we study the photoresist chemistry to minimize the shrinkage, backfilling strategies for complete infiltration, and template removal at high and low temperatures to minimize crack-formation. Using multibeam interference lithography (MBIL), we fabricate diamond-like photonic structures from commercially available photoresist, SU-8, epoxy functionalized polyhedral oligomeric silsesquioxane (POSS), and narrowly distributed poly(glycidyl methacrylate)s (PGMA). The 3D structure from PGMA shows the lowest shrinkage in the [111] direction, 18%, compared to those fabricated from the SU-8 (41%) and POSS (48%) materials under the same conditions. To fabricate a photonic crystal with large and complete photonic bandgap, it often requires backfilling of high index inorganic materials into a 3D polymer template. We have studied different backfilling methods to create three different types of high index, inorganic 3D photonic crystals. Using SU-8 structures as templates, we systematically study the electrodeposition technique to create inversed 3D titania crystals. We find that 3D SU-8 template is completely infiltrated with titania sol-gel through a two-stage process: a conformal coating of a thin layer of films occurs at the early electrodeposition stage (simulated photonic bandgaps (PBGs) and the SEM observation, further supporting the complete filling by the wet chemistry. Since both PGMA and SU-8 decompose at a temperature above 400°C, leading to the formation of defects and cracks, a highly thermal and mechanical stable template is desired for PC fabrication. We fabricate the 3D POSS structures by MBIL, which can be converted to crack-free silica-like templates over the entire sample area (˜5 mm in diameter) by either thermal

  1. Two-dimensional ring-type photonic crystals in the near-infrared region

    Institute of Scientific and Technical Information of China (English)

    Xu Xing-Sheng; Wang Yi-Quan; Han Shou-Zhen; Cheng Bing-Ying; Zhang Dao-Zhong

    2004-01-01

    We propose a ring photonic crystal working in the near infrared region, where the air holes in the background material GaAs are arranged to form a series of rings. We find that the band gaps do not depend on the incident direction,and only a small number of rows are needed to create a frequency gap in the transmission spectrum. The transmission spectra of both P and S polarizations show that there is a complete bandgap in the hexagonal ring photonic crystals and the ratio of gap width to mid-gap frequency is as high as 11%.

  2. Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure

    Institute of Scientific and Technical Information of China (English)

    刘征; 徐建军; 林志方

    2003-01-01

    We simulate the changes of the photonic band structure of the crystal in two dimensions with a quasi-fractal structure when it is fined to a fractal. The result shows that when the dielectric distribution is fined, the photonic band structure will be compressed on the whole and the ground photonic band gap (PBG) closed while the next PBGs shrunk, in conjunction with their position declining in the frequency spectrum. Furthermore, the PBGs in the high zone are much more sensitive than those in low zones.

  3. Modelling defect cavities formed in inverse three-dimensional rod-connected diamond photonic crystals

    Science.gov (United States)

    Taverne, M. P. C.; Ho, Y.-L. D.; Zheng, X.; Liu, S.; Chen, L.-F.; Lopez-Garcia, M.; Rarity, J. G.

    2016-12-01

    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic bandgaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index-contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high-index cavities.

  4. Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals

    CERN Document Server

    Taverne, M P C; Zheng, X; Liu, S; Chen, L -F; Lopez-Garcia, M; Rarity, J G

    2016-01-01

    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, small mode volumes are obtained.

  5. Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides

    Institute of Scientific and Technical Information of China (English)

    Feng shuai; Wang Yi-Quan

    2011-01-01

    This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity.When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities,the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.

  6. Out-of-plane nanomechanical tuning of double-coupled one-dimensional photonic crystal cavities.

    Science.gov (United States)

    Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie; Akkipeddi, Ramam

    2013-06-15

    We demonstrate tuning of double-coupled one-dimensional photonic crystal cavities by their out-of-plane nanomechanical deformations. The coupled cavities are pulled by the vertical electrostatic force generated by the potential difference between the device layer and the handle layer in a silicon-on-insulator chip, and the induced deformations are analyzed by the finite element method. Applied with a voltage of 12 V, the cavities obtain a redshift of 0.0405 nm (twice the linewidth) for their second-order odd resonance mode and a blueshift of 0.0635 nm (three times the linewidth) for their second-order even resonance mode, which are mainly attributed to out-of-plane relative displacement. Out-of-plane tuning of coupled cavities does not need actuators and corresponding circuits; thus the device is succinct and compact. This working principle can be potentially applied in chip-level optoelectronic devices, such as sensors, switches, routers, and tunable filters.

  7. Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H, E-mail: arafa16@yahoo.com [Department of Physics, Faculty of Sciences, Beni-Suef University (Egypt); Aghajamali, Alireza [Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht (Iran, Islamic Republic of); Elsayed, Hussein A.; Mobarak, Mohamed [Department of Physics, Faculty of Sciences, Beni-Suef University (Egypt)

    2016-09-15

    Highlights: • Our results show that the appearance of the cutoff frequency, below which the incident electromagnetic waves cannot propagate in the structure. We demonstrate that the cutoff frequency shows an upward trend as the thickness of the superconductor layer as well as the thickness of the metamaterial increase. • The cutoff frequency can be tuned by the operating temperature. Our structures are good candidates for many optical devices such as optical filters, switches, temperature controlled optical shutter, and among photoelectronic applications in gigahertz. - Abstract: In this paper, using the two-fluid model and the characteristic matrix method, we investigate the transmission characteristics of the one-dimensional photonic crystal. Our structure composed of the layers of low-temperature superconductor material (NbN) and double-negative metamaterial. We target studying the effect of many parameters such as the thickness of the superconductor material, the thickness of the metamaterial layer, and the operating temperature. We show that the cut-off frequency can be tuned efficiently by the operating temperature as well as the thicknesses of the constituent materials.

  8. Investigating Optical Properties of One-Dimensional Photonic Crystals Containing Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Mahshid Mokhtarnejad

    2017-01-01

    Full Text Available This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE was considered on it. Due to the OSE on virtual exciton levels, the switching time can be in the order of picoseconds. Moreover, it is demonstrated that, by introducing errors in width of barrier and well as well as by inserting defect, the reflectivity is reduced. Thus, by employing the mechanism of stark effect MQWs band-gaps can be easily controlled which is useful in designing MWQ based optical switches and filters. By comparing the results, we observe that the reflectivity of MWQ containing 200 periods of InAlAs/InP quantum wells shows the maximum reflectivity of 96%.

  9. Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies

    Science.gov (United States)

    Bian, Li-an; Liu, Peiguo; Li, Gaosheng

    2016-10-01

    For the one-dimensional generalized Fibonacci photonic crystals incorporating graphene, we present many valuable properties and design the tunable devices accordingly with the help of the transfer matrix method in the frequency range of terahertz. For the common structure, all of dielectric layers are cladded by graphene, we design the high-Q tunable filter with double peaks by changing the Fibonacci distribution and chemical potential. In order to reduce the crosstalk of signals through this filter, a heterostructure based on the current structure and the one without graphene is utilized to separate the two peaks. Also, we fabricate the tunable switch by altering the parity of periodic number. Besides, through cladding the graphene on the one of the dielectrics only, we obtain other two kinds of cells. Combining these cells arbitrarily as the supercell to develop the periodic structure, the number of forbidden bands is increased in accordance with certain rules so that this structure with supercell is suitable as the multi-stop filter. If the active medium is introduced, the imaginary part of the complex permittivity of the material would be negative, which means the energy amplification. For our quasi-periodic structures with active medium, the functions of chemical potential, damping constant and reference wavelength are investigated.

  10. Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.

    Science.gov (United States)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom

    2011-08-29

    Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.

  11. Reshaping of Gaussian light pulses transmitted through one-dimensional photonic crystals with two defect layers.

    Science.gov (United States)

    Dadoenkova, Yu S; Dadoenkova, N N; Lyubchanskii, I L; Sementsov, D I

    2016-05-10

    We present a theoretical study of the reshaping of subpicosecond optical pulses in the vicinity of double-peaked defect-mode frequencies in the spectrum of a one-dimensional photonic crystal with two defect layers and calculate the time delay of the transmitted pulses. We used the transfer matrix method for the evaluation of the transmittivity spectra, and the Fourier transform technique for the calculation of the transmitted pulse envelopes. The most considerable reshaping of the pulses takes place for pulses with a carrier frequency in the defect-mode center and with a spectrum wider than the half-width of the defect mode. For pulses with the carrier frequency at the low- and high-frequency peaks of the defect mode, reshaping is strong for the twice as wide pulses. The maximal time delay of a spectrally narrow pulse is of the order of the pulse duration and demonstrates extrema at the frequencies of the defect-mode peaks. The time delay of a wide pulse does not depend on the carrier frequency, but is one order of magnitude larger than the pulse duration.

  12. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties.

    Science.gov (United States)

    Yang, Zhenzhen; Gao, Shanmin; Li, Wei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Xu, Tao

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO(2) layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO(2)-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  13. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators.

    Science.gov (United States)

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T

    2016-12-01

    In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1  V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

  14. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  15. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  16. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    Science.gov (United States)

    Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.

    2015-09-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.

  17. Suppression of spontaneous emission for two-dimensional GaAs photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Summary form only given. Spontaneous emission represents a loss mechanism that fundamentally limits the performance of semiconductor lasers. The rate of spontaneous emission may, however, be controlled by a new class of periodic dielectric structures known as photonic crystals. Although a three...

  18. Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap

    Institute of Scientific and Technical Information of China (English)

    Guo Ji-Yong; Chen Hong; Li Hong-Qiang; Zhang Ye-Wen

    2008-01-01

    We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε0, or μ-negative materials (MNMs) with ε>0 and μ<0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.

  19. Transmission properties of one-dimensional Photonic crystals containing double-negative and single-negative materials

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Kang Xie; Haiming Jiang

    2008-01-01

    The transmission properties of one-dimensional photonic crystals containing double-negative and singlenegative materials are studied theoretically.A special kind of photonic band gap is found in this structure.This gap is invariant with scaling and insensitive to thickness fluctuation.But when changing the ratio of the thickness of two media.the width of the gap could be enlarged.The defect modes are analyzed by inducing a linear defect layer in the structure.It is found that the number of defect modes will increase when the thickness of the defect layer becomes larger.

  20. Single-particle detection of virus simulants under microfluidic flow with two-dimensional photonic crystals (Conference Presentation)

    Science.gov (United States)

    Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi

    2017-05-01

    Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.

  1. Vertical One-Dimensional Photonic Crystal Platforms for Label-Free (Bio)Sensing: Towards Drop-And- Measure Applications

    CERN Document Server

    Barillaro, Giuseppe

    2015-01-01

    In this work, all-silicon, integrated optofluidic platforms, fabricated by electrochemical micromachining technology, making use of vertical, one-dimensional high-aspect- ratio photonic crystals for flow-through (bio)sensing applications are reviewed. The potential of such platforms for point-of-care applications is discussed for both pressure-driven and capillarity- driven operations with reference to refractometry and biochemical sensing.

  2. Time-Domain Measurement of Optical True-Time Delay in Two-Dimensional Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geng-Yan; ZHOU Qiang; CUI Kai-Yu; ZHANG Wei; HUANG Yi-Dong

    2010-01-01

    @@ We report on the realization of optical true-time delay(TTD)by a two-dimensional photonic crystal waveguide(PCWG).Design and fabrication of the PCWG are investigated.The spectral dependence of the group delay is measured by detecting the phase shifts of a 10 GHz modulating signal,and a maximum delay of 25 ± 2.5 ps is obtained.

  3. Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens

    Institute of Scientific and Technical Information of China (English)

    Feng Zhi-Fang; Wang Xiu-Guo; Li Zhi-Yuan; Zhang Dao-Zhong

    2008-01-01

    We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain mcthod. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing.

  4. A leap over Dirac cones in one-dimensional graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jahani, D., E-mail: dariush110@gmail.com [Young Researchers and Elite Club, Kermanshah branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Abaspour, L.; Soltani-Vala, A.; Barvestani, J. [Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2016-06-15

    The existence of a photonic bandgap in the visible range of light spectrum corresponding to a 1D graphene-based photonic crystal which recently has been proposed and is formed by embedding alternatively graphene layers into a dielectric background is investigated in this paper. By the use of the complete form of optical conductivity for the full expression of the tight-binding Hamiltonian of graphene layer, we numerically demonstrate an appeared bandgap in the visible region of the spectrum which can open up new route for further high-frequency applications of graphene-based photonic devices. It is revealed that the associated bandgap could be altered by changing the hopping energy and the amount of chemical potential leading to broadening the forbidden frequency regions with further increasing. Finally, it is also shown that the tunability feature of the photonic bandgap could be affected by changing the hopping energy.

