WorldWideScience

Sample records for dimensional neutral systems

  1. Oscillation of Two-Dimensional Neutral Delay Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Xinli Zhang

    2013-01-01

    Full Text Available We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (x(t-a(tx(τ1(tΔ=p(tf1(y(t, yΔ(t=-q(tf2(x(τ2(t. We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when a(t=0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010, since our results do not restrict to the case where f(u=u. Also, as a special case when =ℝ, our results do not require an to be a positive real sequence. Some examples are given to illustrate the main results.

  2. Controllability Problem of Fractional Neutral Systems: A Survey

    Directory of Open Access Journals (Sweden)

    Artur Babiarz

    2017-01-01

    Full Text Available The following article presents recent results of controllability problem of dynamical systems in infinite-dimensional space. Generally speaking, we describe selected controllability problems of fractional order systems, including approximate controllability of fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces, controllability of nonlinear neutral fractional impulsive differential inclusions in Banach space, controllability for a class of fractional neutral integrodifferential equations with unbounded delay, controllability of neutral fractional functional equations with impulses and infinite delay, and controllability for a class of fractional order neutral evolution control systems.

  3. On exponential stabilizability of linear neutral systems

    Directory of Open Access Journals (Sweden)

    Dusser Xavier

    2001-01-01

    Full Text Available In this paper, we deal with linear neutral functional differential systems. Using an extended state space and an extended control operator, we transform the initial neutral system in an infinite dimensional linear system. We give a sufficient condition for admissibility of the control operator B , conditions under which operator B can be acceptable in order to work with controllability and stabilizability. Necessary and sufficient conditions for exact controllability are provided; in terms of a gramian of controllability N ( μ . Assuming admissibility and exact controllability, a feedback control law is defined from the inverse of the operator N ( μ in order to stabilize exponentially the closed loop system. In this case, the semigroup generated by the closed loop system has an arbitrary decay rate.

  4. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  5. The structure of three-dimensional magnetic neutral points

    Science.gov (United States)

    Parnell, C. E.; Smith, J. M.; Neukirch, T.; Priest, E. R.

    1996-03-01

    The local configurations of three-dimensional magnetic neutral points are investigated by a linear analysis about the null. It is found that the number of free parameters determining the arrangement of field lines is four. The configurations are first classified as either potential or non-potential. Then the non-potential cases are subdivided into three cases depending on whether the component of current parallel to the spine is less than, equal to or greater than a threshold current; therefore there are three types of linear non-potential null configurations (a radial null, a critical spiral and a spiral). The effect of the four free parameters on the system is examined and it is found that only one parameter categorizes the potential configurations, whilst two parameters are required if current is parallel to the spine. However, all four parameters are needed if there is current both parallel and perpendicular to the spine axis. The magnitude of the current parallel to the spine determines whether the null has spiral, critical spiral or radial field lines whilst the current perpendicular to the spine affects the inclination of the fan plane to the spine. A simple method is given to determine the basic structure of a null given M the matrix which describes the local linear structure about a null point.

  6. ITER neutral beam system US conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  7. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded).

    Science.gov (United States)

    2010-10-01

    ... ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.376 Grounded distribution systems... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each... generator is connected to the bus, except the neutral of an emergency power generation system must...

  8. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  9. Asymptotical Properties for Parabolic Systems of Neutral Type

    Institute of Scientific and Technical Information of China (English)

    CUI Bao-tong; HAN Mao-an

    2005-01-01

    Asymptotical properties for the solutions of neutral parabolic systems with Robin boundary conditions were analyzed by using the inequality analysis. The oscillations problems for the neutral parabolic systems were considered and some oscillation criteria for the systems were established.

  10. Two-Dimensional Arrays of Neutral Atom Quantum Gates

    Science.gov (United States)

    2012-10-20

    Isenhower, X. Zhang, A. Gill, T. Walker, M. Saffman. Deterministic entanglement of two neutral atoms via Rydberg blockade, Physical Review A, (09 2010...squeezing of atomic ensembles by multicolor quantum nondemolition measurements, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023831 10/19/2012...collective encoding in holmium atoms, Physical Review A, (07 2008): 0. doi: 10.1103/PhysRevA.78.012336 10/19/2012 10.00 M Saffman, X L Zhang, A T

  11. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Science.gov (United States)

    2010-10-01

    ... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral..., circuit breaker, or fuse in the neutral conductor of the bus-tie feeder connecting the emergency... that aluminum grounding conductors must not be used....

  12. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  13. Delay-dependent robust stability for neutral systems with mixed discrete-and-neutral delays

    Institute of Scientific and Technical Information of China (English)

    Yong HE; Min WU; Jinhua SHE

    2004-01-01

    This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties.Some new criteria are presented,in which some free weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula.The criteria include the information on the size of both neutral-and-discrete delays.It is shown that the present results also include the results for identical discrete-and-neutral delays as special cases.A numerical example illustrates the improvement of the proposed methods over the previous methods and the influences between the discrete and neutral delays.

  14. Quasi-neutral limit of the full bipolar Euler-Poisson system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the non-isentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.

  15. Neutral particle Mass Spectrometry with Nanomechanical Systems

    CERN Document Server

    Sage, Eric; Alava, Thomas; Morel, Robert; Dupré, Cécilia; Hanay, Mehmet Selim; Duraffourg, Laurent; Masselon, Christophe; Hentz, Sébastien

    2014-01-01

    Current approaches to Mass Spectrometry (MS) necessarily rely on the ionization of the analytes of interest and subsequent spectrum interpretation is based on the mass-to-charge ratios of the ions. The resulting charge state distribution can be very complex for high-mass species which may hinder correct interpretation. A new form of MS analysis based on Nano-Electro-Mechanical Systems (NEMS) was recently demonstrated with high-mass ions. Thanks to a dedicated setup comprising both conventional time-of-flight MS (TOF-MS) and NEMS-MS in-situ, we show here for the first time that NEMS-MS analysis is insensitive to charge state: it provides one single peak regardless of the species charge state, highlighting effective clarification over existing MS analysis. All charged particles were thereafter removed from the beam electrostatically, and unlike TOF-MS, NEMS-MS retained its ability to perform mass measurements. This constitutes the first unequivocal measurement of mass spectra of neutral particles. This ability ...

  16. Approximate One-Dimensional Models for Monoenergetic Neutral Particle Transport in Ducts with Wall Migration

    CERN Document Server

    Gonzalez, Arnulfo

    2016-01-01

    The problem of monoenergetic neutral particle transport in a duct, where particles travel inside the duct walls, is treated using an approximate one-dimensional model. The one-dimensional model uses three-basis functions, as part of a previously derived weighted-residual procedure, to account for the geometry of particle transport in a duct system (where particle migration into the walls is not considered). Our model introduces two stochastic parameters to account for particle-wall interactions: an albedo approximation yielding the fraction of particles that return to the duct after striking the walls, and a mean-distance travelled in the walls transverse to the duct by particles that re-enter the duct. Our model produces a set of three transport equations with a non-local scattering kernel. We solve these equations using discrete ordinates with source iteration. Numerical results for the reflection and transmission probabilities of neutron transport in ducts of circular cross section are compared to Monte Ca...

  17. Observability and controllability for linear neutral type systems

    OpenAIRE

    Rabah, Rabah; Sklyar, Grigory,

    2014-01-01

    International audience; For a large class of linear neutral type systems which include distributed delays we give the duality relation between exact controllability and exact observability. This duality is based on the representation of the abstract adjoint system as a special neutral type system. As a consequence of this duality relation, a characterization of exact observability is obtained. The time of observability is precised.

  18. Laser cooling a neutral atom to the three-dimensional vibrational ground state of an optical tweezer

    CERN Document Server

    Kaufman, Adam M; Regal, Cindy A

    2012-01-01

    We report three-dimensional ground state cooling of a single neutral atom in an optical tweezer. After employing Raman sideband cooling for 33 ms, we measure via sideband spectroscopy a three-dimensional ground state occupation of ~90%. Ground state neutral atoms in optical tweezers will be instrumental in numerous quantum logic applications and for nanophotonic interfaces that require a versatile platform for storing, moving, and manipulating ultracold single neutral atoms.

  19. Stability, stabilizability and exact controllability of a class of linear neutral type systems

    CERN Document Server

    Rabah, Rabah

    2009-01-01

    Linear systems of neutral type are considered using the infinite dimensional approach. The main problems are asymptotic, non-exponential stability, exact controllability and regular asymptotic stabilizability. The main tools are the moment problem approach, the Riesz basis of invariant subspaces and the Riesz basis of family of exponentials.

  20. Approximate controllability of neutral functional differential system with unbounded delay

    Directory of Open Access Journals (Sweden)

    Jong Yeoul Park

    2001-01-01

    Full Text Available We consider a class of control systems governed by the neutral functional differential equation with unbounded delay and study the approximate controllability of the system. An example is given to illustrate the result.

  1. Robust stability of uncertain neutral linear stochastic differential delay system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-hui; SHEN Yi; LIAO Xiao-xin

    2007-01-01

    The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.

  2. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  3. Autonomous mine detection system (AMDS) neutralization payload module

    Science.gov (United States)

    Majerus, M.; Vanaman, R.; Wright, N.

    2010-04-01

    The Autonomous Mine Detection System (AMDS) program is developing a landmine and explosive hazards standoff detection, marking, and neutralization system for dismounted soldiers. The AMDS Capabilities Development Document (CDD) has identified the requirement to deploy three payload modules for small robotic platforms: mine detection and marking, explosives detection and marking, and neutralization. This paper addresses the neutralization payload module. There are a number of challenges that must be overcome for the neutralization payload module to be successfully integrated into AMDS. The neutralizer must meet stringent size, weight, and power (SWaP) requirements to be compatible with a small robot. The neutralizer must be effective against a broad threat, to include metal and plastic-cased Anti-Personnel (AP) and Anti-Tank (AT) landmines, explosive devices, and Unexploded Explosive Ordnance (UXO.) It must adapt to a variety of threat concealments, overburdens, and emplacement methods, to include soil, gravel, asphalt, and concrete. A unique neutralization technology is being investigated for adaptation to the AMDS Neutralization Module. This paper will describe review this technology and how the other two payload modules influence its design for minimizing SWaP. Recent modeling and experimental efforts will be included.

  4. On delay-dependent robust stability of neutral systems

    Institute of Scientific and Technical Information of China (English)

    Renxin ZHONG; Zhi YANG; Guoli WANG

    2006-01-01

    The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.

  5. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  6. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  7. Fuzzy Controller based Neutral Current Harmonic Suppression in Distribution System

    Directory of Open Access Journals (Sweden)

    T.Guna Sekar

    2013-10-01

    Full Text Available Recent surveys of three-phase four-wire electric systems, buildings and industrial plants with computers and non-linear loads shows the excessive currents in the neutral conductor. This is mainly due to unbalancing system and non-linear loads. Third order harmonics are much dominant in the neutral conductor due to the presence of zero sequence components. In response to this concern, this paper presents a concept of series active filter scheme to suppress the neutral current harmonics to reduce the burden of the secondary of the distribution transformer. In this scheme, the series active filteris connected in series with the neutral conductor to eliminate the zero sequence components in the neutral conductor. In this paper, Fuzzy based controller is used to extract the harmonic component in the neutral conductor. The proposed method improves the overall performance of the system and eliminates the burden of the neutral conductor. To validate the proposed simulation results, a scale-down prototype experimental model is developed.

  8. ITER neutral beam system US conceptual design. Final vesion

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  9. Stability and delay sensitivity of neutral fractional-delay systems

    Science.gov (United States)

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  10. Approximate controllability of semilinear neutral systems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    N. I. Mahmudov

    2003-01-01

    Full Text Available The approximate controllability of semilinear neutral systems in Hilbert spaces is studied using the Schauder fixed point theorem. It is shown that the approximate controllability of the semilinear system under some conditions is implied by the approximate controllability of its linear part.

  11. Violation of Bell’s inequality in neutral kaons system

    Indian Academy of Sciences (India)

    Manoj K Samal; Dipankar Home

    2002-08-01

    We show by general considerations that it is not possible to test violation of the existing versions of Bell’s inequality in entangled neutral kaons system using experimentally accessible thin regenerators. We point out the loophole in the recent argument (A Bramon and M Nowakowski, Phys. Rev. Lett. 83, 1 (1999)) that claimed such a test to be possible.

  12. Approximate controllability of neutral stochastic integrodifferential systems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Krishnan Balachandran

    2008-12-01

    Full Text Available In this paper sufficient conditions are established for the controllability of a class of neutral stochastic integrodifferential equations with nonlocal conditions in abstract space. The Nussbaum fixed point theorem is used to obtain the controllability results, which extends the linear system to the stochastic settings with the help of compact semigroup. An example is provided to illustrate the theory.

  13. Bell inequality and CP violation in the neutral kaon system

    CERN Document Server

    Bertlmann, Reinhold A; Hiesmayr, B C

    2001-01-01

    For the entangled neutral kaon system we formulate a Bell inequality sensitive to CP violation in mixing. Via this Bell inequality we obtain a bound on the leptonic CP asymmetry which is violated by experimental data. Furthermore, we connect the Bell inequality with a decoherence approach and find a lower bound on the decoherence parameter which practically corresponds to Furry's hypothesis.

  14. Performing three-dimensional neutral particle transport calculations on tera scale computers

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, C S; Brown, P N; Chang, B; Dorr, M R; Hanebutte, U R

    1999-01-12

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL).

  15. Asymptotic Growth of Solutions of Neutral Type Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sklyar, G. M., E-mail: sklar@univ.szczecin.pl; Polak, P., E-mail: piotr.polak@wmf.univ.szczecin.pl [University of Szczecin, Institute of Mathematics (Poland)

    2013-06-15

    We consider a differential system of neutral type with distributed delay. We obtain a precise norm estimation of semigroup generated by the operator corresponding to the system in question. Our result is based on a spectral analysis of the operator and some uniform estimation of norms of the exponentials of matrices. We also discuss the stability properties of corresponding solutions and the existence of the fastest growing solution.

  16. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    Science.gov (United States)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  17. On delay-dependent robust stability for uncertain neutral systems

    Institute of Scientific and Technical Information of China (English)

    He Yong; Wu Min

    2005-01-01

    The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-eal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some freeweighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.

  18. On the Lorentz symmetry breaking effects on a Dirac neutral particle inside a two-dimensional quantum ring

    Science.gov (United States)

    Bakke, K.; Belich, H.

    2014-07-01

    We study the effects of the Lorentz symmetry violation in the nonrelativistic quantum dynamics of a spin-1/2 neutral particle interacting with external fields confined to a two-dimensional quantum ring (W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)). We show a possible scenario for the Lorentz symmetry breaking that permits us to make an analogy with the Landau-Aharonov-Casher system (M. Ericsson, E. Sjöqvist, Phys. Rev. A 65, 013607 (2001)), where a change in the angular frequency characteristic of the confinement of a quantum particle to a two-dimensional ring is obtained. Then, we show that an upper bound for the Lorentz symmetry breaking parameters may be set up. Besides, we analyse another possible scenario of the Lorentz symmetry violation by showing the presence of an analogue of the Coulomb potential. We obtain the bound states solutions to the Schrödinger-Pauli equation and discuss a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system.

  19. Dynamical output feedback stabilization for neutral systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    Wei QIAN; Guo-jiang SHEN; You-xian SUN

    2008-01-01

    This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays.The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems.Based on the model transformation of neutral type,the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion.Then,through the controller parameterization and some matrix transformation techniques,the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs),and the desired controller is explicitly formulated.A numerical example is given to illustrate the effectiveness of the proposed method.

  20. Constraints on a system of two neutral fermions from cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Binetruy, P.; Girardi, G.; Salati, P.

    1984-05-14

    Using the standard model of cosmology we study the evolution of the population of a coupled system of two neutral fermions in which the lighter one is stable. During the expansion their population can be frozen at a certain level which makes them contribute to the mass density of the universe. The details of the freezing depend crucially on the couplings and on the masses of these two fermions, so that, comparison with the measured mass density in the universe gives constraints on the parameters of the physical system we examine. We discuss in detail different configurations for the coupling among these fermions; in particular in the case of large mixing we obtain restrictive bounds on both masses. Our study is relevant to supersymmetric grand unified models which predict the occurrence of light interacting neutral fermions, particularly higgsinos.

  1. Improved Stabilization Criteria for Neutral Time-Delay Systems

    OpenAIRE

    Lianglin Xiong; Haiyang Zhang; Yongkun Li; Zixin Liu

    2016-01-01

    This paper addresses the stabilization conditions for neutral systems with mixed time delays. By constructing a novel class of Lyapunov functionals which contains an augmented Lyapunov functional, using a new class of improved Jensen’s like inequalities, two improved delay-dependent stability criteria are firstly established. Next, state feedback controllers are designed according to the stability conditions in different cases. Finally, five numerical examples are provided to demonstrate the ...

  2. Conceptual design for the ZEPHYR neutral-beam injection system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  3. Approximate Controllability of Fractional Neutral Stochastic System with Infinite Delay

    Science.gov (United States)

    Sakthivel, R.; Ganesh, R.; Suganya, S.

    2012-12-01

    The concept of controllability plays an important role in analysis and design of linear and nonlinear control systems. Further, fractional differential equations have wide applications in engineering and science. In this paper, the approximate controllability of neutral stochastic fractional integro-differential equation with infinite delay in a Hilbert space is studied. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of nonlinear fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.

  4. Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2012-10-01

    Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.

  5. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    Science.gov (United States)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  6. Condition monitoring for a neutral beam injector cryopumping system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, N., E-mail: n.wright@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Dixon, R., E-mail: r.dixon@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Verhoeven, R., E-mail: roel.verhoeven@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► The development of a cryopumping condition monitoring scheme is presented. ► A residual generation scheme is used to detect two faults. ► Kalman filtering is used to generate the residuals. ► A filtering and voting arrangement is used to evaluate the residuals. ► A non-linear simulation model is used to verify the scheme. -- Abstract: For neutral beam injection systems, the maintenance of a vacuum inside the injector box is essential for normal operation. Cryogenic pumping systems are often used to create and maintain this vacuum. Cryogenic pumping systems have been deployed on the neutral beam heating systems supporting the Joint European Torus. With these as a target application, the development of a condition monitoring scheme is presented. The scheme uses a residual generation approach. A bank of Kalman filters is used to estimate measured process variables. A residual evaluator is used to map residual signals onto a set of faults. Two example faults are simulated to demonstrate the response of the scheme. This paper contributes to the wider fusion development programme by demonstrating how a contemporary condition monitoring technique can be applied to a fusion support system, in order to improve its availability.

  7. Control System of Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Hu Chundong; Liu Zhimin; Liu Sheng; Song Shihua; Yang Daoye

    2005-01-01

    Neutral Beam Injection control system (NBICS) is constructed to measure the plasma current, Magnet current, vacuum pressure, cryopump temperature, control water cooling, filament voltage, and power supply, etc. The NBICS, consisting mainly of a Programmable Logic Controller (PLC) subsystem, data acquisition and processing subsystem and cryopump and vacuum pressure monitoring subsystem, has successfully been used on a NBI device. In this article, the design of NBICS on HT-7 is discussed and each subsystem is described in particular.In addition, some experimental results are reported which are very important data for further research related to the HT-7 tokamak.

  8. New Modulation Strategy to Balance the Neutral-Point Voltage for Three-Level Neutral-Clamped Inverter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, June-Seok; Lee, Kyo-Beum

    2014-01-01

    This paper proposes a new modulation strategy that balances the neutral-point voltage for three-level neutral-clamped inverter systems. The proposed modulation replaces the P-type or N-type small switching states with other switching states that do not affect the neutral-point voltage. The zero...... and medium switching states are employed to help the neutral-point voltage balancing. This method little bit increases the switching events and output total harmonic distortion. However, this method has a strong balancing ability at all regions. Further, it is very simple to implement in both space vector...... modulation and carrier-based PWM methods. Simulation and experimental results verify the validity and feasibility of the proposed new modulation strategy....

  9. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  10. Status of the ITER heating neutral beam system

    Science.gov (United States)

    Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.

    2009-04-01

    The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.

  11. New ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  12. Statistical mechanics of ecological systems: Neutral theory and beyond

    Science.gov (United States)

    Azaele, Sandro; Suweis, Samir; Grilli, Jacopo; Volkov, Igor; Banavar, Jayanth R.; Maritan, Amos

    2016-07-01

    The simplest theories often have much merit and many limitations, and, in this vein, the value of neutral theory (NT) of biodiversity has been the subject of much debate over the past 15 years. NT was proposed at the turn of the century by Stephen Hubbell to explain several patterns observed in the organization of ecosystems. Among ecologists, it had a polarizing effect: There were a few ecologists who were enthusiastic, and there were a larger number who firmly opposed it. Physicists and mathematicians, instead, welcomed the theory with excitement. Indeed, NT spawned several theoretical studies that attempted to explain empirical data and predicted trends of quantities that had not yet been studied. While there are a few reviews of NT oriented toward ecologists, the goal here is to review the quantitative aspects of NT and its extensions for physicists who are interested in learning what NT is, what its successes are, and what important problems remain unresolved. Furthermore, this review could also be of interest to theoretical ecologists because many potentially interesting results are buried in the vast NT literature. It is proposed to make these more accessible by extracting them and presenting them in a logical fashion. The focus of this review is broader than NT: new, more recent approaches for studying ecological systems and how one might introduce realistic non-neutral models are also discussed.

  13. Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, David-Johannes

    2011-06-15

    In this thesis, the inclusive neutral current ep {yields} eX cross section at small e{sup -} scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 < y{sub e} < 0.6 for the inelasticity and 14 GeV{sup 2} < Q{sub e}{sup 2} < 110 GeV{sup 2} for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of {proportional_to}141 pb{sup -1}. Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will

  14. Configurational and energy landscape in one-dimensional Coulomb systems.

    Science.gov (United States)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  15. A study on three-dimensional structures of the ionospheric dynamo currents induced by the neutral winds simulated by the Kyushu-GCM

    Science.gov (United States)

    Kawano-Sasaki, Keiko; Miyahara, Saburo

    2008-08-01

    Three-dimensional structures of the ionospheric dynamo currents are examined using the neutral winds in a general circulation model of the middle atmosphere at Kyushu University. A quasi-three-dimensional ionospheric dynamo model is constructed assuming an infinite parallel conductivity in the ionosphere. This model is able to simulate both the equatorial electrojet and the global Sq current system successfully. The simulated results reveal that the equatorial electrojet is confined in quite narrow latitudes around the equator accompanied with meridional current circulations and satisfies a non-divergent structure mainly within the E region. A vertically stratified double layered structure is seen in the east-west current density near the focus latitude of the global Sq current system. It is shown that the stratified structure mainly consists of the east-west Hall current associated with the eastward wind of zonal wavenumbers 1 and 2 in the lower altitudes and the westward wind of zonal wavenumber 2 in the upper altitudes. The day-to-day variation of the neutral winds can significantly vary the induced ionospheric dynamo current system, which is recognized as changes of the focus latitude and/or the maximum value of the equatorial electrojet.

  16. Consistent Probabilistic Description of the Neutral Kaon System

    CERN Document Server

    Bernabeu, J; Villanueva-Perez, P

    2013-01-01

    The neutral Kaon system has both CP violation in the mass matrix and a non-vanishing lifetime difference in the width matrix. This leads to an effective Hamiltonian which is not a normal operator, with incompatible (non-commuting) masses and widths. In the Weisskopf-Wigner Approach (WWA), by diagonalizing the entire Hamiltonian, the unphysical non-orthogonal "stationary" states $K_{L,S}$ are obtained. These states have complex eigenvalues whose real (imaginary) part does not coincide with the eigenvalues of the mass (width) matrix. In this work we describe the system as an open Lindblad-type quantum mechanical system due to Kaon decays. This approach, in terms of density matrices for initial and final states, provides a consistent probabilistic description, avoiding the standard problems because the width matrix becomes a composite operator not included in the Hamiltonian. We consider the dominant-decay channel to two pions, so that one of the Kaon states with definite lifetime becomes stable. This new approa...

  17. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  18. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  19. Admissibility analysis for linear singular systems with time-varying delays via neutral system approach.

    Science.gov (United States)

    Liu, Zhou-Yang; Lin, Chong; Chen, Bing

    2016-03-01

    This paper studies the admissibility problem for a class of linear singular systems with time-varying delays. In order to highlight the relations between the delay and the state, the singular system is transformed into a neutral form. Then, an appropriate type of Lyapunov-Krasovskii functionals is proposed to develop a delay-derivative-dependent admissibility condition in terms of linear matrix inequalities. The derivation combines the Wirtinger-based inequality and reciprocally convex combination method. The present criterion is also for the stability test of retarded and neutral systems with time-varying delays. Some examples are provided to illustrate the effectiveness and the benefits of the proposed method.

  20. Lyapunov exponents for infinite dimensional dynamical systems

    Science.gov (United States)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  1. Detection and Prognostics on Low Dimensional Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes the application of known and novel prognostic algorithms on systems that can be described by low dimensional, potentially nonlinear dynamics....

  2. Finite-Time Stability of Neutral Fractional Time-Delay Systems via Generalized Gronwalls Inequality

    Directory of Open Access Journals (Sweden)

    Pang Denghao

    2014-01-01

    Full Text Available This paper studies the finite-time stability of neutral fractional time-delay systems. With the generalized Gronwall inequality, sufficient conditions of the finite-time stability are obtained for the particular class of neutral fractional time-delay systems.

  3. ASYMPTOTIC STABILITY OF A CLASS OF NONLINEAR NEUTRAL-TYPE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By Lyapunov functional method, sufficient conditions for the asymptotic stability of a class of neutral-type systems are discussed in this paper. This work extends some results on the stability of neutral-type systems in the previous papers. Several numerical examples are listed in the end of this paper to confirm our results.

  4. Exponential stability for uncertain neutral systems with Markov jumps

    Institute of Scientific and Technical Information of China (English)

    Shuping HE; Fei LIU

    2009-01-01

    This paper deals with the global exponential stability problems for stochastic neutral Markov jump sys-tems(MJSs) with uncertain parameters and multiple time-delays,The delays are respectively considered as constant and time varying cases,and the uncertainties are assumed to be norm bounded.By selecting appropriate Lyapunov-Krasovskii functions,it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties.The stability criteria are formulated in the form of linear matrix inequalities(LMIs),which can be easily checked in practice.Finally,two numerical examples are exploited to illustrate the effectiveness of the developed techniques.

  5. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob;

    2012-01-01

    to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans......Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  6. Recent improvements to the ITER neutral beam system design

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R., E-mail: lgrisham@pppl.gov [Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Barrera, G. [EURATOM-CIEMAT Association, Avda. Complutense 40, 28040 Madrid (Spain); Blatchford, P. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Boilson, D.; Chareyre, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Chitarin, G. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Esch, H.P.L. de [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); De Lorenzi, A. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Gagliardi, M. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Hemsworth, R.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kashiwagi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); King, D. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Krylov, A. [Russian Research Centre, Kurchatov Institute, Moscow (Russian Federation); Kuriyama, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Marconato, N.; Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Roccella, M. [L.T. Calcoli SaS, Via C. Baslini 13, 23807 Merate (Italy); and others

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Improvements to ITER accelerator voltage holding. Black-Right-Pointing-Pointer Improvements to ITER negative ion source design. Black-Right-Pointing-Pointer Improvements to ITER megavolt bushing. Black-Right-Pointing-Pointer Improvements to beamline components. Black-Right-Pointing-Pointer Accelerator design improvements. - Abstract: The ITER [1] fusion device is expected to demonstrate the feasibility of magnetically confined deuterium-tritium plasma as an energy source which might one day lead to practical power plants. Injection of energetic beams of neutral atoms (up to 1 MeV D{sup 0} or up to 870 keV H{sup 0}) will be one of the primary methods used for heating the plasma, and for driving toroidal electrical current within it, the latter being essential in producing the required magnetic confinement field configuration. The design calls for each beamline to inject up to 16.5 MW of power through the duct into the tokamak, with an initial complement of two beamlines injecting parallel to the direction of the current arising from the tokamak transformer effect, and with the possibility of eventually adding a third beamline, also in the co-current direction. The general design of the beamlines has taken shape over the past 17 years [2], and is now predicated upon an RF-driven negative ion source based upon the line of sources developed by the Institute for Plasma Physics (IPP) at Garching during recent decades [3-5], and a multiple-aperture multiple-grid electrostatic accelerator derived from negative ion accelerators developed by the Japan Atomic Energy Agency (JAEA) across a similar span of time [6-8]. During the past years, the basic concept of the beam system has been further refined and developed, and assessment of suitable fabrication techniques has begun. While many design details which will be important to the installation and implementation of the ITER beams have been worked out during this time, this paper focuses

  7. Brief review on plasma propulsion with neutralizer-free systems

    Science.gov (United States)

    Rafalskyi, D.; Aanesland, A.

    2016-06-01

    Electric space propulsion is an intensively developing field addressing new demands and challenges for long-term spacecraft operation. Many novel plasma propulsion concepts aim to find new acceleration principles, use alternative propellants, upscale or downscale thrusters for large thrust or for very small spacecrafts etc. In this work we review the neutralizer-free concepts, where both positive and negative particles are extracted and accelerated from plasmas. We can divide these concepts into three main categories, defined by their acceleration principle: (i) neutral beam generation, (ii) plasma acceleration/expansion and (iii) bipolar beam acceleration. We describe the basic physical principles and evaluate the main advantages and drawbacks in view of general space applications. We also present here further detail on a recent concept where RF voltages are used to accelerate quasi-simultaneously positive ions and electrons from the same source.

  8. Stability of Non-Neutral and Neutral Dynamic Switched Systems Subject to Internal Delays

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2005-01-01

    Full Text Available This study deals with the quadratic stability and linear state-feedback and output-feedback stabilization of switched delayed linear dynamic systems with, in general, a finite number of non commensurate constant internal point delays. The results are obtained based on Lyapunov’s stability analysis via appropriate Krasovsky-Lyapunov’s functionals and the related stability study is performed to obtain both delay independent and delay dependent results. It is proved that the stabilizing switching rule is arbitrary if all the switched subsystems are quadratically stable and that it exists a (in general, non-unique stabilizing switching law when the system is polytopic, stable at some interior point of the polytope but with non-necessarily stable parameterizations at the vertices defining the subsystems.

  9. Observation Of Cp Violation In The Neutral B Meson System

    CERN Document Server

    Levy, S L

    2003-01-01

    This dissertation presents a measurement of time- dependent CP -violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-11 asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million ϒ(4S) → BB¯ decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/yK0S,y2S K0S,cc1K0 S , and hcK0S , or to flavor-eigenstates involving D(*)π/ρ/ a1 and J/y K*0(K*0 → K+ π−), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2β, is determined from a simultaneous maximum-likelihood f...

  10. Observation of CP violation in the neutral B meson system

    Science.gov (United States)

    Levy, Stephen Leonard

    This dissertation presents a measurement of time-dependent CP -violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-11 asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million Upsilon(4S) → BB¯ decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/yK0S,y2S K0S,cc1K0 S , and hcK0S , or to flavor-eigenstates involving D(*)pi/rho/ a1 and J/y K*0(K*0 → K+ pi-), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor- and CP-eigenstate samples. We measure sin2beta = 0.755 +/- 0.074 (stat) +/-0.030 (syst).

  11. Three-Dimensional Robotic Vision System

    Science.gov (United States)

    Nguyen, Thinh V.

    1989-01-01

    Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.

  12. Electrically Detected Magnetic Resonance of Neutral Donors Interacting with a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lo, C. C.; Lang, V.; George, R. E.; Morton, J. J. L.; Tyryshkin, A. M.; Lyon, A.; Bokor, J.; Schenkel, T.

    2011-04-20

    We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas (2DEG) resonance signal increases by two orders of magnitude from X- to W-band, while the donor resonance signals are enhanced by over one order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the 2DEG is the main mechanism giving rise to the spin resonance signals.

  13. Scattering for Infinite Dimensional Port Hamiltonian Systems

    NARCIS (Netherlands)

    Macchelli, Alessandro; Stramigioli, Stefano; Schaft, Arjan van der; Melchiorri, Claudio

    2002-01-01

    In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian system is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-

  14. Efficient electrochemical water oxidation in neutral and near-neutral systems with a nanoscale silver-oxide catalyst.

    Science.gov (United States)

    Joya, Khurram S; Ahmad, Zahoor; Joya, Yasir F; Garcia-Esparza, Angel T; de Groot, Huub J M

    2016-08-11

    In electrocatalytic water splitting systems pursuing for renewable energy using sunlight, developing robust, stable and easily accessible materials operating under mild chemical conditions is pivotal. We present here a unique nanoparticulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3(-)/CO2 system under benign conditions. Micrographs show that they exhibit a nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of >1.1 mA cm(-2) is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ion free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ion free electrolytes and tend to deactivate with time and lose catalytic performance during long-term experimental tests.