  5. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  6. Voltage-induced defect mode interaction in a one-dimensional photonic crystal with a twisted-nematic defect layer

    CERN Document Server

    Timofeev, Ivan V; Gunyakov, Vladimir A; Myslivets, Sergey A; Arkhipkin, Vasily G; Vetrov, Stepan Ya; Lee, Wei; Zyryanov, Victor Ya

    2011-01-01

    Defect modes are investigated in a band gap of an electrically tunable one-dimensional photonic crystal infiltrated with a twisted-nematic liquid crystal (1D PC/TN). Their frequency shift and interference under applied voltage are studied both experimentally and theoretically. We deal with the case where the defect layer thickness is much larger than the wavelength (Mauguin condition). It is shown theoretically that the defect modes could have a complex structure with the elliptic polarization. Two series of polarized modes interact with each other and exhibit an avoided crossing phenomenon in the case of opposite parity.

  7. Polarization Beam Splitter Based on Self-Collimation Effect in Two-Dimensional Photonics Crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; ZHAO De-Yin; ZHOU Chnan-Hong; JIANG Xun-Ya

    2007-01-01

    A photonic crystal polarization beam splitter based on the self-collimation effect is proposed. By means of the plane wave expansion method and the finite-difference time-domain method, we analyse the splitting mechanism in two alternative ways: performing a band gap structure analysis and simulating the field distribution. The results indicate that two beams of different polarizations can be split with an extinction ratio of nearly 20 dB in a wavelength range of 90nm. The splitter may have practical applications in integrated photonic circuits.

  8. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  9. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  10. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  11. Double Doppler effect in two-dimensional photonic crystal with negative effective index

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Liang, Binming; Zhuang, Songlin

    2016-11-01

    The inverse Doppler effect in photonic crystal with negative refractive index had been proofed experimentally in our previous research. In this paper, we studied the spatial harmonics of Bloch wave propagating in such PhCs by FFT method. The lagging and front phase evolutions reveal that both backward wave and forward wave exist in these harmonics. Subsequently, we studied the double Doppler effect phenomenon that both the normal and inverse Doppler exist in one photonic crystal simultaneously by using the improved dynamic FDTD method which we made it suitable for dealing with moving objects. The simulative Doppler frequency shifts were consistent with the theoretical values. Our study provides a potential technology in measurement area.

  12. Fluorescence resonance energy transfer between conjugated molecules infiltrated in three-dimensional opal photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Lu; Sui, Ning; Wang, Ying-Hui, E-mail: yinghui_wang@jlu.edu.cn; Qian, Cheng; Ma, Yu-Guang; Zhang, Han-Zhuang, E-mail: zhanghz@jlu.edu.cn

    2015-02-15

    Fluorescence resonance energy transfer (FRET) from Coumarin 6 (C-6) to Sulforhodamine B (S-B) infiltrated into opal PMMA (poly-methyl-methacrylate) photonic crystals (PCs) has been studied in detail. The intrinsic mesh micro-porous structure of opal PCs could increase the luminescent efficiency through inhibiting the intermolecular interaction. Meanwhile, its structure of periodically varying refractive indices could also modify the FRET through affecting the luminescence characteristics of energy donor or energy acceptor. The results demonstrate that the FRET efficiency between conjugated dyes was easily modified by opal PCs. - Highlights: • We investigate the fluorescence resonance energy transfer between two kinds of dyes. • These two kinds of dyes are infiltrated in PMMA opal photonic crystals. • The structure of opal PCs could improve the luminescent characteristics. • The structure of opal PCs could improve the energy transfer characteristics.

  13. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    CERN Document Server

    Men, Han; Freund, Robert M; Peraire, Jaime; Johnson, Steven G

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniq...

  14. Investigation of defect cavities formed in three-dimensional woodpile photonic crystals

    CERN Document Server

    Taverne, Mike P C; Rarity, J G

    2014-01-01

    We report the optimisation of optical properties of single defects in threedimensional (3D) face-centred-cubic (FCC) woodpile photonic crystal (PC) cavities by using plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods. By optimising the dimensions of a 3D woodpile PC wide photonic band gaps (PBG) are created. Optical cavities with resonances in the bandgap arise when point defects are introduced in the crystal. Three types of single defects are investigated in high refractive index contrast (Gallium Phosphide-Air) woodpile structures and Q-factors and mode volumes (Veff) of the resonant cavity modes are calculated. We show that, by introducing an air buffer around a single defect, smaller mode volumes can be obtained. The estimates of Q and Veff are then used to quantify the enhancement of spontaneous emission and the possibility of achieving strong coupling with nitrogen-vacancy (NV) colour centres in diamond.

  15. Resonant tunneling effect in one-dimensional twinned lattice photonic crystal under total reflection conditions

    Science.gov (United States)

    Feng, Xi; Li, Hu; Yuxia, Tang

    2016-07-01

    Under total reflection conditions, it typically seems as though light waves will be reflected completely on the interface; in actuality, the waves can penetrate the medium as evanescent waves. In this paper, we present a twinned lattice photonic crystal with a unit cell composed of AB layers and their mirror. We assume that the refractive index n 0 of the input and output end is equal to n B and larger than n A . We first demonstrate the dependence of band structure on the incidence angle and normalized wavelength, in which the resonant tunneling bands are exposed. We then draw a comparison of bands between ABBA and AB. To conclude, we discuss the resonant tunneling effect in the twinned lattice photonic crystal under the total reflection conditions. As incidence angle increases, the resonant tunneling band ultimately vanishes completely.

  16. Parametric Optomechanical Oscillations in Two-dimensional Slot-type High-Q Photonic Crystal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zheng J.; Stein A.; Li, Y.; Aras, M.S.; Shepard, K.L.; Wong, C.W.

    2012-05-22

    We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Q{sub o} = 4.2 x 10{sup 4} and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. The optical spring effect, optical damping, and amplification are observed with a large experimental optomechanical coupling rate g{sub om}/2{pi} of 154 GHz/nm, corresponding to a vacuum optomechanical coupling rate g*/2{pi} of 707 kHz. With sub-mW or less input power levels, the cavity exhibits strong parametric oscillations. The phase noise of the photonic crystal optomechanical oscillator is also measured.

  17. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  18. Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal

    Science.gov (United States)

    Wicharn, S.; Buranasiri, P.

    2015-07-01

    In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.

  19. Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a substrate

    Science.gov (United States)

    Dovzhenko, Dmitriy; Terekhin, Vladimir; Vokhmincev, Kirill; Sukhanova, Alyona; Nabiev, Igor

    2017-01-01

    Multiplex detection of different antigens in human serum in order to reveal diseases at the early stage is of interest nowadays. There are a lot of biosensors, which use the fluorescent labels for specific detection of analytes. For instance, common method for detection of antigens in human serum samples is enzyme-linked immunosorbent assay (ELISA). One of the most effective ways to improve the sensitivity of this detection method is the use of a substrate that could enhance the fluorescent signal and make it easier to collect. Two-dimensional (2D) photonic crystals are very suitable structures for these purposes because of the ability to enhance the luminescent signal, control the light propagation and perform the analysis directly on its surface. In our study we have calculated optimal parameters for 2D-dimensional photonic crystal consisting of the array of silicon nano-rods, fabricated such photonic crystal on a silicon substrate using reactive ion etching and showed the possibility of its efficient application as a substrate for ELISA detection of human cancer antigens.

  20. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  1. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  2. Influence of disorder and deformation on the optical properties of a two-dimensional photonic crystal waveguide

    Institute of Scientific and Technical Information of China (English)

    Sun Wen-Qian; Liu Yu-Min; Wang Dong-Lin; Han Li-Hong; Guo Xuan; Yu Zhong-Yuan

    2013-01-01

    We investigate the effect of disorder and mechanical deformation on a two-dimensional photonic crystal waveguide.The dispersion characteristics and transmittance of the waveguide are studied using the finite element method.Results show that the geometric change of the dielectric material perpendicular to the light propagation direction has a larger influence on the waveguide characteristics than that parallel to the light propagation direction.Mechanical deformation has an obvious influence on the performance of the waveguide.In particular,longitudinal deformed structure exhibits distinct optical characteristics from the ideal one.Studies on this work will provide useful guideline to the fabrication and practical applications based on photonic crystal waveguides.

  3. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.

    Science.gov (United States)

    Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F

    2016-08-05

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  4. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-08-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  5. Dirac points and line degeneracies in two-dimensional nonsymmorphic photonic crystals

    CERN Document Server

    Lin, Jun Yu; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao

    2016-01-01

    Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we study the topological properties of gap closure points, i.e. band degeneracies, in photonic crystal lattices exhibiting nonsymmorphic group symmetries. Despite their relatively esoteric symmetries, such lattice structures are relatively easy to fabricate, and thus experimentally study, in photonic systems. We show that the combination of glide symmetry and time reversal symmetry can protect point degeneracies. Line degeneracies along two high symmetry momenta are, however, only protected by one glide symmetry. By defining a topological winding number for point degeneracies, Dirac points with windings of $\\pm 1,\\ -1,\\ -2$ are found in lattices with $pmg$, $pgg$ and $p4g$ nonsymmorphic group symmetries respectively. More interestingly, the breaking of time reversal symmetry in systems with symmetry groups $pgg$ and $p4g$ yield Chern insulators with nontrivial edge states as sol...

  6. Complete Band-Gap in Two-Dimensional Quasiperiod Photonic Crystals with Hollow Cylinders

    Institute of Scientific and Technical Information of China (English)

    FENG Zhi-Fang; FENG Shuai; REN Kun; LI Zhi-Yuan; CHENG Bing-Ying; ZHANG Dao-Zhong

    2005-01-01

    @@ The transmission properties of quasiperiodic photonic crystals (QPCs) based on the random square-triangle tilingsystem are investigated by the multiple scattering method. The hollow cylinders are introduced in our calculation. It is found that QPCs with hollow cylinders also possess a complete band gap common to s- and p-polarized waves when the inner radius of hollow cylinders is larger than a certain value. The QPCs possessing the complete band gap can be applied to the fields of light emitting, wave-guides, optical filters, high-Q resonators and antennas.

  7. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  8. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  9. Integration of self-assembled three-dimensional photonic crystals onto structured silicon wafers.

    Science.gov (United States)

    Ye, Jianhui; Zentel, Rudolf; Arpiainen, Sanna; Ahopelto, Jouni; Jonsson, Fredrik; Romanov, Sergei G; Sotomayor Torres, Clivia M

    2006-08-15

    We report on the fabrication of high-quality opaline photonic crystals from large silica spheres (diameter of 890 nm), self-assembled in hydrophilic trenches of silicon wafers by using a novel technique coined a combination of "lifting and stirring". The achievements reported here comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, a filling of the trenches up to the top, leading to a spatially uniform film thickness, particularly an absence of cracks within the size of the trenches, and finally a good 3D order of the opal lattice even in trenches with a complex confined geometry, verified using optical measurements. The opal lattice was found to match the pattern precisely in width as well as depth, providing an important step toward applications of opals in integrated optics.

  10. A new varied-time photonic crystals

    OpenAIRE

    Wu, Xiang-Yao; Ma, Ji; Liu, Xiao-Jing; Liang, Yu; Li, Hong; Chen, Wan-Jin; Yuan, Hong-chun; Li, Heng-Mei

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  11. A new varied-time photonic crystals

    OpenAIRE

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  12. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction

    CERN Document Server

    Sodagar, Majid; Eftekhar, Ali A; Adibi, Ali

    2014-01-01

    Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~ 8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

  13. A Defect Effect to Light Transmission through Acute Bending Coupled Cavity Waveguide in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    HUANG Yin; LU Yan-Wu

    2009-01-01

    @@ Light propagation through a coupled-defect waveguide with a 63.5°bend in a two-dimensional (2D) photonic crystal is investigated. The waveguide modes are non-degenerate monopole state and dipole defect state of a square lattice for two different branches. To increase the transmission in the bending waveguide, we propose a method to rotate the localized state by introducing a new type defect with a sheared square rod into coupled cavity. The higher coupling efficiency and transmission in the bending waveguide are obtained with proper shear shift.

  14. Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin

    Institute of Scientific and Technical Information of China (English)

    Guangyong Zhou; Michael James Ventura; Min Gu

    2003-01-01

    Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the Г-M direction.

  15. Defect Modes in Multiple-Constituent One-Dimensional Photonic Crystals Examined by an Analytic Bloch-Mode Approach

    Institute of Scientific and Technical Information of China (English)

    SANG Hong-Yi; LI Zhi-Yuan; GU Ben-Yuan

    2005-01-01

    @@ Defect modes in one-dimensional photonic crystals (PCs) can be readily detected from the solution of the transmission spectra via the standard transfer-matrix method. We adopt an analytic Bloch-mode approach to examine this problem in terms of eigenmode solutions and investigate the dispersion behaviour of localized defect modes supported by a defect layer sandwiched within two symmetric semi-infinite PCs that are made from multiple constituents. The results show that the number of defect modes grows when the dielectric constant and width of the defect layer increase.

  16. Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuan; CHEN Shu-Wen; LIAO Qing-Hua; YU Tian-Bao; LIU Nian-Hua; HUANG Yong-Zhen

    2011-01-01

    @@ We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal.The two polarizations can be separated efficientlyby the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities.The transmittance of two polarized light around 1.55 iim can be more than 98.6%, and the size of the device is less than 15 μm x 13μm,so these features will play an important role in future integrated optical circuits.

  17. Controlling the self-collimation characteristics of a near-infrared two-dimensional metallic photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Ren Cheng; Wang Wen-Zhong; Wang Yi-Quan

    2012-01-01

    Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method.The Drude dispersion model is adopted to describe the metal rod,and the self-collimation behaviours of the near-infrared light through the PC are studied.The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.

  18. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction.

    Science.gov (United States)

    Sodagar, Majid; Miri, Mehdi; Eftekhar, Ali A; Adibi, Ali

    2015-02-01

    Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

  19. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  20. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the lin......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap.......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  1. DNA- and AC electric field-assisted assembly of two-dimensional colloidal photonic crystals and their controlled defect insertion

    Science.gov (United States)

    Kim, Sejong

    Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal

  2. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    Science.gov (United States)

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.

  3. Guide modes in photonic crystal heterostructures composed of rotating non-circular air cylinders in two-dimensional lattices

    CERN Document Server

    Zhou Yun Song; Wang Fu He

    2003-01-01

    We investigate the properties of guide modes localized at the interfaces of photonic crystal (PC) heterostructures which are composed of two semi-infinite two-dimensional PCs consisting of non-circular air cylinders with different rotating angles embedded in a homogeneous host dielectric. Photonic band gap structures are calculated with the use of the plane-wave expansion method in combination with a supercell technique. We consider various configurations, for instance, rectangular (square) lattice-rectangular (square) air cylinders, and different rotating angles of the cylinders in the lattices on either side of the interface of a heterostructure. We find that the absolute gap width and the number of guide modes strongly depend on geometric and physical parameters of the heterostructures. It is anticipated that the guide modes in such heterostructures can be engineered by adjusting parameters.

  4. A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves

    Directory of Open Access Journals (Sweden)

    Maria Alvaro

    2013-02-01

    Full Text Available A one-dimensional photonic crystal (1DPC based on a planar stack of dielectric layers is used as an optical transducer for biosensing, upon the coupling of TE-polarized Bloch Surface Waves (BSW. The structure is tailored with a polymeric layer providing a chemical functionality facilitating the covalent binding of orienting proteins needed for a subsequent grafting of antibodies in an immunoassay detection scheme. The polymeric layer is impregnated with Cy3 dye, in such a way that the photonic structure can exhibit an emissive behavior. The BSW-coupled fluorescence shift is used as a means for detecting refractive index variations occurring at the 1DPC surface, according to a label-free concept. The proposed working principle is successfully demonstrated in real-time tracking of protein G covalent binding on the 1DPC surface within a fluidic cell.

  5. A fluorescent one-dimensional photonic crystal for label-free biosensing based on BLOCH surface waves.

    Science.gov (United States)

    Frascella, Francesca; Ricciardi, Serena; Rivolo, Paola; Moi, Valeria; Giorgis, Fabrizio; Descrovi, Emiliano; Michelotti, Francesco; Munzert, Peter; Danz, Norbert; Napione, Lucia; Alvaro, Maria; Bussolino, Federico

    2013-02-05

    A one-dimensional photonic crystal (1DPC) based on a planar stack of dielectric layers is used as an optical transducer for biosensing, upon the coupling of TE-polarized Bloch Surface Waves (BSW). The structure is tailored with a polymeric layer providing a chemical functionality facilitating the covalent binding of orienting proteins needed for a subsequent grafting of antibodies in an immunoassay detection scheme. The polymeric layer is impregnated with Cy3 dye, in such a way that the photonic structure can exhibit an emissive behavior. The BSW-coupled fluorescence shift is used as a means for detecting refractive index variations occurring at the 1DPC surface, according to a label-free concept. The proposed working principle is successfully demonstrated in real-time tracking of protein G covalent binding on the 1DPC surface within a fluidic cell.

  6. Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren

    2008-01-01

    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations.......We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two...

  7. Design of a Photonic-Crystal Channel-Drop Filter Based on the Two-Dimensional Triangular-Lattice Hole Structure

    Institute of Scientific and Technical Information of China (English)

    Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park

    2003-01-01

    A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.

  8. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim;

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  9. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  10. Detailed study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, Aliasghar [Islamic Azad University, Shabestar (Iran, Islamic Republic of); Valiaghaie, Soma [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Soufiani, Ahad Rounaghi [Islamic Azad University, Sufian (Iran, Islamic Republic of)

    2014-10-15

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  11. Detailed Study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    Science.gov (United States)

    Sedghi, Aliasghar; Valiaghaie, Soma; Soufiani, Ahad Rounaghi

    2014-10-01

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  12. An Integrative Biosensor Based on Contra-Directional Coupling Two-dimensional Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    MAO Xiao-Yu; YAO Di-Bi; ZHAO Ling-Yun; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2008-01-01

    We propose an integrative biochemical sensor utilizing the dip in the transmission spectrum of a normal singleline defect photonic crystal(PC)waveguide,which has a contra-directional coupling with another PC waveguide.When the air holes in the PC slab are filled with a liquid analyte with different refractive indices,the dip has a wavelength shift.By detecting the output power variation at a certain fixed wavelength,a sensitivity of 1.2×10-4is feasible.This structure is easy for integration due to its plane waveguide structure and omissible pump source.In addition,high signal to noise ratio can be expected because signal transmits via a normal single-line defect PC waveguide instead of the PC hole area or analyte.

  13. Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Rongjin Yan; Qingkang Wang

    2006-01-01

    Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced"and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced,and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tinoxide/glass interfaces.

  14. High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate

    Science.gov (United States)

    Vico Triviño, N.; Rossbach, G.; Dharanipathy, U.; Levrat, J.; Castiglia, A.; Carlin, J.-F.; Atlasov, K. A.; Butté, R.; Houdré, R.; Grandjean, N.

    2012-02-01

    We report on the achievement of freestanding GaN photonic crystal L7 nanocavities with embedded InGaN/GaN quantum wells grown by metal organic vapor phase epitaxy on Si (111). GaN was patterned by e-beam lithography, using a SiO2 layer as a hard mask, and usual dry etching techniques. The membrane was released by underetching the Si (111) substrate. Micro-photoluminescence measurements performed at low temperature exhibit a quality factor as high as 5200 at ˜420 nm, a value suitable to expand cavity quantum electrodynamics to the near UV and the visible range and to develop nanophotonic platforms for biofluorescence spectroscopy.

  15. Nano-scale optical actuation based on two-dimensional heterostructure photonic crystal cavities

    Science.gov (United States)

    Lin, Tong; Zhou, Guangya; Chau, Fook Siong; Tian, Feng; Deng, Jie

    2015-03-01

    Nowadays, nano-electro-mechanical systems (NEMS) actuators using electrostatic forces are facing the bottleneck of the electromagnetic interference which greatly degrades their performances. On the contrary, the hybrid circuits driven by optical gradient forces which are immune to the electromagnetic interference show prominent advantages in communication, quantum computation, and other application systems. In this paper we propose an optical actuator utilizing the optical gradient force generated by a hetero-structure photonic crystal cavity. This type of cavity has a longitudinal air-slot and characteristics of ultrahigh quality factor (Q) and ultra-small mode volume (V) which is capable of producing a much larger force compared with the waveguide-based structures. Due to the symmetry property, attractive optical gradient force is generated. Additionally, the optomechanical coefficient (gom) of this cavity is two orders of magnitude larger than that of the coupled nanobeam photonic crystal cavities. The 2D hetero-structure cavity, comb drives, folded beam suspensions and the displacement sensor compose the whole device. The cavity serves as the optical actuator whilst the butt-coupled waveguide acts as the displacement sensor which is theoretically proved to be insensitive to the temperature variations. As known, the thermo-optic effect prevails especially in the cavity-based structures. The butt-coupled waveguide can be used to decouple the thermal effect and the optoemchanical effect (OM) with the aid of comb drives. The results demonstrate that the proposed optical gradient force actuator show great potential in the future of all-optical reconfigurable circuits.

  16. Photonic band gap and defect mode of one-dimensional photonic crystal coated from a mixture of (HMDSO, N2) layers deposited by PECVD

    Science.gov (United States)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2017-04-01

    One dimensional photonic crystal based on a mixture of an organic compound HMDSO and nitrogen N2, is elaborated by radiofrequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) at different radiofrequency powers. The variation of the radiofrequency power for a flow of N2/HMDSO ratio equal to 0.4, leads to obtain two kinds of layers A and B with refractive index nA = 2 and nB = 1.55 corresponding to RF power of 200 W and 20 W, respectively. The analysis of the infrared results shows that these layers have the same chemical composition element with different structure. These layers, which exhibit a good indexes difference (nA - nB) contrast, allowed then the elaboration of a one-photonic crystal from the same initial gas mixture, which is the aim of this work. After the optimization of the layers thickness, we have measured transmission and reflection spectra and we found that the photonic band gap (PBG) appears after 15 periods of alternating A and B deposited layers. The introduction of defect in the structure leads to obtain a localized mode in the center of the PBG corresponding to the telecommunication wave length 1.55 μm. Finally, we have successfully interpreted our experimental results by using a theoretical model based on transfer matrix method.

  17. Impurity effects on the band structure of one-dimensional photonic crystals: Experiment and theory

    CERN Document Server

    Luna-Acosta, G A; Kuhl, U; Stoeckmann, H -J

    2007-01-01

    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one dimensional obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes, and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e. g. interstitial, substitutional) and shows that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulas, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penn...

  18. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Acosta, G A [Instituto de Fisica, BUAP Apartado Postal J-48, 72570 Puebla (Mexico); Schanze, H; Kuhl, U; Stoeckmann, H-J [Fachbereich Physik der Philipps-Universitaet Marburg, Renthof 5, D-35032 (Germany)], E-mail: gluna@sirio.ifuap.buap.mx

    2008-04-15

    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one-dimensional (1D) obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial and substitutional) and show that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulae, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.

  19. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  20. Photonic Crystal Microchip Laser

    Science.gov (United States)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  1. Photonic crystals as metamaterials

    Science.gov (United States)

    Foteinopoulou, S.

    2012-10-01

    The visionary work of Veselago had inspired intensive research efforts over the last decade, towards the realization of man-made structures with unprecedented electromagnetic (EM) properties. These structures, known as metamaterials, are typically periodic metallic-based resonant structures demonstrating effective constitutive parameters beyond the possibilities of natural material. For example they can exhibit optical magnetism or simultaneously negative effective permeability and permittivity which implies the existence of a negative refractive index. However, also periodic dielectric and polar material, known as photonic crystals, can exhibit EM capabilities beyond natural materials. This paper reviews the conditions and manifestations of metamaterial capabilities of photonic crystal systems.

  2. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  3. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  4. Higher order modes in photonic crystal slabs.

    Science.gov (United States)

    Gansch, Roman; Kalchmair, Stefan; Detz, Hermann; Andrews, Aaron M; Klang, Pavel; Schrenk, Werner; Strasser, Gottfried

    2011-08-15

    We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs. © 2011 Optical Society of America

  5. 40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals

    Science.gov (United States)

    Sagawa, Misuzu; Goto, Shigeo; Hosomi, Kazuhiko; Sugawara, Toshiki; Katsuyama, Toshio; Arakawa, Yasuhiko

    2008-08-01

    Utilizing large optical group-velocity dependence on wavelength without polarization-mode dependence, we have developed an ultracompact dispersion compensator based on multiple one-dimensional coupled-defect-type photonic crystals. The photonic crystal of the compensator, designed for a 1.55-µm optical communication system, consists of a multilayer thin-film structure and defect layers. The thin-film structure is substrate-free, which enables the compensator to be small, that is, a 1.4-mm-edge cube. To obtain a large group-velocity difference, 60 substrate-free films were stacked to form the compensator. The passband of the compensator is 2 nm, and the group-delay time difference within the band is more than 100 ps. A dispersion-compensator module integrated with a photodetector was fabricated. A 40-Gbit/s non-return-to-zero optical-transmission experiment was carried out with the compensator, demonstrating dispersion-compensation operation over a 10-km standard single-mode fiber, the dispersion of which corresponds to 170 ps/nm.

  6. Two-dimensional photonic-crystal-based double switch-divider.

    Science.gov (United States)

    Dmitriev, Victor; Martins, Leno

    2016-05-01

    We propose and investigate a new multifunctional component, consisting of a T-junction of three waveguides in 2D photonic crystal with a square lattice. One waveguide is the input port, while the other two serve as output ports. This component can fulfil three functions: First, it can switch OFF the two output ports; second, our component can be used as a 3 dB divider of the input power; and third, it can switch ON any one of the two output ports. Changing the regime is achieved by a DC magnetic field that magnetizes a cylindrical ferrite resonator placed in the T-junction. We present an analysis of the scattering matrices of the component and calculated frequency characteristics in the low terahertz region. In the frequency band of about 1 GHz with a central frequency of f=98.46  GHz, the device has the following parameters: isolation of the output ports from the input port in the first regime is better than -30  dB, division of the input signal is about (-3.8±1.0)  dB in the second regime, and isolation in the regime switch ON, where any one of the two output ports is higher than -15  dB and the insertion loss is lower than -2.0  dB.