  15. Efficient electrochemical water oxidation in neutral and near-neutral systems by nanoscale silver-oxide catalyst

    KAUST Repository

    Joya, Khurram

    2016-07-19

    In electrocatalytic water splitting systems pursuing for renewable energy using sun light, developing robust, stable and easy accessible materials operating under mild chemical conditions is pivotal. We present here unique nano-particulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3–/CO2 system under benign conditions. Mircographs show that they exhibit nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of > 1.1 mA cm–2 is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ions free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ions free electrolyte and tend to degrade with time and lose catalytic performance during long-term experimental tests.

  16. Dynamic disturbance rejection controllers for neutral time delay systems with application to a central heating system

    Institute of Scientific and Technical Information of China (English)

    KOUMBOULIS Fotis N.; KOUVAKAS Nikolaos D.; PARASKEVOPOULOS Paraskevas N.

    2009-01-01

    In the present paper the problem of disturbance rejection of single input-single output neutral time delay systems with multiple measurable disturbances is solved via dynamic controllers. In particular, the general form of the controller matrices is presented, while the necessary and sufficient conditions for the controller to be realizable are offered. The proposed technique is applied to a test case neutral time delay central heating system. In particular, the nonlinear model of the plant and its linearized approximation are presented. Based on the linearized model, a two-stage controller is designed in order to regulate the room temperature and the boiler effluent temperature. The performance of the closed loop system is investigated through computational experiments.

  17. NGPG-STABILITY OF LINEAR MULTISTEP METHODS FOR SYSTEMS OF GENERALIZED NEUTRAL DELAY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    丛玉豪

    2001-01-01

    The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations. After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGPG-stable if and only if it is A-stable.

  18. Exponential Stabilization of Delay Neutral Systems under Sampled-Data Control

    OpenAIRE

    Seuret, Alexandre; Fridman, Emilia; Richard, Jean-Pierre

    2005-01-01

    International audience; This paper considers the exponential stabilization of delay systems of the neutral type via sampled-data control. The control input of the neutral system can present a delay, constant or variable. The sampling period is not necessarily constant. It is only assumed that the time between to successive sampling instants is bounded. Since the sampling effect (sampling and zero-holder) is equivalent to a variable delay, the resulting system is modelled as a continuous-time ...

  19. Observation of CP Violation in the Neutral B Meson System

    Energy Technology Data Exchange (ETDEWEB)

    Levy, S

    2004-06-16

    This dissertation presents a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or to flavor-eigenstates involving D{sup (*)}{pi}/{rho}/a{sub 1} and J/{psi}K*{sup 0}(K*{sup 0} {yields} K{sup +} {pi}{sup -}), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2{beta}, is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor- and CP-eigenstate samples. We measure sin2{beta} = 0.755 {+-} 0.074 (stat) {+-} 0.030 (syst).

  20. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  1. Entropy exchange for infinite-dimensional systems

    Science.gov (United States)

    Duan, Zhoubo; Hou, Jinchuan

    2017-01-01

    In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein’s inequality, the subadditivity and the triangle inequality about the entropy including infinite entropy for the infinite-dimensional systems are established, and then, applied to compare the entropy exchange with the entropy change. PMID:28164995

  2. POSITIVE PERIODIC SOLUTIONS TO NEUTRAL RATIO-DEPENDENT PREDATOR-PREY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Using Mawhin's continuation theorem of coincidence degree theory,the existenceof periodic solutions to a neutral ratio-dependent predator-prey system is considered.The results in this paper generalize the corresponding results of the known literature.

  3. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, M.; Groth, C.P.T. [Univ. of Toronto, Inst. for Aerospace Studies, Toronto, Ontario (Canada)]. E-mail: jugroot@utias.utoronto.ca; groth@utias.utoronto.ca; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B. [MDS SCIEX, Concord, Ontario (Canada)

    2004-07-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  4. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  5. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  6. Fidelity of states in infinite dimensional quantum systems

    CERN Document Server

    Hou, Jinchuan

    2011-01-01

    In this paper we discuss the fidelity of states in infinite dimensional systems, give an elementary proof of the infinite dimensional version of Uhlmann's theorem, and then, apply it to generalize several properties of the fidelity from finite dimensional case to infinite dimensional case. Some of them are somewhat different from those for finite dimensional case.

  7. A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows

    CERN Document Server

    Güçlü, Yaman

    2013-01-01

    The term `Convected Scheme' (CS) refers to a family of algorithms, most usually applied to the solution of Boltzmann's equation, which uses a method of characteristics in an integral form to project an initial cell forward to a group of final cells. As such the CS is a `forward-trajectory' semi-Lagrangian scheme. For multi-dimensional simulations of neutral gas flows, the cell-centered version of this semi-Lagrangian (CCSL) scheme has advantages over other options due to its implementation simplicity, low memory requirements, and easier treatment of boundary conditions. The main drawback of the CCSL-CS to date has been its high numerical diffusion in physical space, because of the 2$^{\\text{nd}}$ order remapping that takes place at the end of each time step. By means of a Modified Equation Analysis, it is shown that a high order estimate of the remapping error can be obtained a priori, and a small correction to the final position of the cells can be applied upon remapping, in order to achieve full compensatio...

  8. Robust dissipative filtering for continuous-time polytopic uncertain neutral systems

    Institute of Scientific and Technical Information of China (English)

    Duan Guangren; L(u) Lingling; Wu Aiguo

    2009-01-01

    This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.

  9. The metallic state in neutral radical conductors: dimensionality, pressure and multiple orbital effects.

    Science.gov (United States)

    Tian, Di; Winter, Stephen M; Mailman, Aaron; Wong, Joanne W L; Yong, Wenjun; Yamaguchi, Hiroshi; Jia, Yating; Tse, John S; Desgreniers, Serge; Secco, Richard A; Julian, Stephen R; Jin, Changqing; Mito, Masaki; Ohishi, Yasuo; Oakley, Richard T

    2015-11-11

    Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change. All three radicals order as spin-canted antiferromagnets, but spin-canted ordering is lost at pressures thermal activation energy for conduction Eact is eliminated at pressures ranging from ∼3 GPa for R = F to ∼12 GPa for R = Ph, heralding formation of a highly correlated (or bad) metallic state. For R = F, H the pressure-induced Mott insulator to metal conversion has been tracked by measurements of optical conductivity at ambient temperature and electrical resistivity at low temperature. For R = F compression to 6.2 GPa leads to a quasiquadratic temperature dependence of the resistivity over the range 5-300 K, consistent with formation of a 2D Fermi liquid state. DFT band structure calculations suggest that the ease of metallization of these radicals can be ascribed to their multiorbital character. Mixing and overlap of SOMO- and LUMO-based bands affords an increased kinetic energy stabilization of the metallic state relative to a single SOMO-based band system.

  10. Vortices in Low-Dimensional Magnetic Systems

    Science.gov (United States)

    Costa, B. V.

    2011-05-01

    Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.

  11. Obtain Lower-Dimensional Turbulence Systems from Higher-Dimensional Lax Integrable Models

    Institute of Scientific and Technical Information of China (English)

    LOU Sen-Yue

    2001-01-01

    Taking the well known (1-+l)-dimensional turbulence system,the Korteweg de-Vries Burgers equation,as a special example,we show that some types of lower-dimensional turbulence systems may be derived from some higherdimensional Lax integrable models,say,the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation.On the other hand,using the Lax pair of the original higher-dimensional integrable model(s),we may obtain higher-dimensional Lax pair(s) for a lower-dimensional turbulence system.``

  12. Deconstructing the myth of the neutral analyst: an alternative from intersubjective systems theory.

    Science.gov (United States)

    Stolorow, R D; Atwood, G F

    1997-07-01

    A critique is offered of four conceptions of neutrality that have been prominent in the psychoanalytic literature: neutrality as (1) abstinence, (2) anonymity, (3) equidistance, and (4) empathy. It is argued that once the psychoanalytic situation is recognized as an intersubjective system of reciprocal mutual influence, the concept of neutrality is revealed to be an illusion. Hence, interpretations are always suggestions, transference is always contaminated, and analysis are never objective. An alternative to neutrality is found in the investigatory stance of empathic-introspective inquiry. This mode of inquiry is sharply distinguished from the prescribing of self-expressive behavior on the part of analysis, and the distinction is illustrated with a clinical vignette.

  13. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  14. Colour-Octet-Annihilation in Leading Neutral Systems of Gluon Jets

    Science.gov (United States)

    Buschbeck, B.; Mandl, F.

    2007-11-01

    Using data of the DELPHI collaboration the electric charges of Leading Systems (defined by a rapidity gap) in quark and gluon jets are measured and are compared with the results from Monte Carlo simulations which do not contain colour-octet neutralistion processes. In the data an enhanced production of neutral Leading Systems compared to the Monte Carlo predictions is found in gluon jets. This excess and its location at low masses (⩽2 GeV/c2) of the neutral Leading System is expected for colour-octet neutralistion. The quark jets are found to be in agreement with the simulation.

  15. Non-fragile guaranteed cost control for uncertain neutral large-scale interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Dan Zhao; Qingling Zhang; Heli Hu; Chunyuan Zhao

    2010-01-01

    This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.

  16. The neutralization of interferons by antibody. I. Quantitative and theoretical analyses of the neutralization reaction in different bioassay systems.

    Science.gov (United States)

    Grossberg, S E; Kawade, Y; Kohase, M; Yokoyama, H; Finter, N

    2001-09-01

    The highly specific ability of antibodies to inhibit the biologic activity of cytokines or other therapeutic proteins is widely used in research and a subject of increasing clinical importance. The need exists for a standardized approach to the reporting of neutralizing antibody potency soundly based on theoretical and practical considerations and tested by experimental data. Pursuant to the original studies of Kawade on the theoretical and functional aspects of neutralization of interferons (IFN), experimental data were obtained by different laboratories employing varied methodology to address two hypotheses concerning the nature of IFN neutralization reactions, based on a derived formula that allows expression of neutralizing power as the reduction of 10 laboratory units (LU)/ml to 1 LU/ml, the end point of most bioassays. Two hypotheses are posed: (1) antibody acts to neutralize a fixed amount of biologically active IFN molecules, or (2) antibody reduces IFN activity in a set ratio of added/residual biologically active IFN. The first, or fixed amount, hypothesis relates to the reactivity of high-affinity antibodies neutralizing equimolar amounts of antigen, whereas the second, or constant proportion, hypothesis postulates a reduction in the ratio of total added IFN to residual active IFN molecules, such as a low-affinity antibody might exhibit. Analyses of data of the neutralization of IFN-alpha and IFN-beta are presented, employing human polyclonal antibodies and murine monoclonal antibodies (mAb). The theoretical constructs of Kawade are extended in the Appendix and correlated with new experimental data in the text. The data clearly indicate that the low-antibody affinity, constant proportion hypothesis, rather than the high-antibody affinity, fixed amount hypothesis, is applicable, if the bioassay is sensitive to IFN. The findings presented here and in the following paper (pp. 743-755, this issue) taken together provide the basis for a standardized method of

  17. Topological and metric properties of a one-dimensional dynamical system in laser physics

    Science.gov (United States)

    Chakvetadze, G. S.

    2002-08-01

    The iterates of the real rational function s_{a,b}(x)=b-ax/(1+x^2) are studied in their dependence on the parameters a,b\\in\\mathbb R. The parameter ranges corresponding to regular and chaotic dynamical behaviour of the system are determined. In particular, an analogue of Jakobson's theorem is proved for a two-parameter family of one-dimensional maps close to a certain map with a neutral fixed point.

  18. Integral sliding mode control for a class of nonlinear neutral systems with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Lou Xu-Yang; Cui Bao-Tong

    2008-01-01

    This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feasibility of the proposed technique.

  19. Analysis on Pressure Distribution in HT-7 Neutral Beam Injection System

    Institute of Scientific and Technical Information of China (English)

    Zhu Wu; Chen Lian; Hu Chundong; Hu Liqun

    2005-01-01

    Neutral Beam Injection. (NBI) is an effective way to improve the efficiency of tokamak heating system. This article primarily introduces a work on the pressure distribution inside the tank of NBI heating system, especially inside the neutralizer, which is got by selecting a proper mathematical model and constructing a series of rational calculating formulas on pressure distribution. Furthermore, we simulate the pressure distribution by the Monte Carlo method. Comparing the result of simulation with that of theoretical calculation, we find that both the results are very close each other, showing their mutual validity.

  20. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment

    CERN Document Server

    Ruf, Thomas

    2015-01-01

    The antiproton storage ring LEAR offered unique opportunities to study the symmetries which exist between matter and antimatter. At variance with other approaches at this facility, CPLEAR was an experiment devoted to the study of T, CPT and CP symmetries in the neutral kaon system. It measured with high precision the time evolution of initially strangeness-tagged $K^0$ and $\\bar{K}^0$ states to determine the size of violations with respect to these symmetries in the context of a systematic study. In parallel, limits concerning quantum-mechanical predictions (EPR paradox, coherence of the wave function) or the equivalence principle of general relativity have been obtained. This article will first discuss briefly the unique low energy antiproton storage ring LEAR followed by a description of the CPLEAR experiment, including the basic formalism necessary to understand the time evolution of a neutral kaon state and the main results related to measurements of discrete symmetries in the neutral kaon system. An exce...

  1. [Neutralizing science citation index as an academic evaluation system].

    Science.gov (United States)

    Liu, Xiu-Hua; Tang, Chao-Shu

    2009-01-01

    Research papers are published in thousands of scientific journals every year in the world. The quality of these papers has to be evaluated to determine their accuracy and contribution to their research fields. Science citation index (SCI) is a citation-based metric used to rank scientific journals. The importation of SCI from abroad contributed much both to encourage Chinese scientific community to collaborate with scientists all over the world, and the development of science and technology at home. However, there have been numerous criticisms over the years of the misuse of SCI, especially impact factor, as a measure of the quality of individual research papers. This review article analyzes the history and current situation of using SCI to evaluate scientific papers, discusses how to objectively consider SCI and the other new practices to evaluate research papers. It is also suggested in the present article that the impact of domestic scientific journals on the world should be improved, and that more attention should be paid to the quality of the research papers to improve the academic evaluation system and the development of science and technology in our country.

  2. New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates

    Science.gov (United States)

    Kao, Yonggui; Wang, Changhong; Xie, Jing; Karimi, Hamid Reza

    2016-08-01

    This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates (GUTRs). In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the ? integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.

  3. Space vector modulation strategy for neutral-point voltage balancing in three-level inverter systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo Beum

    2013-01-01

    This study proposes a space vector modulation (SVM) strategy to balance the neutral-point voltage of three-level inverter systems. The proposed method is implemented by combining conventional symmetric SVM with nearest three-vector (NTV) modulation. The conventional SVM is converted to NTV...... modulation by properly adding or subtracting a minimum gate-on time. In addition, using this method, the switching frequency is reduced and a decrease of switching loss would be yielded. The neutral-point voltage is balanced by the proposed SVM strategy without additional hardware or complex calculations...

  4. Control of open-loop neutrally stable systems subject to actuator saturation and external disturbances

    NARCIS (Netherlands)

    Wang, Xu; Saberi, Ali; Grip, H°avard Fjær; Stoorvogel, Antonie Arij

    2013-01-01

    In this paper, we study the disturbance response of open-loop neutrally stable linear systems with saturating linear feedback controller. It is shown that the closed-loop states remain bounded if the disturbances con- sists of those signals that do not have large sustained frequency components

  5. Controllability of Non-densely Defined Neutral Functional Differential Systems in Abstract Space

    Institute of Scientific and Technical Information of China (English)

    Xianlong FU; Xingbo LIU

    2007-01-01

    In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-densely defined and satisfies the Hille-Yosida condition.As an application, an example is provided to illustrate the obtained result.

  6. Stabilization of neutral-type indirect control systems to absolute stability state

    NARCIS (Netherlands)

    Shatyrko, A.; Van Nooyen, R.R.P.; Kolechkina, A.; Khusainov, D.

    2015-01-01

    This paper provides sufficient conditions for absolute stability of an indirect control Lur’e problem of neutral type. The conditions are derived using a Lyapunov-Krasovskii functional and are given in terms of a system of matrix algebraic inequalities. From these matrix inequalities a sufficient co

  7. Controllability of Fractional Neutral Stochastic Integro-Differential Systems with Infinite Delay

    Directory of Open Access Journals (Sweden)

    Xichao Sun

    2013-01-01

    Full Text Available This paper is concerned with the controllability of a class of fractional neutral stochastic integro-differential systems with infinite delay in an abstract space. By employing fractional calculus and Sadovskii's fixed point principle without assuming severe compactness condition on the semigroup, a set of sufficient conditions are derived for achieving the controllability result.

  8. Controllability of neutral impulsive stochastic quasilinear integrodifferential systems with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Krishnan Balachandran

    2011-06-01

    Full Text Available We establish sufficient conditions for controllability of neutral impulsive stochastic quasilinear integrodifferential systems with nonlocal conditions in Hilbert spaces. The results are obtained by using semigroup theory, evolution operator and a fixed point technique. An example is provided to illustrate the obtained results.

  9. PERIODIC SOLUTIONS TO A KIND OF NEUTRAL DIFFERENTIAL SYSTEM:VIA (h,k)-DICHOTOMY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, based on the theory of (h, k)-Dichotomy of linear system and Kras-noselskii's fixed point theorem, we study the existence of periodic solutions to a neutral differential equation. Some new sufficient conditions are obtained to guarantee the existence and uniqueness of T-periodic solution to the equation.

  10. Characteristics of earth faults in power systems with a compensated or an unearthed neutral

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S.; Lehtonen, M. [VTT Energy, Espoo (Finland); Antila, E. [ABB Transmit Oy (Finland); Stroem, J. [Espoo Electricity Co (Finland); Ingman, S. [Vaasa Electricity Co (Finland)

    1998-08-01

    The most common fault type in the electrical distribution networks is the single phase to earth fault. For instance in the Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occurred in the networks. Therefore, data of fault occurrences have been recorded and analyzed in the medium voltage distribution networks (20 kV) at two substations, of which one has an isolated and the other a compensated neutral. In the occurring disturbances, the traces of phase currents and neutral currents in the beginning of two feeder and the traces of phase voltages and neutral voltage from the voltage measuring bay were recorded. In addition to the measured data, other information of the fault occurrences was also collected (data of the line, cause and location of permanent faults and so on)

  11. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  12. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  13. Magnetic analysis of the magnetic field reduction system of the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Germán, E-mail: german.barrera@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Ahedo, Begoña; Alonso, Javier; Ríos, Luis [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Chareyre, Julien; El-Ouazzani, Anass [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The neutral beam system for ITER consists of two heating and current drive neutral beam injectors (HNB) and a diagnostic neutral beam (DNB) injector. The proposed physical plant layout allows a possible third HNB injector to be installed later. For the correct operation of the beam, the ion source and the ion path until it is neutralized must operate under a very low magnetic field environment. To prevent the stray ITER field from penetrating inside those mentioned critical areas, a magnetic field reduction system (MFRS) will envelop the beam vessels and the high voltage transmission lines to ion source. This system comprises the passive magnetic shield (PMS), a box like assembly of thick low carbon steel plates, and the Active Correction and Compensation Coils (ACCC), a set of coils carrying a current which depends on the tokamak stray field. This paper describes the magnetic model and analysis results presented at the PMS and ACCC preliminary design review held in ITER organization in April 2013. The paper focuses on the magnetic model description and on the description of the analysis results. The iterative process for obtaining optimized currents in the coils is presented. The set of coils currents chosen among the many possible solutions, the magnetic field results in the interest regions and the fulfillment of the magnetic field requirements are described.

  14. Damage-free top-down processes for fabricating two-dimensional arrays of 7 nm GaAs nanodiscs using bio-templates and neutral beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xuanyu; Huang, Chi-Hsien; Tsukamoto, Rikako; Samukawa, Seiji [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Mortemousque, Pierre-Andre; Itoh, Kohei M; Ohno, Yuzo, E-mail: samukawa@ifs.tohoku.ac.jp [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda, Tokyo 102-0075 (Japan)

    2011-09-07

    The first damage-free top-down fabrication processes for a two-dimensional array of 7 nm GaAs nanodiscs was developed by using ferritin (a protein which includes a 7 nm diameter iron core) bio-templates and neutral beam etching. The photoluminescence of GaAs etched with a neutral beam clearly revealed that the processes could accomplish defect-free etching for GaAs. In the bio-template process, to remove the ferritin protein shell without thermal damage to the GaAs, we firstly developed an oxygen-radical treatment method with a low temperature of 280 deg. C. Then, the neutral beam etched the defect-free nanodisc structure of the GaAs using the iron core as an etching mask. As a result, a two-dimensional array of GaAs quantum dots with a diameter of {approx} 7 nm, a height of {approx} 10 nm, a high taper angle of 88 deg. and a quantum dot density of more than 7 x 10{sup 11} cm{sup -2} was successfully fabricated without causing any damage to the GaAs.

  15. Delay-dependent robust stabilization for a class of neutral systems with nonlinear perturbations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations.A new stabilization/stability scheme is presented.Using improved Lyapunov functionals.less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities(LMI).Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.

  16. Neutral Radical Molecules Ordered in Self-Assembled Monolayer Systems for Quantum Information Processing

    CERN Document Server

    Tamulis, A; Tretiak, S; Berman, G P; Allara, D L

    2003-01-01

    Implementation of quantum information processing based on spatially localized electronic spins in stable molecular radicals is discussed. The necessary operating conditions for such molecules are formulated in self-assembled monolayer (SAM) systems. As a model system we start with 1, 3 -diketone types of neutral radicals. Using first principles quantum chemical calculations we prove that these molecules have the stable localized electron spin, which may represent a qubit in quantum information processing.

  17. Robust H∞ Controller Design for Uncertain Neutral Systems via Dynamic Observer Based Output Feedback

    Institute of Scientific and Technical Information of China (English)

    Fatima El Haoussi; El (H)oussaine Tissir

    2009-01-01

    In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controllcd output. Numerical examples are provided for illustration and comparison of the proposed conditions.

  18. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [and others

    1996-04-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

  19. Exponential Stability for Neutral Stochastic Markov Systems With Time-Varying Delay and Its Applications.

    Science.gov (United States)

    Chen, Huabin; Shi, Peng; Lim, Cheng-Chew; Hu, Peng

    2016-06-01

    In this paper, the exponential stability in p th( p > 1 )-moment for neutral stochastic Markov systems with time-varying delay is studied. The derived stability conditions comprise two forms: 1) the delay-independent stability criteria which are obtained by establishing an integral inequality and 2) the delay-dependent stability criteria which are captured by using the theory of the functional differential equations. As its applications, the obtained stability results are used to investigate the exponential stability in p th( p > 1 )-moment for the neutral stochastic neural networks with time-varying delay and Markov switching, and the globally exponential adaptive synchronization for the neutral stochastic complex dynamical systems with time-varying delay and Markov switching, respectively. On the delay-independent criteria, sufficient conditions are given in terms of M -matrix and thus are easy to check. The delay-dependent criteria are presented in the forms of the algebraic inequalities, and the least upper bound of the time-varying delay is also provided. The primary advantages of these obtained results over some recent and similar works are that the differentiability or continuity of the delay function is not required, and that the difficulty stemming from the presence of the neutral item and the Markov switching is overcome. Three numerical examples are provided to examine the effectiveness and potential of the theoretic results obtained.

  20. Transport in low-dimensional mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Syzranov, Sergey

    2011-05-05

    The work is devoted to the physics of graphene-based optoelectronics and arrays of Josephson junctions. The first part deals with transport in a graphene p-n junction irradiated by an electromagnetic field. The photocurrent in such device is calculated analytically and compared to those observed in the recent experiments on graphene photodetectors. It is shown that in a clean effectively one-dimensional junction the photocurrent oscillates as a function of gate voltages due to the interference between electron paths accompanied by the resonant photon absorption. The second part of the thesis is devoted to the construction of a Drude-like theory for the transport of Cooper pairs in weakly disordered Josephson networks and to finding the conductivity and the characteristic temperature of the commencement of strong localization. Also, it is shown that the low-temperature superconductor-insulator transition is necessarily of the first order in all 3D and in most 2D systems.

  1. Finite Dimensional Compensators for Infinite Dimensional Systems with Unbounded Control Action.

    Science.gov (United States)

    1984-05-01

    from infinite dimensional linear systems theory that A + GC . V(A) + X generates an exponentially stable semigroup on X (see (5) or [161). It is also...Matheatica Aplicada e Computacional, 2 (1983). 15] R.F. CURTAIN/A.J. PRITCHARD Infinite Dimensional Linear Systems Theory LNCIS 8, Springer-Verlag

  2. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  3. The usefulness of 3-dimensional endoscope systems in endoscopic surgery.

    Science.gov (United States)

    Egi, Hiroyuki; Hattori, Minoru; Suzuki, Takahisa; Sawada, Hiroyuki; Kurita, Yuichi; Ohdan, Hideki

    2016-10-01

    The image quality and performance of 3-dimensional video image systems has improved along with improvements in technology. However, objective evaluation on the usefulness of 3-dimensional video image systems is insufficient. Therefore, we decided to investigate the usefulness of 3-dimensional video image systems using the objective endoscopic surgery technology evaluating apparatus that we have developed, the Hiroshima University Endoscopic Surgical Assessment Device (HUESAD). The participants were 28 student volunteers enrolled in Hiroshima University (17 men and 11 women, age: median 22.5, range 20-25), with no one having experienced endoscopic surgery training. Testing was carried out by dividing the subjects into two groups to initially carry out HUESAD with 2-dimensional video imaging (N = 14) and with 3-dimensional video imaging (N = 14). Questionnaires were carried out along with the investigation regarding both 2-dimensional and 3-dimensional video imaging. The task was carried out for approximately 15 min regarding both 2-dimensional and 3-dimensional video imaging. Lastly, the Mental Rotation Test, which is a standard space perception ability test, was used to evaluate the space perception ability. No difference was observed in the nauseous and uncomfortable feeling of practitioners between the two groups. Regarding smoothness, no difference was observed between 2-dimensional and 3-dimensional video imaging (p = 0.8665). Deviation (space perception ability) and approaching time (accuracy) were significantly lower with 3-dimensional video imaging compared to 2-dimensional video imaging. Moreover, the approaching time (accuracy) significantly improved in 3-dimensional video imaging compared to 2-dimensional video imaging in the group with low space perception ability (p = 0.0085). Objective evaluation using HUESAD and subjective evaluation by questionnaire revealed that endoscopic surgery techniques significantly improved in 3-dimensional video

  4. 4{sup +} Dimensional nuclear systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y. [PHILOSOPHIA, Seoul (Korea, Republic of)

    2009-04-15

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4{sup +}D) Technology{sup TM}, a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4{sup +}D Technology{sup TM}for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4{sup +}D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4{sup +}D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between

  5. Dimensional reduction of nonlinear time delay systems

    Directory of Open Access Journals (Sweden)

    M. S. Fofana

    2005-01-01

    infinite-dimensional problem without the assumption of small time delay. This dimensional reduction is illustrated in this paper with the delay versions of the Duffing and van der Pol equations. For both nonlinear delay equations, transcendental characteristic equations of linearized stability are examined through Hopf bifurcation. The infinite-dimensional nonlinear solutions of the delay equations are decomposed into stable and centre subspaces, whose respective dimensions are determined by the linearized stability of the transcendental equations. Linear semigroups, infinitesimal generators, and their adjoint forms with bilinear pairings are the additional candidates for the infinite-dimensional reduction.

  6. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [and others

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  7. Dynamics of Nonlinear Schrodinger / Gross-Pitaevskii Equations; Mass Transfer in Systems with Solitons and Degenerate Neutral Modes

    CERN Document Server

    Gang, Zhou

    2008-01-01

    Nonlinear Schrodinger / Gross-Pitaevskii equations play a central role in the understanding of nonlinear optical and macroscopic quantum systems. The large time dynamics of such systems is governed by interactions of the nonlinear ground state manifold, discrete neutral modes (``excited states'') and dispersive radiation. Systems with symmetry, in spatial dimensions larger than one, typically have degenerate neutral modes. Thus, we study the large time dynamics of systems with degenerate neutral modes. This requires a new normal form (nonlinear matrix Fermi Golden Rule) governing the system's large time asymptotic relaxation to the ground state (soliton) manifold.

  8. Robust stabilization using LMI techniques of neutral time-delay systems subject to input saturation

    Science.gov (United States)

    El Fezazi, Nabil; El Haoussi, Fatima; Houssaine Tissir, El; Alvarez, Teresa; Tadeo, Fernando

    2017-01-01

    The robust stabilization of uncertain saturated neutral systems with state delay is solved in this paper: based on a free weighting matrix approach, sufficient conditions are obtained via an LMI formulation. From these conditions, state feedback gains that ensure stability for the largest set of admissible initial conditions can be calculated solving optimization problems with LMI constraints. Some applications of this methodology to feedback control are then presented and compared with previous results in the literature.

  9. Estimates for solutions to a class of nonlinear time-delay systems of neutral type

    Directory of Open Access Journals (Sweden)

    Gennadii V. Demidenko

    2015-02-01

    Full Text Available We consider nonlinear time-delay systems of neutral type with constant coefficients in the linear terms, $$ \\frac{d}{dt}\\big(y(t + D y(t-\\tau\\big = A y(t + B y(t-\\tau + F(t, y(t, y(t-\\tau. $$ We obtain estimates characterizing the exponential decay of solutions at infinity, and dependending on the norms of the powers of D.

  10. Fault diagnosis in neutral point indirectly grounded system based on information fusion

    Institute of Scientific and Technical Information of China (English)

    于飞; 鞠丽叶; 刘喜梅; 崔平远; 钟秋海

    2003-01-01

    In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.

  11. Efficient, radiation-hardened, 400- and 800-keV neutral-beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, O.A.; Cooper, W.S.; Fink, J.A.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Tanabe, J.

    1983-04-01

    We present designs for two negative-ion based neutral beam lines with reactor-level power output. Both beam lines make use of such technologically advanced features as high-current-density surface-conversion ion sources, transverse-field-focussing (TFF) acceleration and transport, and laser photodetachment. For the second of these designs, we also presented detailed beam and vacuum calculations, as well as a brief description of a proof-of-principle test system currently under development.

  12. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard's Neutral Electrolyte description

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D G

    2007-05-16

    Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of 'diffusion Onsager coefficients' and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b{sub 23} term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

  13. Robust H-infinity reliable control for a class of nonlinear uncertain neutral delay systems

    Institute of Scientific and Technical Information of China (English)

    Ximing SUN; Jun ZHAO; Bing CHEN

    2004-01-01

    This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures.We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties,and actuator failures among a prespecified subset of actuators.An example is also given to illustrate the effectiveness of the proposed approach.

  14. Singular Value Decomposition-Based Method for Sliding Mode Control and Optimization of Nonlinear Neutral Systems

    OpenAIRE

    Heli Hu; Dan Zhao; Qingling Zhang

    2013-01-01

    The sliding mode control and optimization are investigated for a class of nonlinear neutral systems with the unmatched nonlinear term. In the framework of Lyapunov stability theory, the existence conditions for the designed sliding surface and the stability bound ${\\alpha }^{\\ast }$ are derived via twice transformations. The further results are to develop an efficient sliding mode control law with tuned parameters to attract the state trajectories onto the sliding surface in finit...

  15. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  16. Novel Covariance-Based Neutrality Test of Time-Series Data Reveals Asymmetries in Ecological and Economic Systems.

    Science.gov (United States)

    Washburne, Alex D; Burby, Joshua W; Lacker, Daniel

    2016-09-01

    Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system's dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems.

  17. Delay-dependent H-infinity filtering for neutral time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Huiying LI; Guifang LI; Chengwu YANG

    2006-01-01

    This paper deals with the robust delay-dependent H-infinity filtering problem for neutral delay differential systems. The resulting filter is of the Luenberger observer type, and it guarantees that the filtering systems remains asymptotically stable and satisfies a prescribed H-infinity performance level. The Lyapunov stability theory and the descriptor model transformation are used for analysis of the system and are expected to be least conservative as compared with existing design methods. Some examples are provided to demonstrate the validity of proposed design approach.

  18. Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors

    Science.gov (United States)

    Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.

    2016-12-01

    In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.

  19. Novel Covariance-Based Neutrality Test of Time-Series Data Reveals Asymmetries in Ecological and Economic Systems

    Science.gov (United States)

    Burby, Joshua W.; Lacker, Daniel

    2016-01-01

    Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems. PMID:27689714

  20. On the influence of a Rashba-type coupling induced by Lorentz-violating effects on a Landau system for a neutral particle

    CERN Document Server

    Bakke, K

    2014-01-01

    We study a possible scenario of the Lorentz symmetry violation background that allows us to build an analogue of the Landau system for a nonrelativistic Dirac neutral particle interacting with a field configuration of crossed electric and magnetic fields. We also discuss the arising of analogues of the Rashba coupling, the Zeeman term and the Darwin term from the Lorentz symmetry breaking effects, and the influence of these terms on the analogue of the Landau system confined to a two-dimensional quantum ring. Finally, we show that this analogy with the Landau system confined to a two-dimensional quantum ring allows us to establish an upper bound for the Lorentz symmetry breaking parameters.

  1. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    Science.gov (United States)

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK.