  7. Band structure of magneto-metallo-dielectric photonic crystals with hybrid one- and two-dimensional periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ayona, E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico); Halevi, P. [Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico)

    2012-06-15

    We calculate the band structure of a magneto-metallo-dielectric photonic crystal (PC) with hybrid one- and two-dimensional periodicity. Namely, the permittivity (permeability) is periodic in a plane (single direction). The metallic and magnetic properties are described, respectively, by means of the Drude model and a specific permeability model for Barium-M ferrite. Because of the dispersion of both the permeability and the permittivity, we obtain a non-standard eigenvalue problem which is possible to solve by means of a linearization technique. We found that the first band of this PC is very sensitive to the filling fraction of the magnetic component: by changing this fraction from 0.20 to 0.16 the slope - and effective index of refraction - changes from positive to negative. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A two—dimensional photonic crystal with six large bandgaps formed by a hexagonal lattice of anisotropic cylinders

    Institute of Scientific and Technical Information of China (English)

    庄飞; 吴良; 等

    2002-01-01

    The plane-wave expansion method is used to calculate the band structure of a two-dimensional photonic crystal formed by a hexagonal structure of anisotropic cylinders.Two cylindrical inclusions in the unit cell have two different radii,R1 and R2(R1

  9. Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity

    CERN Document Server

    Sun, Xiankai; Poot, Menno; Wong, Chee Wei; Tang, Hong X

    2012-01-01

    We demonstrate a new optomechanical device system which allows highly efficient transduction of femtogram nanobeam resonators. Doubly clamped nanomechanical resonators with mass as small as 25 fg are embedded in a high-finesse two-dimensional photonic crystal nanocavity. Optical transduction of the fundamental flexural mode around 1 GHz was performed at room temperature and ambient conditions, with an observed displacement sensitivity of 0.94 fm/Hz^(1/2). Comparison of measurements from symmetric and asymmetric double-beam devices reveals hybridization of the mechanical modes where the structural symmetry is shown to be the key to obtain a high mechanical quality factor. Our novel configuration opens the way for a new category of "NEMS-in-cavity" devices based on optomechanical interaction at the nanoscale.

  10. Local observation of modes from three-dimensional woodpile photonic crystals with near-field microspectroscopy under supercontinuum illumination.

    Science.gov (United States)

    Jia, Baohua; Norton, Andrew H; Li, Jiafang; Rahmani, Adel; Asatryan, Ara A; Botten, Lindsay C; Gu, Min

    2008-05-15

    A near-field microscope coupled with a near-infrared (NIR) supercontinuum source is developed and applied to characterize optical modes in a three-dimensional (3D) woodpile photonic crystal (PC) possessing a NIR partial bandgap. Spatially resolved near-field intensity distributions under different illumination wavelengths demonstrate that the electric fields preferentially dwell in the polymer rods or in the gaps between rods, respectively, for frequencies below or above the stop gap, as predicted by the 3D finite-difference time-domain modeling. Near-field microspectroscopy further reveals that the position-dependent band-edge effect plays an important role in PC-based all-optical integrated devices.

  11. Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides.

    Science.gov (United States)

    Kim, Dong Wook; Kim, Seung Hwan; Lee, Seoung Hun; Jong, Heung Sun; Lee, Jong-Moo; Lee, El-Hang; Kim, Kyong Hon

    2013-12-02

    Enhanced four-wave-mixing (FWM) effects have been observed with the help of large group-indices near the band edges in one-dimensional (1-D) silicon photonic crystal waveguides (Si PhCWs). A significant increase of the FWM conversion efficiency of about 17 dB was measured near the transmission band edge of the 1-D PhCW through an approximate 3.2 times increase of the group index from 8 to 24 with respect to the central transmission band region despite a large group-velocity dispersion. Numerical analyses based on the coupled-mode equations for the degenerated FWM process describe the experimentally measured results well. Our results indicate that the 1-D PhCWs are good candidates for large group-index enhanced nonlinearity devices even without having any special dispersion engineering.

  12. Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jiang-Tao; Zhou Yun-Song; Wang Fu-He; Gu Ben-Yuan

    2005-01-01

    We present a new type of optical filter with an ultra-narrow bandwidth and a wide field-of-view (FOV). This kind of optical filter consists of one-dimensional photonic crystal (PC) incorporating an anomalous-dispersion-material (ADM) with, for instance, an anomalous dispersion of 6P3/2 ← 6S1/2 hyperfine structure transition of a caesium atom.The transmission spectra of optical filters are calculated by using the transfer-matrix method. The simulation results show that the designed optical filter has a bandwidth narrower than 0.33GHz and a wide FOV of ±30° as well. The response of transmission spectrum to an external magnetic field is also investigated.

  13. A compact T-branch beam splitter based on anomalous reflection in two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Yifeng Shen; Jian Sun; Xiaopeng Shen; Juan Wang; Lulu Sun; Kui Han; Guozhong Wang

    2008-01-01

    @@ We project a compact T-branch beam splitter with a micron scale using a two-dimensional (2D) photonic crystal (PC). For TE polarization, one light beam can be split into two sub-beams along opposite directions. The propagating directions of the two splitting beams remain unchanged when the incident angle varies in a certain range. Coupled-mode theory is used to analyze the truncating interface structure in order to investigate the energy loss of the splitter. Simulation results and theoretical analysis show that choosing an appropriate location of the truncating interface (PC-air interface) is very important for obtaining high efficiency due to the effect of defect modes. The most advantage of this kind of beam splitter is being fabricated and integrated easily.

  14. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs.In order to improve the filtering efficiency,a feedback method is introduced by closing the waveguide.It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency.Based on our analyses,two different types of filters are designed.The transmission spectra and scattering-light far-field patterns are measured,which agree well with theoretical prediction.In addition,the resonant filters are highly sensitive to the size of the resonant cavities,which are useful for practical applications.

  15. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  16. 入射角度对一维光子晶体禁带的调制研究%Research on Modulation of Incidence Angle to Photonic Band Gap of One-dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    高永芳; 时家明; 赵大鹏

    2011-01-01

    利用特征矩阵法,分别研究了不同偏振方式的波入射到光子晶体时,光子晶体的禁带随入射角度的变化.结果表明:不论是TM波入射还是TE波入射,随着入射角度的增大,光子晶体的带隙都向短波方向移动;TM波入射时,光子晶体的带隙随入射角度的增大而减小,而以TE波入射光子晶体时,随着入射角度的增大,光子晶体的带隙逐渐增大.%The relationship of photonic band gap characteristics of photonic crystals and the different incidence angle were researched by characteristic matrix method. The result shows that the photonic band gap of 1D photonic crystals moves towards shortwave when incidence angle increase, no matter the incidence wave is TM wave or TE wave; the photonic band gap of 1D photonic crystals of TM wave decreases when the incidence angle increase, the photonic band gap of 1 D photonic crystals of TE wave increases when the incidence angle increase. This work provides a valuable reference to the design and application of infrared camouflage using one dimensional photonic crystals.

  17. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Metallic Grating and One-Dimensional Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHENG Gai-Ge; XIAN Feng-Lin; LI Xiang-Yin

    2011-01-01

    We design an effective light trapping scheme through engineering metallic gratings and one-dimensional dielectric photonic crystals (PhCs) to increase the optical path length of light within the solar cells. This incorporation can result in broadband optical absorption enhancement not only for transverse magnetic polarized light but also for transverse-electric polarization. Even when no plasmonic mode can be excited, due to the high reflection of the PhCs, the absorption in the active region can still be enhanced. Rigorous coupled wave analysis results demonstrate that such a hybrid structure boosts the overall cell performance by increasing the light trapping capabilities and is especially effective at the silicon band edge. This kind of design can be used to increase the optical absorption over a wide spectral range and is relatively independent of the angle of incidence.%@@ We design an effective light trapping scheme through engineering metallic gratings and one-dimensional dielectric photonic crystals(PhCs) to increase the optical path length of light within the solar cells.This incorporation can result in broadband optical absorption enhancement not only for transverse magnetic polarized light but also for transverse-electric polarization.Even when no plasmonic mode can be excited,due to the high reflection of the PhCs,the absorption in the active region can still be enhanced.Rigorous coupled wave analysis results demonstrate that such a hybrid structure boosts the overall cell performance by increasing the light trapping capabilities and is especially effective at the silicon band edge.This kind of design can be used to increase the optical absorption over a wide spectral range and is relatively independent of the angle of incidence.

  18. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  19. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  20. Investigation of magneto-optical effects on properties of surface modes in one dimensional magnetized plasma photonic crystals

    Science.gov (United States)

    Shukla, Shikha; Prasad, Surendra; Singh, Vivek

    2016-09-01

    We have studied the properties of surface modes on one dimensional magnetized plasma photonic crystals in two configurations: Faraday and Voigt configurations. The results have been demonstrated by using the transfer matrix method and employing boundary conditions for TE and TM modes, respectively. For the Voigt effect, only the TM mode is considered because the TE modes under the influence of external magnetic field have the same properties as un-magnetized plasma. The influence of external magnetic field has been studied for three cases, i.e., TE left circular polarization, TE right circular polarization, and TM surface modes. It is shown that the properties of surface modes can be tuned correspondingly by changing the cap layer thickness, wave vector, and external magnetic field in the desired photonic band gap. The results show that collision frequency has a negligible effect on surface modes. A new type of wave called Fano mode has been reported for the Voigt effect for the TM mode in the first band gap. Proof of its existence has been demonstrated in the present paper.

  1. An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector

    Institute of Scientific and Technical Information of China (English)

    MIAO Feng-Juan; ZHANG Jie; XU Shao-Hui; WANG Lian-Wei; CHU Jun-Hao; CAO Zhi-Shen; ZHAN Peng; WANG Zhen-Lin

    2009-01-01

    @@ With the aid of photolithography, an array of one-dimensional porous silicon photonic crystal reflector islands for a far infrared image detector ranging from 10μm to 14μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-patteru. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the interconnection of each pixel.

  2. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  3. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...

  4. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  5. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  6. Slotted photonic crystal biosensors

    Science.gov (United States)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  7. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...

  8. Photonic crystal slab quantum well infrared photodetector

    Science.gov (United States)

    Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.

    2011-01-01

    In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.

  9. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  10. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  11. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-09-15

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  12. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  13. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-09-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  14. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Vetrov, S Ya; Timofeev, I V [L.V.Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk (Russian Federation); Pankin, P S [Siberian Federal University, Krasnoyarsk (Russian Federation)

    2014-09-30

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown. (photonic crystals)

  15. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  16. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  17. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  18. Tunable photonic Bloch oscillations in electrically modulated photonic crystals

    CERN Document Server

    Wang, Gang; Yu, Kin Wah

    2008-01-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump AC or DC electric field, terahertz PBOs can appear and cover a terahertz band in electromagnetic spectrum.

  19. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  20. Electric field induced structural colour tuning of a Silver/Titanium dioxide nanoparticle one-dimensional photonic crystals

    CERN Document Server

    Aluicio-Sarduy, E; del Valle, D G Figueroa; Kriegel, I; Scotognella, F

    2015-01-01

    The active tuning of the structural colour in photonic crystals by an electric field represents an effective external stimulus with impact on light transmission manipulation. In this work we present this effect in a photonic crystal device with alternating layers of Silver and Titanium dioxide nanoparticles showing shifts of around 10 nm for an applied voltage of 10 V only. The accumulation of charges at the metal/dielectric interface with applied electric field leads to an effective increase of the charges contributing to the plasma frequency in Silver. This initiates a blue shift of the Silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in Silver dielectric function, i.e. decrease of the effective refractive index. These results are the first demonstration of active colour tuning in Silver/TiO2 nanoparticle based photonic crystals and open the route to metal/dielectric based photonic crystals as electro-optic switches.

  1. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    Directory of Open Access Journals (Sweden)

    Eduardo Aluicio-Sarduy

    2016-10-01

    Full Text Available An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index. These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  2. Negative refraction in photonic crystals

    OpenAIRE

    Baba, T.; Matsumoto, T.; Asatsuma, T.

    2008-01-01

    Photonic crystals are multidimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the crystals. The refraction angle from positive to negative, perfectly or only partially obeying Snell’s law, can be tailored based on photonic band theory. Negative refraction enables novel prism, collimation, and lens effects. Because photonic crystals usually consist of two transparent media, these effects occur at...

  3. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  4. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  5. Self-assembled tunable photonic hyper-crystals

    CERN Document Server

    Smolyaninova, Vera N; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2013-01-01

    We demonstrate a novel artificial optical material, a photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  6. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  7. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  8. Design of a three-dimensional photonic crystal nanocavity based on a \\langle 110\\rangle -layered diamond structure

    Science.gov (United States)

    Tajiri, Takeyoshi; Takahashi, Shun; Tandaechanurat, Aniwat; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2014-01-01

    We design a three-dimensional (3D) photonic crystal (PC) nanocavity based on a \\langle 110\\rangle -layered diamond structure. The designed structure, comprised of self-sustainable layers, is suitable for fabrication by layer stacking techniques. Quality factors (Q-factors) of nanocavities were calculated for the \\langle 110\\rangle -layered diamond and a commonly-used woodpile structures, both of which are generated from the same diamond lattice with a lattice constant adiamond. The Q-factor of the designed nanocavity can reach as high as 230,000 with 35 stacked layers and a square in-plane PC area of the length of one side of 5\\sqrt{2} a^{\\text{diamond}}. This is 1.5 times higher than that of a 3D PC nanocavity based on the woodpile structure with the same in-plane PC size and with the same number of stacked layers. The higher Q-factor in the \\langle 110\\rangle -layered diamond structure originates from its stronger in-plane light confinement over the woodpile structure. The \\langle 110\\rangle -layered diamond structure will be beneficial for improving experimentally attainable Q-factors of 3D PC nanocavities particularly fabricated by a micromanipulation method.