  2. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  3. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment

    Science.gov (United States)

    Ruf, Thomas

    2015-07-01

    The antiproton storage ring LEAR offered unique opportunities to study the symmetries which exist between matter and antimatter. At variance with other approaches at this facility, CPLEAR was an experiment devoted to the study of T, \\{CPT} and \\{CP} symmetries in the neutral kaon system. It measured with high precision the time evolution of initially strangeness-tagged K0 and overline K ^0 states to determine the size of violations with respect to these symmetries in the context of a systematic study. In parallel, limits concerning quantum-mechanical predictions (EPR paradox, coherence of the wave function) or the equivalence principle of general relativity have been obtained. This article will first discuss briefly the unique low energy antiproton storage ring LEAR followed by a description of the CPLEAR experiment, including the basic formalism necessary to understand the time evolution of a neutral kaon state and the main results related to measurements of discrete symmetries in the neutral kaon system. An excellent and exhaustive review of the CPLEAR experiment and all its measurements is given in Ref. 1.

  4. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  5. Contribution of CPLEAR to the physics of the neutral-kaon system

    Energy Technology Data Exchange (ETDEWEB)

    Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Backenstoss, G.; Bargassa, P.; Behnke, O.; Benelli, A.; Bertin, V.; Blanc, F.; Bloch, P.; Carlson, P.; Carroll, M.; Cawley, E.; Chertok, M.B.; Danielsson, M.; Dejardin, M.; Derre, J.; Ealet, A.; Eleftheriadis, C.A.; Faravel, L.; Fetscher, W.; Fidecaro, M.; Filipcic, A.; Francis, D.; Fry, J.; Gabathuler, E.; Gamet, R.; Gerber, H.-J.; Go, A.; Haselden, A.; Hayman, P.J.; Henry-Couannier, F.; Hollander, R.W.; Jon-And, K.; Kettle, P.-R.; Kokkas, P.; Kreuger, R.; Le Gac, R.; Leimgruber, F.; Mandic, I.; Manthos, N.; Marel, G.; Mikuz, M.; Miller, J.; Montanet, F.; Muller, A.; Nakada, T.; Pagels, B.; Papadopoulos, I.; Pavlopoulos, P.; Polivka, G.; Rickenbach, R.; Roberts, B.L.; Ruf, T.; Schaefer, M.; Schaller, L.A.; Schietinger, T.; Schopper, A.; Schune, P.; Tauscher, L.; Thibault, C.; Touchard, F.; Touramanis, C.; Van Eijk, C.W.E.; Vlachos, S.; Weber, P.; Wigger, O.; Wolter, M.; Zavrtanik, D.; Zimmerman, D

    1999-04-01

    We report the results of the CPLEAR experiment on CP-, T- and CPT-symmetries in the neutral kaon system. CP-violation parameters are given for different decay channels. For the first time T-violation is measured by a direct method using semileptonic decays. The CPT symmetry in the kaons decays is tested through the parameters Im({delta}), from the Bell-Steinberger relation, with a precision of 10{sup -5} and Re({delta}) with a precision of a few 10{sup -4} (two order of magnitude better than the previous measurement). These two measurements allow us to bound the difference in mass and width of K{sup 0} and K-bar{sup 0} to be equal within 10{sup -18} GeV. In the limit of CPT invariance in the neutral kaon decays, the K{sup 0} and K-bar{sup 0} masses are equal within 10{sup -19} GeV.

  6. Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems.

    Science.gov (United States)

    Wang, Ting; Li, Tao; Zhang, Guobao; Fei, Shumin

    2017-09-01

    This paper studies the asymptotic stability for a class of neutral systems with mixed time-varying delays. Through utilizing some Wirtinger-based integral inequalities and extending the convex combination technique, the upper bound on derivative of Lyapunov-Krasovskii (L-K) functional can be estimated more tightly and three mixed-delay-dependent criteria are proposed in terms of linear matrix inequalities (LMIs), in which the nonlinearity and parameter uncertainties are also involved, respectively. Different from those existent works, based on the interconnected relationship between neutral delay and state one, some novel triple integral functional terms are constructed and the conservatism can be effectively reduced. Finally, two numerical examples are given to show the benefits of the proposed criteria. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit

    Science.gov (United States)

    Degond, P.; Deluzet, F.; Doyen, D.

    2017-02-01

    In this article, we design Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, this limit being characterized by a Debye length negligible compared to the space scale of the problem. These methods are consistent discretizations of the Vlasov-Maxwell system which, in the quasi-neutral limit, remain stable and are consistent with a quasi-neutral model (in this quasi-neutral model, the electric field is computed by means of a generalized Ohm law). The derivation of Asymptotic-Preserving methods is not straightforward since the quasi-neutral model is a singular limit of the Vlasov-Maxwell model. The key step is a reformulation of the Vlasov-Maxwell system which unifies the two models in a single set of equations with a smooth transition from one to another. As demonstrated in various and demanding numerical simulations, the Asymptotic-Preserving methods are able to treat efficiently both quasi-neutral plasmas and non-neutral plasmas, making them particularly well suited for complex problems involving dense plasmas with localized non-neutral regions.

  8. Design of Control Server Application Software for Neutral Beam Injection System

    Institute of Scientific and Technical Information of China (English)

    施齐林; 胡纯栋; 盛鹏; 宋士化

    2012-01-01

    For the remote control of a neutral beam injection (NBI) system, a software NBIcsw is developed to work on the control server. It can meet the requirements of data transmission and operation-control between the NBI measurement and control layer (MCL) and the remote monitoring layer (RML). The NBIcsw runs on a Linux system, developed with client/server (C/S) mode and multithreading technology. It is shown through application that the software is with good efficiency.

  9. Spontaneous polarization of the neutral interface for valence asymmetric coulombic systems.

    Science.gov (United States)

    di Caprio, D; Holovko, M

    2009-02-19

    In this paper, we discuss the phenomenon of a spontaneous polarization of a neutral hard planar interface for valence asymmetric Coulombic systems. Within a field theoretical description, we account for the existence of nontrivial charge density and electric potential profiles. The analysis of the phenomenon shows that the effect is related to combinatorics in relation with the existence of the two independent species cations and anions. This simple and basic feature is related to the quantum mechanical properties of the system. The theoretical results are compared with numerical simulations data and are shown to be in very good agreement, which a fortiori justifies our physical interpretation.

  10. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  11. Robust Stability of a Class of Uncertain Lur'e Systems of Neutral Type

    Directory of Open Access Journals (Sweden)

    W. Weera

    2012-01-01

    Full Text Available This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.

  12. Delay-independent robust guaranteed-cost control for uncertain linear neutral systems

    Institute of Scientific and Technical Information of China (English)

    Li Hongfei; Zhou Jun

    2007-01-01

    This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.

  13. Design of Filter for a Class of Switched Linear Neutral Systems

    Directory of Open Access Journals (Sweden)

    Caiyun Wu

    2013-01-01

    Full Text Available This paper is concerned with the filtering problem for a class of switched linear neutral systems with time-varying delays. The time-varying delays appear not only in the state but also in the state derivatives. Based on the average dwell time approach and the piecewise Lyapunov functional technique, sufficient conditions are proposed for the exponential stability of the filtering error dynamic system. Then, the corresponding solvability condition for a desired filter satisfying a weighted performance is established. All the conditions obtained are delay-dependent. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theory.

  14. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  15. Wavefunction controllability for finite-dimensional bilinear quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Turinici, Gabriel [INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France); Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544-1009 (United States)

    2003-03-14

    We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.

  16. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  17. On Relations between One-Dimensional Quantum and Two-Dimensional Classical Spin Systems

    Directory of Open Access Journals (Sweden)

    J. Hutchinson

    2015-01-01

    Full Text Available We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems characterised by long-range interactions and with critical properties equivalent to those of the class of one-dimensional quantum systems treated by the authors in a previous publication. In particular, we use three approaches: the Trotter-Suzuki mapping, the method of coherent states, and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in the companion paper for the classical systems identified.

  18. Application of dimensional analysis in systems modeling and control design

    CERN Document Server

    Balaguer, Pedro

    2013-01-01

    Dimensional analysis is an engineering tool that is widely applied to numerous engineering problems, but has only recently been applied to control theory and problems such as identification and model reduction, robust control, adaptive control, and PID control. Application of Dimensional Analysis in Systems Modeling and Control Design provides an introduction to the fundamentals of dimensional analysis for control engineers, and shows how they can exploit the benefits of the technique to theoretical and practical control problems.

  19. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  20. Higher dimensional black holes as constrained systems

    CERN Document Server

    Nieto, J A; Villanueva, V M

    2013-01-01

    We construct a Lagrangian and Hamiltonian formulation for charged black holes in a d-dimensional maximally symmetric spherical space. By considering first new variables that give raise to an interesting dimensional reduction of the problem, we show that the introduction of a charge term is compatible with classical solutions to Einstein equations. In fact, we derive the well-known solutions for charged black holes, specially in the case of d=4, where the Reissner-Nordstr\\"om solution holds, without reference to Einstein field equations. We argue that our procedure may be of help for clarifying symmetries and dynamics of black holes, as well as some quantum aspects.

  1. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector

    Science.gov (United States)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team

    2016-10-01

    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  2. Exponential stability of solutions to nonlinear time-delay systems of neutral type

    Directory of Open Access Journals (Sweden)

    Gennadii V. Demidenko

    2016-01-01

    Full Text Available We consider a nonlinear time-delay system of neutral equations with constant coefficients in the linear terms $$ \\frac{d}{dt}\\big(y(t + D y(t-\\tau\\big = A y(t + B y(t-\\tau + F(t, y(t, y(t-\\tau, $$ where $$ \\|F(t,u,v\\| \\le q_1\\|u\\|^{1+\\omega_1} + q_2\\|v\\|^{1+\\omega_2}, \\quad q_1, q_2, \\omega_1, \\omega_2 > 0. $$ We obtain estimates characterizing the exponential decay of solutions at infinity and estimates for attraction sets of the zero solution.

  3. A transient thermal model of a neutral buoyancy cryogenic fluid delivery system

    Science.gov (United States)

    Bue, Grant C.; Conger, Bruce S.

    A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.

  4. Design of Dynamic Controller for Neutral Differential Systems with Multiple Delays in Control Input

    Institute of Scientific and Technical Information of China (English)

    Zi-Xin Liu; Shu Lü; Shou-Ming Zhong

    2009-01-01

    The design problem of dynamic output feedback controller for a class of multi-delayed neutral systems has been considered. A criterion for the existence and asymptotic stability of such controller is derived via defining a new integral operator. The criterion is expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. One numerical example is given to illustrate the proposed design method. Numerical simulation shows that the new design method is valid.

  5. Asymptotic Stability of Caputo Type Fractional Neutral Dynamical Systems with Multiple Discrete Delays

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2014-01-01

    Full Text Available We discuss the delay-independent asymptotic stability of Caputo type fractional-order neutral differential systems with multiple discrete delays. Based on the algebraic approach and matrix theory, the sufficient conditions are derived to ensure the asymptotic stability for all time-delay parameters. By applying the stability criteria, one can avoid solving the roots of transcendental equations. The results obtained are computationally flexible and convenient. Moreover, an example is provided to illustrate the effectiveness and applicability of the proposed theoretical results.

  6. Decentralized H∞ Control for Uncertain Interconnected Systems of Neutral Type via Dynamic Output Feedback

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2014-01-01

    Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.

  7. Afløbsinstallationer - systemer og dimensionering

    DEFF Research Database (Denmark)

    Brandt, Erik; Faldager, Inge

    SBi-anvisning 255 beskriver afløbssystemer og retningslinjer for dimensionering af afløbssystemer i henhold til Bygningsreglementet og derigennem DS 432:2009. Anvisningen henvender sig til projekterende og udførende af afløbsinstallationer i nybyggeri eller eksisterende byggeri, eller som skal...

  8. Asymptotic-preserving Particle-In-Cell methods for the Vlasov-Maxwell system near quasi-neutrality

    CERN Document Server

    Degond, Pierre; Doyen, David

    2015-01-01

    In this article, we design Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, this limit being characterized by a Debye length negligible compared to the space scale of the problem. These methods are consistent discretizations of the Vlasov-Maxwell system which, in the quasi-neutral limit, remain stable and are consistent with a quasi-neutral model (in this quasi-neutral model, the electric field is computed by means of a generalized Ohm law). The derivation of Asymptotic-Preserving methods is not straightforward since the quasi-neutral model is a singular limit of the Vlasov-Maxwell model. The key step is a reformulation of the Vlasov-Maxwell system which unifies the two models in a single set of equations with a smooth transition from one to another. As demonstrated in various and demanding numerical simulations, the Asymptotic-Preserving methods are able to treat efficiently both quasi-neutral plasmas and non-neutral plasmas, making them particularly we...

  9. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  10. Numerical study on a canonized Hamiltonian system representing reduced magnetohydrodynamics and its comparison with two-dimensional Euler system

    CERN Document Server

    Kaneko, Yuta

    2014-01-01

    Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term -{\\Delta}Q, just representing the current density (Q is a Clebsch variable, and {\\Delta} is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensional Euler vorticity equation of a neutral fluid. A heuristic estimate shows that current sheets grow exponentially (even in a fully nonlinear regime) together with the action variable P that is conjugate to Q. By numerical simulation, the predicted behavior of the canonical variables, yielding exponential growth of current sheets, has been demonstrated.

  11. General flat four-dimensional world pictures and clock systems

    Science.gov (United States)

    Hsu, J. P.; Underwood, J. A.

    1978-01-01

    We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.

  12. Semifolded Localized Structures in Three-Dimensional Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Ping; ZHENG Chun-Long; CHEN Li-Qun

    2004-01-01

    By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.

  13. Semifolded Localized Structures in Three-Dimensional Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Ping; ZHENGChun-Long; CHENLi-Qun

    2004-01-01

    By means ofa Painlev6 Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer Kaup Kupershmidt system with variable coeft~cients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.

  14. Optimal state estimation for d-dimensional quantum systems

    CERN Document Server

    Bruss, D

    1999-01-01

    We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.

  15. Experimental violation of Bell inequalities for multi-dimensional systems

    CERN Document Server

    Lo, Hsin-Pin; Yabushita, Atsushi; Chen, Yueh-Nan; Luo, Chih-Wei; Kobayashi, Takayoshi

    2016-01-01

    Quantum correlations between spatially separated parts of a $d$-dimensional bipartite system ($d\\geq 2$) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for $d$-dimensional systems provides evidence of quantum nonlocality. Experimental verification is required to confirm whether a quantum system of extremely large dimension can possess this feature, however it has never been performed for large dimension (e.g., $d\\geq 1000$). Here, we report that Bell inequalities are experimentally violated for bipartite quantum systems of extremely high dimensionality with the usual ensembles of polarization-entangled photon pairs. Our entanglement source violates Bell inequalities for extremely high dimensionality of $d>4000$. The designed scenario offers a possible new method to investigate the entanglement of multipartite system...

  16. SYSTEM DESIGN AND PERFORMANCE FOR THE RECENT DIII-D NEUTRAL BEAM COMPUTER UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    PHILLIPS,J.C; PENAFLOR,B.G; PHAM,N.Q; PIGLOWSKI,D.A

    2003-10-01

    OAK-B135 This operating year marks an upgrade to the computer system charged with control and data acquisition for neutral beam injection system's heating at the DIII-D National Fusion Facility, funded by the US Department of Energy and operated by General Atomics (GA). This upgrade represents the third and latest major revision to a system which has been in service over twenty years. The first control and data acquisition computers were four 16 bit mini computers running a proprietary operating system. Each of the four controlled two ion source over dedicated CAMAC highway. In a 1995 upgrade, the system evolved to be two 32 bit Motorola mini-computers running a version of UNIX. Each computer controlled four ion sources with two CAMAC highways per CPU. This latest upgrade builds on this same logical organization, but makes significant advances in cost, maintainability, and the degree to which the system is open to future modification. The new control and data acquisition system is formed of two 2 GHz Intel Pentium 4 based PC's, running the LINUX operating system. Each PC drives two CAMAC serial highways using a combination of Kinetic Systems PCI standard CAMAC Hardware Drivers and a low-level software driver written in-house expressly for this device. This paper discusses the overall system design and implementation detail, describing actual operating experience for the initial six months of operation.

  17. A review of JET neutral beam system performance 1994-2003

    Energy Technology Data Exchange (ETDEWEB)

    King, Robert [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)]. E-mail: robert.king@jet.uk; Challis, Clive [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Ciric, Dragoslav [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2005-11-15

    The operational performance of the JET neutral beam injector (NBI) system during 2003 is presented and compared with NBI operation from 1994 to 2002. The paper also addresses different demands imposed on NBI operation during the JET Joint Undertaking (until the end of 1999) and the European Fusion Development Agreement (EFDA) JET operating contract (from 2000). The material presented shows new operational performance records achieved in 2003, derived from data focused on average and maximum pulse lengths, pulse power and injected pulse energy. Over the last 10 years, the issue of JET NBI positive ion neutral injector (PINI) reliability and availability has also been of significant interest. A discussion is presented where terminology is defined, technical systems causing unreliability and non-availability are analysed and operational practices are reviewed. The performance analysis shows that during the period of JET operation under the EFDA contract, the NBI facility has successfully changed from high power-short pulse to high power-long pulse (10 s) operation. It also shows that the sources of unreliability and non-availability have largely remained constant during this change.

  18. An improved neutral diffusion model and numerical solution of the two dimensional edge plasma fluid equations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A.K.

    1998-09-01

    In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are

  19. Entanglement Concentration for Higher-Dimensional Quantum Systems

    Institute of Scientific and Technical Information of China (English)

    姚春梅; 顾永建; 叶柳; 郭光灿

    2002-01-01

    Using local operations and classicalcommunication, we present two schemes for realizing entanglement concentration from pure entangled pairs of qutrits. These methods can be easily generalized to d-dimensional (d > 3)quantum systems.

  20. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  1. Directed structure at infinity for infinite-dimensional systems

    Science.gov (United States)

    Laakkonen, Petteri; Pohjolainen, Seppo

    2011-04-01

    In this article the structure at infinity of infinite-dimensional linear time invariant systems with finite-dimensional input and output spaces is discussed. It is shown that a diagonal form describing behaviour near infinity can be found. This diagonal form is a generalisation of the Smith-McMillan form at infinity for rational matrices. It is then used to simplify certain solvability conditions of a regulation problem. Examples on time-delay and distributed parameter systems are given.

  2. Three-dimensional visualization and animation for power systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Milano, Federico [Department of Electrical Engineering of the University of Castilla-La Mancha, 13071, Ciudad Real (Spain)

    2009-12-15

    This paper describes a novel approach for three-dimensional visualization and animation of power systems analyses. The paper demonstrates that three-dimensional visualization of power systems can be used for teaching and can help in easily understanding complex concepts. The solutions of power flow analysis, continuation power flow, optimal power flow and time domain simulations are used for illustrating the proposed technique. The paper presents a variety of examples, particularly oriented to education and practitioner training. Conclusions are duly drawn. (author)

  3. Uniform Deterministic Discrete Method for Three Dimensional Systems

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    For radiative direct exchange areas in three dimensional system,the Uniform Deterministic Discrete Method(UDDM) was adopted.The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs.The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numercal accuracy.

  4. Development of Distributed Control System for Neutral Beam Injector on EAST

    Science.gov (United States)

    Sheng, Peng; Hu, Chundong; Cui, Qinglong; Zhao, Yuanzhe; Zhang, Xiaodan; Zhang, Rui; Lin, Yulian; Yu, Shan; Gao, Yangyang

    2015-07-01

    A distributed control system of Neutral Beam Injector (NBI) on the Experimental Advanced Superconducting Tokamak (EAST-NBI) is briefly presented in this paper. The control system is developed in accordance with the experimental operational characteristics of the EAST-NBI. The NBI control system (NBICS), which is based on the computer network technologies and classified according to the control levels, consists of three levels: a remote monitoring layer, a server control layer, and a field control layer. The 3-layer architecture is capable of extending the system functions and upgrading devices. The timing system provides the reference clock of the synchronization and interlock for the EAST-NBI system. An interlock system ensures the safety of the experiment operators and field devices. Both of the ion sources of the beamline are designed to operate independently. This lays an important foundation for developing a control system for the second beamline on EAST. Experimental results demonstrate that the NBICS meets functional requirements of the EAST-NBI control, and makes experimental operations visual and automatic. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001)

  5. Robust passive control for a class of uncertain neutral systems based on sliding mode observer.

    Science.gov (United States)

    Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen

    2017-01-01

    The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples.

  6. Neutralization of local and systemic toxicity of Daboia russelii venom by Morus alba plant leaf extract.

    Science.gov (United States)

    Chandrashekara, K T; Nagaraju, S; Nandini, S Usha; Kemparaju, K

    2009-08-01

    Antivenom therapy is the current best therapy available for the treatment of fatal snake envenomation. However, the antivenom offers less or no protection against local effects such as extensive edema, hemorrhage, dermo-, myonecrosis and inflammation at the envenomed region. Viperidae snakes are highly known for their violent local effects and such effects have been commonly treated with plant extracts without any scientific validation in rural India. In this investigation Morus alba plant leaf extract has been studied against the Indian Vipera/Daboia russelii venom induced local and systemic effects. The extract completely abolished the in vitro proteolytic and hyaluronolytic activities of the venom. Edema, hemorrhage and myonecrotic activities were also neutralized efficiently. In addition, the extract partially inhibited the pro-coagulant activity and completely abolished the degradation of Aalpha chain of human fibrinogen. Thus, the extract processes potent antisnake venom property, especially against the local and systemic effects of Daboia russelii venom.

  7. Two charges on plane in a magnetic field: II. Moving neutral quantum system across magnetic field

    CERN Document Server

    Escobar-Ruiz, M A

    2014-01-01

    The moving neutral system of two Coulomb charges on a plane subject to a constant magnetic field $B$ perpendicular to the plane is considered. It is shown that the composite system of finite total mass is bound for any center-of-mass momentum $P$ and magnetic field strength; the energy of the ground state is calculated accurately using a variational approach. Their accuracy is cross-checked in Lagrange-mesh method for $B=1$\\,a.u. and in a perturbation theory at small $B$ and $P$. The constructed trial function has a property to be a uniform approximation of the exact eigenfunction. For Hydrogen atom and Positronium a double perturbation theory in $B$ and $P$ is developed and the first corrections are found algebraically. A phenomenon of a sharp change of energy behavior for a certain center-of-mass momentum but a fixed magnetic field is indicated.

  8. Nonlinear feedback synchronization of hyperchaos in higher dimensional systems

    Institute of Scientific and Technical Information of China (English)

    FangJin-Qing; AliMK

    1997-01-01

    Nonlinear feedback functional method is presented to realize synchronization of hyperchaos in higher dimensional systems,New nonlinear feedback functions and superpositions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos.The robustness of the method based on the flexibility of choices of feedback functions is discussed.By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional systems,such as Lorenz system,Van der Pol oscillator,Duffing oscillator and Roessler system,ten dimensional hyperchaotic systems are formed as the model systems.It can be found that there is not any noticeable difference in synchronization based on the numbers of positive Lyapunov exponents and of dimensions.

  9. Low-dimensional dynamics in observables from complex and higher-dimensional systems

    Science.gov (United States)

    Baptista, Murilo S.; Caldas, Iberê L.; Baptista, Mauricio S.; Baptista, Cassio S.; Ferreira, André A.; Heller, Maria Vittoria A. P.

    2000-11-01

    We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S &P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincaré return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations.

  10. Geometric gauge potentials and forces in low-dimensional scattering systems

    CERN Document Server

    Zygelman, B

    2012-01-01

    We introduce and analyze several low-dimensional scattering systems that exhibit geometric phase phenomena. The systems are fully solvable and we compare exact solutions of them with those obtained in a Born-Oppenheimer projection approximation. We illustrate how geometric magnetism manifests in them, and explore the relationship between solutions obtained in the diabatic and adiabatic pictures. We provide an example, involving a neutral atom dressed by an external field, in which the system mimics the behavior of a charged particle that interacts with, and is scattered by, a ferromagnetic material. We also introduce a similar system that exhibits Aharonov-Bohm scattering. We propose some practical applications. We provide a theoretical approach that underscores universality in the appearance of geometric gauge forces. We do not insist on degeneracies in the adiabatic Hamiltonian, and we posit that the emergence of geometric gauge forces is a consequence of symmetry breaking in the latter.

  11. On the influence of a Rashba-type coupling induced by Lorentz-violating effects on a Landau system for a neutral particle

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2015-03-15

    We study a possible scenario of the Lorentz symmetry violation background that allows us to build an analogue of the Landau system for a nonrelativistic Dirac neutral particle interacting with a field configuration of crossed electric and magnetic fields. We also discuss the arising of analogues of the Rashba coupling, the Zeeman term and the Darwin term from the Lorentz symmetry breaking effects, and the influence of these terms on the analogue of the Landau system confined to a two-dimensional quantum ring. Finally, we show that this analogy with the Landau system confined to a two-dimensional quantum ring allows us to establish an upper bound for the Lorentz symmetry breaking parameters. - Highlights: • Landau system from crossed electric and magnetic fields and fixed time-like vector. • Analogues of the Rashba coupling, the Zeeman term and the Darwin term. • Lorentz symmetry breaking effects on a two-dimensional quantum ring. • Upper bound for the Lorentz symmetry breaking parameters.

  12. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Glad, A S; Jacobson, V

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc.

  13. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  14. Limited Neutrality

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul

    2006-01-01

    Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."......Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."...

  15. Limited Neutrality

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul

    2006-01-01

    Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."......Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."...

  16. A novel four-dimensional autonomous hyperchaotic system

    Institute of Scientific and Technical Information of China (English)

    Liu Chong-Xin; Liu Ling

    2009-01-01

    A novel four-dimensional autonomous hyperchaotic system is reported in this paper. Some basic dynamical properties of the new hyperchaotic system are investigated in detail by means of a continuous spectrum, Lyapunov hyperchaotic system are proved by not only performing numerical simulation and brief theoretical analysis but also by conducting an electronic circuit experiment.

  17. Model reduction for controller design for infinite-dimensional systems

    NARCIS (Netherlands)

    Opmeer, Mark Robertus

    2006-01-01

    The main aim of this thesis is, as the title suggests, the presentation of results on model reduction for controller design for infinite-dimensional systems. The obtained results are presented for both discrete-time systems and continuous-time systems. They are perfect generalizations of the corresp

  18. THE STABILITY OF LINEAR MULTISTEP METHODS FOR LINEAR SYSTEMS OF NEUTRAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Hong-jiong Tian; Jiao-xun Kuang; Lin Qiu

    2001-01-01

    This paper deals with the numerical solution of initial valueproblems for systems of neutral differential equations where т > 0, f and φ denote given vector-valued functions. The numerical stability of a linear multistep method is investigated by analysing the solution of the test equations y'(t) = Ay(t) + By(t -т ) + Cy'(t -т ), where A, B and C denote constant complex N × N-matrices, and т > 0. We investigate the properties of adaptation of the linear multistep method and the characterization of the stability region. It is proved that the linear multistep method is NGP-stable if and only if it is A-stable for ordinary differential equations.

  19. A hyperbolic-equation system approach for magnetized electron fluids in quasi-neutral plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Rei, E-mail: kawashima@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Komurasaki, Kimiya, E-mail: komurasaki@k.u-tokyo.ac.jp [Department of Advanced Energy, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Schönherr, Tony, E-mail: schoenherr@al.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-03-01

    A new approach using a hyperbolic-equation system (HES) is proposed to solve for the electron fluids in quasi-neutral plasmas. The HES approach avoids treatments of cross-diffusion terms which cause numerical instabilities in conventional approaches using an elliptic equation (EE). A test calculation reveals that the HES approach can robustly solve problems of strong magnetic confinement by using an upwind method. The computation time of the HES approach is compared with that of the EE approach in terms of the size of the problem and the strength of magnetic confinement. The results indicate that the HES approach can be used to solve problems in a simple structured mesh without increasing computational time compared to the EE approach and that it features fast convergence in conditions of strong magnetic confinement.

  20. Analysis of ferroresonance in a neutral grounding system with nonlinear core loss

    Institute of Scientific and Technical Information of China (English)

    Hui Meng; Zhang Yan-Bin; Liu Chong-Xin

    2009-01-01

    The chaotic behaviour exhibited by a typical ferroresonant circuit in a neutral grounding system is investigated in this paper. In most earlier ferroresonance studies the core loss of the power transformer was neglected or represented by a linear resistance. However, this is not always true. In this paper the core loss of the power transformer is modelled by a third order series in voltage and the magnetization characteristics of the transformer are modelled by an 11th order two-term polynomial. Extensive simulations are carried out to analyse the effect of nonlinear core loss on transformer ferroresonance. A detailed analysis of simulation results demonstrates that, with the nonlinear core loss model used, the onset of chaos appears at a larger source voltage and the transient duration is shorter.

  1. A study of low-dimensional inhomogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Leon, Yesenia

    2009-01-15

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)

  2. Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: III. The Total Neutral Gas Disk

    CERN Document Server

    Nakanishi, Hiroyuki

    2015-01-01

    We present newly obtained three-dimensional gaseous maps of the Milky Way Galaxy; HI, H$_2$ and total-gas (HI plus H$_2$) maps, which were derived from the HI and $^{12}$CO($J=1$--0) survey data and rotation curves based on the kinematic distance. The HI and H$_2$ face-on maps show that the HI disk is extended to the radius of 15--20 kpc and its outskirt is asymmetric to the Galactic center, while most of the H$_2$ gas is distributed inside the solar circle. The total gas mass within radius 30 kpc amounts to $8.0\\times 10^9$ M$_\\odot$, 89\\% and 11\\% of which are HI and H$_2$, {respectively}. The vertical slices show that the outer HI disk is strongly warped and the inner HI and H$_2$ disks are corrugated. The total gas map is advantageous to trace spiral structure from the inner to outer disk. Spiral structures such as the Norma-Cygnus, the Perseus, the Sagittarius-Carina, the Scutum-Crux, and the Orion arms are more clearly traced in the total gas map than ever. All the spiral arms are well explained with lo...

  3. THE SYSTEM SIMULATION OF THREE-DIMENSIONAL RADAR

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Xiang Jingcheng; Wang Xuegang

    2004-01-01

    To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.

  4. THE TRANSITION FROM A 2-DIMENSIONAL TO A ZERO-DIMENSIONAL ELECTRON-SYSTEM ON SILICON

    NARCIS (Netherlands)

    JEJINA, [No Value; LORENZ, H; KOTTHAUS, JP; BAKKER, S; KLAPWIJK, TM

    1993-01-01

    The dynamic response of a two-dimensional electron system subjected to a lateral superlattice potential of square periodicity is studied via far-infrared transmission spectroscopy on silicon MOS devices with two stacked gates. The bottom gate is a mesh with submicron square periodicity and is isolat

  5. Neutral Beam Injection System for the C-2W Field Reversed Configuration Experiment

    Science.gov (United States)

    Dunaevsky, Alexander; Ivanov, Alexander; Kolmogorov, Vyacheslav; Smirnov, Artem; Korepanov, Sergey; Binderbauer, Michl; TAE Team; BINP Team

    2016-10-01

    C-2U Field-Reversed Configuration (FRC) experiment proved substantial reduction in turbulence-driven losses via tangential neutral beam injection (NBI) coupled with electrically biased plasma guns at the plasma ends. Under such conditions, highly reproducible, advanced beam-driven FRCs were produced and sustained for times significantly longer (more than 5 ms) than all characteristic plasma decay times without beams. To further improve FRC sustainment and demonstrate the FRC ramp-up, the C-2U experimental device is undergoing a major upgrade. The upgrade, C-2W, will have a new NBI system producing a record total hydrogen beam power of 20 + MW in a 30ms pulse. The NBI system consists of eight positive-ion based injectors featuring flexible, modular design. Four out of eight NBI injectors have a capability to switch the beam energy during a shot from the initial 15 keV to 40 keV at a constant beam current. This feature allows to increase the beam energy and thereby optimize the beam-plasma coupling during the magnetic field ramp up. This presentation provides an overview of the C-2W NBI system, including the design of the switchable energy injectors, layout of the power supply system, and results of the prototype testing.

  6. Robust delay-dependent feedforward control of neutral time-delay systems via dynamic IQCs

    Science.gov (United States)

    Ucun, L.; Küçükdemiral, I. B.

    2014-05-01

    This paper studies the design problem of delay-dependent ? based robust and optimal feedforward controller design for a class of time-delay control systems having state, control and neutral type delays which are subject to norm-bounded uncertainties and ? type measurable or observable disturbance signals. Two independent loops which include state-feedback and dynamic feedforward controller form the basis of the proposed control scheme in this study. State-feedback controller is generally used in stabilisation of the nominal delay-free system, whereas the feedforward controller is used for improving disturbance attenuation performance of the overall system. In order to obtain less conservative results, the delay and parametric uncertainty effects are treated in operator view point and represented by frequency-dependent (dynamic) integral quadratic constraints (IQCs). Moreover, sufficient delay-dependent criterion is developed in terms of linear matrix inequalities (LMIs) such that the time-delay system having parametric uncertainties is guaranteed to be asymptotically stable with minimum achievable disturbance attenuation level. Plenty of numerical examples are provided at the end, in order to illustrate the efficiency of the proposed technique. The achieved results on minimum achievable disturbance attenuation level and maximum allowable delay bounds are exhibited to be less conservative in comparison to those of controllers having only feedback loop.