  9. One-dimensional photonic crystal with spectrally selective low infrared emissivity fabricated with Te and ZnSe

    Science.gov (United States)

    Zhang, Ji-Kui; Shi, Jia-Ming; Zhao, Da-Peng; Chen, Yu-Zheng

    2017-07-01

    To restrain the infrared radiation from high temperature objects to decrease the probability of being discovered by infrared detectors operating in the mid- and far-infrared atmospheric windows, we design a one-dimensional heterostructure photonic crystal (PC) using low-cost coating materials Te and ZnSe, and test its reflection spectra and radiant temperature. The tested results show that this PC has high average reflectance in 3- to 5-μm and 8- to 14-μm wavebands, which is 86.72% and 72.91%, respectively, and the corresponding emissivity is 0.072 and 0.194, respectively. The radiant temperatures of the PC are always lower than those of the background, with the maximal difference of the radiant temperature being 31.97°C corresponding to a background radiant temperature of 75.64°C. The study confirms that the deposited PC can effectively decrease the infrared radiation in mid- and far-infrared bands.

  10. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer.

    Science.gov (United States)

    Saleki, Ziba; Entezar, Samad Roshan; Madani, Amir

    2017-01-10

    The transmission properties of a one-dimensional defective photonic crystal have been investigated using the transfer matrix method. A layer of graphene-based hyperbolic metamaterial whose optical axis is tilted with respect to the interface is taken as a defect. It is shown that two kinds of the defect modes can be found in the band gaps of the structure for TM-polarized waves. One kind is created at the frequency range in which the principle elements of the effective permittivity tensor of the defect layer have the same signs. The frequency of this kind of defect mode is independent from the orientation of the optical axis of the defect layer. The other one is created at the hyperbolic dispersion frequency range. Such a defect mode appears due to the anisotropic behavior of the defect layer and its frequency strongly depends on the orientation of the optical axis. Unlike the conventional defect modes, the magnetic field of this defect mode is localized around the defect layer.

  11. Optical bound state in the continuum in the one-dimensional photonic crystal slab: Theory and experiment

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.;

    2016-01-01

    In this work, we implement CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer supporting optical bound states in the continuum at telecommunication wavelengths — localized optical state with energy lying above the light line of the surrounding space. Such high-......-Q states are very promising for many potential applications ranging from on-chip photonics and optical communications to biological sensing and photovoltaics....

  12. Self-assembling three-dimensional colloidal photonic crystal multilayers from aqueous ethanol mixture solutions

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Yuan Chun-Wei; Tang Fang-Qiong

    2005-01-01

    Vertical deposition technique to fabricate thin film solid artificial opals is becoming widely used. In the present work, we report our research on solvent modification and its effect on the quality of colloidal crystals. We used aqueous ethanol mixture solution to replace the ethanol solution, and used the vertical deposition technique to pack the spherical colloids into close-packed arrays. High quality samples can be prepared with thickness up to 20μm in one step. Furthermore, large spheres (diameters greater than 500nm) were successfully crystallized. Scanning electron microscopy (SEM) and optical methods were used to measure sample thickness and uniformity. The number of layers was calculated from the spectral separation of the Fabry-Perot fringes.

  13. Sol-gel fabrication of one-dimensional photonic crystals with predicted transmission spectra

    Science.gov (United States)

    Ilinykh, V. A.; Matyushkin, L. B.

    2016-08-01

    One-dimensional multilayer structures of periodically alternating low refractive index (silica) and high refractive index (titania) materials have been deposited by sol-gel spincoating. Experimental spectra of the structures are in agreement with spectra calculated by transfer matrix technique. As an example, theoretical and experimental spectra with a stop band corresponding 600 nm-reflection are shown.

  14. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  15. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2016-08-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  16. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin

    2016-08-01

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  17. Defect modes of one-dimensional photonic-crystal structure with a resonance nanocomposite layer

    Science.gov (United States)

    Moiseev, S. G.; Ostatochnikov, V. A.

    2016-08-01

    We have studied the defect modes of a structure of Fabry - Perot interferometer type, in which the layer separating Bragg mirrors is made of a heterogeneous composite material with metallic nanoscale inclusions. Effective optical characteristics of the nanocomposite material have resonance singularities in the visible region of the spectrum, which are conditioned by the surface plasmon resonance of metallic nanoparticles. It is shown that the spectral profile of the energy bandgap of the photonic structure can be modified by varying the volume fraction and size of nanoparticles. The interrelation of splitting and shift of defect modes with structural parameters of a nanocomposite layer is studied by means of a numerical - graphical method with allowance for the frequency dependences of phases and amplitudes of reflectances in Bragg mirrors.

  18. Planarization for three-dimensional photonic crystals and other multi-level nanoscale structures.

    Science.gov (United States)

    Subramania, G

    2007-01-24

    We describe an approach for achieving local as well as global planarization in the fabrication of multi-level nanoscale structures. Using a 'pre-fill-in' technique, where trenches are filled with SiO(2) prior to the application of a planarizing liquid, we demonstrate that the global degree of planarization can be improved from a mere approximately 25% to over approximately 90%. The first layer of a woodpile photonic lattice with a period of approximately 0.5 microm and a minimum feature size of approximately 0.2 microm is used as an example structure to illustrate the issues involved in planarization. This method provides an attractive and simpler alternative to the traditional chemical mechanical polishing approach, which can be quite complicated at nanoscale features involving non-traditional materials.

  19. Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Liang, Yong; Li, Zhengbin; Noda, Susumu

    2014-08-01

    A general coupled-wave theory is presented for the guided resonance in photonic crystal (PhC) slabs with TM-like polarization. Numerical results based on our model are presented with finite-difference time-domain validations. The proposed analysis facilitates comprehensive understanding of the physics of guided resonance in PhC slabs and provides guidance for its applications.

  20. Resonant behavior and selective switching of stop bands in three-dimensional photonic crystals with inhomogeneous components.

    Science.gov (United States)

    Baryshev, A V; Khanikaev, A B; Inoue, M; Lim, P B; Sel'kin, A V; Yushin, G; Limonov, M F

    2007-08-10

    We demonstrate that, in contrast with the well-studied photonic crystals consisting of two homogeneous components, photonic crystals comprised of inhomogeneous or multiple (three or more) components may bring new opportunities to photonics due to the discovered quasiperiodic resonant behavior of their (hkl) stop bands as a function of the reciprocal lattice vector. A resonant stop band cannot be switched off for any permittivity of structural components. Tuning the permittivity or structural parameters allows the selective on-off switching of nonresonant (hkl) stop bands. This independent manipulation of light at different Bragg wavelengths provides a new degree of freedom to design selective optical switches and waveguides. Transmission experiments performed on synthetic opals confirmed the theoretical predictions.

  1. Effects of negative index medium defect layers on the trans mission properties of one-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuan-jiang; DAI Xiao-yu; WEN Shuang-chun

    2007-01-01

    School of Computer and Communication, Hunan University, Changsha 410082, ChinaThe photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdution of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.

  2. Design of surface plasmon resonance biosensor with one dimensional photonic crystal for detection of cancer

    Directory of Open Access Journals (Sweden)

    M Sharifi

    2016-09-01

    Full Text Available In recent years, development of highly sensitive biosensors is the main purpose of researchers to diagnose and prevent diseases. Accordingly, in this paper, surface plasmon resonance (SPR biosensor has been designed based on one dimensional layered structures. With regard to the fact that the quality of SPR sensors strongly depends on the reflectance amplitude and full width at half maximum (FWHM of the SPR curves, a novel structure, , is presented using transfer matrix method (TMM, to satisfy these two condition. Besides, the sensitivity of this biosensor has been calculated and it has been employed to diagnose leukemia for Jurkat cells.

  3. Left-Handed Properties in Two-Dimensional Photonic Crystals Formed by Holographic Lithography

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiao-Xia; YANG Xiu-Lun; CAI Lv-Zhong; WANG Yu-Rong; DONG Guo-Yan; MENG Xiang-Feng; XU Xian-Feng

    2008-01-01

    We give an analysis of the frequency distribution trends in the four lowest bands of two-dimensional square lattices formed by holographic lithography (HL) and in the lattices of the same kind but with regular dielectric columns with increasing filling ratios, and then present a comparative study on the left-handed properties in these two kinds of structures using plane wave expansion method and finite-difference time-domain (FDTD) simulations.The results show that the left-handed properties are more likely to exist in structures with large high-epsilon filling ratios or in a connected lattice.

  4. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  5. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  6. Photonic crystal negative refractive optics.

    Science.gov (United States)

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  7. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Colodrero, Silvia; Mihi, Agustin; Ocana, Manuel; Miguez, Hernan [Instituto de Ciencia de Materiales de Sevilla (Spain), Consejo Superior de Investigaciones Cientificas Americo Vespucio; Haeggman, Leif; Boschloo, Gerrit; Hagfeldt, Anders [Department of Chemistry Center of Molecular Devices, Royal Institute of Technology, Stockholm (Sweden)

    2009-02-16

    The solar-to-electric power-conversion efficiency ({eta}) of dye-sensitized solar cells can be greatly enhanced by integrating a mesoporous, nanoparticle-based, 1D photonic crystal as a coherent scattering layer in the device. The photogenerated current is greatly improved without altering the open-circuit voltage of the cell, while keeping the transparency of the cell intact. Improved average {eta} values between 15% and 30% are attained. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Photonic crystal enhanced cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  9. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  10. Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths.

    Science.gov (United States)

    Jiang, Liyong; Jia, Wei; Zheng, Gaige; Li, Xiangyin

    2012-05-01

    We proposed a novel two-dimensional photonic crystal slab comprised of a number of silicon rods with different radii and locations in the square-lattice unit cell pattern. Such rod-type photonic crystal slabs were automatically optimized by the genetic algorithm and fabricated on the silicon-on-insulator wafer. In particular, the measured transmission spectra of the five-rods sample have shown a large accepted high-order bandgap between 1498 and 1648 nm (gap size is 9.54%). Based on the theories of multiple Bragg and Mie scattering effects, we have given a reasonable explanation to the large high-order bandgaps found in the present study.

  11. Degeneracy and Split of Defect States in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  12. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  13. Design of Tunable Anisotropic Photonic Crystal Filter as Photonic Switch

    OpenAIRE

    Majid Seifan; Alireza Malekijavan; Alireza Monajati Kashani

    2014-01-01

    By creating point defects and line defects in photonic crystals, we reach the new sort of photonic crystals. Which allow us to design photonic crystals filters. In this type of photonic crystals the ability to tune up central frequency of filter is important to attention. In this paper, we use foregoing points for designing photonic crystal filters. The main function of this type of filters is coupling between shield of point defect modes and directional line defect modes. By using liquid cry...

  14. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  15. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-01-01

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465

  16. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  17. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method...... and a finite-difference-time-domain (FDTD) method. Design parameters, i.e. dielectric constants, rod diameter and waveguide width, where these waveguides are single-moded and multi-moded will be given. We will also show our recent results regarding the energy-flow (the Poynting vector) in these waveguides...

  18. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  19. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can......We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...

  20. The single-longitudinal-mode operation of a ridge waveguide laser based on two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Hua-Yong; Xu Xing-Sheng

    2013-01-01

    An electrically driven,single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated.The single-longitudinal-mode lasing characteristic is achieved by introducing the PC to the RWG laser.The triangle PC is etched on both sides of the ridge by photolithography and inductive coupled plasma (ICP) etching.The lasing spectra of the RWG lasers with and without the PC are studied,and the result shows that the PC purifies the longitudinal mode.The power per facet versus current and current-voltage characteristics have also been studied and compared.

  1. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal.

    Science.gov (United States)

    Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Michelotti, Francesco

    2008-02-01

    Dispersion curves of surface electromagnetic waves (SEWs) in 1D silicon nitride photonic crystals having periodic surface corrugations are considered. We experimentally demonstrate that a bandgap for SEWs can be obtained by fabricating a polymeric grating on the multilayered structure. Close to the boundary of the first Brillouin zone connected to the grating, we observe the splitting of the SEW dispersion curve into two separate branches and identify two regions of very low group velocity. The proper design of the structure allows the two folded branches to lie beyond the light line in a wide spectral range, thus doubling the density of modes available for SEWs and avoiding light scattering.

  2. Influence of graded index materials on the photonic localization in one-dimensional quasiperiodic (Thue-Mosre and Double-Periodic) photonic crystals

    Science.gov (United States)

    Singh, Bipin K.; Pandey, Praveen C.