  7. High heat flux engineering for the upgraded neutral beam injection systems of MAST-U

    Energy Technology Data Exchange (ETDEWEB)

    Dhalla, F., E-mail: Fahim.dhalla@ccfe.ac.uk; Mistry, S.; Turner, I.; Barrett, T.R.; Day, I.; McAdams, R.

    2015-10-15

    Highlights: • A new Residual Ion Dump (RID) and bend magnet system for the upgraded NBI systems have been designed for the 5 s MAST-U pulse requirements. • Design scoping was performed using numerical ion-tracing analysis software (MAGNET and OPERA codes). • A more powerful bending magnet will separate the residual ions into full, half and third energy components. • Three separate CuCrZr dumps spread the power loading resulting in acceptable power footprints. • FE thermo-mechanical analyses using ANSYS to validate the designs against the ITER SDC-IC code. • New bend magnet coils, yoke and CuCrZr water-cooled plates are in the procurement phase. - Abstract: For the initial phase of MAST-U operation the two existing neutral beam injection systems will be used, but must be substantially upgraded to fulfil expected operational requirements. The major elements are the design, manufacture and installation of a bespoke bending magnet and Residual Ion Dump (RID) system. The MAST-design full energy dump is being replaced with new actively-cooled full, half and third energy dumps, designed to receive 2.4 MW of ion power deflected by an iron-cored electromagnet. The main design challenge is limited space available in the vacuum vessel, requiring ion-deflection calculations to ensure acceptable heat flux distribution on the dump panels. This paper presents engineering and physics analysis of the upgraded MAST beamlines and reports the current status of manufacture.

  8. Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats

    Directory of Open Access Journals (Sweden)

    Liao Pi-Hung

    2012-06-01

    Full Text Available Abstract Background Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS signs. The blood–brain barrier (BBB is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection. Methods The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure. The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ, and focused ultrasound (FUS were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies. Results The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats. Conclusions We demonstrated

  9. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ (N) using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C(1) maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  10. Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2013-12-18

    Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector

    Science.gov (United States)

    Hu, Chundong; Chen, Yu; Xu, Yongjian; Yu, Ling; Li, Xiang; Zhang, Weitang

    2016-11-01

    Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001) and the International Science & Technology Cooperation Program of China (No. 2014DFG61950)

  12. Further results on saturated globally stabilizing linear state feedback control laws for single-input neutrally stable planar systems

    NARCIS (Netherlands)

    Yang, Tao; Stoorvogel, Anton A.; Saberi, Ali; Johansson, Karl H.

    2013-01-01

    It is known that for single-input neutrally stable planar systems, there exists a class of saturated globally stabilizing linear state feedback control laws. The goal of this paper is to characterize the dynamic behavior for such a system under arbitrary locally stabilizing linear state feedback con

  13. Further results on saturated globally stabilizing linear state feedback control laws for single-input neutrally stable planar systems

    NARCIS (Netherlands)

    Yang, Tao; Stoorvogel, Antonie Arij; Saberi, Ali; Johansson, Karl H.

    2013-01-01

    It is known that for single-input neutrally stable planar systems, there exists a class of saturated globally stabilizing linear state feedback control laws. The goal of this paper is to characterize the dynamic behavior for such a system under arbitrary locally stabilizing linear state feedback

  14. Wigner distributions for finite dimensional quantum systems: An algebraic approach

    Indian Academy of Sciences (India)

    S Chaturvedi; E Ercolessi; G Marmo; G Morandi; N Mukunbda; R Simon

    2005-12-01

    We discuss questions pertaining to the definition of `momentum', `momentum space', `phase space' and `Wigner distributions'; for finite dimensional quantum systems. For such systems, where traditional concepts of `momenta' established for continuum situations offer little help, we propose a physically reasonable and mathematically tangible definition and use it for the purpose of setting up Wigner distributions in a purely algebraic manner. It is found that the point of view adopted here is limited to odd dimensional systems only. The mathematical reasons which force this situation are examined in detail.

  15. Infinite-Dimensional Linear Dynamical Systems with Chaoticity

    CERN Document Server

    Fu Xin Chu; Fu, Xin-Chu; Duan, Jinqiao

    1998-01-01

    The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fréchet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.

  16. Device-independent certification of high-dimensional quantum systems.

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Bisesto, Fabrizio; Sciarrino, Fabio; Barra, Johanna F; Lima, Gustavo; Cabello, Adán

    2014-04-11

    An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question is whether such certification is experimentally feasible for high-dimensional quantum systems. Here we experimentally witness in a device-independent manner the generation of six-dimensional quantum systems encoded in the orbital angular momentum of single photons and show that the same method can be scaled, at least, up to dimension 13.

  17. Optimal Control of Finite Dimensional Quantum Systems

    CERN Document Server

    Mendonca, Paulo E M F

    2009-01-01

    This thesis addresses the problem of developing a quantum counter-part of the well established classical theory of control. We dwell on the fundamental fact that quantum states are generally not perfectly distinguishable, and quantum measurements typically introduce noise in the system being measured. Because of these, it is generally not clear whether the central concept of the classical control theory -- that of observing the system and then applying feedback -- is always useful in the quantum setting. We center our investigations around the problem of transforming the state of a quantum system into a given target state, when the system can be prepared in different ways, and the target state depends on the choice of preparation. We call this the "quantum tracking problem" and show how it can be formulated as an optimization problem that can be approached both numerically and analytically. This problem provides a simple route to the characterization of the quantum trade-off between information gain and distu...

  18. Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.

  19. Distributed port-Hamiltonian formulation of infinite dimensional systems

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, van der Arjan J.; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling and control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-va

  20. Distributed Port-Hamiltonian Formulation of Innite Dimensional Systems

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling and control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-va

  1. Infinite-dimensional dynamical systems in mechanics and physics

    CERN Document Server

    Temam, Roger

    1997-01-01

    In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology This second edition has been updated and extended

  2. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  3. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.

    Science.gov (United States)

    Kalin, Margarete; Fyson, Andrew; Wheeler, William N

    2006-08-01

    The oxidation of pyritic mining waste is a self-perpetuating corrosive process which generates acid mine drainage (AMD) effluent for centuries or longer. The chemical neutralization of these complex, buffered effluents result in unstable, metal-laden sludges, which require disposal to minimize long-term environmental consequences. A variety of passive treatment systems for AMD, developed in the past two decades, combine limestone and organic substrates in constructed wetlands. These systems work well initially but over the longer term fail due to clogging with and the depletion of available organic carbon. However, some ecologically engineered systems, which exploit the activities of acid reducing microbes in the sediment, rely on photosynthesis in the water column as a source of organic matter. The primary productivity in the water column, which also generates some alkalinity, provides electron donors for the microbial reduction processes in the sediment. In its consideration of 'passive' systems, the literature has placed undue emphasis on sulphate reduction; thermodynamical iron reduction is equally important as is the need to prevent iron oxidation. Secondary precipitates of iron play a significant role in sediment-driven biomineralization processes, which affect the anaerobic degradation of organic matter and the stability of the resulting metal sulfides. One such passive system, which utilized a floating root mass as a source of organic carbon, is described. An extensive review of the literature and the chemical and biogeochemical reactions of AMD treatment systems, lead to the conclusion, that sediment based ecological systems offer the greatest potential for the sustainable treatment of AMD.

  4. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, Margarete [Boojum Research Ltd, 139 Amelia Street, Toronto, Ontario, M4X1E6 (Canada)]. E-mail: margarete.kalin@utoronto.ca; Fyson, Andrew [Boojum Research Ltd, 139 Amelia Street, Toronto, Ontario, M4X1E6 (Canada); Wheeler, William N. [Boojum Research Ltd, 139 Amelia Street, Toronto, Ontario, M4X1E6 (Canada)

    2006-08-01

    The oxidation of pyritic mining waste is a self-perpetuating corrosive process which generates acid mine drainage (AMD) effluent for centuries or longer. The chemical neutralization of these complex, buffered effluents result in unstable, metal-laden sludges, which require disposal to minimize long-term environmental consequences. A variety of passive treatment systems for AMD, developed in the past two decades, combine limestone and organic substrates in constructed wetlands. These systems work well initially but over the longer term fail due to clogging with and the depletion of available organic carbon. However, some ecologically engineered systems, which exploit the activities of acid reducing microbes in the sediment, rely on photosynthesis in the water column as a source of organic matter. The primary productivity in the water column, which also generates some alkalinity, provides electron donors for the microbial reduction processes in the sediment. In its consideration of 'passive' systems, the literature has placed undue emphasis on sulphate reduction; thermodynamical iron reduction is equally important as is the need to prevent iron oxidation. Secondary precipitates of iron play a significant role in sediment-driven biomineralization processes, which affect the anaerobic degradation of organic matter and the stability of the resulting metal sulfides. One such passive system, which utilized a floating root mass as a source of organic carbon, is described. An extensive review of the literature and the chemical and biogeochemical reactions of AMD treatment systems, lead to the conclusion, that sediment based ecological systems offer the greatest potential for the sustainable treatment of AMD.

  5. Direct three-dimensional ordering of quasi-one-dimensional quantum dimer system near critical fields

    Science.gov (United States)

    Matsushita, Taku; Hori, Nobuyoshi; Takata, Seiya; Wada, Nobuo; Amaya, Naoki; Hosokoshi, Yuko

    2017-01-01

    Dimensionalities of X X Z spin orderings or degenerate hard-core bosons in a quasi-one-dimensional (1D) dimer system are examined by the ac susceptibility and specific heat of antiferromagnetic bond-alternating chains in pentafluorophenyl nitronyl nitroxide (F5PNN ). At intermediate fields in the gapless region, the 1D short-range order (SRO) corresponding to the Tomonaga-Luttinger liquid and three-dimensional (3D) long-range order (LRO BEC) at lower temperatures are separately observed, as expected from the small interchain interaction. In contrast, a definite region around the critical field was established where 3D LRO occurs without the development of 1D SRO at higher temperatures.

  6. Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats

    Directory of Open Access Journals (Sweden)

    Niccolo Terrando

    2016-10-01

    Full Text Available Postoperative neurocognitive disorders are common complications in elderly patients following surgery or critical illness. High mobility group box 1 protein (HMGB1 is rapidly released after tissue trauma and critically involved in response to sterile injury. Herein we assessed the role of HMGB1 after liver surgery in aged rats and explored the therapeutic potential of a neutralizing anti-HMGB1 monoclonal antibody in a clinically relevant model of postoperative neurocognitive disorders. 19-22 months Sprague Dawley rats were randomly assigned as: (1 control with saline; (2 surgery, a partial hepatolobectomy under sevoflurane anesthesia and analgesia, + immunoglobulin G as control antibody; (3 surgery + anti-HMGB1. A separate cohort of animals was used to detect His-tagged HMGB1 in the brain. Systemic anti-HMGB1 antibody treatment exerted neuroprotective effects preventing postoperative memory deficits and anxiety in aged rats by preventing surgery-induced reduction of phosphorylated cyclic AMP response element-binding protein in the hippocampus. Although no evident changes in the intracellular distribution of HMGB1 in hippocampal cells were noted after surgery, HMGB1 levels were elevated on day 3 in rat plasma samples. Experiments with tagged HMGB1 further revealed a critical role of systemic HMGB1 to enable an access to the brain and causing microglial activation. Overall, these data demonstrate a pivotal role for systemic HMGB1 in mediating postoperative neuroinflammation. This may have direct implications for common postoperative complications like delirium and postoperative cognitive dysfunction.

  7. Research on Three Dimensional Computer Assistance Assembly Process Design System

    Institute of Scientific and Technical Information of China (English)

    HOU Wenjun; YAN Yaoqi; DUAN Wenjia; SUN Hanxu

    2006-01-01

    The computer aided process planning will certainly play a significant role in the success of enterprise informationization. 3-dimensional design will promote Tri-dimensional process planning. This article analysis nowadays situation and problems of assembly process planning, gives a 3-dimensional computer aided process planning system (3D-VAPP), and researches on the product information extraction, assembly sequence and path planning in visual interactive assembly process design, dynamic emulation of assembly and process verification, assembly animation outputs and automatic exploding view generation, interactive craft filling and craft knowledge management, etc. It also gives a multi-layer collision detect and multi-perspective automatic camera switching algorithm. Experiments were done to validate the feasibility of such technology and algorithm, which established the foundation of tri-dimensional computer aided process planning.

  8. Internet-based dimensional verification system for reverse engineering processes

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho [Ajou University, Suwon (Korea, Republic of); Kim, Kyung Don [Small Business Corporation, Suwon (Korea, Republic of); Chung, Sung Chong [Hanyang University, Seoul (Korea, Republic of)

    2008-07-15

    This paper proposes a design methodology for a Web-based collaborative system applicable to reverse engineering processes in a distributed environment. By using the developed system, design reviewers of new products are able to confirm geometric shapes, inspect dimensional information of products through measured point data, and exchange views with other design reviewers on the Web. In addition, it is applicable to verifying accuracy of production processes by manufacturing engineers. Functional requirements for designing this Web-based dimensional verification system are described in this paper. ActiveX-server architecture and OpenGL plug-in methods using ActiveX controls realize the proposed system. In the developed system, visualization and dimensional inspection of the measured point data are done directly on the Web: conversion of the point data into a CAD file or a VRML form is unnecessary. Dimensional verification results and design modification ideas are uploaded to markups and/or XML files during collaboration processes. Collaborators review the markup results created by others to produce a good design result on the Web. The use of XML files allows information sharing on the Web to be independent of the platform of the developed system. It is possible to diversify the information sharing capability among design collaborators. Validity and effectiveness of the developed system has been confirmed by case studies

  9. New Delay-Dependent Stability Criteria for Uncertain Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2009-01-01

    Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.

  10. Multidirectional four-dimensional shape measurement system

    Science.gov (United States)

    Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin

    2012-03-01

    Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.

  11. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  12. Low dimensional behavior of large systems of globally coupled oscillators

    Science.gov (United States)

    Ott, Edward; Antonsen, Thomas M.

    2008-09-01

    It is shown that, in the infinite size limit, certain systems of globally coupled phase oscillators display low dimensional dynamics. In particular, we derive an explicit finite set of nonlinear ordinary differential equations for the macroscopic evolution of the systems considered. For example, an exact, closed form solution for the nonlinear time evolution of the Kuramoto problem with a Lorentzian oscillator frequency distribution function is obtained. Low dimensional behavior is also demonstrated for several prototypical extensions of the Kuramoto model, and time-delayed coupling is also considered.

  13. Few-Body Systems in Low-Dimensional Geometries

    DEFF Research Database (Denmark)

    Volosniev, Artem

    2013-01-01

    be applied. For this setup few-body bound structures are found for different polarization an- gles and dipole strengths by using stochastic variational methods. After that a similar analysis is provided for two-dimensional planes filled with dipolar par- ticles. At the end of the thesis, a system......The research in this dissertation is devoted to few-body bound state physics in experimentally relevant systems of trapped atoms and molecules. First, the complexes of tubes containing dipoles are considered. The tubes are assumed to have zero width such that one-dimensional treatment can...

  14. Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.

    Science.gov (United States)

    Kurbanov, Elbek K; Leverentz, Hannah R; Truhlar, Donald G; Amin, Elizabeth A

    2012-01-10

    The electrostatically embedded many-body (EE-MB) method has proven accurate for calculating cohesive and conformational energies in clusters, and it has recently been extended to obtain bond dissociation energies for metal-ligand bonds in positively charged inorganic coordination complexes. In the present paper, we present four key guidelines that maximize the accuracy and efficiency of EE-MB calculations for metal centers. Then, following these guidelines, we show that the EE-MB method can also perform well for bond dissociation energies in a variety of neutral and negatively charged inorganic coordination systems representing metalloenzyme active sites, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor, a popular target for drug development. In particular, we find that the electrostatically embedded three-body (EE-3B) method is able to reproduce conventionally calculated bond-breaking energies in a series of pentacoordinate and hexacoordinate zinc-containing systems with an average absolute error (averaged over 25 cases) of only 0.98 kcal/mol.

  15. Upon Generating (2+1)-dimensional Dynamical Systems

    Science.gov (United States)

    Zhang, Yufeng; Bai, Yang; Wu, Lixin

    2016-06-01

    Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.

  16. Properties of interacting low-dimensional systems

    CERN Document Server

    Gumbs, Godfrey

    2013-01-01

    Filling the gap for comprehensive coverage of the realistic fundamentals and approaches needed to perform cutting-edge research on mesoscopic systems, this textbook allows advanced students to acquire and use the skills at a highly technical, research-qualifying level. Starting with a brief refresher to get all readers on an equal footing, the text moves on to a broad selection of advanced topics, backed by problems with solutions for use in classrooms as well as for self-study. Written by authors with research and teaching backgrounds from eminent institutions and based on a tried-and

  17. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  18. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.; Gallman, P.; Gaudreault, J.; Mosehauer, R.; Slotwinski, A.; Jarvis, G.; Griffiths, P.

    1996-12-31

    This system (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. It is in the final phase of a 3-phase program to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and radioactive and organic contamination is a critical D&D task. Surface characterization includes identification of dangerous inorganic materials such as asbestos and transite. 3D-ICAS robotically conveys a multisensor probe near the surfaces to be inspected, using coherent laser radar tracking, which also provides 3D facility maps. High-speed automated organic analysis is provided by means of gas chromatograph-mass spectrometer sensor which can process a sample without contact in one minute. Volatile organics are extracted directly from contaminated surfaces without sample removal; multiple stage focusing is used for high time resolution. Additional discrimination is obtained through a final stage time-of-flight mass spectrometer. The radionuclide sensors combines {alpha}, {beta}, and {gamma} counting with energy discrimination of the {alpha} channel; this quantifies isotopes of U, Pu, Th, Tc, Np, and Am in one minute. The Molecular Vibrational Spectrometry sensor is used to characterize substrate material such as concrete, transite, wood, or asbestos; this can be used to provide estimates of the depth of contamination. The 3D-ICAS will be available for real-time monitoring immediately after each 1 to 2 minute sample period. After surface mapping, 3-D displays will be provided showing contours of detected contaminant concentrations. Permanent measurement and contaminant level archiving will be provided, assuring data integrity and allowing regulatory review before and after D&D operations.

  19. A two-dimensional approach to relativistic positioning systems

    CERN Document Server

    Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allow to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.

  20. Translation of Time-Reversal Violation in the Neutral K-Meson System into a Table-Top Mechanical System

    CERN Document Server

    Reiser, Andreas; Stiewe, Juergen

    2012-01-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K mesons. We present and discuss a two-state mechanical system, a Foucault-type pendulum on a rotating table, for a full representation of K0 K0bar transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical with the differential equation for the real part of the CPT-symmetric K-meson wave function. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are shown as supplementary material.

  1. Translation of time-reversal violation in the neutral K-meson system into a table-top mechanical system

    Science.gov (United States)

    Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen

    2012-08-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.

  2. Methodology for dimensional variation analysis of ITER integrated systems

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)

    2016-11-01

    Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

  3. Single-Carrier Modulation for Neutral-Point-Clamped Inverters in Three-Phase Transformerless Photovoltaic Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Cavalcanti, Marcelo C.; Farias, Alexandre M.;

    2013-01-01

    Modulation strategy is one of the most important issues for three-level neutral-point-clamped inverters in three-phase transformerless photovoltaic systems. A challenge for modulation is how to keep the common-mode voltages constant to reduce the leakage currents. A single-carrier modulation...

  4. The ITER neutral beam test facility: designs of the general infrastructure, cryo-system and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Hemsworth, R.; Chantant, M.; Gravil, B.; Henry, D.; Sabathier, F.; Doceul, L.; Thomas, E.; Van Houtte, D. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Zaccaria, P.; Antoni, V.; Dal Bello, S.; Masiello, A.; Marcuzzi, D. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Antipenkov, A.; Dremel, M.; Day, C. [Institut fur Technische Physik, FZK, Karlsruhe (Germany); Mondino, P.L. [Max-Planck-Institut fuer Plasmaphysik, EFDA CSU, Garching (Germany)

    2004-07-01

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKEA European Associations, in the first ITER neutral beam injector and the ITER neutral beam test facility design (NBTF). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF, includes the test facility itself equipped of a dedicated beamline vessel and integration studies of associated auxiliaries as cooling plant, cryo-plant and fore-pumping system. The general infrastructure and auxiliaries layout of the NBTF are described. (authors)

  5. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL DIFFERENTIAL SYSTEM WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with the existence of solution to nonlinear second order neutral differential equations with infinite delay in a Banach space. Sufficient conditions for the existence of solution are obtained by a Schaefer fixed point theorem.

  6. Magnetoconductivity of two-dimensional electron systems

    Science.gov (United States)

    Kuehnel, Frank Oliver

    The conductivity sigmaxx(o) of a low-density nondegenerate 2D electron gas is investigated under conditions where hoc ≫ kBT ≫ hgamma (oc is the cyclotron frequency and hgamma is the disorder-induced width of the Landau level). Such conditions have been met for electrons on helium surface, and can also be achieved in ultra high quality heterostructures. Because of the random potential of defects, single-electron states of the lowest Landau level form a band of a width hgamma ≪ hoc. Almost all of these states are localized. Therefore, for ho c ≫ kBT ≫ hgamma, the static single-electron conductivity sigma xx(0) may be expected to be equal to zero. Since for o ≫ gamma the conductivity should decay, on the whole sigma xx(o) has a peak at a finite frequency. From scaling arguments, we show that in the single-electron approximation sigma xx(o) ∝ omu for o → 0, with the exponent mu in the range from 0.21 to 0.22, whereas the frequency dependence of the cyclotron resonance absorption peak is non-critical. The far tails of the conductivity peaks are obtained using the method of optimal fluctuation and are shown to be Gaussian. In order to investigate the shape of the low frequency peak and cyclotron resonance absorption peak, we use the method of moments (MOM). In MOM, the low-frequency conductivity is restored from its 14 spectral moments, whereas the cyclotron resonance absorption is restored from the calculated 10 spectral moments using the continuous fraction expansion. In combination with the analytical asymptotics, both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. The effect of electron-electron interaction (EEI) on the low frequency conductivity is also investigated. EEI makes the static conductivity finite. For a low-density system, the effect can be described using the notion of a fluctuational field Efl which drives an electron because of electron

  7. Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongkun [Department of Mathematics, Yunnan University Kunming, Yunnan 650091 (China)], E-mail: yklie@ynu.edu.cn

    2008-07-15

    By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence of positive periodic solutions of the following periodic neutral Lotka-Volterra system with distributed delays (dx{sub i}(t))/(dt) =x{sub i}(t)[a{sub i}(t)-{sigma}{sub j=1}{sup n}b{sub ij}(t){integral}{sub -T{sub ij}}{sup 0}K{sub ij}({theta})x{sub j}( t+{theta})d{theta}-{sigma}{sub j=1}{sup n}c{sub ij}(t){integral}{sub -T{sub ij}}{sup 0}K{sub ij}({theta}) x{sub j}{sup '}(t+{theta})d{theta}],i=1,2,...,n, where a{sub i},b{sub ij},c{sub ij} element of C(R,R{sup +}) (i, j = 1, 2, ..., n) are {omega}-periodic functions, T{sub ij},T{sub ij} element of (0,{infinity}) (i, j = 1, 2, ..., n) and K{sub ij},K{sub ij} element of (R,R{sup +}) satisfying {integral}{sub -T{sub ij}}{sup 0}K{sub ij}({theta})d{theta}=1,{integral}{sub -T{sub ij}}{sup 0}K{sub ij}({theta})d{theta}=1, i, j = 1, 2, ..., n.

  8. Application of Fault Location Mode Based on Travelling Waves for Neutral Non-effective Grounding Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.

  9. Generalized (,,-Pairs for Uncertain Linear Infinite-Dimensional Systems

    Directory of Open Access Journals (Sweden)

    Naohisa Otsuka

    2009-01-01

    Full Text Available We introduce the concept of generalized (,,-pairs which is related to generalized (,-invariant subspaces and generalized (,-invariant subspaces for infinite-dimensional systems. As an application the parameter-insensitive disturbance-rejection problem with dynamic compensator is formulated and its solvability conditions are presented. Further, an illustrative example is also examined.

  10. BIFURCATION OF PERIODIC ORBITS OF A THREE-DIMENSIONAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LIU XUANLIANG; HAN MAOAN

    2005-01-01

    Consider a three-dimensional system having an invariant surface. By using bifurcation techniques and analyzing the solutions of bifurcation equations, the authors study the spacial bifurcation phenomena of a k multiple closed orbit in the invariant surface.The sufficient conditions of the existence of many closed orbits bifurcate from the k multiple closed orbit are obtained.

  11. Local distinguishability of quantum states in infinite dimensional systems

    CERN Document Server

    Ogata, Y

    2005-01-01

    We investigate local distinguishability of quantum states by use of the convex analysis about joint numerical range of operators on a Hilbert space. We show that any two orthogonal pure states are distinguishable by local operations and classical communications, even for infinite dimensional systems. An estimate of the local discrimination probability is also given for some family of more than two pure states.

  12. Lie symmetry algebra of one-dimensional nonconservative dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Liu Cui-Mei; Wu Run-Heng; Fu Jing-Li

    2007-01-01

    Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping,the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.

  13. Three-Dimensional Extension of a Digital Library Service System

    Science.gov (United States)

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  14. Finite dimensional thermo-mechanical systems and second order constraints

    CERN Document Server

    Cendra, Hernán; Amaya, Maximiliano Palacios

    2016-01-01

    In this paper we study a class of physical systems that combine a finite number of mechanical and thermodynamic observables. We call them finite dimensional thermo-mechanical systems. We introduce these systems by means of simple examples. The evolution equations of the involved observables are obtained in each example by using, essentially, the Newton's law and the First Law of Thermodynamics only. We show that such equations are similar to those defining certain mechanical systems with higher order constraints. Moreover, we show that all of the given examples can be described in a variational formalism in terms of second order constrained systems.

  15. Anomalous transport in low-dimensional systems with correlated disorder

    Energy Technology Data Exchange (ETDEWEB)

    Izrailev, F M [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla, Pue., 72570 (Mexico); Makarov, N M [Instituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, Puebla, Pue., 72050 (Mexico)

    2005-12-09

    We review recent results on the anomalous transport in one-dimensional and quasi-one-dimensional systems with bulk and surface disorder. Principal attention is paid to the role of long-range correlations in random potentials for the bulk scattering and in corrugated profiles for the surface scattering. It is shown that with the proper type of correlations one can construct such a disorder that results in a selective transport with given properties. Of particular interest is the possibility to arrange windows of a complete transparency (or reflection) with dependence on the wave number of incoming classical waves or electrons.

  16. On Robust Control Designs for Infinite Dimensional Systems

    Science.gov (United States)

    1986-09-01

    Series. and Products. Academic Press, Orlando. Florida. 1980. 72. Fraleigh . J.B.. A First Course in Abstract Algebra. Addison-Wesley. Reading...Often in current control design practice for infinite dimensional systems, a reduced-order model (e.g. [57]. [58]. [59]) is first generated to...next subsection. In Section 2.4 we shall discuss some consequences of this theorem. 2.2.3 Kaiman Inequality for LQHD Systems - Derivation First

  17. Statistics of resonances in one-dimensional continuous systems

    Indian Academy of Sciences (India)

    Joshua Feinberg

    2009-09-01

    We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.

  18. Three-dimensional illumination system for tomographic particle image velocimetry

    Science.gov (United States)

    Zhang, Fen; Song, Yang; Qu, Xiangju; Ji, Yunjing; Li, Zhenhua; He, Anzhi

    2016-10-01

    Tomographic particle image velocimetry (Tomo-PIV) is a new developed technique for three-component threedimensional (3C-3D) velocity measurement of the flow field based on the optical tomographic reconstruction method, and has been received extensive attention of the related industries. Three-dimensional light source illuminating the tracer particles of flow field is a critical application for tomographic particle image velocimetry. Three-dimensional light source not only determines the size of measurement volume and the range of the scope of application, but also has a great influence on the image quality. In this work, we propose a rectangular light amplification system using powell lens, prisms and two reflectors. The system can be optimized if given the system parameters based on the theoretical model. The rectangular light amplification system will be verified experimentally by measuring the cross section size of the illuminated light source. A 60mm×25mm cross section of rectangular three-dimensional light source can be obtained by using the rectangular light amplification system. The experiments demonstrate the the feasibility the proposed system.

  19. Disorder-related effects in electron systems of low dimensionality

    Science.gov (United States)

    Gramada, Apostol

    1999-08-01

    This dissertation reports on research we have done on different topics in the physics of low-dimensional disordered electron systems. For two-dimensional systems in the presence of a magnetic field, we approach aspects related to the delocalized states (levitation, structure and position in multilayer systems) and the problem of generation of high harmonics of the cyclotron resonance. We estimate that the delocalized state ``levitate'' away from the center of the Landau level as the inverse of the fourth power of the magnetic field. In a two-layer system, the delocalized states repel each other in a manner similar to the usual level repulsion in quantum mechanics. We calculate the position and structure of the delocalized states. In the limit of the weak magnetic field, we establish the physics and develop the quantitative theory which explain the recent observation of the enhancement of the harmonics of the cyclotron resonance in this limit. For the case of one-dimensional systems, we study the effect of inhomogeneity on the tunnel density of states in a Luttinger liquid. We show that for a periodic inhomogeneity, an additional anomaly develops in the electron density of states and we find its position and magnitude. In the case of a disordered inhomogeneity, the plasmons associated with the low-energy excitations of the system become localized and, as a consequence, the correlator of the fluctuations of the densities of states is modified, acquiring an oscillatory dependence on the distance.

  20. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

    CERN Document Server

    Jacob, Birgit

    2012-01-01

    This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir

  1. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J S; Hrousis, C A

    2010-03-09

    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  2. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [ITER Organization, route de Vinon-sur-Verdon, 13067 St. Paul lez Durance Cedex (France); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium)

    2016-01-15

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.

  3. Direct Current Hopping Conductivity in One-Dimensional Nanometre Systems

    Institute of Scientific and Technical Information of China (English)

    宋祎璞; 徐慧; 罗峰

    2003-01-01

    A one-dimensional random nanocrystalline chain model is established. A dc electron-phonon-field conductance model of electron tunnelling transfer is set up, and a new dc conductance formula in one-dimensional nanometre systems is derived. By calculating the dc conductivity, the relationship among the electric field, temperature and conductivity is analysed, and the effect of the crystalline grain size and the distortion of interfacial atoms on the dc conductance is discussed. The result shows that the nanometre system appears the characteristic of negative differential dependence of resistance and temperature at low temperature. The dc conductivity of nanometre systems varies with the change of electric field and trends to rise as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.

  4. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  5. Sequentially generated states for the study of two dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari-Carmen; Cirac, J. Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Perez-Garcia, David [Depto. Analisis Matematico, Universidad Complutense de Madrid (Spain); Wolf, Michael M. [Niels Bohr Institut, Copenhagen (Denmark); Verstraete, Frank [Fakultaet fuer Physik, Universitaet Wien (Austria)

    2009-07-01

    The family of Matrix Product States represents a powerful tool for the study of physical one-dimensional quantum many-body systems, such as spin chains. Besides, Matrix Product States can be defined as the family of quantum states that can be sequentially generated in a one-dimensional system. We have introduced a new family of states which extends this sequential definition to two dimensions. Like in Matrix Product States, expectation values of few body observables can be efficiently evaluated and, for the case of translationally invariant systems, the correlation functions decay exponentially with the distance. We show that such states are a subclass of Projected Entangled Pair States and investigate their suitability for approximating the ground states of local Hamiltonians.

  6. Modular transportation system with a three dimensional routeing

    Directory of Open Access Journals (Sweden)

    Löffler Christoph

    2015-12-01

    Full Text Available In intra-enterprise logistics and automation of manufacturing processes general a rising productivity by high flexibility is required. Existing transportation systems exclusively use two-dimensional track sections, because they can be served with standard drives. Because of these simple structures the transport speed is limited and thereby also the throughput. In this paper now a modular transportation system is presented which could reach higher speeds with a direct drive and the use of centrifugal force compensating curves. Simultaneously the system also can change the altitude. All this succeeds with the integration of three-dimensional track sections. Therefore a two piped guiding system with a long stator linear motor was designed. To combine the linear motor with the three dimensional track special stator elements were developed which allow a bending of the stator to follow the route course. The current work deals with the implementation of a mechanical passive switch, which is operated by the electromagnetic forces of the linear motor. So no additional mechanical actors or a separate electromagnetic system are necessary.

  7. Blended particle filters for large-dimensional chaotic dynamical systems.

    Science.gov (United States)

    Majda, Andrew J; Qi, Di; Sapsis, Themistoklis P

    2014-05-27

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below.

  8. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    Science.gov (United States)

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  9. Fourier's law for quasi-one-dimensional chaotic quantum systems

    Science.gov (United States)

    Seligman, Thomas H.; Weidenmüller, Hans A.

    2011-05-01

    We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.

  10. Quench Dynamics in Confined 1+1-Dimensional Systems

    CERN Document Server

    Engelhardt, Dalit

    2015-01-01

    We present a scheme for investigating the response of confined 1+1-dimensional systems to a quantum quench and consider the extent to which a system whose post-quench dynamics are near-integrable may be analyzed by an application of boundary CFT techniques. As the main example we present a model of a split-momentum quench in a finite 1D geometry, a setup analogous to that of the experiment of Kinoshita, Wenger, and Weiss [Nature 440, 900 (2006)]. We analytically derive the form of the expected momentum distributions and describe how such information may be used to assess the extent of integrability breaking in realistic systems.

  11. Model and Controller Order Reduction for Infinite Dimensional Systems

    Directory of Open Access Journals (Sweden)

    Fatmawati

    2010-05-01

    Full Text Available This paper presents a reduced order model problem using reciprocal transformation and balanced truncation followed by low order controller design of infinite dimensional systems. The class of systems considered is that of an exponentially stable state linear systems (A, B, C, where operator A has a bounded inverse, and the operator B and C are of finite-rank and bounded. We can connect the system (A, B, C with its reciprocal system via the solutions of the Lyapunov equations. The realization of the reciprocal system is reduced by balanced truncation. This result is further translated using reciprocal transformation as the reduced-order model for the systems (A, B, C. Then the low order controller is designed based on the reduced order model. The numerical examples are studied using simulations of Euler-Bernoulli beam to show the closed-loop performance.

  12. Multi-dimensional blind separation method for STBC systems

    Institute of Scientific and Technical Information of China (English)

    Minggang Luo; Liping Li; Guobing Qian; Huaguo Zhang

    2013-01-01

    Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when spe-cific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multi-dimensional case to separate the received data into mutual y in-dependent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Sim-ulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding infor-mation than channel estimation based algorithms.

  13. Fate of classical solitons in one-dimensional quantum systems.

    Energy Technology Data Exchange (ETDEWEB)

    Pustilnik, M.; Matveev, K. A.

    2015-11-23

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.

  14. Nonparametric forecasting of low-dimensional dynamical systems.

    Science.gov (United States)

    Berry, Tyrus; Giannakis, Dimitrios; Harlim, John

    2015-03-01

    This paper presents a nonparametric modeling approach for forecasting stochastic dynamical systems on low-dimensional manifolds. The key idea is to represent the discrete shift maps on a smooth basis which can be obtained by the diffusion maps algorithm. In the limit of large data, this approach converges to a Galerkin projection of the semigroup solution to the underlying dynamics on a basis adapted to the invariant measure. This approach allows one to quantify uncertainties (in fact, evolve the probability distribution) for nontrivial dynamical systems with equation-free modeling. We verify our approach on various examples, ranging from an inhomogeneous anisotropic stochastic differential equation on a torus, the chaotic Lorenz three-dimensional model, and the Niño-3.4 data set which is used as a proxy of the El Niño Southern Oscillation.

  15. Lyapunov exponent diagrams of a 4-dimensional Chua system.

    Science.gov (United States)

    Stegemann, Cristiane; Albuquerque, Holokx A; Rubinger, Rero M; Rech, Paulo C

    2011-09-01

    We report numerical results on the existence of periodic structures embedded in chaotic and hyperchaotic regions on the Lyapunov exponent diagrams of a 4-dimensional Chua system. The model was obtained from the 3-dimensional Chua system by the introduction of a feedback controller. Both the largest and the second largest Lyapunov exponents were considered in our colorful Lyapunov exponent diagrams, and allowed us to characterize periodic structures and regions of chaos and hyperchaos. The shrimp-shaped periodic structures appear to be malformed on some of Lyapunov exponent diagrams, and they present two different bifurcation scenarios to chaos when passing the boundaries of itself, namely via period-doubling and crisis. Hyperchaos-chaos transition can also be observed on the Lyapunov exponent diagrams for the second largest exponent.

  16. Hall effect in strongly correlated low dimensional systems

    OpenAIRE

    Leon Suros, Gladys Eliana; Berthod, Christophe; Giamarchi, Thierry

    2006-01-01

    We investigate the Hall effect in a quasi one-dimensional system made of weakly coupled Luttinger Liquids at half filling. Using a memory function approach, we compute the Hall coefficient as a function of temperature and frequency in the presence of umklapp scattering. We find a power-law correction to the free-fermion value (band value), with an exponent depending on the Luttinger parameter $K_{\\rho}$. At high enough temperature or frequency the Hall coefficient approaches the band value.

  17. Constructing entanglement witnesses for infinite-dimensional systems

    CERN Document Server

    Hou, Jinchuan

    2010-01-01

    It is shown that, every entangled state in an infinite-dimensional composite system has an entanglement witness of simpler form $\\alpha I+T$ with $\\alpha$ a nonnegative number and $T$ a finite rank self-adjoint operator. We also provide two method of constructing entanglement witness and apply them to obtain some entangled states that cannot be detected by the PPT criterion and the realignment criterion.

  18. Statistical mechanical analysis of (1 + infinity) dimensional disordered systems

    CERN Document Server

    Skantzos, N S

    2001-01-01

    Valuable insight into the theory of disordered systems and spin-glasses has been offered by two classes of exactly solvable models: one-dimensional models and mean-field (infinite-range) ones, which, each carry their own specific techniques and restrictions. Both classes of models are now considered as 'exactly solvable' in the sense that in the thermodynamic limit the partition sum can been carried out analytically and the average over the disorder can be performed using methods which are well understood. In this thesis I study equilibrium properties of spin systems with a combination of one-dimensional short- and infinite-range interactions. I find that such systems, under either synchronous or asynchronous spin dynamics, and even in the absence of disorder, lead to phase diagrams with first-order transitions and regions with a multiple number of locally stable states. I then proceed to the study of recurrent neural network models with (1+infinity)-dimensional interactions, and find that the competing short...

  19. Extended Darknet: Multi-Dimensional Internet Threat Monitoring System

    Science.gov (United States)

    Shimoda, Akihiro; Mori, Tatsuya; Goto, Shigeki

    Internet threats caused by botnets/worms are one of the most important security issues to be addressed. Darknet, also called a dark IP address space, is one of the best solutions for monitoring anomalous packets sent by malicious software. However, since darknet is deployed only on an inactive IP address space, it is an inefficient way for monitoring a working network that has a considerable number of active IP addresses. The present paper addresses this problem. We propose a scalable, light-weight malicious packet monitoring system based on a multi-dimensional IP/port analysis. Our system significantly extends the monitoring scope of darknet. In order to extend the capacity of darknet, our approach leverages the active IP address space without affecting legitimate traffic. Multi-dimensional monitoring enables the monitoring of TCP ports with firewalls enabled on each of the IP addresses. We focus on delays of TCP syn/ack responses in the traffic. We locate syn/ack delayed packets and forward them to sensors or honeypots for further analysis. We also propose a policy-based flow classification and forwarding mechanism and develop a prototype of a monitoring system that implements our proposed architecture. We deploy our system on a campus network and perform several experiments for the evaluation of our system. We verify that our system can cover 89% of the IP addresses while darknet-based monitoring only covers 46%. On our campus network, our system monitors twice as many IP addresses as darknet.

  20. Guaranteed Cost Control for Uncertain Nonlinear Time-Delay Neutral Systems Based on T-S Fuzzy Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral systems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existence of guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities. Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteed cost controller.

  1. On Exponential Stability for a Class of Uncertain Neutral Markovian Jump Systems with Mode-Dependent Delays

    OpenAIRE

    Xinghua Liu; Hongsheng Xi

    2013-01-01

    The exponential stability of neutral Markovian jump systems with interval mode-dependent time-varying delays, nonlinear perturbations, and partially known transition rates is investigated. A novel augmented stochastic Lyapunov functional is constructed, which employs the improved bounding technique and contains triple-integral terms to reduce conservativeness; then the delay-range-dependent and rate-dependent exponential stability criteria are developed by Lyapunov stability theory, reciproca...

  2. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder.

    Science.gov (United States)

    Bröer, Angelika; Klingel, Karin; Kowalczuk, Sonja; Rasko, John E J; Cavanaugh, Juleen; Bröer, Stefan

    2004-06-04

    Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder.

  3. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  4. Variable Separation Solutions in (1+1)-Dimensional and (3+1)-Dimensional Systems via Entangled Mapping Approach

    Institute of Scientific and Technical Information of China (English)

    DAI Chao-Qing; YAN Cai-Jie; ZHANG Jie-Fang

    2006-01-01

    In this paper, the entangled mapping approach (EMA) is applied to obtain variable separation solutions of (1+1)-dimensional and (3+1)-dimensional systems. By analysis, we firstly find that there also exists a common formula to describe suitable physical fields or potentials for these (1+1)-dimensional models such as coupled integrable dispersionless (CID) and shallow water wave equations. Moreover, we find that the variable separation solution of the (3+1)-dimensional Burgers system satisfies the completely same form as the universal quantity U1 in (2+ 1 )-dimensional systems. The only difference is that the function q is a solution of a constraint equation and p is an arbitrary function of three independent variables.

  5. Local bifurcation analysis of a four-dimensional hyperchaotic system

    Institute of Scientific and Technical Information of China (English)

    Wu Wen-Juan; Chen Zeng-Qiang; Yuan Zhu-Zhi

    2008-01-01

    Local bifurcation phenomena in a four-dimensional continuous hyperchaotic system, which has rich and complex dynamical behaviours, are analysed. The local bifurcations of the system are investigated by utilizing the bifurcation theory and the centre manifold theorem, and thus the conditions of the existence of pitchfork bifurcation and Hopf bifurcation are derived in detail. Numerical simulations are presented to verify the theoretical analysis, and they show some interesting dynamics, including stable periodic orbits emerging from the new fixed points generated by pitchfork bifurcation, coexistence of a stable limit cycle and a chaotic attractor, as well as chaos within quite a wide parameter region.

  6. Exactly integrable analogue of a one-dimensional gravitating system

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce N. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)]. E-mail: b.miller@tcu.edu; Yawn, Kenneth R. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Maier, Bill [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2005-10-10

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N{exclamation_point} equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed.

  7. Superfluid phase transition in two-dimensional excitonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl

    2014-03-01

    We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.

  8. Crossed Andreev effects in two-dimensional quantum Hall systems

    Science.gov (United States)

    Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng

    2016-08-01

    We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.

  9. Solar System Tests of Higher-Dimensional Gravity

    CERN Document Server

    Liu, H; Liu, Hongya; Overduin, James

    2000-01-01

    The classical tests of general relativity - light deflection, time delay andperihelion shift - are applied, along with the geodetic precession test, to thefive-dimensional extension of the theory known as Kaluza-Klein gravity, usingan analogue of the four-dimensional Schwarzschild metric. The perihelionadvance and geodetic precession calculations are generalized for the first timeto situations in which the components of momentum and spin along the extracoordinate do not vanish. Existing data on light- bending around the Sun usinglong- baseline radio interferometry, ranging to Mars using the Viking lander,and the perihelion precession of Mercury all constrain a small parameter bassociated with the extra part of the metric to be less than |b| < 0.07 in thesolar system. An order-of-magnitude increase in sensitivity is possible fromperihelion precession, if better limits on solar oblateness become available.Measurement of geodetic precession by the Gravity Probe B satellite willimprove this significantly, prob...

  10. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  11. Two-dimensional electron-hole capture in a disordered hopping system

    Science.gov (United States)

    Greenham, N. C.; Bobbert, P. A.

    2003-12-01

    We model the two-dimensional recombination of electrons and holes in a system where the mean free path is short compared with the thermal capture radius. This recombination mechanism is relevant to the operation of bilayer organic light-emitting diodes (LED’s), where electrons and holes accumulate on either side of the internal heterojunction. The electron-hole recombination rate can be limited by the time taken for these charge carriers to drift and diffuse to positions where electrons and holes are directly opposite to each other on either side of the interface, at which point rapid formation of an emissive neutral state can occur. In this paper, we use analytical and numerical techniques to find the rate of this two-dimensional electron-hole capture process. Where one species of carrier is significantly less mobile than the other, we find that the recombination rate depends superlinearly on the density of the less mobile carrier. Numerical simulations allow the effects of disorder to be taken into account in a microscopic hopping model. Direct solution of the master equation for hopping provides more efficient solutions than Monte Carlo simulations. The rate constants extracted from our model are consistent with efficient emission from bilayer LED’s without requiring independent hopping of electrons and holes over the internal barrier at the heterojunction.

  12. New data assimilation system DNDAS for high-dimensional models

    Science.gov (United States)

    Qun-bo, Huang; Xiao-qun, Cao; Meng-bin, Zhu; Wei-min, Zhang; Bai-nian, Liu

    2016-05-01

    The tangent linear (TL) models and adjoint (AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system (DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS. Project supported by the National Natural Science Foundation of China (Grant Nos. 41475094 and 41375113).

  13. Hydrodynamics and transport in low-dimensional interacting systems

    Science.gov (United States)

    Kulkarni, Manas

    Recent ground-breaking experiments have realized strongly interacting quantum degenerate Fermi gas in a cold atomic system with tunable interactions. This has provided a table-top system which is extremely hydrodynamic in nature. This experimental realization helps us to investigate several aspects such as the interplay between nonlinearity, dissipation and dispersion. We find, for instance, that the dynamics in such a system shows near perfect agreement with a hydrodynamic theory. In collaboration with the group of John Thomas at Duke we interpreted studies of collision of two strongly interacting Fermi gases that led to shock waves which are a hallmark of nonlinear physics. Due to reasons such as the nature of interactions, higher dimensionality, these cold atomic systems are non-integrable and moreover the underlying field theory construction is mostly phenomenological in nature. On the other hand there are certain one-dimensional systems which are not only integrable but also facilitate more formal and rigorous ways of deriving the corresponding integrable field theories. One such family of models is the family of Calogero models (and their generalizations). They provide an extraordinary insight into the field of strongly correlated systems and hydrodynamics. We study the collective field theory of such models and address aspects of nonlinear physics such as Spin-Charge Interaction, Emptiness Formation Probability, Solitons etc; We derive a two-component nonlinear, nonlocal, integrable field theory. We also show that the Calogero family which is integrable even in an external harmonic trap (usually unavoidable in cold atom setups) is relatively "short ranged" thereby qualifying as a toy model for cold atom experiments. Transport in certain strongly correlated systems (impurity models) was studied using few low-dimensional techniques such as a 1/N diagrammatic expansion, Slave Boson Mean Field Theory and the Bethe Ansatz. A mesoscopic setup such as parallel

  14. Direct test of time-reversal symmetry in the entangled neutral kaon system at a \\phi-factory

    CERN Document Server

    Bernabeu, J; Villanueva-Perez, P

    2013-01-01

    We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a \\phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time ordered decays (l^-,\\pi\\pi) with the T -conjugated one defined by (3\\pi^0, l^+). With the use of this and other T conjugated comparisons, the KLOE-2 experiment at DAFNE could make a significant test.

  15. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    Energy Technology Data Exchange (ETDEWEB)

    Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir [Department of Mathematics, Bonab University, Tabriz (Iran, Islamic Republic of); Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu [Department of Physics, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu [Department of Mathematics, Bonab University, Tabriz (Iran, Islamic Republic of); Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  16. Three-dimensional wedge filling in ordered and disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, M J [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Parry, A O [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2004-04-21

    We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in shallow wedges based on a simple interfacial Hamiltonian model and is supported by detailed numerical investigations of filling within a more microscopic Landau-like density functional theory. Evidence is presented that classical wedge covariance is also obeyed for filling in more acute wedges in the asymptotic critical regime. For sufficiently short-ranged forces mean-field predictions for the filling critical exponents and covariance are destroyed by pseudo-one-dimensional interfacial fluctuations. We argue that in this filling fluctuation regime the critical exponents describing the divergence of length scales are related to values of the interfacial wandering exponent {zeta}(d) defined for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional (d = 3) systems. For the interfacial height l{sub w} {approx} {theta}-{alpha}){sup -{beta}}{sub w}, with {theta} the contact angle and {alpha} the wedge tilt angle, we find {beta}{sub w} = {zeta}(2)/2(1-{zeta}(3)). For pure systems (thermal disorder) we recover the known result {beta}{sub w} = 1/4 predicted by interfacial Hamiltonian studies whilst for random-bond disorder we predict the universal critical exponent {beta} {approx} even in the presence of dispersion forces. We revisit the transfer matrix theory of three-dimensional filling based on an effective interfacial Hamiltonian model and discuss the interplay between breather, tilt and torsional interfacial fluctuations. We show that the coupling of the modes allows the problem to be mapped onto a quantum mechanical problem as conjectured by previous authors

  17. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...

  18. Three-dimensional surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  19. Deformed oscillator algebras for two dimensional quantum superintegrable systems

    CERN Document Server

    Bonatsos, Dennis; Kokkotas, K D; Bonatsos, Dennis

    1994-01-01

    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.

  20. The 3-dimensional architecture of the Upsilon Andromedae planetary system

    CERN Document Server

    Deitrick, Russell; McArthur, Barbara; Quinn, Thomas R; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G Fritz

    2014-01-01

    The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by about 30 degrees, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or about 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 $M_{Jup}$ and has an inclination angle from the...

  1. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  2. A Knowledge-Navigation System for Dimensional Metrology.

    Science.gov (United States)

    Moncarz, Howard T

    2002-01-01

    Geometric dimensioning and tolerancing (GD&T) is a method to specify the dimensions and form of a part so that it will meet its design intent. GD&T is difficult to master for two main reasons. First, it is based on complex 3D geometric entities and relationships. Second, the geometry is associated with a large, diverse knowledge base of dimensional metrology with many interconnections. This paper describes an approach to create a dimensional metrology knowledge base that is organized around a set of key concepts and to represent those concepts as virtual objects that can be navigated with interactive, computer visualization techniques to access the associated knowledge. The approach can enable several applications. First is the application to convey the definition and meaning of GD&T over a broad range of tolerance types. Second is the application to provide a visualization of dimensional metrology knowledge within a control hierarchy of the inspection process. Third is the application to show the coverage of interoperability standards to enable industry to make decisions on standards development and harmonization efforts. A prototype system has been implemented to demonstrate the principles involved in the approach.

  3. 3-dimensional telepresence system for a robotic environment

    Science.gov (United States)

    Anderson, Matthew O.; McKay, Mark D.

    2000-01-01

    A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.

  4. High-dimensional chaotic and attractor systems a comprehensive introduction

    CERN Document Server

    Ivancevic, Vladimir G

    2007-01-01

    This is a graduate–level monographic textbook devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective of the book is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. The book has nine Chapters. The first Chapter gives a textbook-like introduction into the low-dimensional attractors and chaos. This Chapter has an inspirational character, similar to other books on nonlinear dynamics and deterministic chaos. The second Chapter deals with Smale’s topological transformations of stretching, squeezing and folding (of the system’s phase–space), developed for the purpose of chaos theory. The third Chapter is devoted to Poincaré's 3-body problem and basic techniques of chaos control, mostly of Ott-Grebogi-Yorke type. The fourth Chapter is a review of both Landau’s and topological phase transition theory, as w...

  5. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3 -/CO2 system

    KAUST Repository

    Joya, Khurram Saleem

    2014-06-04

    Neutral HCO3 -/CO2 is a new electrolyte system for in situ generation of robust and efficient Co-derived (Co-Ci) water oxidation electrocatalysts. The Co-Ci/indium tin oxide system shows a remarkable 2.0 mA cm-2 oxygen evolution current density that is sustained for several hours. 7.5 nmol of electroactive species per cm2 generates about 109 μmol of O2 at a rate of 0.51 per mol of catalyst per second.

  6. Nonlinear Galerkin Optimal Truncated Low—dimensional Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    ChuijieWU

    1996-01-01

    In this paper,a new theory of constructing nonlinear Galerkin optimal truncated Low-Dimensional Dynamical Systems(LDDSs) directly from partial differential equations has been developed.Applying the new theory to the nonlinear Burgers' equation,it is shown that a nearly perfect LDDS can be gotten,and the initial-boundary conditions are automatically included in the optimal bases.The nonlinear Galerkin method does not have advantages within the optimization process,but it can significantly improve the results,after the Galerkin optimal bases have been gotten.

  7. Finite de Finetti theorem for infinite-dimensional systems.

    Science.gov (United States)

    D'Cruz, Christian; Osborne, Tobias J; Schack, Rüdiger

    2007-04-20

    We formulate and prove a de Finetti representation theorem for finitely exchangeable states of a quantum system consisting of k infinite-dimensional subsystems. The theorem is valid for states that can be written as the partial trace of a pure state |Psi/Psi| chosen from a family of subsets {Cn} of the full symmetric subspace for n subsystems. We show that such states become arbitrarily close to mixtures of pure power states as n increases. We give a second equivalent characterization of the family {Cn}.

  8. A Finite de Finetti Theorem for Infinite-Dimensional Systems

    CERN Document Server

    D'Cruz, C; Schack, R; Cruz, Christian D'; Osborne, Tobias J.; Schack, Ruediger

    2006-01-01

    We formulate and prove a de Finetti representation theorem for finitely exchangeable states of a quantum system consisting of k infinite-dimensional subsystems. The theorem is valid for states that can be written as the partial trace of a pure state from a family of subspaces {S_n} of the full symmetric subspace for n subsystems. We show that such states become arbitrarily close to mixtures of pure power states as n increases. We give two simple equivalent characterizations of the family {S_n}.

  9. Asymmetric de Finetti Theorem for Infinite-dimensional Quantum Systems

    CERN Document Server

    Niu, Murphy Yuezhen

    2016-01-01

    The de Finetti representation theorem for continuous variable quantum system is first developed to approximate an N-partite continuous variable quantum state with a convex combination of independent and identical subsystems, which requires the original state to obey permutation symmetry conditioned on successful experimental verification on k of N subsystems. We generalize the de Finetti theorem to include asymmetric bounds on the variance of canonical observables and biased basis selection during the verification step. Our result thereby enables application of infinite-dimensional de Finetti theorem to situations where two conjugate measurements obey different statistics, such as the security analysis of quantum key distribution protocols based on squeezed state against coherent attack.

  10. Immune System Regulation in the Induction of Broadly Neutralizing HIV-1 Antibodies

    Directory of Open Access Journals (Sweden)

    Garnett Kelsoe

    2013-12-01

    Full Text Available In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.

  11. A Measurement of Lifetime Differences in the Neutral D-Meson System

    CERN Document Server

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Do Vale, M A B; Carrillo, S; Casimiro, E; Méndez, H; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Cinquini, L; Cumalat, J P; Ramírez, J E; O'Reilly, B; Vaandering, E W; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Gourlay, S A; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, Franco Luigi; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Myung, S S; Park, H; Alimonti, G; Boschini, M; Brambilla, D; Caccianiga, B; Calandrino, A; D'Angelo, P; Di Corato, M; Dini, P; Giammarchi, M G; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Hernández, H; López, A M; Méndez, L; Mirles, M A; Montiel, E; Olaya, D; Quinones, J; Rivera, C; Zhang, Y; Copty, N K; Purohit, M; Wilson, J R; Cho, K; Handler, T; Engh, D; Johns, W E; Hosack, M; Nehring, M S; Sales, M; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M; Kwon, Y J

    2000-01-01

    Using a high statistics sample of photoproduced charm particles from the FOCUS experiment at Fermilab, we compare the lifetimes of neutral D mesons decaying via D0 to K- pi+ and K- K+ to measure the lifetime differences between CP even and CP odd final states. These measurements bear on the phenomenology of D0 - D0bar mixing. If the D0 to K-pi+ is an equal mixture of CP even and CP odd eigenstates, we measure yCP = 0.0342 \\pm 0.0139 \\pm 0.0074.

  12. A measurement of lifetime differences in the neutral D-meson system

    CERN Document Server

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Do Vale, M A B; Carrillo, S; Casimiro, E; Méndez, H; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Cinquini, L; Cumalat, J P; Ramírez, J E; O'Reilly, B; Vaandering, E W; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Gourlay, S A; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, Franco Luigi; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Myung, S S; Park, H; Alimonti, G; Boschini, M; Brambilla, D; Caccianiga, B; Calandrino, A; D'Angelo, P; Di Corato, M; Dini, P; Giammarchi, M G; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Hernández, H; López, A M; Méndez, L; Mirles, M A; Montiel, E; Olaya, D; Quinones, J; Rivera, C; Zhang, Y; Copty, N K; Purohit, M; Wilson, J R; Cho, K; Handler, T; Engh, D; Johns, W E; Hosack, M; Nehring, M S; Sales, M; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M; Kwon, Y J

    2000-01-01

    Using a high statistics sample of photoproduced charm particles from the FOCUS experiment at Fermilab, we compare the lifetimes of neutral D mesons decaying via D0 to K- pi+ and K- K+ to measure the lifetime differences between CP even and CP odd final states. These measurements bear on the phenomenology of D0 - D0bar mixing. If the D0 to K-pi+ is an equal mixture of CP even and CP odd eigenstates, we measure yCP = 0.0342 \\pm 0.0139 \\pm 0.0074.

  13. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    Science.gov (United States)

    Liu, Taoming; Cavuşoğlu, M Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype.

  14. A Multi-Dimensional approach towards Intrusion Detection System

    CERN Document Server

    Thakur, Manoj Rameshchandra

    2012-01-01

    In this paper, we suggest a multi-dimensional approach towards intrusion detection. Network and system usage parameters like source and destination IP addresses; source and destination ports; incoming and outgoing network traffic data rate and number of CPU cycles per request are divided into multiple dimensions. Rather than analyzing raw bytes of data corresponding to the values of the network parameters, a mature function is inferred during the training phase for each dimension. This mature function takes a dimension value as an input and returns a value that represents the level of abnormality in the system usage with respect to that dimension. This mature function is referred to as Individual Anomaly Indicator. Individual Anomaly Indicators recorded for each of the dimensions are then used to generate a Global Anomaly Indicator, a function with n variables (n is the number of dimensions) that provides the Global Anomaly Factor, an indicator of anomaly in the system usage based on all the dimensions consid...

  15. Three-dimensional kinetic modeling of the neutral and charged dust in the coma of Rosetta’s target comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tenishev, Valeriy; Borovikov, Dmitry; Combi, Michael R.; Fougere, Nicolas; Huang, Zhenguang; Bieler, Andre; Hansen, Kenneth; Toth, Gabor; Jia, Xianzhe; Shou, Yinsi; Gombosi, Tamas; Rubin, Martin; Rotundi, Alessandra; Della Corte, Vincenzo

    2015-11-01

    Rosetta is the first mission that escorts a comet along its way through the Solar System for an extended amount of time. As a result, the target of the mission, comet 67P/Churyumov-Gerasimenko, is an object of great scientific interest.Dust ejected from the nucleus is entrained into the coma by the escaping gas. Interacting with the ambient plasma the dust particles are charged by the electron and ion collection currents. The photo and secondary emission currents can also change the particle charge. The resulting Lorentz force together with the gas drag, gravity, and radiation pressure define the dust particle trajectories.At altitudes comparable to those of the Rosetta trajectory, direction of a dust particle velocity can be significantly different from that in the innermost vicinity of the coma near the nucleus. At such altitudes the angular distribution of the dust grains velocity has a pronounced tail-like structure. This is consistent with Rosetta’s GIADA dust observations showing dust grains moving in the anti-sunward direction.Here, we present results of our model study of the neutral and charged dust in the coma of comet 67P/Churyumov-Gerasimenko, combining the University of Michigan AMPS kinetic particle model and the BATSRUS MHD model. Trajectories of dust particles within the observable size range of Rosetta’s GIADA dust instrument have been calculated accounting for the radiation pressure, gas drag, the nucleus gravity, the Lorentz force, and the effect of the nucleus rotation. The dust grain electric charge is calculated by balancing the collection currents at the grain’s location. We present angular velocity distribution maps of these charged dust grains for a few locations representative of Rosetta's trajectory around the comet.This work was supported by US Rosetta project contracts JPL-1266313 and JPL-1266314 and NASA Planetary Atmospheres grant NNX14AG84G

  16. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging.

    Science.gov (United States)

    Knoops, Paul G M; Beaumont, Caroline A A; Borghi, Alessandro; Rodriguez-Florez, Naiara; Breakey, Richard W F; Rodgers, William; Angullia, Freida; Jeelani, N U Owase; Schievano, Silvia; Dunaway, David J

    2017-04-01

    Two-dimensional photographs are the standard for assessing craniofacial surgery clinical outcomes despite lacking three-dimensional (3D) depth and shape. Therefore, 3D scanners have been gaining popularity in various fields of plastic and reconstructive surgery, including craniomaxillofacial surgery. Head shapes of eight adult volunteers were acquired using four 3D scanners: 1.5T Avanto MRI, Siemens; 3dMDface System, 3dMD Inc.; M4D Scan, Rodin4D; and Structure Sensor, Occipital Inc. Accuracy was evaluated as percentage of data within a range of 2 mm from the 3DMDface System reconstruction, by surface-to-surface root mean square (RMS) distances, and with facial distance maps. Precision was determined by RMS. Relative to the 3dMDface System, accuracy was the highest for M4D Scan (90% within 2 mm; RMS of 0.71 mm ± 0.28 mm), followed by Avanto MRI (86%; 1.11 mm ± 0.33 mm) and Structure Sensor (80%; 1.33 mm ± 0.46). M4D Scan and Structure Sensor precision were 0.50 ± 0.04 mm and 0.51 ± 0.03 mm, respectively. Clinical and technical requirements govern scanner choice; however, 3dMDface System and M4D Scan provide high-quality results. It is foreseeable that compact, handheld systems will become more popular in the near future.

  17. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  18. Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls

    Science.gov (United States)

    Peters, Karen; Mendach, Stefan; Hansen, Wolfgang

    The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.

  19. The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system

    Institute of Scientific and Technical Information of China (English)

    Wang Jie-Zhi; Chen Zeng-Qiang; Yuan Zhu-Zhi

    2006-01-01

    This paper reports a new four-dimensional hyperchaotic system obtained by adding a controller to a threedimensional autonomous chaotic system. The new system has two parameters, and each equation of the system has one quadratic cross-product term. Some basic properties of the new system are analysed. The different dynamic behaviours of the new system are studied when the system parameter a or b is varied. The system is hyperchaotic in several different regions of the parameter b. Especially, the two positive Lyapunov exponents are both larger, and the hyperchaotic region is also larger when this system is hyperchaotic in the case of varying a. The hyperchaotic system is analysed by

  20. Growing B Lymphocytes in a Three-Dimensional Culture System

    Science.gov (United States)

    Wu, J. H. David; Bottaro, Andrea

    2010-01-01

    A three-dimensional (3D) culture system for growing long-lived B lymphocytes has been invented. The capabilities afforded by the system can be expected to expand the range of options for immunological research and related activities, including testing of immunogenicity of vaccine candidates in vitro, generation of human monoclonal antibodies, and immunotherapy. Mature lymphocytes, which are the effectors of adaptive immune responses in vertebrates, are extremely susceptible to apoptotic death, and depend on continuous reception of survival-inducing stimulation (in the forms of cytokines, cell-to-cell contacts, and antigen receptor signaling) from the microenvironment. For this reason, efforts to develop systems for long-term culture of functional, non-transformed and non-activated mature lymphocytes have been unsuccessful until now. The bone-marrow microenvironment supports the growth and differentiation of many hematopoietic lineages, in addition to B-lymphocytes. Primary bone-marrow cell cultures designed to promote the development of specific cell types in vitro are highly desirable experimental systems, amenable to manipulation under controlled conditions. However, the dynamic and complex network of stromal cells and insoluble matrix proteins is disrupted in prior plate- and flask-based culture systems, wherein the microenvironments have a predominantly two-dimensional (2D) character. In 2D bone-marrow cultures, normal B-lymphoid cells become progressively skewed toward precursor B-cell populations that do not retain a normal immunophenotype, and such mature B-lymphocytes as those harvested from the spleen or lymph nodes do not survive beyond several days ex vivo in the absence of mitogenic stimulation. The present 3D culture system is a bioreactor that contains highly porous artificial scaffolding that supports the long-term culture of bone marrow, spleen, and lymph-node samples. In this system, unlike in 2D culture systems, B-cell subpopulations developing

  1. Quantum key distribution for composite dimensional finite systems

    Science.gov (United States)

    Shalaby, Mohamed; Kamal, Yasser

    2017-06-01

    The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.

  2. 3-dimensional current collection model. [of Tethered Satellite System 1

    Science.gov (United States)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  3. A Three-Dimensional Cooperative Guidance Law of Multimissile System

    Directory of Open Access Journals (Sweden)

    Xing Wei

    2015-01-01

    Full Text Available In order to conduct saturation attacks on a static target, the cooperative guidance problem of multimissile system is researched. A three-dimensional guidance model is built using vector calculation and the classic proportional navigation guidance (PNG law is extended to three dimensions. Based on this guidance law, a distributed cooperative guidance strategy is proposed and a consensus protocol is designed to coordinate the time-to-go commands of all missiles. Then an expert system, which contains two extreme learning machines (ELM, is developed to regulate the local proportional coefficient of each missile according to the command. All missiles can arrive at the target simultaneously under the assumption that the multimissile network is connected. A simulation scenario is given to demonstrate the validity of the proposed method.