    2014-12-01

    In this paper, we present the investigation on the photonic localization and band gaps in quasi-periodic photonic crystals containing graded index materials using a transfer matrix method in region 150-750 THz of the electromagnetic spectrum. The graded layers have a space dispersive refractive index, which vary in a linear and exponential fashion as a function of the depth of layer. The considered quasiperiodic structures are taken in the form of Thue-Morse and Double-Periodic sequences. The grading profile in the layers affects the position of reflection dips and forbidden bands, and frequency region of the bands. We observed that vast number of forbidden band gaps and dips are developed in its reflection spectra by increasing the number of quasi-periodic generation. Moreover, we compare the total forbidden bandwidths with increasing the generation of the quasi-periodic sequences for the structures with linear and exponential graded layer. Results show that the different graded profiles with same boundary refractive index can change the position of localization modes, number of photonic bands and change the frequency region of the bands. Therefore, we can achieve suitable photonic band gaps and modes by choosing the different gradation profiles of the refractive index and generation of the quasi-periodic sequences.

  3. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media.

    Science.gov (United States)

    Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning

    2012-02-01

    This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.

  4. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  5. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  6. Superlens Biosensor with Photonic Crystals in Negative Refraction

    Directory of Open Access Journals (Sweden)

    Zohreh Dorrani

    2012-05-01

    Full Text Available We have presented the study on one structure fabricated with photonic crystals for use as biosensors with superlensing property in dimensions of nano and micro with negative refractive index. In a special frequency, this type of photonic crystal acts as Left-Handed Metamaterial (LHM. It is shown that by a suitable choice of design parameters, such as, dimensions of bars, it is possible to reach sensing property by this structure in two-dimensional triangular photonic crystals. The structure investigated in three size and results shows the slab of photonic crystals prosperous process that, with sensing applications can has imaging applications.

  7. From optical MEMS to photonic crystal

    Science.gov (United States)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  8. Radiating dipoles in photonic crystals

    Science.gov (United States)

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  9. A broad slow frequencies band and high slowing down factor by using one-dimensional hybrid periodic/Fibonacci photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ali, N; Kanzari, M, E-mail: naimgi2@yahoo.fr [Photovoltaic and Semiconductor Materials Laboratory, El-Manar University-ENIT PO Box 37, Le belvedere 1002-Tunis (Tunisia)

    2010-11-15

    By using a theoretical model based on Transfer Matrix Method (TMM) for normal incidence simulator, and for serial (S) polarisation, the slowing of light in one-dimensional (1D) hybrid (Fibonacci{sub 1}/periodic/Fibonacci{sub 2}) photonic crystals is studied at visible frequency band. Effects of the periodicity, the non-periodicity and the number of layers of each photonic structure on the slowing down of light are discussed. The higher slowing down factors was obtained by the hybrid Fibonacci{sub 1}/periodic/Fibonacci{sub 2} structures. This slowing down factors is greater than those corresponding to the periodic, the Fibonacci, the Thue-Morse and the Cantor band-gap structures. In addition this hybrid structure gives the possibility to slowing several frequencies

  10. Transmission measurement of the photonic band gap of GaN photonic crystal slabs

    NARCIS (Netherlands)

    Caro, J.; Roeling, E.M.; Rong, B.; Nguyen, H.M.; Van der Drift, E.W.J.M.; Rogge, S.; Karouta, F.; Van der Heijden, R.W.; Salemink, H.W.M.

    2008-01-01

    A high-contrast-ratio (30 dB) photonic band gap in the near-infrared transmission of hole-type GaN two-dimensional photonic crystals (PhCs) is reported. These crystals are deeply etched in a 650 nm thick GaN layer grown on sapphire. A comparison of the measured spectrum with finite difference time d

  11. Suitability of Semiconductor Heterostructure over SiO2-Air Composition for One-Dimensional Photonic Crystal based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    Arka Karmakar

    2013-05-01

    Full Text Available Bandpass filter characteristics is numerically computed for semiconductor heterostructure based onedimensional photonic crystal at different optical wavelengths by varying the structural parameters taking GaAs/AlxGa1-xAs as a suitable composition subject to normal incidence of electromagnetic wave. Transfer matrix technique is used for numerical analysis. Results are compared with conventionally used SiO2-air material system and significance improvements are observed at few desired spectra. Heterostructure provides larger passbandwidth with almost negligible ripple than conventional material system at 1330 nm or 1550 nm, which is required for present day optical communication network. Efficient tuning can be achieved by varying different layer dimensions for the preferred material composition which effectively changes the filter bandwidth in either side of the central wavelength, but it cost generation of ripples for the conventional system.

  12. Photonic crystals at visible, x-ray, and terahertz frequencies

    Science.gov (United States)

    Prasad, Tushar

    Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.

  13. Photonic crystal waveguides by direct writing of e-beam on self-assembled photonic crystals

    Indian Academy of Sciences (India)

    Sunita Kedia; R Vijaya

    2011-04-01

    Direct electron beam lithography technique is used for writing a variety of waveguide structures on thin films of polymethyl methacrylate (PMMA) and self-assembled three-dimensionally ordered photonic crystals made up of PMMA colloidal spheres. The waveguide structures fabricated on both these type of samples are characterized by scanning electron microscope and optical microscope images.

  14. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...... on the Liquid Crystal parameters....

  15. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  16. Photonic band gap of 2D complex lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  17. Studies on Inverse Opal and Two-Dimensional Nonlinear Photonic Crystals%反Opal及二维非线性光子晶体的研究

    Institute of Scientific and Technical Information of China (English)

    倪培根; 程丙英; 张道中

    2006-01-01

    通过向SiO2 Opal模板中填充钛酸乙酯制备TiO2光子晶体,观测到光子晶体带隙位置的移动达62nm,并发现光子晶体的有序度随填充率的升高而下降.向聚苯乙烯Opal模板中填充钛酸乙酯,制备成当时填充率最高、带隙最短的紫外波段TiO2反Opal光子晶体(中心波长~380nm),并根据测量的其透射谱估算出其填充率约为12%,即Opal模板孔隙的50%被填充.本文还对二维PPLN光子晶体进行了研究.建立了一套高压极化装置和电压数据采集装置,通过外加电场极化法成功制备出了具有正方形和矩形两种晶格形状二维PPLN光子晶体.利用二维PPLN的二阶准相位匹配,测量了其对1.064μm激光的二次谐波转换效率,并研究了晶体的温度、激光的入射角度及占空比对二次谐波转换效率的影响.利用矩形晶格实现了多方向、多波长倍频高效输出.%In this paper, we report some results on inverse opal photonic crystal and two-dimensional periodically poled lithium niobate photonic crystal. First, the process of infiltrating TiO2 into SiO2 Opal was systematically studied. Because of the infiltration of TiO2, the gap of SiO2 Opal was shifted to longer wavelength and a maximum shift of 62nm was observed. Furthermore, an inverse TiO2 Opal with larger filling fraction, ~ 12%, was fabricated, whose band gap in the Γ-L direction is located in the ultraviolet region ( ~ 380nm). Then two-dimensional nonlinear photonic crystals of lithium nlobate with uniform square lattices were fabricated by applying external electric fields. The variations of second-harmonic output with crystal temperatures, incident angles and reversed duty cycles were measured. Red, yellow,green, blue, and violet coherent radiations were generated in the nonlinear photonic crystal with rectangular lattice in the collinearly and non-collinearly quasi-phase matching geometries. The results showed that two-dimensional nonlinear photonic crystal

  18. Fabrication and measurements on coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Nielsen, Henri Thyrrestrup; Frandsen, Lars Hagedorn;

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  19. High-Q aluminum nitride photonic crystal nanobeam cavities

    CERN Document Server

    Pernice, W H P; Schuck, C; Tang, H X

    2012-01-01

    We demonstrate high optical quality factors in aluminum nitride (AlN) photonic crystal nanobeam cavities. Suspended AlN photonic crystal nanobeams are fabricated in sputter-deposited AlN-on-insulator substrates using a self-protecting release process. Employing one-dimensional photonic crystal cavities coupled to integrated optical circuits we measure quality factors up to 146,000. By varying the waveguide-cavity coupling gap, extinction ratios in excess of 15 dB are obtained. Our results open the door for integrated photonic bandgap structures made from a low loss, wide-transparency, nonlinear optical material system.

  20. Tuning light focusing with liquid crystal infiltrated graded index photonic crystals

    Science.gov (United States)

    Rezaei, B.; Giden, I. H.; Kurt, H.

    2017-01-01

    We perform numerical analyses of tunable graded index photonic crystals based on liquid crystals. Light manipulation with such a photonic medium is explored and a new approach for active tuning of the focal distance is proposed. The graded index photonic crystal is realized using the symmetry reduced unit element in two-dimensional photonic crystals without modifying the dielectric filling fraction or cell size dimensions. By applying an external static electric field to liquid crystals, their refractive indices and thus, the effective refractive index of the whole graded index photonic crystal will be changed. Setting the lattice constant to a=400 nm yields a tuning of 680 nm for focal point position. This property can be used for designing an electro-optic graded index photonic crystal-based flat lens with a tunable focal point. Future optical systems may have benefit from such tunable graded index lenses.

  1. Photonic crystal surface-emitting lasers

    Science.gov (United States)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  2. Imprinted photonic crystal chemical sensors

    NARCIS (Netherlands)

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  3. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  4. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  5. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  6. 基于介质环形柱结构的二维光子晶体中Dirac点的实现∗%Photonic Dirac p oint realized in two dimensional annular photonic crystals

    Institute of Scientific and Technical Information of China (English)

    张中杰; 沈义峰; 赵浩

    2015-01-01

    利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点,并利用平面波展开法对实现Dirac点的过程进行了研究.研究结果表明,对于二维正方格子介质环形柱结构光子晶体,在一定的外径RO范围内(0.37a1.4),介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式.同时, Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小.利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计.%The Dirac cones in photonic crystals have aroused much interest in the last few years. Annular photonic crystals have also been well studied for designing and controlling the band gap because they have more parameters than usual photonic crystal. In this paper, we study a two-dimensional square lattice dielectric annular photonic crystal to explore the formation of the photonic Dirac cone by the accidental degeneracy method. The theoretical tool is the plane wave expansion method. The results show that this system can provide a Dirac point in the center of the Brillouin-zone in the photonic band if both the outer radius and the inner radius of each scatterer are chosen to be appreciate values when the dielectric refractive index of the annular rod is fixed. For example, there is a Dirac point at the photonic normalized frequency f = 0.438(c/a) when n = 3.4, RO = 0.42a, RI = 0.305a, where f is the frequency, c is the light speed in vacuum, a is the lattice constant, n is the refractive index, RO is the outer radius, and RI is the inner radius. It is also found that within a confined region of outer radius RO(0.37a 1.4), the inner radius RI and the outer radius RO obey a relation of RI =−1.104+8.167RO+(−11.439)R2O, which is unrelated to the refractive index n of the dielectric annular rod. If n is less than 1.4, this rule is not valid. At the same time, the normalized

  7. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends on the L...

  8. Photonic-crystal slab for terahertz-wave technology platform

    Science.gov (United States)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  9. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...... with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  10. A hybrid Jacobi-Davidson method for interior cluster eigenvalues with large null-space in three dimensional lossless Drude dispersive metallic photonic crystals

    Science.gov (United States)

    Huang, Tsung-Ming; Lin, Wen-Wei; Wang, Weichung

    2016-10-01

    We study how to efficiently solve the eigenvalue problems in computing band structure of three-dimensional dispersive metallic photonic crystals with face-centered cubic lattices based on the lossless Drude model. The discretized Maxwell equations result in large-scale standard eigenvalue problems whose spectrum contains many zero and cluster eigenvalues, both prevent existed eigenvalue solver from being efficient. To tackle this computational difficulties, we propose a hybrid Jacobi-Davidson method (hHybrid) that integrates harmonic Rayleigh-Ritz extraction, a new and hybrid way to compute the correction vectors, and a FFT-based preconditioner. Intensive numerical experiments show that the hHybrid outperforms existed eigenvalue solvers in terms of timing and convergence behaviors.

  11. Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index.

    Science.gov (United States)

    Xu, Kun-Yuan; Zheng, Xiguang; Li, Cai-Lian; She, Wei-Long

    2005-06-01

    The band structures of one-dimensional photonic crystals containing a defect layer with a negative refractive index are studied, showing that the defect modes possess three types of dispersion: positive, zero, and negative types. Based on these three types of dispersion, practical designs for large incident angle filters without polarization effect and for narrow frequency and sharp angular filters are suggested. Moreover, the splitting of one degenerate defect mode into multiple defect modes is observed in the band gap when the parameters of the defect layer vary. This mode splitting phenomenon can be used to design multiple channeled filters or filters with a rectangular profile. The dispersion multiplicity of the defect modes can be understood by an approximate formula, and the critical condition for the defect mode splitting is also analyzed. Based on these analyses, practical optimization design of omnidirectional filter is also suggested.

  12. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    Institute of Scientific and Technical Information of China (English)

    Munazza Zulfiqar Ali; Tariq Abdullah

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties.The width of the defect layer js taken to be the same or smaller than the period of the structure.Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed.It is found that only a nonlinear double negative layer givas rises to a localized mode within the zero-φeff gap in this kind of structure.It is also shown that the important characteristics of the nonlinear defect mode such as its frequency,its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers.