  4. On Machine Capacitance Dimensional and Surface Profile Measurement System

    Science.gov (United States)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  5. Anomaly matching condition in two-dimensional systems

    CERN Document Server

    Dubinkin, O; Gubankova, E

    2016-01-01

    Based on Son-Yamamoto relation obtained for transverse part of triangle axial anomaly in ${\\rm QCD}_4$, we derive its analog in two-dimensional system. It connects the transverse part of mixed vector-axial current two-point function with diagonal vector and axial current two-point functions. Being fully non-perturbative, this relation may be regarded as anomaly matching for conductivities or certain transport coefficients depending on the system. We consider the holographic RG flows in holographic Yang-Mills-Chern-Simons theory via the Hamilton-Jacobi equation with respect to the radial coordinate. Within this holographic model it is found that the RG flows for the following relations are diagonal: Son-Yamamoto relation and the left-right polarization operator. Thus the Son-Yamamoto relation holds at wide range of energy scales.

  6. Collective Modes in Two Dimensional Binary Yukawa Systems

    CERN Document Server

    Kalman, Gabor J; Donko, Zoltan; Golden, Kenneth I; Kyrkos, Stamatios

    2013-01-01

    We analyze via theoretical approaches and molecular dynamics simulations the collective mode structure of strongly coupled two-dimensional binary Yukawa systems, for selected density, mass and charge ratios, both in the liquid and crystalline solid phases. Theoretically, the liquid phase is described through the Quasi-Localized Charge Approximation (QLCA) approach, while in the crystalline phase we study the centered honeycomb and the staggered rectangular crystal structures through the standard harmonic phonon approximation. We identify "longitudinal" and "transverse" acoustic and optic modes and find that the longitudinal acoustic mode evolves from its weakly coupled counterpart in a discontinuous non-perturbative fashion. The low frequency acoustic excitations are governed by the oscillation frequency of the average atom, while the high frequency optic excitation frequencies are related to the Einstein frequencies of the systems.

  7. DELAY-DEPENDENT ROBUST STABILITY CRITERIA FOR UNCERTAIN SINGULAR NEUTRAL DIFFERENTIAL SYSTEMS WITH TIME-VARYING AND DISTRIBUTED DELAYS

    Institute of Scientific and Technical Information of China (English)

    Renji Han; Wei Jiang

    2009-01-01

    The problem of delay-dependent robust stability for uncertain linear singular neu-tral systems with time-varying and distributed delays is investigated. The uncertain-ties under consideration are norm bounded, and possibly time varying. Some new stability criteria, which are simpler and less conservative than existing results, are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coefficient matrix and formulated in the form of a linear matrix inequalitys (LMIs). Also, the criteria can be easily checked by the Matlab LMI toolbox.

  8. Delay-Dependent Robust Exponential Stability for Uncertain Neutral Stochastic Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Weihua Mao

    2012-01-01

    Full Text Available This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF has been constructed to derive improved delay-dependent robust mean-square exponential stability criteria, which are forms of linear matrix inequalities (LMIs. By free-weight matrices method, the usual restriction that the stability conditions only bear slow-varying derivative of the delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.

  9. Filtering and control for classes of two-dimensional systems

    CERN Document Server

    Wu, Ligang

    2015-01-01

    This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: ·         general theory and methods of analysis and optimal synthesis for 2-D systems; and ·         application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...

  10. Intelligent Controller for Synchronization New Three Dimensional Chaotic System

    Directory of Open Access Journals (Sweden)

    Alireza Sahab

    2014-07-01

    Full Text Available One of the most important phenomena of some systems is chaos which is caused by nonlinear dynamics. In this paper, the new 3 dimensional chaotic system is first investigated and then utilized an intelligent controller based on brain emotional learning (BELBIC, this new chaotic system is synchronized. The BELBIC consists of reward signal which accepts positive values. Improper selection of the parameters causes an improper behavior which may cause serious problems such as instability of the system. It is needed to optimize these parameters. Genetic Algorithm (GA, Cuckoo Optimization Algorithm (COA, Particle Swarm Optimization Algorithm (PSO and Imperialist Competitive Algorithm (ICA are used to compute the optimal parameters for the reward signal of BELBIC. These algorithms can select appropriate and optimal values for the parameters. These minimize the Cost Function, so the optimal values for the parameters will be founded. Selected cost function is defined to minimizing the least square errors. Cost function enforces the system errors to decay to zero rapidly. Numerical simulation will show that this method much better, faster and more effective than previous methods can be new 3D chaotic system mode to bring synchronized.

  11. Brane-antibrane systems and the thermal life of neutral black holes

    CERN Document Server

    Saremi, O; Saremi, Omid; Peet, Amanda W.

    2004-01-01

    A brane-antibrane model for the entropy of neutral black branes is developed, following on from the work of Danielsson, Guijosa and Kruczenski [1]. The model involves equal numbers of Dp-branes and anti-Dp-branes, and arbitrary angular momenta, and covers the cases p=0,1,2,3,4. The thermodynamic entropy is reproduced by the strongly coupled field theory, up to a power of two. The strong-coupling physics of the p=0 case is further developed numerically, using techniques of Kabat, Lifschytz et al. [2,3], in the context of a toy model containing the tachyon and the bosonic degrees of freedom of the D0-brane and anti-D0-brane quantum mechanics. Preliminary numerical results show that strong-coupling finite-temperature stabilization of the tachyon is possible, in this context.

  12. Observation of matter-antimatter asymmetry in the neutral B meson system

    Science.gov (United States)

    Rahatlou, Shahram

    In this dissertation, a measurement of CP-violating effects in decays of neutral B meson is presented. The data sample for this measurement consists of about 88 million Upsilon(4S) → BB¯ decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy e +e- collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstates J/psi K0S , psi(25) K0S , chic1 K0S , and etac K0S , or in the flavor eigenstates D(*)- pi+/rho+/ a+1 and J/psiK*0 ( K*0 → K+pi -). The other B meson is determined to be either a B0 or a B¯ 0, at the time of its decay, from the properties of its decay products. The proper time Deltat elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. The CP asymmetry amplitude sin2beta is determined by the distributions of Deltat in events with a reconstructed B meson in CP eigenstates. The detector resolution and the b-flavor-tagging parameters are constrained by the Deltat distributions of events with a fully reconstructed flavor eigenstate. From a simultaneous maximum-likelihood fit to the Deltat distributions of all selected events in CP and flavor eigenstates, the value of sin2beta is measured to be 0.755 +/- 0.074 (stat) +/- 0.030 (syst). This value is in agreement with the Standard Model prediction, and represents a successful test of the Kobayashi-Maskawa mechanism of CP violation.

  13. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  14. Hierarchical, Three-Dimensional Measurement System for Crime Scene Scanning.

    Science.gov (United States)

    Marcin, Adamczyk; Maciej, Sieniło; Robert, Sitnik; Adam, Woźniak

    2017-02-02

    We present a new generation of three-dimensional (3D) measuring systems, developed for the process of crime scene documentation. This measuring system facilitates the preparation of more insightful, complete, and objective documentation for crime scenes. Our system reflects the actual requirements for hierarchical documentation, and it consists of three independent 3D scanners: a laser scanner for overall measurements, a situational structured light scanner for more minute measurements, and a detailed structured light scanner for the most detailed parts of tscene. Each scanner has its own spatial resolution, of 2.0, 0.3, and 0.05 mm, respectively. The results of interviews we have conducted with technicians indicate that our developed 3D measuring system has significant potential to become a useful tool for forensic technicians. To ensure the maximum compatibility of our measuring system with the standards that regulate the documentation process, we have also performed a metrological validation and designated the maximum permissible length measurement error EMPE for each structured light scanner. In this study, we present additional results regarding documentation processes conducted during crime scene inspections and a training session.

  15. The earthing system of the PRIMA Neutral Beam Test Facility based on the Mesh Common Bonding Network topology

    Energy Technology Data Exchange (ETDEWEB)

    Pomaro, Nicola, E-mail: nicola.pomaro@igi.cnr.it; Boldrin, Marco; Lazzaro, Gabriele

    2015-10-15

    Highlights: • We designed a high performance earthing system for the ITER Neutral Beam Test Facility. • The system is based on the Mesh Common Bonded Network topology. • Careful bonding of all metallic structures allowed to obtain a well meshed system. • Special care was dedicated to improve EMC performance of critical areas like control rooms. • The facility experimental results will be representative also of the ITER situation. - Abstract: PRIMA is a large experimental facility under realization in Padova, aimed at developing and testing the Neutral Beam Injectors for ITER. The operation of these devices involves high RF power and voltage up to 1 MV. Frequent and high voltage electrical breakdowns inside the beam sources occur regularly. The presence of a distributed carefully optimized earthing system is of paramount importance to achieve a satisfying disturbances immunity for equipment and diagnostics. The paper describes the design and the realization of the earthing system of the PRIMA facility, which is based on the MESH-Common Bonding Network (MESH-CBN) topology, as recommended by IEC and IEEE standards for installations with high levels of Electromagnetic Interferences (EMI). The principles of the MESH-CBN approach were adapted to the PRIMA layout, which is composed by several buildings, that are independent for seismic and architectural reasons, but are linked by many electrical conduits and hydraulic pipelines. The availability of huge foundations, with a large number of poles and pillars, was taken into account; building parts dedicated to host control rooms and sensitive equipment were treated with particular care. Moreover, the lightning protection system was integrated and harmonized with the earthing system.

  16. Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach

    CERN Document Server

    Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang

    2016-01-01

    Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...

  17. System maps for retention of small neutral compounds on a superficially porous particle column in reversed-phase liquid chromatography.

    Science.gov (United States)

    Atapattu, Sanka N; Poole, Colin F; Praseuth, Mike B

    2016-10-14

    The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral molecules on the ocadecylsiloxane-bonded silica superficially porous particle stationary phase (Kinetex C18) for aqueous-organic solvent mobile phases containing 10-70% (v/v) methanol or acetonitrile. A comparison of the system constants with eight commercially available octadecylsiloxane-bonded silica columns for the same separation conditions confirms that the general retention properties of Kinetex C-18 are similar to totally porous octadecylsiloxane-bonded silica stationary phases and that method transfer should be no more difficult than that usually observed when substituting one octadecylsiloxane-bonded silica column for another.

  18. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    Science.gov (United States)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  19. Solitary Wave in One-dimensional Buckyball System at Nanoscale

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-01-01

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624

  20. On the dynamics of the three dimensional planetary systems

    CERN Document Server

    Antoniadou, Kyriaki I; Hadjidemetriou, John D

    2013-01-01

    Over the last decades, there has been a tremendous increase in research on extrasolar planets. Many exosolar systems, which consist of a Star and two inclined Planets, seem to be locked in 4/3, 3/2, 2/1, 5/2, 3/1 and 4/1 mean motion resonance (MMR). We herewith present the model used to simulate three dimensional planetary systems and provide planar families of periodic orbits (PO), which belong to all possible configurations that each MMR has, along with their linear horizontal and vertical stability. We focus on depicting stable spatial families (most of them up to mutual inclination of $60^\\circ$) generated by PO of planar circular families, because the trapping in MMR could be a consequence of planetary migration process. We attempt to connect the linear stability of PO with long-term stability of a planetary system close to them. This can stimulate the search of real planetary systems in the vicinity of stable spatial PO-counterbalanced by the planets' orbital elements, masses and MMR; all of which could...

  1. Observation of Matter-Antimatter Asymmetry in the Neutral B Meson System

    Energy Technology Data Exchange (ETDEWEB)

    Rahatlou, S

    2003-12-19

    In this dissertation, a measurement of CP-violating effects in decays of neutral B meson is presented. The data sample for this measurement consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or in the flavor eigenstates D(*){sup -} {pi}{sup +}/{rho}{sup +}/a{sub 1}{sup +} and J/{psi} K*{sup 0} (K*{sup 0} {yields} K{sup +}{pi}{sup -}). The other B meson is determined to be either a B{sup 0} or a {bar B}{sup 0}, at the time of its decay, from the properties of its decay products. The proper time {Delta}t elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. The CP asymmetry amplitude sin2{beta} is determined by the distributions of {Delta}t in events with a reconstructed B meson in CP eigenstates. The detector resolution and the b-flavor-tagging parameters are constrained by the {Delta}t distributions of events with a fully reconstructed flavor eigenstate. From a simultaneous maximum-likelihood fit to the {Delta}t distributions of all selected events in CP and flavor eigenstates, the value of sin2{beta} is measured to be 0.755 {+-} 0.074(stat) {+-} 0.030(syst). This value is in agreement with the Standard Model prediction, and represents a successful test of the Kobayashi-Maskawa mechanism of CP violation.

  2. Two-dimensional spatial patterning in developmental systems.

    Science.gov (United States)

    Torii, Keiko U

    2012-08-01

    Multicellular organisms produce complex tissues with specialized cell types. During animal development, numerous cell-cell interactions shape tissue patterning through mechanisms involving contact-dependent cell migration and ligand-receptor-mediated lateral inhibition. Owing to the presence of cell walls, plant cells neither migrate nor undergo apoptosis as a means to correct for mis-specified cells. How can plants generate functional tissue patterns? This review aims to deduce fundamental principles of pattern formation through examining two-dimensional (2-D) spatial tissue patterning in plants and animals. Turing's mathematical framework will be introduced and applied to classic examples of de novo 2-D patterning in both animal and plant systems. By comparing their regulatory circuits, new insights into the similarities and differences of the basic principles governing tissue patterning will be discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Entanglement and majorization in (1+1)-dimensional quantum systems

    CERN Document Server

    Orus, R

    2005-01-01

    Motivated by the idea of entanglement loss along Renormalization Group flows, analytical majorization relations are proven for the ground state of (1+1)-dimensional conformal field theories. For any of these theories, majorization is proven to hold in the spectrum of the reduced density matrices in a bipartite system when changing the size L of one of the subsystems. Continuous majorization along uniparametric flows is also proven as long as part of the conformal structure is preserved under the deformation and some monotonicity conditions hold as well. As particular examples of our derivations, we study the cases of the XX, Heisenberg and XY quantum spin chains. Our results provide in a rigorous way explicit proves for all the majorization conjectures raised by Latorre, Lutken, Rico, Vidal and Kitaev in previous papers on quantum spin chains.

  4. A practical three-dimensional dosimetry system for radiation therapy.

    Science.gov (United States)

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical

  5. Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, Elizabeth Turner [Univ. of Chicago, IL (United States)

    2007-12-01

    The authors present precision measurements of the direct CP violation parameter, Re(ϵ'/ϵ), the kaon parameters, Δm and τS, and the CPT tests, Φ± and ΔΦ, in neutral kaon decays. These results are based on the full dataset collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This dataset contains ~ 15 million K → π0π0 decays and ~ 69 million K → π+π- decays. They describe significant improvements to the precision of these measurements relative to previous KTeV analyses. They find Re(ϵ'/ϵ = [19.2 ± 1.1(stat) ± 1.8(syst)] x 10-4, Δm = (5265 ± 10) x 106 hs-1, and τS = (89.62 ± 0.05) x 10-12 s. They measure Φ± = (44.09 ± 1.00)° and ΔΦ = (0.29 ± 0.31)°; these results are consistent with CPT symmetry.

  6. An Improved Measurement of Mixing-induced CP Violation in the Neutral B Meson System

    CERN Document Server

    Abe, K; Abe, N; Abe, R; Abe, T; Adachi, I; Ahn, B S; Aihara, H; Akatsu, M; Asai, M; Asano, Y; Aso, T; Aulchenko, V M; Aushev, T; Bakich, A M; Ban, Y; Banas, E; Banerjee, S; Bay, A; Bedny, I; Behera, P K; Beiline, D; Bizjak, I; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Casey, B C K; Chang, M C; Chang, P; Chao, Y; Chen, K F; Cheon, B G; Chistov, R; Choi, S K; Choi, Y; Choi, Y K; Danilov, M; Dong, L Y; Dowd, R; Dragic, J; Drutskoy, A; Eidelman, S; Eiges, V; Enari, Y; Everton, C W; Fang, F; Fujii, H; Fukunaga, C; Gabyshev, N I; Garmash, A; Gershon, T J; Golob, B; Gordon, A; Gotow, K; Guler, H; Guo, R; Haba, J; Hanagaki, K; Handa, F; Hara, K; Hara, T; Harada, Y; Hashimoto, K; Hastings, N C; Hayashii, H; Hazumi, M; Heenan, E M; Higuchi, I; Higuchi, T; Hinz, L; Hirai, T; Hojo, T; Hokuue, T; Hoshi, Y; Hoshina, K; Hou Wei Shu; Hsu, S C; Huang, H C; Igaki, T; Igarashi, Y; Iijima, T; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwamoto, M; Iwasaki, H; Iwasaki, Y; Jackson, D J; Jalocha, P; Jang, H K; Jones, M; Kagan, R; Kakuno, H; Kaneko, J; Kang, J H; Kang, J S; Kapusta, P; Kataoka, M; Kataoka, S U; Katayama, N; Kawai, H; Kawakami, Y; Kawamura, N; Kawasaki, T; Kichimi, H; Kim, D W; Kim, H; Kim, H J; Kim, H O; Kim, S K; Kim, T H; Kinoshita, K; Kobayashi, S; Koishi, S; Korotushenko, K; Korpar, S; Krizan, P; Krokovnyi, P P; Kulasiri, R; Kumar, S; Kurihara, E; Kuzmin, A; Kwon, Y J; Lange, J S; Leder, Gerhard; Lee, S H; Li, J; Limosani, A; Liventsev, D; Lu, R S; MacNaughton, J; Majumder, G; Mandl, F; Marlow, D; Matsubara, T; Matsuishi, T; Matsumoto, S; Matsumoto, T; Mikami, Y; Mitaroff, Winfried A; Miyabayashi, K; Miyabayashi, Y; Miyake, H; Miyata, H; Moffitt, L C; Moloney, G R; Moorhead, G F; Mori, S; Mori, T; Murakami, A; Nagamine, T; Nagasaka, Y; Nakadaira, T; Nakamura, T; Nakano, E; Nakao, M; Nakazawa, H; Nam, J W; Narita, S; Natkaniec, Z; Neichi, K; Nishida, S; Nitoh, O; Noguchi, S; Nozaki, T; Ofuji, A; Ogawa, S; Ohno, F; Ohshima, T; Ohshima, Y; Okabe, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Ozaki, H; Pakhlov, P; Palka, H; Park, C W; Park, H; Park, K S; Peak, L S; Perroud, Jean-Pierre; Peters, M; Piilonen, L E; Prebys, E J; Rodríguez, J L; Ronga, F J; Root, N; Rózanska, M; Rybicki, K; Ryuko, J; Sagawa, H; Saitoh, S; Sakai, Y; Sakamoto, H; Sakaue, H; Satapathy, M; Satpathy, A; Schneider, O; Schrenk, S; Schwanda, C; Semenov, S; Senyo, K; Settai, Y; Seuster, R; Sevior, M E; Shibuya, H; Shimoyama, M; Shwartz, B A; Sidorov, A; Sidorov, V; Singh, J B; Soni, N; Stanic, S; Staric, M; Sugi, A; Sugiyama, A; Sumisawa, K; Sumiyoshi, T; Suzuki, K; Suzuki, S; Suzuki, S Y; Swain, S K; Takahashi, T; Takasaki, F; Tamai, K; Tamura, N; Tanaka, J; Tanaka, M; Taylor, G N; Teramoto, Y; Tokuda, S; Tomoto, M; Tomura, T; Tovey, Stuart N; Trabelsi, K; Trischuk, W; Tsuboyama, T; Tsukamoto, T; Uehara, S; Ueno, K; Unno, Y; Uno, S; Ushiroda, Y; Vahsen, S E; Varner, G; Varvell, K E; Wang Chao Cheng; Wang, C H; Wang, J G; Wang, M Z; Watanabe, Y; Won, E; Yabsley, B D; Yamada, Y; Yamaguchi, A; Yamamoto, H; Yamanaka, T; Yamashita, Y; Yamauchi, M; Yanai, H; Yanaka, S; Yashima, J; Yeh, P; Yokoyama, M; Yoshida, K; Yuan, Y; Yusa, Y; Yuta, H; Zhang, C C; Zhang, J; Zhang, Z P; Zheng, Y; Zhilich, V N; Zhu, Z M

    2002-01-01

    We present an improved measurement of the standard model CP violation parameter sin2phi_1 (also known as sin2beta) based on a sample of 85 times 10^6 B Bbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. One neutral B meson is reconstructed in a J/psi K_S, psi(2S) K_S, chi_{c1} K_S, eta_c K_S, J/psi K^{*0}, or J/psi K_L CP-eigenstate decay channel and the flavor of accompanying B meson is identified from itsdecay products. From the asymmetry in the distribution of the time intervals between the two B meson decay points, we obtain sin2phi_1 = 0.719 +/- 0.074(stat) +/- 0.035(syst). We also report measurements of CP violation parameters for the related B^0 -> J/psi pi^0 decay mode and the penguin-dominated processes B^0 -> eta' K_S, phi K_S and K^+K^- K_S.

  7. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    Science.gov (United States)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  8. Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

    Science.gov (United States)

    Becus, Georges A.; Chan, Alistair K.

    1993-01-01

    Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.

  9. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    Science.gov (United States)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  10. A Three-Dimensional Wireless Indoor Localization System

    Directory of Open Access Journals (Sweden)

    Ping Yi

    2014-01-01

    Full Text Available Indoor localization, an emerging technology in location based service (LBS, is now playing a more and more important role both in commercial and in civilian industry. Global position system (GPS is the most popular solution in outdoor localization field, and the accuracy is around 10 meter error in positioning. However, with complex obstacles in buildings, problems rise in the “last mile” of localization field, which encourage a momentum of indoor localization. The traditional indoor localization system is either range-based or fingerprinting-based, which requires a lot of time and efforts to do the predeployment. In this paper, we present a 3-dimensional on-demand indoor localization system (3D-ODIL, which can be fingerprint-free and deployed rapidly in a multistorey building. The 3D-ODIL consists of two phases, vertical localization and horizontal localization. On vertical direction, we propose multistorey differential (MSD algorithm and implement it to fulfill the vertical localization, which can greatly reduce the number of anchors deployed. We use enhanced field division (EFD algorithm to conduct the horizontal localization. EFD algorithm is a range-free algorithm, the main idea of which is to dynamically divide the field within different signature area and position the target. The accuracy and performance have been validated through our extensive analysis and systematic experiments.

  11. Particle filtering in high-dimensional chaotic systems.

    Science.gov (United States)

    Lingala, Nishanth; Sri Namachchivaya, N; Perkowski, Nicolas; Yeong, Hoong C

    2012-12-01

    We present an efficient particle filtering algorithm for multiscale systems, which is adapted for simple atmospheric dynamics models that are inherently chaotic. Particle filters represent the posterior conditional distribution of the state variables by a collection of particles, which evolves and adapts recursively as new information becomes available. The difference between the estimated state and the true state of the system constitutes the error in specifying or forecasting the state, which is amplified in chaotic systems that have a number of positive Lyapunov exponents. In this paper, we propose a reduced-order particle filtering algorithm based on the homogenized multiscale filtering framework developed in Imkeller et al. "Dimensional reduction in nonlinear filtering: A homogenization approach," Ann. Appl. Probab. (to be published). In order to adapt the proposed algorithm to chaotic signals, importance sampling and control theoretic methods are employed for the construction of the proposal density for the particle filter. Finally, we apply the general homogenized particle filtering algorithm developed here to the Lorenz'96 [E. N. Lorenz, "Predictability: A problem partly solved," in Predictability of Weather and Climate, ECMWF, 2006 (ECMWF, 2006), pp. 40-58] atmospheric model that mimics mid-latitude atmospheric dynamics with microscopic convective processes.

  12. Application of Three-dimensional Body Measurement System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The configuration principles and functions of the non-contact three-dimensional (3D) body measurement system (BMS)developed by the Textile/Clothing Technology Corporation ([TC]2) are described in this paper. The advantages of this new system, compared with traditional contact body measurement instruments ( Martin instruments ) are discussed by selecting 40 female undergraduates of Donghua University as the scan objects. In the experiments both the Martin instruments and [TC]2 BMS were used respectively. According to the data of different position ( Bust Circumference, Full Waist, Full Hips, Bust Height, Front Waist Height and Back Waist Height) obtained from both of the methods we can get the correlation coefficient which is close to 1, indicating that the results of both methods have comparability. Finally some suggestions for the further applications of the non-contact BMS in the apparel development of China are given. Ke ywords : Body measurement, anth ro pormetr y , non- contact 3D body measurement system, apparel industry, made-tomeasure (MTM).

  13. Finite Dimensional Integrable Systems Related to Generalized Schr(o)dinger Equations

    Institute of Scientific and Technical Information of China (English)

    施齐焉

    2003-01-01

    The binary nonlinearization method is applied to a 4×4 matrix eigenvalue problem. The typical system of the corresponding soliton hierarchy associated with this eigenvalue problem is the multi-component generalization of the nonlinear Schrodinger equation. With this method, Lax pairs and adjoint Lax pairs of the soliton hierarchy are reduced to two classes of finite dimensional Hamiltonian systems: a spatial finite dimensional Hamiltonian system and a hierarchy of temporal finite dimensional Hamiltonian systems. These finite dimensional Hamiltonian systems are commutative and Liouville integrable.

  14. Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers

    Science.gov (United States)

    Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki

    2010-09-01

    Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.

  15. Three-Dimensional Air Quality System (3D-AQS)

    Science.gov (United States)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  16. System identification of two-dimensional continuous-time systems using wavelets as modulating functions.

    Science.gov (United States)

    Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi

    2008-07-01

    In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.

  17. Study of (2+1)-Dimensional Higher-Order Broer-Kaup System

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; LIU Xi-Qiang; DONG Zhong-Zhou

    2007-01-01

    Painlevé property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper.Using the modified direct method,we derive the theorem of general symmetry groups to (2+1)-dimensional HBK system.Based on our theorem,some new forms of solutions are obtained.We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.

  18. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  19. Integrated three-dimensional shape and reflection properties measurement system.

    Science.gov (United States)

    Krzesłowski, Jakub; Sitnik, Robert; Maczkowski, Grzegorz

    2011-02-01

    Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface's reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object's intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.

  20. Spin—Dependent Scattering Effects and Dimensional Crossover in a Quasi—Two—Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANGYong-Hong; WANGYong-Gang; 等

    2002-01-01

    Two kinds of spin-dependent scattering effects (magnetic-impurity and spin-orbit scatterings) are investigated theoretically in a quasi-tow-dimensional (quasi-2D) disordered electron system.By making use of the diagrammatic techniques in perturbation theory,we have calculated the dc conductivity and magnetoresistance due to weak-localization effects,the analytical expressions of them are obtained as functions of the interlayer hopping energy and the characteristic times:elastic,inelastic,magnetic and spin-orbit scattering times.The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling is discussed,and the condition for the crossover is shown to be dependent on the aforementioned scattering times.At low temperature there exists a spin-dependent-scattering-induced dimensional crossover in this system.

  1. Intrusion Detection System Using Hierarchical GMM and Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    L. Maria Michael

    2012-07-01

    Full Text Available The focus of this chapter is to provide the effective intrusion detection technique to protect Web server. The IDS protects an server from malicious attacks from the Internet if someone tries to break in through the firewall and tries to have access on any system in the trusted side and alerts the system administrator in case there is a breach in security. Gaussian Mixture Models (GMMs are among the most statistically mature methods for clustering the data. Intrusion detection can be divided into anomaly detection and misuse detection. Misuse detection model is to collect behavioral features of non-normal operation and establish related feature library. In the existing system of anomaly based Intrusion Detection System, the work is based on the number of attacks on the network and using decision tree analysis for rule matching and grading. We are proposing an IDS approach that will use signature based and anomaly based identification scheme. And we are also proposing the rule pruning scheme with GMM(Gaussian Mixture Model. It does facilitate efficient way of handling large amount of rules. And we are planned to compare the performance of the IDS on different models. The Dimension Reduction focuses on using information obtained KDD Cup 99 data set for the selection of attributes to identify the type of attacks. The dimensionality reduction is performed on 41 attributes to 14 and 7 attributes based on Best First Search method and then apply the two classifying Algorithms ID3 and J48 Keywords-Intrusion detection, reliable networks, malicious routers, internet dependability, tolerance.

  2. Infinite-Dimensional Feedback Systems : The Circle Criterion and Input-to-State Stability

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene P.

    2008-01-01

    An input-to-state stability theory, which subsumes results of circle criterion type, is developed in the context of a class of infinite-dimensional systems. The generic system is of Lur’e type: a feedback interconnection of a well-posed infinite-dimensional linear system and a nonlinearity. The

  3. Strong correlations and topological order in one-dimensional systems

    Science.gov (United States)

    De Gottardi, Wade Wells

    This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is

  4. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    CERN Document Server

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  5. Existence of Positive Periodic Solutions for Periodic Neutral Lotka-Volterra System with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2013-01-01

    Full Text Available By using a fixed-point theorem of strict-set-contraction, we investigate the existence of positive periodic solutions for a class of the following impulsive neutral Lotka-Volterra system with distributed delays: xi′(t=xi(t[ri(t-∑j=1naij(txj(t-∑j=1n‍bij(t∫-τij0‍fij(ξxj(t+ξdξ-∑j=1n‍cij(t∫-σij0‍gij(ξxj′(t+ξdξ],  Δxi(tk=-Iik(xi(tk,  i=1,2,…,n,  k=1,2,…. Some verifiable criteria are established easily.

  6. Effect of chelating agent on oxidation rate of aniline in ferrous ion activated persulfate system at neutral pH

    Institute of Scientific and Technical Information of China (English)

    张永清; 谢晓芳; 黄少斌; 梁海云

    2014-01-01

    In the interest of accelerating aniline degradation, Fe2+and chelated Fe2+activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate (EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn’t follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.

  7. Three-dimensional linear system analysis for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhao, Wei

    2008-01-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  8. Three-dimensional ultrasound system for guided breast brachytherapy.

    Science.gov (United States)

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-01

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  9. Relating high dimensional stochastic complex systems to low-dimensional intermittency

    Science.gov (United States)

    Diaz-Ruelas, Alvaro; Jensen, Henrik Jeldtoft; Piovani, Duccio; Robledo, Alberto

    2017-02-01

    We evaluate the implication and outlook of an unanticipated simplification in the macroscopic behavior of two high-dimensional sto-chastic models: the Replicator Model with Mutations and the Tangled Nature Model (TaNa) of evolutionary ecology. This simplification consists of the apparent display of low-dimensional dynamics in the non-stationary intermittent time evolution of the model on a coarse-grained scale. Evolution on this time scale spans generations of individuals, rather than single reproduction, death or mutation events. While a local one-dimensional map close to a tangent bifurcation can be derived from a mean-field version of the TaNa model, a nonlinear dynamical model consisting of successive tangent bifurcations generates time evolution patterns resembling those of the full TaNa model. To advance the interpretation of this finding, here we consider parallel results on a game-theoretic version of the TaNa model that in discrete time yields a coupled map lattice. This in turn is represented, a la Langevin, by a one-dimensional nonlinear map. Among various kinds of behaviours we obtain intermittent evolution associated with tangent bifurcations. We discuss our results.

  10. A Nekhoroshev theorem for some infinite-dimensional systems

    CERN Document Server

    Perfetti, P

    2005-01-01

    We study the persistence for long times of the solutions of some infinite--dimensional discrete hamiltonian systems with {\\it formal hamiltonian} $\\sum_{i=1}^\\infty h(A_i) + V(\\vp),$ $(A,\\vp)\\in {\\Bbb R}^{\\Bbb N}\\times {\\Bbb T}^{\\Bbb N}.$ $V(\\vp)$ is not needed small and the problem is perturbative being the kinetic energy unbounded. All the initial data $(A_i(0), \\vp_i(0)),$ $i\\in {\\Bbb N}$ in the phase--space ${\\Bbb R}^{\\Bbb N} \\times {\\Bbb T}^{\\Bbb N},$ give rise to solutions with $\\mod A_i(t) - A_i(0).$ close to zero for exponentially--long times provided that $A_i(0)$ is large enough for $\\mod i.$ large. We need $\\o \\partial h,\\partial A_i,{\\scriptstyle (A_i(0))}$ unbounded for $i\\to+\\infty$ making $\\vp_i$ a {\\it fast variable}; the greater is $i,$ the faster is the angle $\\vp_i$ (avoiding the resonances). The estimates are obtained in the spirit of the averaging theory reminding the analytic part of Nekhoroshev--theorem.

  11. Three dimensional base isolation system on laminated thick rubber bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Kenji; Matsuda, Akihiro; Hirata, Kazuta [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-08-01

    In order to reduce horizontal and vertical earthquake response of internal equipments in the nuclear power plants, we evaluated the performance of three dimensional base isolation system using laminated thick rubber bearings. From the loading test of scaled model of laminated thick rubber bearing, it was found that the natural rubber bearing was able to be extended to thick rubber bearings, and the difference of mechanical characteristics was only the dependency of the vertical stiffness on the horizontal displacement. Second, we carried out shaking table test for scaled model of base isolated structure. The results showed that horizontal characteristics of thick rubber bearing was almost the same as the thin one, and the vertical stiffness was able to be determined according to the resonance period of internal equipments. After the test, we carried out the numerical analysis on the shaking table test. Numerical results showed that the response of the model for earthquake input motion and its response spectra were in good agreement with the experiment, and the resonance peak of the floor response spectra can be reduced when the damping coefficient of the vertical damper increases. (author)

  12. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  13. Aging in the two-dimensional random-field systems

    Science.gov (United States)

    Cheng, Xiang; Ma, Tianyu; Urazhdin, Sergei; Boettcher, Stefan

    Random fields introduced into the classical Ising and Heisenberg spin models can roughen the energy landscape, leading to complex nonequilibrium dynamics. The effects of random fields on magnetism have been previously studied in the context of dilute antiferromagnets (AF), impure substrates, and magnetic alloys [ 1 ] . We utilized random-field spin models to simulate the observed magnetic aging in thin-film ferromagnet/antiferromagnet (F/AF) bilayers. Our experiments show extremely slow cooperative relaxation over a wide range of temperatures and magnetic fields [ 2 ] . In our simulations, the experimental system is coarse-grained into a random field Ising model on a 2D square lattice. Monte Carlo simulations indicate that aging processes may be associated with the glassy evolution of the magnetic domain walls, due to the pinning by the random fields. The scaling of the simulated aging agrees well with experiments. Both are consistent with either a small power-law or logarithmic dependence on time. We further discuss the topological effects on aging due to the dimensional crossover from the Ising to the Heisenberg regime. Supported through NSF grant DMR-1207431.

  14. PT-Symmetric Nonlinear Metamaterials and Zero-Dimensional Systems

    CERN Document Server

    Tsironis, G P

    2013-01-01

    A one dimensional, parity-time (${\\cal PT}$)-symmetric magnetic metamaterial comprising split-ring resonators having both gain and loss is investigated. In the linear regime, the transition from the exact to the broken ${\\cal PT}$-phase is determined through the calculation of the eigenfrequency spectrum for two different configurations; the one with equidistant split-rings and the other with the split-rings forming a binary pattern (${\\cal PT}$ dimer chain). The latter system features a two-band, gapped spectrum with its shape determined by the gain/loss coefficient as well as the inter-element coupling. In the presense of nonlinearity, the ${\\cal PT}$ dimer chain with balanced gain and loss supports nonlinear localized modes in the form of novel discrete breathers below the lower branch of the linear spectrum. These breathers, that can be excited from a weak applied magnetic field by frequency chirping, can be subsequently driven solely by the gain for very long times. The effect of a small imbalance betwee...

  15. SOME EXACT SOLUTIONS OF 3-DIMENSIONAL ZERO-PRESSURE GAS DYNAMICS SYSTEM

    Institute of Scientific and Technical Information of China (English)

    K.T.Joseph; Manas R. Sahoo

    2011-01-01

    The 3-dimensional zero-pressure gas dynamics system appears in the modeling for the large scale structure formation in the universe.The aim of this paper is to construct spherically symmetric solutions to the system.The radial component of the velocity and density satisfy a simpler one dimensional problem.First we construct explicit solutions of this one dimensional case with initial and boundary conditions.Then we get special radial solutions with different behaviours at the origin.

  16. The implications of tolerance system interpretation on past and present dimensional variability studies

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, W.G.; DeMeter, E.C.; Peters, F.E.; Voigt, R.C.

    1994-12-31

    Dimensional variability studies and published dimensional variability standards have been used by the foundry industry for years as an indicator of the casting process` ability to produce uniform parts. These studies are an extremely useful tool in the continuous ``dimensional dialogue`` between foundries and customers. The nature of these studies, and of the current tolerancing systems used by casting designers, leaves room for some misinterpretation and misuse of these study results. This paper contains two important discussions. The first part explains exactly what these studies represent. Following this is a brief explanation on dimensional and geometric tolerances and how they communicate dimensional requirements.

  17. Christianity, neutrality and public schooling: The origins of the Dutch educational system, 1801-1920

    NARCIS (Netherlands)

    J.F.A. Braster (Sjaak)

    2013-01-01

    markdownabstractINTRODUCTION. In the Netherlands, The first national law on education dates back to 1801. It laid the foundation for a system of public education that was accessible to children of all denominations: Protestant, Catholic, and Jewish. The identity of public schools was based on genera

  18. Christianity, neutrality and public schooling: The origins of the Dutch educational system, 1801-1920

    NARCIS (Netherlands)

    J.F.A. Braster (Sjaak)

    2013-01-01

    markdownabstractINTRODUCTION. In the Netherlands, The first national law on education dates back to 1801. It laid the foundation for a system of public education that was accessible to children of all denominations: Protestant, Catholic, and Jewish. The identity of public schools was based on

  19. The evolution of neutral gas in damped Lyman α systems from the XQ-100 survey

    DEFF Research Database (Denmark)

    Sánchez-Ramírez, R.; Ellison, S. L.; Prochaska, J. X.

    2015-01-01

    We present a sample of 38 intervening Damped Lyman $\\alpha$ (DLA) systems identified towards 100 $z>3.5$ quasars, observed during the XQ-100 survey. The XQ-100 DLA sample is combined with major DLA surveys in the literature. The final combined sample consists of 742 DLAs over a redshift range app...

  20. Fault-tolerance in Two-dimensional Topological Systems

    Science.gov (United States)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an

  1. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  2. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  3. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  4. Partial Regularity for Higher Dimensional Landau-Lifshitz Systems

    Institute of Scientific and Technical Information of China (English)

    丁时进; 郭柏灵

    2003-01-01

    @@ 1 Initial Value Problem Let M be a m-dimensional compact, smooth, Riemannian manifold without boundary. For simplicity, we shall assume M = Rm in our proof since the general case can be handled in the similar manner.

  5. Bi-Hamiltonian systems and Lotka-Volterra equations: A three dimensional classification

    OpenAIRE

    Plank, Manfred

    1995-01-01

    We study three dimensional bi-Hamiltonian systems in general and use the obtained results to classify all three dimensional Lotka-Volterra equations, which admit a bi-Hamiltonian representation. In der vorliegenden Arbeit studieren wir drei-dimensionale bi-Hamiltonsche Systeme und klassifizieren alle drei-dimensionalen Lotka-Volterra Gleichungen, welche eine bi-Hamiltonsche Darstellung zulassen.

  6. KAM Type-Theorem for Lower Dimensional Tori in Random Hamiltonian Systems*

    Institute of Scientific and Technical Information of China (English)

    LI YONG; XU LU

    2011-01-01

    In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.

  7. EXISTENCE OF PERIODIC SOLUTIONS TO A PERTURBED FOUR-DIMENSIONAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Consider a k multiple closed orbit on an invariant surface of a four dimensional system, after a suitable perturbation, the closed orbit can generate periodic orbits and double-period orbits. Using bifurcation methods and techniques, sufficient conditions for the existence of periodic solutions to the perturbed four dimensional system are obtained, and the period-doubling bifurcations is discussed.

  8. Stabilization of three-dimensional chaotic systems via single state feedback controller

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wenguang, E-mail: smilewgyu@163.co [School of Statistics and Mathematics, Shandong Economic University, Jinan 250014 (China)

    2010-03-29

    This Letter investigates the stabilization of three-dimensional chaotic systems, and proposes a novel simple adaptive-feedback controller for chaos control. In comparison with previous methods, the present controller which only contains single state feedback, to our knowledge, is the simplest control scheme for controlling the three-dimensional chaotic system. The results are validated using numerical simulations.

  9. Munich installs provider-neutral building management and control system; Landeshauptstadt Muenchen realisiert firmenneutrale Gebaeudeleittechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    1998-10-01

    Since April 1995, a pilot project is running in Munich for comprehensive energy management of all 1600 city-owned buildings. There will be a central facility management system which communicates with automation nodes in the individual buildings via the urban telephone network (ISDN-HICOM) or the Telekom ISDN network. In order to be independent of suppliers, an open system (FND) was chosen. Connection of about 600 buildings is envisaged as a medium-term goal. 150 buildings were connected in early 1998. [Deutsch] Seit April 1995 laeuft in Muenchen ein Pilotprojekt zum Aufbau eines umfassenden Energiemanagements fuer die rund 1600 staedtischen Gebaeude der bayerischen Metropole. Basis dieser Entwicklung ist ein uebergeordnetes Gebaeudeleitsystem, das aeber das staedtische Telefonnetz (ISDN-HICOM) bzw. das ISDN-Netz der Telekom mit den sogenannten Gebaeude-Automations-Knoten (GA-Knoten) in den jeweiligen Liegenschaften kommuniziert. Aus Gruenden der Firmenneutralitaet waehlten die Muenchner ein offenes System auf der Basis des firmenneutralen Datenuebertragungssystems (FND). Mittelfristiges Ziel ist die Aufschaltung von rund 600 Liegenschaften, wobei Anfang 1998 bereits 150 Gebaeude fixiert waren. (orig.)

  10. One-dimensional Array Grammars and P Systems with Array Insertion and Deletion Rules

    Directory of Open Access Journals (Sweden)

    Rudolf Freund

    2013-09-01

    Full Text Available We consider the (one-dimensional array counterpart of contextual as well as insertion and deletion string grammars and consider the operations of array insertion and deletion in array grammars. First we show that the emptiness problem for P systems with (one-dimensional insertion rules is undecidable. Then we show computational completeness of P systems using (one-dimensional array insertion and deletion rules even of norm one only. The main result of the paper exhibits computational completeness of one-dimensional array grammars using array insertion and deletion rules of norm at most two.

  11. Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order

    OpenAIRE

    2008-01-01

    The problem of local feedback equivalence for 1-dimensional control systems of the 1-st order is considered. The algebra of differential invariants and criteria for the feedback equivalence for regular control systems are found.

  12. Flavor Mixing And Mixing-induced Cp Violation In The Neutral B System

    CERN Document Server

    Foland, A D

    2000-01-01

    We describe a new technique for measurements of mixing- induced CP violation in the Bd system, wherein the decay time of only one B meson is measured. We find that excellent decay-point measurement resolution, high- efficiency meson flavor tagging, and precise knowledge of the B 0- B0 mixing parameters are required to carry out the experiment. We report on each of these aspects using the data collected by the CLEO experiment at the Cornell Electron Storage Ring. We present methods for assessing the performance and systematic uncertainties of a silicon vertex detector. We present assessments of the detector installed in the CLEO experiment. We present a method for high-efficiency B flavor tagging, and a measurement of its power. Using hadronic decays based on a method introduced by Nelson, Nelson, and Witherell, we present a new measurement of B0 - B0 mixing. This method has much reduced systematic uncertainties compared to previous measurements.

  13. Measurements of Lifetimes and a Limit on the Lifetime Difference in the Neutral D-Meson System

    CERN Document Server

    Aitala, E M; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, Patricia R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N J; Cremaldi, L M; Darling, C; Denisenko, K; Fernández, A; Fox, G F; Gagnon, P; Göbel, C; Gounder, K; Halling, A M; Herrera-Corral, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; May Tal-Beck, S; Meadows, B; De Mello-Neto, J R T; Mihalcea, D; Milburn, R H; De Miranda, J M; Napier, A; Nguyen, A; D'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; Dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K S; Santoro, A F S; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano, J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S F; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    1999-01-01

    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we report the first directly measured constraint on the decay-width difference Delta Gamma for the mass eigenstates of the D0-D0bar system. We obtain our result from lifetime measurements of the decays D0 --> K-pi+ and D0 --> K-K+, under the assumption of CP invariance, which implies that the CP eigenstates and the mass eigenstates are the same. The lifetime of D0 --> K-K+ (the CP-even final state is \\tau_KK = 0.410 +/- 0.011 +/- 0.006 ps, and the lifetime of D0 --> K-pi+ (an equal mixture of CP-odd and CP-even final states is tau_Kpi = 0.413 +/- 0.003 +/- 0.004 ps. The decay-width difference is Delta Gamma = 2(Gamma_KK - Gamma_Kpi) = 0.04 +/- 0.14 +/- 0.05 ps^-1. We relate these measurements to measurements of mixing in the neutral D-meson system.

  14. Terahertz and Microwave Devices Based on the Photo-Excited Low Dimensional Electronic System

    Science.gov (United States)

    2015-03-11

    condition that is realized by photo-exciting the system with electromagnetic waves in the microwave and THz parts of the radiation spectrum, in the...electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two-dimensional electron system, while helping...exciting a high mobility low dimensional electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two

  15. a New Color Image Encryption Based on High-Dimensional Chaotic Systems

    Science.gov (United States)

    Li, Pi; Wang, Xing-Yuan; Fu, Hong-Jing; Xu, Da-Hai; Wang, Xiu-Kun

    2014-12-01

    The high-dimensional chaotic systems (HDCS) have a lot of advantages as more multifarious mechanism, greater the key space, more ruleless for the time series of the system variable than with the low-dimensional chaotic systems (LDCS), etc. Thus, a novel encryption scheme using Lorenz system is suggested. Moreover, we use substitution-diffusion architecture to advance the security of the scheme. The theoretical and experimental results show that the suggested cryptosystem has higher security.

  16. The evolution of neutral gas in damped Lyman $\\alpha$ systems from the XQ-100 survey

    CERN Document Server

    Sánchez-Ramírez, R; Prochaska, J X; Berg, T A M; López, S; D'Odorico, V; Becker, G D; Christensen, L; Cupani, G; Denney, K D; Pâris, I; Worseck, G; Gorosabel, J

    2015-01-01

    We present a sample of 38 intervening Damped Lyman $\\alpha$ (DLA) systems identified towards 100 $z>3.5$ quasars, observed during the XQ-100 survey. The XQ-100 DLA sample is combined with major DLA surveys in the literature. The final combined sample consists of 742 DLAs over a redshift range approximately $1.6 < z_{\\rm abs} < 5.0$. We develop a novel technique for computing $\\Omega_{\\rm HI}^{\\rm DLA}$ as a continuous function of redshift, and we thoroughly assess and quantify the sources of error therein, including fitting errors and incomplete sampling of the high column density end of the column density distribution function. There is a statistically significant redshift evolution in $\\Omega_{\\rm HI}^{\\rm DLA}$ ($\\geq 3 \\sigma$) from $z \\sim 2$ to $z \\sim$ 5. In order to make a complete assessment of the redshift evolution of $\\Omega_{\\rm HI}$, we combine our high redshift DLA sample with absorption surveys at intermediate redshift and 21cm emission line surveys of the local universe. Although $\\Omeg...

  17. An open quantum system approach to complementarity in neutral kaon interferometry

    CERN Document Server

    de Souza, Gustavo; Varizi, Adalberto D; Nogueira, Edson C; Sampaio, Marcos D

    2016-01-01

    In bipartite quantum systems, entanglement correlations between the parties exerts direct influence in the phenomenon of wave-particle duality. This effect has been quantitatively analyzed in the context of two qubits by M. Jakob and J. Bergou [Optics Communications 283(5) (2010) 827]. Employing a description of the K-meson propagation in free space where its weak decay states are included as a second party, we study here this effect in the kaon-antikaon oscillations. We show that a new quantitative "triality" relation similar to the one considered by Jakob and Bergou holds. In our case, it relates the distinguishability between the decay products states corresponding to the distinct kaon propagation modes $K_S $, $K_L $, the amount of wave-like path interference between these states, and the amount of entanglement given by the reduced von Neumann entropy. The inequality can account for the complementarity between strangeness oscillations and lifetime information previously considered in the literature, there...

  18. Flavor mixing and mixing-induced CP violation in the neutral B system

    Science.gov (United States)

    Foland, Andrew Dean

    2000-05-01

    We describe a new technique for measurements of mixing- induced CP violation in the Bd system, wherein the decay time of only one B meson is measured. We find that excellent decay-point measurement resolution, high- efficiency meson flavor tagging, and precise knowledge of the B 0- overlineB0overline mixing parameters are required to carry out the experiment. We report on each of these aspects using the data collected by the CLEO experiment at the Cornell Electron Storage Ring. We present methods for assessing the performance and systematic uncertainties of a silicon vertex detector. We present assessments of the detector installed in the CLEO experiment. We present a method for high-efficiency B flavor tagging, and a measurement of its power. Using hadronic decays based on a method introduced by Nelson, Nelson, and Witherell, we present a new measurement of B0 - overlineB0overline mixing. This method has much reduced systematic uncertainties compared to previous measurements.

  19. Open-quantum-systems approach to complementarity in neutral-kaon interferometry

    Science.gov (United States)

    de Souza, Gustavo; de Oliveira, J. G. G.; Varizi, Adalberto D.; Nogueira, Edson C.; Sampaio, Marcos D.

    2016-12-01

    In bipartite quantum systems, entanglement correlations between the parties exerts direct influence in the phenomenon of wave-particle duality. This effect has been quantitatively analyzed in the context of two qubits by Jakob and Bergou [Opt. Commun. 283, 827 (2010), 10.1016/j.optcom.2009.10.044]. Employing a description of the K -meson propagation in free space where its weak decay states are included as a second party, we study here this effect in the kaon-antikaon oscillations. We show that a new quantitative "triality" relation holds, similar to the one considered by Jakob and Bergou. In our case, it relates the distinguishability between the decay-product states corresponding to the distinct kaon propagation modes KS, KL, the amount of wave-like path interference between these states, and the amount of entanglement given by the reduced von Neumann entropy. The inequality can account for the complementarity between strangeness oscillations and lifetime information previously considered in the literature, therefore allowing one to see how it is affected by entanglement correlations. As we will discuss, it allows one to visualize clearly through the K0-K ¯0 oscillations the fundamental role of entanglement in quantum complementarity.

  20. Between detection and neutralization.

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Mark Kamerer; Green, Mary Wilson; Adams, Douglas Glenn; Pritchard, Daniel Allison

    2005-08-01

    Security system analytical performance analysis is generally based on the probability of system effectiveness. The probability of effectiveness is a function of the probabilities of interruption and neutralization. Interruption occurs if the response forces are notified in sufficient time to engage the adversary. Neutralization occurs if the adversary attack is defeated after the security forces have actively engaged the adversary. Both depend upon communications of data. This paper explores details of embedded communications functions that are often assumed to be inconsequential. It is the intent of the authors to bring focus to an issue in security system modeling that, if not well understood, has the potential to be a deciding factor in the overall system failure or effectiveness.

  1. Spin-Dependent Scattering Effects and Dimensional Crossover in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG YongHong; WANG YongGang; LIU Mei; WANG Jin

    2002-01-01

    Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.

  2. Results from laboratory tests of the two-dimensional Time-Encoded Imaging System.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brennan, James S.; Brubaker, Erik; Gerling, Mark D; Le Galloudec, Nathalie Joelle

    2014-09-01

    A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.

  3. A system of three-dimensional complex variables

    Science.gov (United States)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  4. Some comments on the paper: Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys. 65 (2014), no. 5, 941-959

    Science.gov (United States)

    Pierri, Michelle; O'Regan, Donal

    2016-04-01

    The abstract results and applications presented in "Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys. 65 (2014), no. 5, 941-959, are not correct. Moreover, the class of differential control problems studied in [1] is not H-controllable.

  5. Assessing transition trajectories towards a sustainable energy system: A case study on the Dutch transition to climate-neutral transport fuel chains

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Meeus, M.T.H.; Nieuwlaar, E.

    2004-01-01

    This paper proposes a method for the ex ante evaluation of technological trajectories. As a case we study the Dutch transport energy system and its transition to climate neutrality. Two technological trajectories are proposed: (i) a sequence of transition steps based on radical infrastructural chang

  6. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  7. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  8. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  9. ADAPTIVE COMPENSATORS FOR PERTURBED POSITIVE REAL INFINITE-DIMENSIONAL SYSTEMS

    NARCIS (Netherlands)

    Curtain, Ruth F.; Demetriou, Michael A.; Ito, Kazufumi

    2003-01-01

    The aim of this investigation is to construct an adaptive observer and an adaptive compensator for a class of infinite-dimensional plants having a known exogenous input and a structured perturbation with an unknown constant parameter, such as the case of static output feedback with an unknown gain.

  10. Supporting K nearest neighbors query on high-dimensional data in P2P systems

    Institute of Scientific and Technical Information of China (English)

    Mei LI; Wang-Chien LEE; Anand SIVASUBRAMANIAM; Jizhong ZHAO

    2008-01-01

    Peer-to-peer systems have been widely used for sharing and exchanging data and resources among numerous computer nodes.Various data objects identifiable with high dimensional feature vectors,such as text,images,genome sequences,are starting to leverage P2P technology.Most of the existing works have been focusing on queries on data objects with one or few attributes and thus are not applicable on high dimensional data objects.In this study,we investigate K nearest neighbors query (KNN)on high dimensional data objects in P2P systems.Efficient query algorithm and solutions that address various technical challenges raised by high dimensionality,such as search space resolution and incremental search space refinement,are proposed.An extensive simulation using both synthetic and real data sets demonstrates that our proposal efficiently supports KNN query on high dimensional data in P2P systems.

  11. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. I. Neutral gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin (Poland); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2016-02-08

    There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic ‘clock’ while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multi-component matter-geometry system. We concentrated on a neutral case, which means that the elaborated system was not charged electrically nor magnetically. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke field and the matter sector of the theory. The obtained results indicated that the evolving scalar fields can be treated as time variables in close proximity of the singularity due to the following reasons. The constancy hypersurfaces of the Brans-Dicke field are spacelike in the vicinity of the singularity apart from the case, in which the equation of motion of the field reduces to the wave equation due to a specific choice of free evolution parameters. The hypersurfaces of constant complex and real scalar fields are spacelike in the regions nearby the singularities formed during the examined process. The values of the field functions change monotonically in the areas, in which the constancy hypersurfaces are spacelike.

  12. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  13. Types and Degrees of Vowel Neutrality

    National Research Council Canada - National Science Library

    Rebrus, Péter; Törkenczy, Miklós

    2016-01-01

    This paper argues that neutrality in a harmony system is a gradient property since it is due to a vowel's participation in different patterns that are considered to be indicators of neutral behaviour in harmony...

  14. N-Soliton Solutions of (2+1)-Dimensional Non-isospectral AKNS System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Xian; SUN Ye-Peng

    2008-01-01

    The bilinear form of the (2+1)-dimensional non-isospectral AKNS system is derived. Its N-soliton solutions are obtained by using the Hirota method. As a reduction, a (2+1)-dimensional non-isospectral Schrodinger equation and its N-soliton solutions are constructed.

  15. Development of three-dimensional computed tomography system using TNRF2 of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yutaka; Mochiki, Koh-ichi [Musashi Inst. of Tech., Tokyo (Japan); Matsubayashi, Masahito

    1998-01-01

    A three-dimensional filtering engine, a convolution engine, and a back projection engine were developed for real-time signal processing of three-dimensional computed tomography. The performance of the system was measured and through-put of 0.5 second per one cross sectional data processing was attained. (author)

  16. Variable selection in identification of a high dimensional nonlinear non-parametric system

    Institute of Scientific and Technical Information of China (English)

    Er-Wei BAI; Wenxiao ZHAO; Weixing ZHENG

    2015-01-01

    The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.

  17. Infinite-Dimensional Feedback Systems: The Circle Criterion and Input-to-State Stability

    OpenAIRE

    2008-01-01

    An input-to-state stability theory, which subsumes results of circle criterion type, is developed in the context of a class of infinite-dimensional systems. The generic system is of Lur’e type: a feedback interconnection of a well-posed infinite-dimensional linear system and a nonlinearity. The class of nonlinearities is subject to a (generalized) sector condition and contains, as particular subclasses, both static nonlinearities and hysteresis operators of Preisach type.

  18. Three-dimensional simulations of phase separation in model binary alloy systems with elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D.; Roland, C. [North Carolina State Univ., Raleigh, NC (United States); Sagui, C. [McGill Univ., Montreal, Quebec (Canada). Dept. of Physics; Somoza, A.S. [Univ. de Murcia (Spain). Dept. de Fisica

    1998-12-31

    The authors report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any reverse coarsening of the domains.

  19. Left Atrial Linear Ablation of Paroxysmal Atrial Fibrillation Guided by Three-dimensional Electroanatomical System

    DEFF Research Database (Denmark)

    Zhang, Dai-Fu; Li, Ying; Qi, Wei-Gang

    2005-01-01

    Objective To investigate the safety and efficacy of Left atrial linear ablation of paroxysmal atrial fibrillation guided by three-dimensional electroanatomical system. Methods 29 patients with paroxysmal atrial fibrillation in this study. A nonfluoroscopic mapping system was used to generate a 3D...... attacks unchanged. No pulmonary vein narrowing was observed. Conclusion Left atrial linear ablation of paroxysmal atrial fibrillation guided by three-dimensional electroanatomical system was safe and effective....

  20. Chaos and Fractals in a (2+1)-Dimensional Soliton System

    Institute of Scientific and Technical Information of China (English)

    郑春龙; 张解放; 盛正卯

    2003-01-01

    Considering that there are abundant coherent soliton excitations in high dimensions, we reveal a novel phenomenon that the localized excitations possess chaotic and fractal behaviour in some (2+1)-dimensional soliton systems. To clarify the interesting phenomenon, we take the generalized (2+1)-dimensional Nizhnik-NovikovVesselov system as a concrete example. A quite general variable separation solutions of this system is derived via a variable separation approach first, then some new excitations like chaos and fractals are derived by introducing some types of lower-dimensional chaotic and fractal patterns.

  1. Three-dimensional particle image velocimetry for use in three-phase fluidization systems

    Science.gov (United States)

    Reese, J.; Chen, R. C.; Fan, L. S.

    1995-10-01

    A three-dimensional particle image velocimetry (3-DPIV) system is developed to measure the three-dimensional local flow properties of gas-liquid and gas-liquid-solid fluidization systems. The 3-DPIV system requires one camera to simultaneous record orthogonal views of the flow field created by a special optical arrangement. The 3-DPIV has been successfully calibrated and is capable of providing qualitative and quantitative flow information including three-dimensional, full-field, instantaneous velocities, accelerations and holdups of each phase. In this study, sample results of the application of the 3-DPIV technique to a three-dimensional gas-liquid-solid fluidization system operating in the dispersed bubble flow regime demonstrate that the 3-DPIV technique is an effective instrument in studying the local, transient flow phenomena in multiphase systems.

  2. Constructing Low-Dimensional Dynamical Systems of Nonlinear Partial Differential Equations Using Optimization

    Directory of Open Access Journals (Sweden)

    Jun Shuai

    2013-11-01

    Full Text Available A new approach using optimization technique for constructing low-dimensional dynamical systems of nonlinear partial differential equations (PDEs is presented. After the spatial basis functions of the nonlinear PDEs are chosen, spatial basis functions expansions combined with weighted residual methods are used for time/space separation and truncation to obtain a high-dimensional dynamical system. Secondly, modes of lower-dimensional dynamical systems are obtained by linear combination from the modes of the high-dimensional dynamical systems (ordinary differential equations of nonlinear PDEs. An error function for matrix of the linear combination coefficients is derived, and a simple algorithm to determine the optimal combination matrix is also introduced. A numerical example shows that the optimal dynamical system can use much smaller number of modes to capture the dynamics of nonlinear partial differential equations.

  3. An Improved Data Assimilation Scheme for High Dimensional Nonlinear Systems

    CERN Document Server

    Monajemi, Hatef

    2012-01-01

    Nonlinear/non-Gaussian filtering has broad applications in many areas of life sciences where either the dynamic is nonlinear and/or the probability density function of uncertain state is non-Gaussian. In such problems, the accuracy of the estimated quantities depends highly upon how accurately their posterior pdf can be approximated. In low dimensional state spaces, methods based on Sequential Importance Sampling (SIS) can suitably approximate the posterior pdf. For higher dimensional problems, however, these techniques are usually inappropriate since the required number of particles to achieve satisfactory estimates grows exponentially with the dimension of state space. On the other hand, ensemble Kalman filter (EnKF) and its variants are more suitable for large-scale problems due to transformation of particles in the Bayesian update step. It has been shown that the latter class of methods may lead to suboptimal solutions for strongly nonlinear problems due to the Gaussian assumption in the update step. In t...

  4. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  5. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  6. Thermodynamic magnetization of a strongly interacting two-dimensional system

    OpenAIRE

    Teneh, N.; Kuntsevich, A. Yu.; Pudalov, V. M.; Klapwijk, T. M.; Reznikov, M.

    2009-01-01

    We report thermodynamic magnetization measurements of a 2-dimensional electron gas for several high mobility Si-MOSFETs. The low-temperature magnetization is shown to be strongly sub-linear function of the magnetic field. The susceptibility determined from the zero-field slope diverges as 1/T^{\\alpha}, with \\alpha=2.2-2.6 even at high electron densities, in apparent contradiction with the Fermi-liquid picture.

  7. A potential implicit particle method for high-dimensional systems

    Science.gov (United States)

    Weir, B.; Miller, R. N.; Spitz, Y. H.

    2013-11-01

    This paper presents a particle method designed for high-dimensional state estimation. Instead of weighing random forecasts by their distance to given observations, the method samples an ensemble of particles around an optimal solution based on the observations (i.e., it is implicit). It differs from other implicit methods because it includes the state at the previous assimilation time as part of the optimal solution (i.e., it is a lag-1 smoother). This is accomplished through the use of a mixture model for the background distribution of the previous state. In a high-dimensional, linear, Gaussian example, the mixture-based implicit particle smoother does not collapse. Furthermore, using only a small number of particles, the implicit approach is able to detect transitions in two nonlinear, multi-dimensional generalizations of a double-well. Adding a step that trains the sampled distribution to the target distribution prevents collapse during the transitions, which are strongly nonlinear events. To produce similar estimates, other approaches require many more particles.

  8. Magnetic oscillations in two-dimensional Dirac systems and Shear viscosity and spin diffusion in a two-dimensional Fermi gas

    NARCIS (Netherlands)

    Küppersbusch, C.S.

    2015-01-01

    In the first part of the thesis I derive a full quantitative formula which describes the amplitude and frequency of magnetic oscillations in two-dimensional Dirac systems. The investigations are on the basis of graphene, but they generally also hold for other two-dimensional Dirac systems. Starting

  9. Electron recirculation in electrostatic multicusp systems: II. System performance scaling of one-dimensional rollover wells

    Energy Technology Data Exchange (ETDEWEB)

    Bussard, R.W.; King, K.E.

    1992-01-01

    In an earlier paper a comprehensive study was made of the recirculation and losses of electrons in their flow through simple inverse power-law potential wells bounded by similarly inverse power-law dependent magnetic fields. This study examined electron flow and loss behavior in the simplest approximation invoked to describe Polywell confinement systems. The importance of this study, and of the present paper, is that the power balance in Polywell systems is determined entirely by the rate of electron losses; if these are large, then the system can not yield net power. Thus it is of interest to determine those conditions that results in small losses, and to design experiments and systems to attempt to achieve and operate at these most favorable conditions, in order to test and prove the efficacy of the system for the generation of net power from fusion reactions. The outline and summary of this problem presented is generally repeated here, with some modifications to clarify particular physics issues of most concern, in order to avoid having to refer to the earlier document for this general description. As noted, a large body of work has been undertaken over the past 35 or so years in the study of general cusp confinement of plasmas. Nearly all of this has examined single particle electron (or ion) motion or the motion of particles in neutral plasmas within cusped magnetic systems, generally without internal electric potential fields.**INVALID KEYWORDS: controlled nuclear fusion, electron flux, plasma devices, confinement, performance, engineering, scaling factor, multicusp systems, polywell systems

  10. Stability of permeative flows in 1 dimensionally ordered systems

    Science.gov (United States)

    Prost, J.; Pomeau, Y.; Guyon, E.

    1991-03-01

    Layered structures are met in dissipative systems, such as Rayleigh Bénard rolls, as well as in liquid crystalline phases (smectics and cholesterics). We present here a general description, in the framework of phase dynamics, of the stability of these structures when submitted to an external force field (flow, electric field) acting perpendicular to the roll axis for various boundary conditions. The one-dimensional equilibrium solution with fixed boundary conditions leads to an effect, discovered experimentally by Pocheau and Croquette on Rayleigh-Bérnard rolls in the presence of a transverse flow, and involving the coexistence of compressed and dilated rolls; this effect has a known counterpart in cholesterics. Using the same boundary conditions, we generalize the well known undulation instability obtained under a dilative stress to the case of the action of a transverse force both from the point of view of linear stability and in the highly nonlinear limit. The possibility of observing fractal structures is indicated. For mixed boundary conditions, it is possible to have a sustained time dependent behavior involving the nucleation of new layers as also observed in the above mentioned experiments. On rencontre des structures en couches dans des systèmes dissipatifs tels que les rouleaux convectifs de Rayleigh-Bénard et dans les cristaux liquides (smectiques et cholestériques). Nous présentons ici une description générale de la stabilité de ces structures dans le cadre du formalisme de la diffusion de phase, lorsqu'elles sont soumises à un champ de force extérieur (écoulement, champ électrique) agissant à angle droit de la direction des rouleaux, en fonction des conditions aux limites. La solution unidimensionnelle d'équilibre avec des conditions aux limites rigides pour la phase conduit à un effet découvert par Pocheau et Croquette (P.C.) dans la convection de R.B. et mettant en jeu la coexistence de zones dilatée et comprimée. Cet effet a un

  11. STABILITY OF N-DIMENSIONAL LINEAR SYSTEMS WITH MULTIPLE DELAYS AND APPLICATION TO SYNCHRONIZATION

    Institute of Scientific and Technical Information of China (English)

    Weihua DENG; Jinhu L(U); Changpin LI

    2006-01-01

    This paper further investigates the stability of the n-dimensional linear systems with multiple delays. Using Laplace transform, we introduce a definition of characteristic equation for the n-dimensional linear systems with multiple delays. Moreover, one sufficient condition is attained for the Lyapunov globally asymptotical stability of the general multi-delay linear systems. In particular, our result shows that some uncommensurate linear delays systems have the similar stability criterion as that of the commensurate linear delays systems. This result also generalizes that of Chen and Moore (2002). Finally, this theorem is applied to chaos synchronization of the multi-delay coupled Chua's systems.