  13. Investigation of terahertz waves propagating through far infrared/CO2 laser stealth-compatible coating based on one-dimensional photonic crystal

    Science.gov (United States)

    Wang, Qichao; Wang, Jiachun; Zhao, Dapeng; Zhang, Jikui; Li, Zhigang; Chen, Zongsheng; Zeng, Jie; Miao, Lei; Shi, Jiaming

    2016-11-01

    We propose a new method to disclose the camouflaged targets coated with far infrared/CO2 laser stealth-compatible coating by utilizing terahertz (THz) radar. A coating based on one-dimensional photonic crystal (1DPC) with a defect mode is specially designed and successfully prepared, which possesses a high reflectivity in 8-14 μm waveband and a low reflectivity at 10.6 μm, by alternating thin films of Ge, ZnSe and Si. The propagation characteristic of 0.3-2 THz wave at incident angle from 0° to 80° in such PC coating is investigated theoretically based on characteristic matrix method. The maximal transmittance is up to 92%, and the absorptivity keeps lower than 0.5% over the whole band. The results are verified by experiments, which demonstrate the feasibility of using THz radar to detect the targets covered with such stealth-compatible coatings.

  14. 一维掺杂光子晶体结构参数对带隙结构影响%Effect of Structure Parameter of One Dimensional Doped Photonic Crystal on Photonic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    郭立帅

    2012-01-01

    The properties of band - gap of one - dimensional doped photonic crystal are studied by using numerical- ly method based on the transfer matrix method. The result shows that a narrow conduction band appears in the cen- tre of forbidden band in one - dimensional doped photonic crystal. The depth of conduction band appears in the centre of forbidden band has a maximum, which was caused by the number of layers of the second half of impurity where the first one was fixed. It shows that the forbidden band center's conduction band depth was still biggest by means of changing basic level thickness.%基于传输矩阵法,数值研究了掺杂一维光子晶体带隙特征。研究表明:一维掺杂光晶体禁带中心位置出现一个极窄的导带,当杂质前半部分层数给定时,后半部分总存在一个层数,使得禁带中心导带的深度达到最大,在此基础上通过改变基本层厚度发现,禁带中心的导带深度仍然最大,我们可以通过改变基本层厚度厚度,让特定波长的光顺利通过。

  15. Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    Thomas; Tanggaard; Larsen; David; Sparre; Hermann; Anders; Bjarklev

    2003-01-01

    A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.

  16. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A

    2009-01-01

    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  17. Structural colours through photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    McPhedran, R.C.; Nicorovici, N.A.; McKenzie, D.R.; Rouse, G.W.; Botten, L.C.; Welch, V.; Parker, A.R.; Wohlgennant, M.; Vardeny, V

    2003-10-01

    We discuss two examples of living creatures using photonic crystals to achieve iridescent colouration. The first is the sea mouse (Aphroditidae, Polychaeta), which has a hexagonal close packed structure of holes in its spines and lower-body felt, while the second is the jelly fish Bolinopsis infundibulum, which has an oblique array of high index inclusions in its antennae. We show by measurements and optical calculations that both creatures can achieve strong colours despite having access only to weak refractive index contrast.

  18. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  19. 介质阻挡放电中一维等离子体光子晶体及其带隙特性%One-dimensional plasma photonic crystals in dielectric barrier discharge and its photonic bandgaps

    Institute of Scientific and Technical Information of China (English)

    范伟丽; 董丽芳

    2012-01-01

    A tunable one-dimensional plasma photonic crystal has been obtained in argon dielectric barrier discharge with two water electrodes at atmospheric pressure. The dispersion relation of the plasma photonic crystals is studied by solving a stationary Maxwell wave equation with a method analogous to Kronig-Penney's problem in quantum mechanics. Based on the experimental data, the influence of the parameters including the lattice constant, the length ratio of the plasma and dielectric and electron density on the band diagrams of the plasma photonic crystals is discussed. Results show that the position of the photonic bands is lowered and the phase velocity is reduced when the lattice constant is increased. For the same lattice constants, larger ratio of the plasma with the dielectric leads to the increase of the band gaps and higher band frequencies. The plasma photonic crystals will show wide band gaps when the electron density is larger than 1020 m-3.%在双水电极大气压氩气介质阻挡放电中获得了一维可调等离子体光子晶体.通过类似于量子力学Kronig-Penney模型求解周期势的方法,求解Maxwell方程得到了一维等离子光子晶体的色散关系.结合实验数据,理论模拟了晶格常数、等离子体与介质的厚度比、电子密度等不同参数对等离子体光子晶体带隙的影响.结果表明:等离子体光子晶体晶格常数的增大导致能级位置降低,相速度减小;在相同的晶格常数下,等离子体填充比增大时,带隙位置将略有上升且光子带隙数目增加;当电子密度大于1020 m-3时,等离子体光子晶体具有显著禁带宽度.

  20. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  1. Heat Treatment of the Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Seongwoo; Yoo; Jinchae; Kim; Hokyung; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We report heat treatment of the photonic crystal fiber. As the temperature was increased, the transmission of the photonic crystal fiber was increased, unlike conventional single mode fiber. The transmission increase at short wavelength region was larger than long wavelength region for the various temperatures. After crystallization of the silica glass, the spectra of the photonic crystal fiber were just decreased at all wavelength regions, but, in case of the single mode fiber, the absorption in visibl...

  2. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    Science.gov (United States)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  3. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhen, Jian-Ping [Nanjing Artillery Academy, Nanjing 211132 (China)

    2014-03-15

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.

  4. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    2010-01-01

    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  5. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    2010-01-01

    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  6. Weyl Points and Line Nodes in Gyroid Photonic Crystals

    Science.gov (United States)

    2013-04-01

    characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly parides sesostris. Interface Focus 2, 645–650...Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107...948–954 (2003). 43. Turner, M., Schröder-Turk, G. & Gu, M. Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt

  7. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Venkatachalam Subramanian

    2013-02-01

    Full Text Available Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  8. Modification of Absorption of a Bulk Material by Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    席永刚; 王昕; 胡新华; 刘晓晗; 资剑

    2002-01-01

    We show theoretically that it is possible to modify absorption of a bulk absorbing material by inserting another non-absorbing dielectric slab periodically to form one-dimensional photonic crystals. It is found that, for fre- quencies within photonic bandgaps, absorption is always suppressed. For frequencies located at photonic bands, absorption can be suppressed or enhanced, which depends on the relative values of the real refractive index of the absorbing and non-absorbing dielectric layers.

  9. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  10. Fabrication of One-Dimensional Photonic Crystals PAA/TiO2%PAA/TiO2一维光子晶体的制备

    Institute of Scientific and Technical Information of China (English)

    张玉琦; 魏清渤; 王俏; 宋延卫

    2012-01-01

    以聚丙烯酸(PAA)和TiO2纳米粒子为电介质材质,采用旋涂技术制备了PAA/TiO2一维光子晶体.用扫描电子显微镜对其层层沉积的结构进行了表征,用紫外可见反射光谱对光子禁带进行了研究,考察了光子禁带与成膜参数的关系.结果表明,通过调控旋涂速度或者PAA溶液质量分数,可以制备出具有不同光子禁带的PAA/TiO2一维光子晶体,且光子禁带随旋涂速度的加快线性蓝移、随PAA溶液质量分数的增大线性红移.%One-dimensional photonic crystals (1D-PCs) PAA (poly acrylic acid)/TiO2 were fabricated by spin-coating technique. The layer-by-layer deposition structure of the 1D-PCs was characterized by scanning e-lectron microscopy. The photonic stopbands of the 1D-PCs were measured by UV-visible reflectance spectrum. The relationship between photonic stopbands and experimental parameters were also studied. The results demonstrated that the 1D-PCs with different stopbands could be obtained from controlling spin-coating or speed mass fraction of PAA solution. The stopbands had a linearly blue shift with spin-coating speed increasing,and had a linearly red shift with the mass fraction of PAA solution increasing.

  11. Photonic crystal self-collimation sensor.

    Science.gov (United States)

    Wang, Yufei; Wang, Hailing; Xue, Qikun; Zheng, Wanhua

    2012-05-21

    A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

  12. High Polarization Single Mode Photonic Crystal Microlaser

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; XING Ming-Xin; ZHOU Wen-Jun; LIU An-Jin; ZHENG Wan-Hua

    2009-01-01

    Generally,dipole mode is a doubly degenerate mode.Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property.We present a structure with elongated lattice,which only supports a single y-dipole mode.With this structure we can eliminate the degeneracy,control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode.In our experiment,the polarization extinction ratio of the y-dipole mode is as high as 51:1.

  13. Design of an LED chip structure with an integrated two-dimensional photonic crystal to enhance the light-extraction efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won-Sik; Park, Si-Hyun [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-05-15

    We numerically simulated the light-extraction efficiency of light-emitting diodes (LEDs) with an integrated two-dimensional photonic crystal (PC) structure on the top surface in order to enhance light extraction. We considered InGaN-based LED chips with a typical emission wavelength of λ{sub o} = 460 nm and an emission wavelength inside the LED chip of λ = λ{sub 0}/n{sub GaN} , where n{sub GaN} is the refractive index of GaN. We used positive (relief) and negative (intaglio) patterns for the PC structures with square arrangements. The pattern period (Λ), width (d), and height (h) of the PC structure were varied systematically in the PC-LEDs; then the light-extraction efficiency of each PC-LED was simulated numerically using a three-dimensional finite-difference time-domain method to optimize the PC structure in terms of light extraction. The PC LED with a square pillar pattern with Λ ∼ 1.4λ, d ∼ 0.75Λ, and h ∼ 0.75Λ had the maximum light-extraction efficiency for positive patterns while the cylindrical hole pattern with Λ ∼ 1.2λ, d ∼ 0.5Λ, and h ∼ 0.5Λ had the maximum light-extraction efficiency for negative patterns.

  14. Half-disordered photonic crystal slabs.

    Science.gov (United States)

    Beque, V; Keilman, J; Citrin, D S

    2016-08-10

    Optical transmission spectra of finite-thickness slabs of two-dimensional triangular-lattice photonic crystals of air holes in a dielectric matrix with various concentrations of randomly located vacancies (absent air holes) are studied. We focus on structures in which only one half of the structure-the incidence or transmission side-is disordered. We find vacancy-induced scattering gives rise to a strong difference in the two cases; for light incident on the disordered side, high transmission within the photonic pseudogap at normal incidence is predicted, in strong contrast to the opposite case, where low transmission is predicted throughout the pseudogap, as is observed in the case of an ideal structure with no defects.

  15. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy

    NARCIS (Netherlands)

    Fontana, Y.; Grzela, G.; Bakkers, E.P.A.M.; Gomez Rivas, J.

    2012-01-01

    Controlling the dispersion and directionality of the emission of nanosources is one of the major goals of nanophotonics research. This control will allow the development of highly efficient nanosources even at the single-photon level. One of the ways to achieve this goal is to couple the emission to

  16. Photonic Crystals: Physics and Technology

    CERN Document Server

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  17. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  18. Study the two dimensional triangular lattice photonic crystal band gap and coupling characters%二维三角形光子晶体带隙与耦合特性研究

    Institute of Scientific and Technical Information of China (English)

    李未; 陈小玲

    2011-01-01

    利用二维三角晶格介质柱光子晶体TE偏振的禁带与介质柱半径的变化关系,分析了二维光子晶体的带隙分布及斜边耦合特性.结果表明,光子禁带的大小受到构成光子晶体的介电材料的空间排列分布以及介质柱半径大小的影响;束缚在光子晶体中的光波可以在波导和谐振腔中进行传输,达到选择输出光波的目的.%The paper study the relation between two dimensional triangular lattice photonic crystal band gap for TE polarizationand dielectric cylinder radius, and study distribution of two dimensional photonic crystal defect state. Results show, the photonic crystal band gaps were distributed by dielectric material space distribution and medium size of the radius; Tied in the photon crystals of light waves can transmission in waveguides and resonator cavity to select the output of light waves.

  19. Biased liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2008-01-01

    We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure.......We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure....

  20. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  1. Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

    Directory of Open Access Journals (Sweden)

    Yassine Bouazzi

    2012-10-01

    Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

  2. Effect of field modulation on the quasi-phase-matching for second harmonic generation in a two-dimensional nonlinear photonic crystal

    Science.gov (United States)

    Zhao, Li-Ming; Zhou, Yun-Song; Wang, Ai-Hua

    2017-02-01

    Second harmonic generation (SHG) in a two-dimensional (2D) nonlinear photonic crystal (NPC) with finite width along z-direction that is embedded in air is investigated, without adopting the traditional approximations such as a plane-wave approximation (PWA) and slowly varying amplitude approximation (SVAA). The so-called quasi-phase-matching (QPM) and the corresponding SHG conversion efficiency can be modulated significantly by the field of fundamental wave (FW). It is assumed that the incident light, along z-direction, is normally launched upon the surface of the sample, and QPM for different directions is investigated. It is found that the QPM shows significant differences, compared with the traditional QPM along the two different directions: in the direction of finite width of the sample, the peak value of SHG conversion efficiency is deviated from the traditional case and it gets to its peak values when the transmittance resonance occurs. However, in the other direction, the deviation from the traditional QPM arises from the field modulation of the second harmonic wave (SHW) and in this direction, it is investigated that the full width at half maximum of QPM is much wider than that in the direction of finite width of the sample. These results can be used to provide a theoretical guidance for achieving QPM SHG.