  12. What is Neutrality?

    NARCIS (Netherlands)

    Pierik, R.; van der Burg, W.

    2014-01-01

    This paper reinvestigates the question of liberal neutrality. We contend that current liberal discussions have been dominated - if not hijacked - by one particular interpretation of what neutrality could imply, namely, exclusive neutrality, that aims to exclude religious and cultural expressions

  13. Methods for Setting up a Three-Dimensional Industrial Surveying System of "Building Blocks Type"

    Institute of Scientific and Technical Information of China (English)

    FENG Wenhao

    2004-01-01

    This paper is to advance some relevant techniques to set up a three-dimensional industrial surveying system of "building blocks type", making use of the electronic theodolite, standard ruler and portable computer.

  14. Construction of a Class of Four-Dimensional Piecewise Affine Systems with Homoclinic Orbits

    Science.gov (United States)

    Wu, Tiantian; Yang, Xiao-Song

    2016-06-01

    Based on mathematical analysis, this paper provides a methodology to ensure the existence of homoclinic orbits in a class of four-dimensional piecewise affine systems. In addition, an example is provided to illustrate the effectiveness of the method.

  15. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  16. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS TO A HIGHER DIMENSIONAL PERIODIC SYSTEM WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, using fixed point theorem, we discuss a higher dimensional nonautonomous periodic system with delay and give some suffcient criteria for the existence and uniqueness of periodic solution. Our results extend and improve some results in previous researches.

  17. ASYMPTOTIC SIMILARITY OF INFINITE-DIMENSIONAL LINEAR SYSTEMS AND APPLICATIONS TO STABILITY

    Institute of Scientific and Technical Information of China (English)

    WU Jingbo

    2000-01-01

    In this note a generalization of the concept of similarity called asymptotic similarity for infinite-dimensional linear systems is introduced. We show that this asymptotic similarity preserves the spectrum and the exponential growth bound.

  18. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  19. Chaotic behaviour of nonlinear coupled reaction–diffusion system in four-dimensional space

    Indian Academy of Sciences (India)

    Li Zhang; Shutang Liu; Chenglong Yu

    2014-06-01

    In recent years, nonlinear coupled reaction–diffusion (CRD) system has been widely investigated by coupled map lattice method. Previously, nonlinear behaviour was observed dynamically when one or two of the three variables in the discrete system change. In this paper, we consider the chaotic behaviour when three variables change, which is called as four-dimensional chaos. When two parameters in the discrete system are unknown, we first give the existing condition of the chaos in four-dimensional space by the generalized definitions of spatial periodic orbits and spatial chaos. In addition, the chaotic behaviour will vary with the parameters. Then we propose a generalized Lyapunov exponent in four-dimensional space to characterize the different effects of parameters on the chaotic behaviour, which has not been studied in detail. In order to verify the chaotic behaviour of the system and the different effects clearly, we simulate the dynamical behaviour in two- and three-dimensional spaces.

  20. On the absence of order in 2-dimensional systems with compact symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, M.L.; Garcia, A.A.; Masperi, L.; Garcia Canal, C.A.

    1984-09-01

    An alternative proof for the generalization to any compact Lie group of the absence of an ordered phase in one and two dimensional classical systems is provided using the original Bogoliubov inequality.

  1. A Two- Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage

    Institute of Scientific and Technical Information of China (English)

    蒋中伟; 周拥军; 袁大军; 黄文浩; 夏安东

    2003-01-01

    Utilizing the well-focused femtosecond laser with extreme high pulse intensity, we built a two-photon microfabrication and data storage system, which was introduced through several functional parts. Based on this homemade system, several three-dimensional microstructures were fabricated by two-photon polymerization, and three-dimensional data storage of six-layers was achieved by two-photon excitation with a photochromic material.

  2. General criteria for determining rotation or oscillation in a two-dimensional axisymmetric system

    Science.gov (United States)

    Koyano, Yuki; Yoshinaga, Natsuhiko; Kitahata, Hiroyuki

    2015-07-01

    A self-propelled particle in a two-dimensional axisymmetric system, such as a particle in a central force field or confined in a circular region, may show rotational or oscillatory motion. These motions do not require asymmetry of the particle or the boundary, but arise through spontaneous symmetry breaking. We propose a generic model for a self-propelled particle in a two-dimensional axisymmetric system. A weakly nonlinear analysis establishes criteria for determining rotational or oscillatory motion.

  3. Exact and LDA entanglement of tailored densities in an interacting one-dimensional electron system

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J P; D' Amico, I, E-mail: jpc503@york.ac.u, E-mail: ida500@york.ac.u [Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2010-01-01

    We calculate the 'exact' potential corresponding to a one-dimensional interacting system of two electrons with a specific, tailored density. We use one-dimensional density-functional theory with a local-density approximation (LDA) on the same system and calculate densities and energies, which are compared with the 'exact' ones. The 'interacting-LDA system'[4] corresponding to the LDA density is then found and its potential compared with the original one. Finally we calculate and compare the spatial entanglement of the electronic systems corresponding to the interacting-LDA and original interacting system.

  4. Numerical tests of conjectures of conformal field theory for three-dimensional systems

    Science.gov (United States)

    Weigel, Martin; Janke, Wolfhard

    1998-11-01

    The concept of conformal field theory provides a general classification of statistical systems on two-dimensional geometries at the point of a continuous phase transition. Considering the finite-size scaling of certain special observables, one thus obtains not only the critical exponents but even the corresponding amplitudes of the divergences analytically. A first numerical analysis brought up the question whether analogous results can be obtained for those systems on three-dimensional manifolds. Using Monte Carlo simulations based on the Wolff single-cluster update algorithm we investigate the scaling properties of O(n) symmetric classical spin models on a three-dimensional, hyper-cylindrical geometry with a toroidal cross-section considering both periodic and antiperiodic boundary conditions. Studying the correlation lengths of the Ising, the XY, and the Heisenberg model, we find strong evidence for a scaling relation analogous to the two-dimensional case, but in contrast here for the systems with antiperiodic boundary conditions.

  5. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  6. DYNAMICAL CONSISTENCE IN 3-DIMENSIONAL TYPE-K COMPETITIVE LOTKA-VOLTERRA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A 3-dimensional type-K competitive Lotka-Volterra system is considered in this paper. Two discretization schemes are applied to the system with an positive interior fixed point, and two corresponding discrete systems are obtained. By analyzing the local dynamics of the corresponding discrete system near the interior fixed point, it is showed that this system is not dynamically consistent with the continuous counterpart system.

  7. Stark ladder in a one-dimensional quasiperiodic system

    Science.gov (United States)

    Niizeki, K.; Matsumura, A.

    1993-08-01

    We have investigated the effect of a uniform field F on the energy spectrum of the Harper model, which includes an irrational ω and the phase variable cphi as parameters. The energy levels Ei(cphi), iEopenZ, are periodic on cphi, Ei(cphi+1)=Ei(cphi), and form a two-dimensional (2D) pattern in the cphi-E plane. The pattern which we term a 2D Wannier-Stark ladder (2DWSL) has 2D periodicity because of the equalities Ei(cphi)=iF+E0(cphi+iω), i∈openZ . The energy spectrum is a vertical section of the 2DWSL through the specified cphi and represents a quasiperiodic WSL.

  8. Pattern Coarsening in a Two Dimensional Hexagonal System

    Science.gov (United States)

    Chaikin, Paul

    2008-03-01

    We have been studying the ordering, annealing, coarsening and alignment of two dimensional periodically ordered structures in thin films of diblock copolymers*. Coarsening by dislocation and disclination annihilation is clearly observed in AFM studies of monolayer films of cylindrical patterns with a time dependence given by t^α, with α about 1/4. However in hexagonal structures the mechanism is less well defined and appears to involve the collapse of small grains entrained in the grain boundaries of larger domains. Remarkably the exponent of α about 1/4 remains. We also report on shear aligned samples and samples quenched in a gradient after alignment. * Harrison C, Angelescu DE, Trawick M, Cheng ZD, Huse DA, Chaikin PM, Vega DA, Sebastian JM, Register RA, Adamson DH, EUROPHYSICS LETTERS 67 800-806 (2004)

  9. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  10. Dual $n_1$-Appell-like Systems in Infinite-Dimensional Analysis

    CERN Document Server

    Kachanovsky, N A

    1997-01-01

    We introduce and study dual $n_1$-Appell-like systems which are the simple generalization of generalized dual Appell systems in Infinite-Dimensional Analysis (IDA). We study connected with these systems objects of IDA: the analogues of Kondratiev spaces, $S$-transform, characterization theorems etc. The results we obtained are useful to application in the theory of probability.

  11. Numerical Integration and Synchronization for the 3-Dimensional Metriplectic Volterra System

    Directory of Open Access Journals (Sweden)

    Gheorghe Ivan

    2011-01-01

    Full Text Available The main purpose of this paper is to study the metriplectic system associated to 3-dimensional Volterra model. For this system we investigate the stability problem and numerical integration via Kahan's integrator. Finally, the synchronization problem for two coupled metriplectic Volterra systems is discussed.

  12. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  13. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    Science.gov (United States)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  14. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization.

    Directory of Open Access Journals (Sweden)

    William B Messer

    Full Text Available Dengue viruses (DENV are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I, Thailand 1995 (genotype II, Sri Lanka 1989 and Cuba 2002 (genotype III and Puerto Rico 1977 (genotype IV. We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools

  15. Transport diffusion in one dimensional molecular systems: Power law and validity of Fick's law

    Science.gov (United States)

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Hu, Bambi; Zhong, Wei-rong

    2015-10-01

    The transport diffusion in one-dimensional molecular systems is investigated through non-equilibrium molecular dynamics and Monte Carlo methods. We have proposed the power law relationship of the transport diffusion coefficient with the temperature, the mass and the transport length, D* ∝ T*m*-1L*β, where β equals to 0.8 for small systems and zero for large systems. It is found that Fick's law is valid in long transport length but invalid in short transport length. Our results can provide a new perspective for understanding the microscopic mechanism of the molecular transport phenomena in low-dimensional systems.

  16. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junchao [Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062 (China); Department of Mathematics, The University of Texas – Pan American, Edinburg, TX 78541 (United States); Chen, Yong, E-mail: ychen@sei.ecnu.edu.cn [Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062 (China); Feng, Bao-Feng, E-mail: feng@utpa.edu [Department of Mathematics, The University of Texas – Pan American, Edinburg, TX 78541 (United States); Maruno, Ken-ichi, E-mail: kmaruno@waseda.jp [Department of Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2015-07-31

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  17. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows

    NARCIS (Netherlands)

    Viazzi, S.; Bahr, C.; Hertem, van T.; Schlageter-Tello, A.; Romanini, C.E.B.; Halachmi, I.; Lokhorst, C.; Berckmans, D.

    2014-01-01

    In this study, two different computer vision techniques to automatically measure the back posture in dairy cows were tested and evaluated. A two-dimensional and a three-dimensional camera system were used to extract the back posture from walking cows, which is one measurement used by experts to

  18. Molecular characterization and virus neutralization patterns of severe, non-epizootic forms of feline calicivirus infections resembling virulent systemic disease in cats in Switzerland and in Liechtenstein

    OpenAIRE

    Willi, Barbara; Spiri, Andrea M.; Meli, Marina L.; Samman, Ayman; Hoffmann, Karolin; Sydler, Titus; Cattori, Valentino; Graf, Felix; Diserens, Kevin A; Padrutt, Isabelle; Nesina, Stefanie; Berger, Alice; Ruetten, Maja; Riond, Barbara; Hosie, Margaret

    2016-01-01

    Feline calicivirus (FCV) infections are associated with oral ulceration, chronic stomatitis and a limping syndrome. Epizootic outbreaks of virulent systemic disease (VSD) have been reported in the USA and Europe. Here, the molecular characterization and neutralization patterns of FCV isolates from cases of severe, non-epizootic infection associated with skin ulceration and edema are presented. Samples from eleven symptomatic cats, four in-contact cats and 27 cats with no contact with symptoma...

  19. An HCG-rich microenvironment contributes to ovarian cancer cell differentiation into endothelioid cells in a three-dimensional culture system.

    Science.gov (United States)

    Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan

    2015-11-01

    We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.

  20. Magnetic-field-induced suppression of tunnelling into a two-dimensional electron system

    Energy Technology Data Exchange (ETDEWEB)

    Reker, T.; Chung, Y.C.; Im, H.; Klipstein, P.C.; Nicholas, R.J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford (United Kingdom); Shtrikman, Hadas [Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot (Israel)

    2002-06-10

    Tunnelling between a three-dimensional emitter contact and a two-dimensional electron system (2DES) is studied in magnetic fields aligned perpendicular to the barriers of a double-barrier heterostructure. The differential conductance around the Fermi energy exhibits a magnetic-field-dependent pseudogap. This pseudogap is shown to be thermally activated and to depend on the two-dimensional electron density. We attribute this pseudogap to an extra energy that an electron tunnelling from the emitter into the 2DES has to overcome as a result of the correlated state of the 2DES. (author)

  1. Three-dimensional imaging system combining vision and ultrasonics

    Science.gov (United States)

    Wykes, Catherine; Chou, Tsung N.

    1994-11-01

    Vision systems are being applied to a wide range of inspection problems in manufacturing. In 2D systems, a single video camera captures an image of the object and application of suitable image processing techniques enables information about dimension, shape and the presence of features and flaws to be extracted from the image. This can be used to recognize, inspect and/or measure the part. 3D measurement is also possible with vision systems but requires the use of either two or more cameras, or structured lighting (i.e. stripes or grids) and the processing of such images is necessarily considerably more complex, and therefore slower and more expensive than 3D imaging. Ultrasonic imaging is widely used in medical and NDT applications to give 3D images; in these systems, the ultrasound is propagated into a liquid or a solid. Imaging using air-borne ultrasound is much less advanced, mainly due to the limited availability of suitable sensors. Unique 2D ultrasonic ranging systems using in-house built phased arrays have been developed in Nottingham which enable both the range and bearing of targets to be measured. The ultrasonic/vision system will combine the excellent lateral resolution of a vision system with the straightforward range acquisition of the ultrasonic system. The system is expected to extend the use of vision systems in automation, particularly in the area of automated assembly where it can eliminate the need for expensive jigs and orienting part-feeders.

  2. Photodetectors based on graphene, other two-dimensional materials and hybrid systems.

    Science.gov (United States)

    Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M

    2014-10-01

    Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.

  3. Three-dimensional optical logic devices using spatial multiwaveguide system

    Institute of Scientific and Technical Information of China (English)

    Jianxia Pan; Yiling Sun

    2008-01-01

    Based on the weakly coupled-mode theory, the coupled-mode equations of the spatial multiwaveguide system are presented in general. The intensity distribution in each waveguide is determined by numerical method. Optical logic devices based on spatial multiwaveguide system are proposed. The analysis results show that the spatial multiwaveguide system permits different Boolean logic states obtained by phase modulation.. Applications of the logic devices include optical calculation, optical interconnection, and spatial optical signal processing.

  4. Performance of Thomas-Fermi and linear response approaches in periodic two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Calderin, L; Stott, M J [Department of Physics, Queen' s University, Kingston, Ontario, K7 L 3N6 (Canada)], E-mail: calderin@physics.queensu.ca, E-mail: stott@mjs.phy.queensu.ca

    2010-04-16

    A study of the performance of Thomas-Fermi and linear response theories in the case of a two-dimensional periodic model system is presented. The calculated density distribution and total energy per unit cell compare very well with exact results except when there is a small number of particles per cell, even though the potential has narrow tight-binding bands. The results supplement earlier findings of Koivisto and Stott for a localized impurity in a two-dimensional uniform gas.

  5. Nanoscale investigations of shift of individual interfaces in temperature induced processes of Ni-Si system by secondary neutral mass spectrometry

    Science.gov (United States)

    Lakatos, A.; Langer, G. A.; Csik, A.; Cserhati, C.; Kis-Varga, M.; Daroczi, L.; Katona, G. L.; Erdélyi, Z.; Erdelyi, G.; Vad, K.; Beke, D. L.

    2010-12-01

    We describe a method for measurement of nanoscale shift of interfaces in layered systems by a combination of secondary neutral mass spectrometry and profilometer. We demonstrate it by the example of the investigation of interface shifts during the solid state reaction in Ni/amorphous-Si system. The kinetics of the shrinkage of the initial nanocrystalline Ni film and the amorphous Si layer as well as the average growth kinetics of the product phases were determined at 503 K. The results show that nanoscale resolution can be reached and the method is promising for following solid state reactions in different thin film systems.

  6. Local linear model tree and Neuro-Fuzzy system for modelling and control of an experimental pH neutralization process

    OpenAIRE

    Petchinathan,G.; K. Valarmathi; Devaraj,D.; T. K. Radhakrishnan

    2014-01-01

    This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro-fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a G...

  7. Optimization Techniques for Dimensionally Truncated Sparse Grids on Heterogeneous Systems

    KAUST Repository

    Deftu, A.

    2013-02-01

    Given the existing heterogeneous processor landscape dominated by CPUs and GPUs, topics such as programming productivity and performance portability have become increasingly important. In this context, an important question refers to how can we develop optimization strategies that cover both CPUs and GPUs. We answer this for fastsg, a library that provides functionality for handling efficiently high-dimensional functions. As it can be employed for compressing and decompressing large-scale simulation data, it finds itself at the core of a computational steering application which serves us as test case. We describe our experience with implementing fastsg\\'s time critical routines for Intel CPUs and Nvidia Fermi GPUs. We show the differences and especially the similarities between our optimization strategies for the two architectures. With regard to our test case for which achieving high speedups is a "must" for real-time visualization, we report a speedup of up to 6.2x times compared to the state-of-the-art implementation of the sparse grid technique for GPUs. © 2013 IEEE.

  8. Normalized doubly coprime factorizations for infinite-dimensional linear systems

    NARCIS (Netherlands)

    Curtain, RF; Opmeer, MR

    2006-01-01

    We obtain explicit formulas for normalized doubly coprime factorizations of the transfer functions of the following class of linear systems: the input and output operators are vector-valued, but bounded, and the system is input and output stabilizable. Moreover, we give explicit formulas for the Bez

  9. Noncontacting Laser Inspection System for Dimensional Profiling of Space Application Thermal Barriers

    Science.gov (United States)

    Taylor, Shawn C.

    2011-01-01

    A noncontacting, two-dimensional (2-D) laser inspection system has been designed and implemented to dimensionally profile thermal barriers being developed for space vehicle applications. In a vehicle as-installed state, thermal barriers are commonly compressed between load sensitive thermal protection system (TPS) panels to prevent hot gas ingestion through the panel interface during flight. Loads required to compress the thermal barriers are functions of their construction, as well as their dimensional characteristics relative to the gaps in which they are installed. Excessive loads during a mission could damage surrounding TPS panels and have catastrophic consequences. As such, accurate dimensional profiling of thermal barriers prior to use is important. Due to the compliant nature of the thermal barriers, traditional contact measurement techniques (e.g., calipers and micrometers) are subjective and introduce significant error and variability into collected dimensional data. Implementation of a laser inspection system significantly enhanced the method by which thermal barriers are dimensionally profiled, and improved the accuracy and repeatability of collected data. A statistical design of experiments study comparing laser inspection and manual caliper measurement techniques verified these findings.

  10. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....... to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short...

  11. Communication: radial distribution functions in a two-dimensional binary colloidal hard sphere system.

    Science.gov (United States)

    Thorneywork, Alice L; Roth, Roland; Aarts, Dirk G A L; Dullens, Roel P A

    2014-04-28

    Two-dimensional hard disks are a fundamentally important many-body model system in classical statistical mechanics. Despite their significance, a comprehensive experimental data set for two-dimensional single component and binary hard disks is lacking. Here, we present a direct comparison between the full set of radial distribution functions and the contact values of a two-dimensional binary colloidal hard sphere model system and those calculated using fundamental measure theory. We find excellent quantitative agreement between our experimental data and theoretical predictions for both single component and binary hard disk systems. Our results provide a unique and fully quantitative mapping between experiments and theory, which is crucial in establishing the fundamental link between structure and dynamics in simple liquids and glass forming systems.

  12. Dimensional Reduction for Filters of Nonlinear Systems with Time-Scale Separation

    Science.gov (United States)

    2013-03-01

    Rapp, Edwin Kreuzer and N. Sri Namachchivaya, “Reduced Nor- mal Forms for Nonlinear Control of Underactuated Hoisting Systems ,” Archive of Applied Mechanics , Vol.82, 2012, pp. 297 - 315. 7 ... Mechanics , Vol. 78(6), 2011, pp. 61001-1 - 61001-10. 8. Lee DeVille, N. Sri Namachchivaya and Zoi Rapti, “Noisy Two Dimensional Non-Hamiltonian System ...AFRL-OSR-VA-TR-2013-0009 Dimensional Reduction for Filters of Nonlinear Systems with Time- Scale Separation Namachchivaya, N

  13. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    Science.gov (United States)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  14. Theoretical and experimental study of the normal modes in a coupled two-dimensional system

    CERN Document Server

    Giménez, Marcos H; Gómez-Tejedor, José Antonio; Velazquez, Luisberis; Monsoriu, Juan A

    2016-01-01

    In this work, the normal modes of a two-dimensional oscillating system have been studied from a theoretical and experimental point of view. The normal frequencies predicted by the Hessian matrix for a coupled two-dimensional particle system are compared to those obtained for a real system consisting of two oscillating smartphones coupled one to the other by springs. Experiments are performed on an air table in order to remove the friction forces. The oscillation data are captured by the acceleration sensor of the smartphones and exported to file for further analysis. The experimental frequencies compare reasonably well with the theoretical predictions, namely, within 1.7 % of discrepancy.

  15. Multi-dimensional database design and implementation of dam safety monitoring system

    Directory of Open Access Journals (Sweden)

    Er-feng ZHAO

    2008-09-01

    Full Text Available To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design was achieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.

  16. Multi-dimensional database design and implementation of dam safety monitoring system

    Institute of Scientific and Technical Information of China (English)

    Zhao Erfeng; Wang Yachao; Jiang Yufeng; Zhang Lei; Yu Hong

    2008-01-01

    To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design was achieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.

  17. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-06-01

    Density functional theory is employed to investigate the electronic properties of K-intercalated carbon systems. Young\\'s modulus indicates that the intercalation increases the intrinsic stiffness. For K-intercalated bilayer graphene on SiC(0001) the Dirac cone is maintained, whereas a trilayer configuration exhibits a small splitting at the Dirac point. Interestingly, in contrast to many other intercalated carbon systems, the presence of the SiC(0001) substrate does not suppress but rather enhances the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability for superconductivity in this system. © 2012 Europhysics Letters Association.

  18. Four-dimensional information visualization and analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Rex, B.

    1994-09-01

    4DIVAS was conceived for two purposes. The first purpose was to fill the void between the current generation of GIS and high-end, image-only visualization systems. The gap existing between these two systems can be summarized as the limitation of relational database oriented GIS to deal with time and the poor connection in visualization systems to databases of any kind. The second purpose was to permit spatio-temporal modeling and query, functionalities currently underdeveloped in the commercial arena. At the Hanford Site, there are many potential applications for such a system, especially in the monitoring and modeling of potential constituent plumes in the subsurface hydrology over time, among others. In its current form, 4DIVAS exists as a proof-of-concept functional prototype and is therefore more of a technology than a product at this time.

  19. Multi-Dimensional Geometric Complexity in Urban Transportation Systems

    CERN Document Server

    Peiravian, Farideddin

    2015-01-01

    Transportation networks serve as windows into the complex world of urban systems. By properly characterizing a road network, we can therefore better understand its encompassing urban system. This study offers a geometrical approach towards capturing inherent properties of urban road networks. It offers a robust and efficient methodology towards defining and extracting three relevant indicators of road networks: area, line, and point thresholds, through measures of their grid equivalents. By applying the methodology to 50 U.S. urban systems, we successfully observe differences between eastern versus western, coastal versus inland, and old versus young, cities. Moreover, we show that many socio-economic characteristics as well as travel patterns within urban systems are directly correlated with their corresponding area, line, and point thresholds.

  20. Three-Dimensional Backscatter X-Ray Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA application requires a system that can generate 3D images of non-metallic material when access is limited to one side of the material. The objective of this...

  1. Three-Dimensional Backscatter X-Ray Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposal is to design, develop and demonstrate a potentially portable Compton x-ray scatter 3D-imaging system by using specially...

  2. Auto-measuring System of 3- Dimensional Human Body

    Institute of Scientific and Technical Information of China (English)

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  3. Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system

    Institute of Scientific and Technical Information of China (English)

    Lei Yan; Ma Song-Hua; Fang Jian-Ping

    2013-01-01

    By using a mapping approach and a linear variable separation approach,a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived.Based on the derived solutions and using some multi-valued functions,we obtain some novel folded localized excitations of the system.

  4. THE CAPABILITIES USING OF THREE-DIMENSIONAL MODELING SYSTEM AUTOCAD IN TEACHING TO PERFORM GRAPHICS TASKS

    Directory of Open Access Journals (Sweden)

    A. V. Krasnyuk

    2008-03-01

    Full Text Available Three-dimensional design possibilities of the AutoCAD system for performing graphic tasks are presented in the article. On the basis of the studies conducted the features of application of computer-aided design system are noted and the methods allowing to decrease considerably the quantity of errors at making the drawings are offered.

  5. Evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility

    Science.gov (United States)

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-02-01

    This paper described evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility. Gastrointestinal diseases are mainly based on the morphological or anatomical abnormity. However, sometimes the gastrointestinal symptoms are apparent without visible abnormalities. Such diseases are called functional gastrointestinal disorder, for example, functional dyspepsia, and irritable bowel syndrome. One of the major factors of these diseases is the gastrointestinal dysmotility. Assessment procedures for motor function are either invasive, or indirect. We thus propose a three-dimensional endoscope system for assessing the gastrointestinal motility. To assess the dynamic motility of the stomach, three-dimensional endoscopic imaging of stomach lining is performed. Propagating contraction waves are detected by subtracting estimated stomach geometry without contraction waves from one with contraction waves. After detecting constriction waves, their frequency, amplitude, and speed of propagation can be calculated. In this study, we evaluate the proposed system. First, we evaluate the developed three-dimensional endoscope system by a flat plane. This system can measure the geometry of the flat plane with an error of less than 10 percent of the distance between endoscope tip and the object. Then we confirm the validity of a prototype system by a wave simulated model. The detected wave is approximated by a Gaussian function. In the experiment, the amplitude and position of the wave can be measure with 1 mm accuracy. These results suggest that the proposed system can measure the speed and amplitude of contraction. In the future, we evaluate the proposed system in vivo experiments.

  6. Construction of exact complex dynamical invariant of a two-dimensional classical system

    Indian Academy of Sciences (India)

    Fakir Chand; S C Mishra

    2006-12-01

    We present the construction of exact complex dynamical invariant of a two-dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.

  7. Quantum evolution from spin-gap to AF state in a low-dimensional spin system

    Energy Technology Data Exchange (ETDEWEB)

    Gnezdilov, Vladimir [ILTP, Kharkov (Ukraine); Lemmens, Peter; Wulferding, Dirk [IPKM, TU-BS, Braunschweig (Germany); Kremer, Reinhard [MPI-FKF, Stuttgart (Germany); Broholm, Collin [DPA, Johns Hopkins Univ., Baltimore (United States); Berger, Helmuth [EPFL Lausanne (Switzerland)

    2010-07-01

    The low-dimensional spin systems {alpha}- and {beta}-TeVO{sub 4} share the same monoclinic crystal symmetry while having a different connectivity of VO{sub 4} octahedra and long range order vs. a quantum disordered ground state, respectively. We report a rich magnetic Raman spectrum and phonon anomalies that evidence strong spin-lattice coupling in both systems.

  8. Port Hamiltonian Formulation of Infinite Dimensional Systems II. Boundary Control by Interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multi-variable case by ex

  9. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, van der Arjan J.; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multivariable case by ext

  10. Controlling chaos in a high dimensional system with periodic parametric perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Mirus, K.A.; Sprott, J.C.

    1998-10-01

    The effect of applying a periodic perturbation to an accessible parameter of a high-dimensional (coupled-Lorenz) chaotic system is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic system can result in limit cycles or significantly reduced dimension for relatively small perturbations.

  11. Average Transient Lifetime and Lyapunov Dimension for Transient Chaos in a High-Dimensional System

    Institute of Scientific and Technical Information of China (English)

    陈洪; 汤建新; 唐少炎; 向红; 陈新

    2001-01-01

    The average transient lifetime of a chaotic transient versus the Lyapunov dimension of a chaotic saddle is studied for high-dimensional nonlinear dynamical systems. Typically the average lifetime depends upon not only the system parameter but also the Lyapunov dimension of the chaotic saddle. The numerical example uses the delayed feedback differential equation.

  12. A representation of all solutions of the control algebraic Riccati equation for infinite-dimensional systems

    NARCIS (Netherlands)

    Iftime, OV; Zwart, HJ; Curtain, RF

    2005-01-01

    We obtain a representation of all self-adjoint solutions of the control algebraic Riccati equation associated to the infinite-dimensional state linear system Sigma(A, B, C) under the following assumptions: A generates a C-0-group, the system is output stabilizable, strongly detectable and the dual R

  13. Set up the Mechanical Curriculum System Based on Three-Dimensional Design

    Institute of Scientific and Technical Information of China (English)

    LiuShenli; YangDaofu; LiuJipeng

    2003-01-01

    The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. A new teaching system based on three-dimensional design to cultivate modern engineers with solid specialty bases and high creativity in a wide range of fields is presented.

  14. Robustly stabilizing controllers for dissipative infinite-dimensional systems with colocated actuators and sensors

    NARCIS (Netherlands)

    Oostveen, JC; Curtain, RF

    1997-01-01

    We solve the problem of robust stabilization with respect to normalized coprime factor perturbations for a new class of infinite-dimensional systems with finite-rank, colocated actuators and sensors and possibly infinitely many unstable eigenvalues on the imaginary axis. Such systems are often used

  15. Results from field tests of the one-dimensional Time-Encoded Imaging System.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brennan, James S.; Brubaker, Erik

    2014-09-01

    A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

  16. Quantum integrable systems in three-dimensional magnetic fields: the Cartesian case

    Science.gov (United States)

    Zhalij, Alexander

    2015-06-01

    In this paper we construct integrable three-dimensional quantum-mechanical systems with magnetic fields, admitting pairs of commuting second-order integrals of motion. The case of Cartesian coordinates is considered. Most of the systems obtained are new and not related to the separation of variables in the corresponding Schrödinger equation.

  17. Quantum integrable systems in three-dimensional magnetic fields: the Cartesian case

    CERN Document Server

    Zhalij, Alexander

    2008-01-01

    In this paper we construct integrable three-dimensional quantum-mechanical systems with magnetic fields, admitting pairs of commuting second-order integrals of motion. The case of Cartesian coordinates is considered. Most of the systems obtained are new and not related to the separation of variables in the corresponding Schr\\"odinger equation.

  18. Implementation of STIRAP in degenerate systems by dimensionality reduction

    CERN Document Server

    Bevilacqua, G; Brandes, T; Renzoni, F

    2013-01-01

    We consider the problem of the implementation of Stimulated Raman Adiabatic Passage (STIRAP) processes in degenerate systems, with a view to be able to steer the system wave function from an arbitrary initial superposition to an arbitrary target superposition. We examine the case a $N$-level atomic system consisting of $ N-1$ ground states coupled to a common excited state by laser pulses. We analyze the general case of initial and final superpositions belonging to the same manifold of states, and we cover also the case in which they are non-orthogonal. We demonstrate that, for a given initial and target superposition, it is always possible to choose the laser pulses so that in a transformed basis the system is reduced to an effective three-level $\\Lambda$ system, and standard STIRAP processes can be implemented. Our treatment leads to a simple strategy, with minimal computational complexity, which allows us to determine the laser pulses shape required for the wanted adiabatic steering.

  19. Neutral Operator and Neutral Differential Equation

    Directory of Open Access Journals (Sweden)

    Jingli Ren

    2011-01-01

    Full Text Available In this paper, we discuss the properties of the neutral operator (Ax(t=x(t−cx(t−δ(t, and by applying coincidence degree theory and fixed point index theory, we obtain sufficient conditions for the existence, multiplicity, and nonexistence of (positive periodic solutions to two kinds of second-order differential equations with the prescribed neutral operator.

  20. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    Science.gov (United States)

    Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.

    2017-09-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.