  3. 光子晶体增强石墨烯THz吸收%Terahertz absorption of graphene enhanced by one-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    谢凌云; 肖文波; 黄国庆; 胡爱荣; 刘江涛

    2014-01-01

    研究了光子晶体表面石墨烯在应力赝磁场作用下的太赫兹(THz)吸收。由于应力赝磁场的存在使得石墨烯中电子出现朗道能级并对THz波呈现出一个较强的吸收。而光子晶体和石墨烯形成了表面微腔结构使得石墨烯对THz波的吸收比无光子晶体时增强了将近四倍。且可以通过改变应力赝磁场和间隔层厚度来调控石墨烯的THz吸收。%The terahertz (THz) radiation absorption of graphene layers in a pseudomagnetic field, prepared on top of a one-dimensional photonic crystal (1DPC), is investigated theoretically. Discrete Landau levels can be found in graphene in a pseudomagnetic field. Strong THz transitions may be found between the discrete Landau levels. The THz absorption of graphene can also be tuned by varying either pseudomagnetic field or the distance between the graphene and the 1DPC.

  4. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  5. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  6. Photonic crystal fiber based antibody detection

    OpenAIRE

    Duval, A.; Lhoutellier, M; Jensen, J. B.; Hoiby, P E; Missier, V; Pedersen, L. H.; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and the use of a transversal illumination setup.

  7. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  8. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  9. Optical experiments on 3D photonic crystals

    NARCIS (Netherlands)

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  10. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and ...

  11. Nonspreading Light Pulses in Photonic Crystals

    OpenAIRE

    Staliunas, K.; Serrat, C.; Herrero, R; Cojocaru, C.; Trull, J.

    2005-01-01

    We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals.

  12. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is demo...

  13. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  14. Photonic Crystals: Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip (Adv. Mater. 15/2014)

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    P. Vavassori and co-workers demonstrate on page 2384 that field-controlled displacement of magnetic domain walls in ferromagnetic nano-ring structures allows for capture and 2-dimensional remote manipulation of fluidborne magnetic nanoparticles over a chip surface....

  15. Photonic Crystal Fiber Based Entangled Photon Sources

    Science.gov (United States)

    2014-03-01

    new entanglement source is to make sure the source can provide an efficient and scalable quantum information processor . They are usually generated...multiple scattering on the telecom wavelength photon-pair. Our findings show that quantum correlation of polarization-entangled photon-pairs is...Fiber, Quantum communication, Keyed Communication in Quantum Noise (KCQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  16. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    CERN Document Server

    Williamson, Ian A D; Wang, Zheng

    2015-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100x wavelength reduction and excellent out-of-plane confinement. The graphene-cladded photonic crystal slabs exhibit band structures closely resembling those of ideal two-dimensional photonic crystals, with broad two-dimensional photonic band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crys...

  17. One-Dimensional Function Photonic Crystals%一维函数光子晶体的禁带特性理论

    Institute of Scientific and Technical Information of China (English)

    王清才; 王岩; 王光怀

    2012-01-01

    提出了一种新型函数光子晶体,其折射率是一个空间位置函数.在费马原理的基础上,利用传输矩阵理论研究了光子晶体介质层的折射率、周期数、入射角等对光子晶体带隙变化的影响.为灵活实现某特定带隙的光子晶体的制备提供了理论依据.%A new kind of function photonic crystals is presented,whose refractive index is a function of space position.Based on Fermat principle and by using the transfer matrix theory,the influences of the refractive index of photonic crystal dielectric layer,number of cycles,and angle of incidence on the band structure of photonic crystals are studied.This study provides a theoretical basis of the preparation of photonic crystals with specific band gap.

  18. Photonic crystals with topological defects

    Science.gov (United States)

    Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui

    2015-02-01

    We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.

  19. Band gap and transmission properties of one dimensional photonic crystals with NIM-PIM alternant structure%一维正负折射率光子晶体结构禁带及传播特性

    Institute of Scientific and Technical Information of China (English)

    刘名扬; 贺珍妮; 张向东

    2013-01-01

    Transfer matrix method is used to analyze the transmission spectra of one dimensional photon-ic crystals with negative refractive index material and positive refractive index material alternant struc-ture .The bang gaps and dispersive relation of one dimensional photonic crystal are analyzed .The gener-al Bragg gaps and the resonant gap of low frequency exist in the photonic crystal .We also research local-ization of electromagnetic waves in one-dimension random system containing the left-handed material .%采用传递矩阵的方法研究了由正折射率材料和负折射率材料交替排列组成的一维光子晶体结构的透射谱,并对其能带结构和色散关系进行分析,这种正负折射率光子晶体不仅存在一般的布拉格禁带,还存在低频共振禁带。本文也对含左手材料的一维无序结构的局域化进行了分析研究。

  20. Gallium nitride based logpile photonic crystals.

    Science.gov (United States)

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  1. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen;

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  2. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  3. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...... partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...... element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments....

  4. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  5. Investigation of biosensor built with photonic crystal microcavity

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Wang; Naiguang Lü; Qiaofeng Tan; Guofan Jin

    2008-01-01

    The ultra-compact biosensor based on the two-dimensional (2D) photonic crystal (PhC) microcavity is investigated. The performances of the sensor are analyzed theoretically using the Fabry-Perot (F-P) cavity model and simulated using the finite-difference time-domain (FDTD) method. The simulation results go along with the theoretical analysis.

  6. Ultrafast investigations of slow light in photonic crystal structures

    NARCIS (Netherlands)

    Engelen, Rob Jacques Paul

    2008-01-01

    Optical structures with dimensions down to nanometer length scales have been a topic for investigation for an increasing number of researchers, due to their intriguing physical properties and their possible new optical applications. In this thesis, waveguides in two-dimensional photonic crystals are

  7. Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence

    Science.gov (United States)

    Yang, Xiaodong

    The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman

  8. Quantum Cascade Photonic Crystal lasers

    Science.gov (United States)

    Capasso, Federico

    2004-03-01

    QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)

  9. Novel photonic crystal cavities and related structures.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  10. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  11. Enhanced photoacoustic detection using photonic crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  12. High-power one-, two-, and three-dimensional photonic crystal edge-emitting laser diodes for ultra-high brightness applications

    Science.gov (United States)

    Gordeev, N. Yu.; Maximov, M. V.; Shernyakov, Y. M.; Novikov, I. I.; Karachinsky, L. Ya.; Shchukin, V. A.; Kettler, T.; Posilovic, K.; Ledentsov, N. N.; Bimberg, D.; Duboc, R.; Sharon, A.; Arbiv, D. B.; Ben-Ami, U.

    2008-02-01

    Direct laser diodes can typically provide only a limited single mode power, while ultrahigh-brightness is required for many of the market-relevant applications. Thus, multistage power conversion schemes are applied, when the laser diodes are used just as a pumping source. In this paper we review the recent advances in ultra-large output aperture edge-emitting lasers based on the photonic band crystal (PBC) concept. The concept allows near- and far-field engineering robust to temperature and strain gradients and growth nonuniformities. High-order modes are selectively filtered and the effective optical confinement of the fundamental mode can be dramatically enhanced. At first, we show that robust ultra-narrow vertical beam divergence (operation by processing of the multistripe arrays along their lengths. The concept opens a way for 3D photonic crystal edge emitting lasers potentially allowing scalable single mode power increase to arbitrary high levels.

  13. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  14. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  15. Photonics crystal fiber Raman sensors

    Science.gov (United States)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  16. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  17. Manipulating femtosecond pulse shape using liquid crystals infiltrated one-dimensional graded index photonic crystal waveguides composed of coupled-cavities

    Science.gov (United States)

    Fathollahi Khalkhali, T.; Bananej, A.

    2017-10-01

    In this paper, we investigate the transmission of a 10-femtosecond pulse through an ordinary and graded index coupled-cavity waveguide, using finite-difference time-domain and transfer matrix method. The ordinary structure is composed of dielectric/liquid crystal layers in which four defect layers are placed symmetrically. Next, we introduce a graded structure based on the ordinary system in which dielectric refractive index slightly increases with a constant step value from the beginning to the end of the structure while liquid crystal layers are maintained unchanged. Simulation results reveal that by applying an external static electric field and controlling liquid crystal refractive index in graded structure, it is possible to transmit an ultrashort pulse with negligible distortion and attenuation.

  18. Photonic crystals advances in design, fabrication, and characterization

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  19. Mapping individual electromagnetic field components inside a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

  20. Absorption and emission properties of photonic crystals and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lili [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  1. Photonic crystal hydrogel sensor for detection of nerve agent

    Science.gov (United States)

    Xu, Jiayu; Yan, Chunxiao; Liu, Chao; Zhou, Chaohua; Hu, Xiaochun; Qi, Fenglian

    2017-01-01

    Nowadays the photonic crystal hydrogel materials have shown great promise in the detection of different chemical analytes, including creatinine, glucose, metal ions and so on. In this paper, we developed a novel three-dimensional photonic crystal hydrogel, which was hydrolyzed by sodium hydroxide (NaOH) and immobilized with butyrylcholinesterase (BuChE) by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC). They are demonstrated to be excellent in response to sarin and a limit of detection(LOD) of 1×10-9 mg mL-1 was achieved.

  2. A novel photonic crystal fibre switch

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.......A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB....

  3. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  4. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  5. Photonic crystal fibers, devices, and applications

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Jian JU; Hoi Lut HO; Yeuk Lai HOO; Ailing ZHANG

    2013-01-01

    This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

  6. Recent Progress of Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Katsusuke; Tajima

    2003-01-01

    Photonic crystal fibers are attractive since we can realize a wide variety of unique features in the PCFs, which cannot be realized in conventional single-mode fibers. We describe recent progress in the PCF.

  7. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  8. Veselago lens by photonic hyper-crystals

    CERN Document Server

    Huang, Zun

    2014-01-01

    An imaging system functioning as a Veselago lens has been proposed based on the novel concept of photonic "hyper-crystal" -- an artificial optical medium synthesizing the properties of hyperbolic materials and photonic crystals. This Veselago lens shows a nearly constant negative refractive index and substantially reduced image aberrations. It can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  9. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  10. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  11. Photonic crystal fibers: fundamentals to emerging applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  12. Photonic-crystal fibre: Mapping the structure

    DEFF Research Database (Denmark)

    Markos, Christos

    2015-01-01

    The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance.......The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance....

  13. Photonic crystal laser sources for chemical detection

    OpenAIRE

    Lončar, Marko; Scherer, Axel; Qiu, Yueming

    2003-01-01

    We have realized photonic crystal lasers that permit the introduction of analyte within the peak of the optical field of the lasing mode. We have explored the design compromises for developing such sensitive low-threshold spectroscopy sources, and demonstrate the operation of photonic crystal lasers in different ambient organic solutions. We show that nanocavity lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte, and propose to use these lasers for high-resolut...

  14. Photonic Crystals Mathematical Analysis and Numerical Approximation

    CERN Document Server

    Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian

    2011-01-01

    This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin

  15. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  16. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  17. Metallic photonic crystals for thermophotovoltaic applications

    Science.gov (United States)

    Walsh, Timothy A.

    Since the idea of a photonic bandgap was proposed over two decades ago, photonic crystals have been the subject of significant interest due to their novel optical properties which enable new and varied applications. In this research, the photonic bandgap effect is exploited to tailor the thermal radiation spectrum to a narrow range of wavelengths determined by the lattice symmetry and dimensions of the photonic crystal structure. This sharp emission peak can be matched to the electronic bandgap energy of a p-n junction photovoltaic cell for high efficiency thermophotovoltaic energy conversion. This thesis explores aspects of photonic crystal design, materials considerations, and manufacture for thermophotovoltaic applications. Photonic crystal structures come in many forms, exhibiting various types of 1D, 2D, and 3D lattice symmetry. In this work, the "woodpile" 3D photonic crystal is studied. One advantage of the woodpile lattice is that it can be readily fabricated on a large scale using common integrated circuit manufacturing techniques. Additionally this structure lends itself to efficient and accurate modeling with the use of a plane-wave expansion based transfer matrix method to calculate the scattering properties and band structure of the photonic crystal. This method is used to explore the geometric design parameters of the woodpile structure. Optimal geometric proportions for the structure are found which yield the highest narrowband absorption peak possible. By Kirchoffs law of thermal emission, this strong and sharp absorptance will yield high power and narrowband thermal radiation. The photonic crystal thermal emission spectrum is then evaluated in a TPV system model to evaluate the electrical power density and system efficiency achievable. The results produced by the photonic crystal emitter are compared with the results assuming a blackbody thermal radiation spectrum. The blackbody represents a universal standard against which any selective emitter

  18. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei;

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...

  19. Optical trapping apparatus, methods and applications using photonic crystal resonators

    Science.gov (United States)

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  20. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Science.gov (United States)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.